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8NOAA Chemical Sciences Laboratory, CIRES, University of Colorado Boulder, Boulder, CO, USA 15 
9Barcelona Supercomputing Center, Barcelona, Spain 
10School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 
11Arcadia SIT, Via Pessano, 20151 Milano, Italy 

Correspondence to: Ruben Urraca (ruben.urraca-valle@ec.europa.eu) 

Abstract. Gridded bottom-up inventories of CO2 emissions are needed in global CO2 inversion schemes as priors to initialize 20 

transport models, and as a complement to top-down estimates to identify the anthropogenic sources. Global inversions require 

gridded datasets almost in near-real time that are spatially and methodologically consistent at a global scale. This may result 

in a loss of more detailed information that can be assessed by using regional inventories because they are built with greater 

level of detail including country-specific information and finer resolution data. With this aim, a global mosaic of regional, 

gridded CO2 emission inventories, hereafter referred to as CoCO2-MOSAIC 1.0, has been built in the framework of the CoCO2 25 

project.  

CoCO2-MOSAIC 1.0 provides gridded (0.1˚×0.1˚) monthly emissions fluxes of CO2 fossil fuel (CO2ff, long cycle) and CO2 

biofuel (CO2bf, short cycle) for the years 2015 to 2018 disaggregated in seven sectors. The regional inventories integrated are 

CAMS-REG-GHG 5.1 (Europe), DACCIWA 2.0 (Africa), GEAA-AEI 3.0 (Argentina), INEMA 1.0 (Chile), REAS 3.2.1 

(East, Southeast, and South Asia) and VULCAN 3.0 (USA). EDGAR 6.0, CAMS-GLOB-SHIP 3.1 and CAMS-GLOB-30 

TEMPO 3.1 are used for gap-filling. CoCO2-MOSAIC 1.0 can be recommended as a global baseline emission inventory for 

2015 that is regionally accepted as a reference, and as so we use the mosaic to inter-compare the most widely used global 

emission inventories: CAMS-GLOB-ANT 5.3, EDGAR 6.0, ODIAC v2020b, and CEDS v2020_04_24. CoCO2-MOSAIC 1.0 

has the highest CO2ff (36.7 Gt) and CO2bf (5.9 Gt) emissions globally, particularly in the USA and Africa. Regional emissions 

generally have a higher seasonality representing better the local monthly profiles and are generally distributed over a higher 35 
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number of pixels, due to the more detailed information available. All super-emitting pixels from regional inventories contain 

a power station (CoCO2 database) whereas several super-emitters from global inventories are likely incorrectly geo-located, 

which is likely because regional inventories provide large energy emitters as point sources including regional information on 

power plants location. CoCO2-MOSAIC 1.0 is freely available at zenodo (https://doi.org/10.5281/zenodo.7092358) (Urraca 

et al., 2023) and at the JRC Data Catalogue (https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389). 40 

1 Introduction 

The European Commission (EC), together with the European Centre for Medium-Range Weather Forecasts (ECMWF), the 

European Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT), are developing the Copernicus CO2 Monitoring and Verification Support (CO2MVS) capacity, a new 

operational service to monitor and verify anthropogenic CO2 emissions with observation-based evidence supporting 45 

policymakers (Janssens-Maenhout et al., 2020; Pinty et al., 2017). CO2MVS will exploit the unprecedented observations from 

the upcoming Copernicus CO2 mission (CO2M) (Sierk et al., 2021), which initially foresees the launch of 2-3 polar-orbiting 

satellites that will sample XCO2, XCH4 and NO2 at around 2-4 km2 and with an accuracy better than 0.7 ppm (Meijer et al., 

2020). The CO2MVS system will combine satellite and in-situ measurements with prior information using an advanced data 

assimilation scheme (Ciais et al., 2015; Pinty et al., 2017, 2019). The initial design of this system is being supported by the 50 

H2020-funded CoCO2 project (https://coco2-project.eu/), which will develop a pre-operational prototype of the CO2MVS 

continuing the efforts started by CHE (https://www.che-project.eu/) and VERIFY (https://verify.lsce.ipsl.fr/) projects. 

The main challenges faced by CO2MVS in particular, and by CO2 inversions in general, are that satellites measure column 

concentrations rather than emissions and that the signal of anthropogenic fossil emissions in atmospheric concentrations is 

small (and with much smaller variation) relative to the oscillating signal of natural fluxes between the land and ocean surfaces 55 

and the atmosphere. Bottom-up gridded emission inventories are a key component to address these challenges (Ciais et al., 

2015; Pinty et al., 2017). They supply essential prior information to initialize transport models reducing the uncertainty of top-

down inversions. They are also complementary to the top-down estimates and provide traceability to the primary activity data. 

Despite the advances done in source attribution using co-emitters, high-resolution images, or radiocarbon, bottom-up 

inventories can identify with a much higher level of detail the exact source of anthropogenic emissions.  60 

During the last decade, several efforts have been made to produce anthropogenic bottom-up inventories of CO2 emissions. The 

most prominent examples at the global scale are the Emissions Database for Global Atmospheric Research (EDGAR) 

(Janssens-Maenhout et al., 2019; Crippa et al., 2021, https://edgar.jrc.ec.europa.eu/dataset_ghg60), the Copernicus 

Atmosphere Monitoring Service global anthropogenic emissions (CAMS-GLOB-ANT) (Soulie et al., 2023), the Open-source 

Data Inventory for Anthropogenic CO2 (ODIAC) (Oda et al., 2018), the Community Emissions Data System (CEDS) (Hoesly 65 

et al., 2018; McDuffie et al., 2020), the Global Carbon Grid (GID) (http://gidmodel.org) and the near-real time Global gRidded 

dAily CO2 Emission Dataset (GRACED) (Dou et al., 2022). Gridded inventories used for operational global scale inversions 

https://doi.org/10.5281/zenodo.7092358
https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389
https://coco2-project.eu/
https://www.che-project.eu/
https://verify.lsce.ipsl.fr/
https://edgar.jrc.ec.europa.eu/dataset_ghg60
http://gidmodel.org/
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need to meet some requirements that may lead to a loss of information. First, they need to provide near-real-time emissions, 

whereas most of the previous efforts are based on information that typically becomes available with a lag of at least two years 

(Ciais et al., 2015). The exceptions are EDGAR, which provides near-real-time data using a fast-track approach based among 70 

others on BP statistics, and GRACED, which uses national Carbon Monitor data produced from hourly/daily electrical 

consumption/production data and daily mobility indices, among others (Liu et al., 2020a, b). Second, gridded inventories 

should provide spatially and methodologically consistent emissions for global inversion models. This may lead to the exclusion 

of more detailed information available in some regions because spatial inconsistencies in the border between two inventories 

(e.g., spatial discontinuities in road or aviation emissions) would have a negative impact on the inversion model. 75 

Regional inventories can be used to measure this loss of information due to the uptake of local data at much finer spatial 

resolution and the inclusion of country-specific activity and emissions information. Some examples are CAMS regional 

inventory for greenhouse gases (CAMS-REG-GHG) over Europe (Kuenen et al., 2022), the Dynamics-Aerosol-Chemistry-

Cloud Interactions in West Africa (DACCIWA) dataset over Africa (Keita et al., 2021), the Multi-resolution Emission 

Inventory for China (MEIC) (Li et al., 2017; Zheng et al., 2018), the Inventario Nacional de Emisiones Antropogenicas 80 

(INEMA) for Chile (Álamos et al., 2022), the Argentina Emission Inventory produced by the Research Group on Atmospheric 

and Environmental Studies (GEAA-AEI) (Puliafito et al., 2021), the Regional Emission inventory in ASia (REAS) (Kurokawa 

and Ohara, 2020), or the VULCAN dataset over USA (Gurney et al., 2020). 

With this context and the previously stated requirements, in the framework of CoCO2 project, a comprehensive global mosaic 

of gridded, regional CO2 emission inventories that are primarily official reference data or widely used in each region or country 85 

has been built. This dataset will be hereafter referred to as the CoCO2-MOSAIC 1.0. Compared to the global inventories, 

CoCO2-MOSAIC 1.0 includes all the regional information available, without the limitation of providing spatially and 

methodologically consistent emissions. Besides, the mosaic does not aim to provide near real-time estimations, which allows 

to include regional information that becomes available with some years of delay. Therefore, it could be considered a regionally 

accepted reference, and as such, it could be used to assess the quality of the global inventories used in global inversions. 90 

CoCO2-MOSAIC 1.0 could be also used to run regional atmospheric inversions within the spatial domain of each regional 

inventory. This would be consistent with how the Hemispheric Transport of Air Pollution (HTAP) mosaic (Janssens-Maenhout 

et al., 2015; Crippa et al., 2023, https://edgar.jrc.ec.europa.eu/dataset_htap_v3) has been extensively used by air pollutant 

models. Note that the use of regional emission datasets for assessing global inventories is currently limited by their accessibility 

(e.g., different spatial resolution, sector description, or data format). CoCO2-MOSAIC 1.0 solves this issue by providing 95 

harmonized access to regional datasets at a global scale, helping users to replicate inter-comparisons such as the one conducted 

in this study. 

CoCO2-MOSAIC 1.0 provides gridded (0.1˚×0.1˚) monthly emissions fluxes from CO2 from fossil fuel (CO2ff, long cycle) 

and CO2 from biofuel (CO2bf, short cycle) from 2015 to 2018. The regional inventories integrated are CAMS-REG-GHG 5.1, 

DACCIWA 2.0, GEAA-AEI 3.0, INEMA 1.0, REAS 3.2.1 and VULCAN 3.0. EDGAR 6.0, CAMS-GLOB-SHIP 3.1 are used 100 



   

 

4 
 

for gap-filling, whereas CAMS-GLOB-TEMPO 3.1 is used for temporal disaggregation. The paper describes the methodology 

used to build CoCO2-MOSAIC 1.0, and benchmarks some of the most widely used global inventories against CoCO2-

MOSAIC 1.0: CAMS-GLOB-ANT 5.3, EDGAR 6.0, ODIAC 2021b and CEDS v2020_04_21. The inter-comparison is made 

using 2015 data, analysing their total and per sector emissions in each region, their spatial and temporal weight factors, and 

the location and magnitude of super-emitting pixels, among other aspects. 105 

2 CoCO2-MOSAIC 1.0 

2.1 Input emission inventories 

The regional inventories integrated by CoCO2-MOSAIC 1.0 are summarized in Table 1. Global inventories are used to gap-

fill missing or incomplete sectors, and countries without regional information (Table 2). The default global inventory for gap-

filling is EDGAR 6.0, replacing EDGAR 6.0 shipping emissions (TRO_Ship) by CAMS-GLOB-SHIP 3.1. CAMS-GLOB-110 

TEMPO 3.1 monthly profiles are used to disaggregate temporally the emissions of inventories only providing annual estimates. 

All the global inventories are from CAMS except EDGAR, which was used instead of CAMS-GLOB-ANT because a high 

sectoral disaggregation was needed for gap-filling. A complete description of each inventory methodology and their sector 

definitions is available as supplementary material. 

 115 

Table 1 Description of the regional emission inventories integrated by CoCO2-MOSAIC 1.0. 1Monthly emissions in CAMS-REG-

GHG were calculated using the default temporal profiles provided with the dataset. 

Inventory 
Spatial 

coverage 

Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 
CO2 Reference 

CAMS-REG-GHG 5.1 
Europe 

[30N-72N, 30W-60E] 
2000-2018 0.1˚×0.05˚ annual1 ff, bf (Kuenen et al., 2022) 

DACCIWA 2.0 Africa 2010-2021 0.1˚×0.1˚ annual ff, bf (Keita et al., 2021) 

GEAA-AEI 3.0 Argentina 1995-2020 0.025˚×0.025˚ monthly ff, bf (Puliafito et al., 2021) 

INEMA 1.0 Chile 2015-2017 0.01˚×0.01˚ annual ff, bf (Álamos et al., 2022) 

REAS 3.2.1 
East, Southeast and 

South Asia 
1950-2015 0.25˚×0.25˚ monthly ff, bf 

(Kurokawa and Ohara, 
2020) 

VULCAN 3.0 USA 2010-2015 1km×1km hourly ff (Gurney et al., 2020) 

 

Table 2 Description of the global datasets used to gap-fill CoCO2-MOSAIC 1.0 

Inventory 
Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 
CO2 

Reference 

EDGAR 6.0 1970-2019 0.1˚×0.1˚ monthly ff, bf 
(Janssens-Maenhout et al., 2019; Crippa 

et al., 2021) 

CAMS-GLOB-SHIP 3.1 2000-2018 0.1˚×0.1˚ monthly ff 
(Johansson et al., 2017; Granier et al., 

2019). 

CAMS-GLOB-TEMPO 3.1 2000-2020 0.1˚×0.1˚ 
monthly, weekly, 

daily, hourly 
ff (Guevara et al., 2021) 
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2.2 Methodology 120 

This section describes the main steps followed to build CoCO2-MOSAIC 1.0. A general overview of the methodology is 

provided in Figure 1. 

 

Figure 1 Flowchart of the CoCO2-MOSAIC 1.0 methodology. CDS = Climbing & descent, CRS = cruise. The tick () means that 

the specific processing step was applied to the inventory. Gap-filling was done independently for CO2ff and CO2bf. Sectors may have 125 
been gap-filled fully or partially (see Supplementary Material). 
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2.2.1 Unit conversion 

Regional inventories providing emissions in kg/year were converted into kg/m2/s using the cell area included as CoCO2-

MOSAIC 1.0 auxiliary layer. VULCAN 3.0 emissions were transformed from kg C to kg CO2 using the atomic mass of C in 

CO2 (12/44).  130 

2.2.2 Spatial re-gridding 

CoCO2-MOSAIC 1.0 uses a 0.1°×0.1° grid with the upper-left corner of the upper-left pixel at [-180.0°, -90.0°]. All regional 

inventories except DACCIWA 2.0 had to be re-gridded. CAMS-REG-GHG 5.1 (0.1˚×0.05˚), GEEA-AEI 3.0 (0.025˚×0.025˚) 

and INEMA 1.0 (0.01˚×0.01˚) grids were perfectly aligned with the mosaic grid and proportional to it, so the raw emissions 

inside each mosaic pixel were directly averaged. GEAA-AEI point emissions were averaged over the 0.1°×0.1° pixel 135 

containing the point source. VULCAN 3.0 point, line, and polygon emissions were directly aggregated into the mosaic grid to 

minimize re-gridding errors. REAS 3.2.1 (0.25˚×0.25˚) emissions were first downscaled from to 0.05˚×0.05˚ grid by just 

replicating the emission fluxes. At coastal pixels, emission fluxes were re-calculated assuming that emissions over the 

0.05˚×0.05˚ sea pixels are zero (REAS does not include shipping emissions). Then, 0.05˚×0.05˚ emission fluxes were averaged 

into the mosaic grid. REAS power plant emissions are available as point sources, and they were averaged over the 0.1˚x0.1˚ 140 

pixel containing the power plant. 

2.2.3 Gap-filling missing emissions and sector aggregation 

CoCO2-MOSAIC 1.0 provides CO2ff and CO2bf emissions in seven groups of sectors: energy_s (super-emitting sources above 

7.9e-6 kg/m2/s), energy_a (average emitters), manufacturing, settlements, transport, aviation (land and take-off – LTO) and 

other. These sectors were defined by grouping EDGAR 6.0 categories as shown in Table 3. The choice of a super-emitters 145 

threshold of 7.9e-6 kg/m2/s was made in Choulga et al. (2021) to filter a reasonable number of super-emitting pixels whose accuracy 

could be manually checked to reduce the uncertainty of energy emissions. Note that, for simplicity, solid waste incineration includes 

both incineration with and without energy recovery due to the high uncertainty of separating these two groups. This choice was made 

at the CHE project (Choulga et al 2021) and was kept in CoCO2 for consistency. 

Table 3 also describes how the emissions by sector from regional inventories were aggregated into the mosaic sectors. If the 150 

emissions of a sector in a region were fully or partly missing, they were gap-filled with the default global inventory (EDGAR 

6.0 + CAMS-GLOB-SHIP 3.1). We only gap-filled a missing category/component if its contribution to the mosaic sector was 

above 1% (based on EDGAR 6.0) (Table S8). The sector ‘other’ was not gap-filled to avoid a potential double-counting of the 

emissions, because these emissions could be partly included in other sectors. In any case, the emissions of this sector are 

expected to be low compared to the others. The mosaic follows the definition of biofuels provided by the International Energy 155 

Agency (IEA) (see Supplementary material). CO2ff and CO2bf emissions were defined by each regional inventory, and we 
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verified the consistency of regional methodologies with the IEA definition. Note that agricultural waste burning (assumed 

carbon neutral) and wildfires (not an anthropogenic source) are not included.  

Table 3: Definition of the CoCO2-MOSAIC sectors. Mapping of the regional inventory sectors to CoCO2-MOSAIC 1.0 sectors. 

CO2ff (ff) and CO2bf (bf) components are only specified in those inventories not providing both components in all categories. Sector 160 
definitions are available as supplementary material.  

CoCO2-

MOSAIC 

 

IPCC 

sector 
Description EDGAR 6.0 CAMS-REG-GHG  5.1 

energy_s 

1.A.1.a (subset)  Power industry (without auto 

producers): super emitting power 

plants  

(flux > 7.9e-6 kg/m2/s) 

ENE A_PublicPower 

energy_a 

1.A.1.a (rest)  Power industry (without auto 

producers): standard emitting power 

plants  

(flux < 7.9e-6 kg/m2/s) 

ENE A_PublicPower 

 

4.C  Solid waste incineration SWD_INC J_Waste 

manufacturing 

1.A.2  Combustion for manufacturing 

(including auto producers) 

IND *autoproducers re-

allocated from ENE to IND 

based on national statistics 

(Choulga et al., 2021) 

B_Industry 

 

2.C.1, 2.C.2  Iron and steel production IRO 

2.C.3, 2.C.4, 2.C.5, 

2.C.6, 2.C.7  

Non-ferrous metals production NFE 

2.D.1, 2.D.2, 2.D.4  Non energy use of fuels NEU 

2.A.1, 2.A.2, 2.A.3, 

2.A.4  

Non-metallic minerals 

production (cement, lime, glass, 

other) 

NMM 

2.B.1, 2.B.2, 2.B.3, 

2.B.4, 2.B.5, 2.B.6, 

2.B.8  

Chemical processes CHE 

settlements 
1.A.4 1.A.5.a, 1.A.5.b.i, 

1.A.5.b.ii  

Energy for buildings RCO C_OtherStationaryComb 

aviation 

1.A.3.a_LTO Aviation landing & take off; typical 

fuel: jet kerosene. International 

aviation included. 

TNR_aviation_LTO 

(up to 1000 m) 

H_Aviation (LTO) 

(up to 915 m) 

transport 

1.A.3.b  Road transportation; typical fuel: 

most typical emission factor 

uncertainty 

TRO_noRES F1_RoadTransport_exhaust_gasoline 
F2_RoadTransport_exhaust_diesel 
F3_ReadTransport_Exhaust_LPG_gas 

1.A.3.d  Shipping; typical fuel: composition 

of 80% diesel and 20% residual fuel 

oil. International shipping included. 

TNR_Ship  (replaced by  

CAMS-GLOB-SHIP) 

G_Shipping 

1.A.3.c, 1.A.3.e  Railways, pipelines, off-road 

transport; typical fuel: railways -

diesel, off-road transport – most 

typical emission factor uncertainty 

TNR_Other I_Offroad 

other 

1.A.1.b, 1.A.1.c, 

1.A.5.b.iii, 1.B.1.c, 

1.B.2.a.iii.4, 1.B.2.a.iii.6, 

1.B.2.b.iii.3  

Oil refineries and transformation 

industry 

REF_TRF D_Fugitives 

E_Solvents 

L_AgriOther 

1.B.2.a.ii, 1.B.2.a.iii.2, 

1.B.2.a.iii.3, 1.B.2.b.ii, 

1.B.2.b.iii.2, 

1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C  

Fuel exploitation PRO 
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3.C.2, 3.C.3, 3.C.4, 

3.C.7  

Agricultural soils AGS 

2.D.3, 2.B.9, 2.E, 2.F, 

2.G  

Solvents and products use PRU_SOL 

Table 3 (continued) 

CoCO2-

MOSAIC 

IPCC 

sector 

DACCIWA 

2.0 

GEAA-AEI 

3.0 
INEMA 1.0 REAS 3.2.1 VULCAN 3.0 

energy_s 

1.A.1.a (subset)  energy_s CEN  Energy (ff 

+bf) 

POWER_PLANT_NON_POINT 

(ff, bf) 

POWER_PLANT_POINT (ff) 

elec_prod (ff) 

energy_a 

1.A.1.a (rest)  energy_a CEN  

 

Energy (ff + 

bf) 

POWER_PLANT_NON_POINT 

(ff, bf) 
POWER_PLANT_POINT (ff) 

elec_prod (ff) 

4.C  WAS - gap-filled (ff, bf) - 

manufacturing 

1.A.2  manufacturing IND_FUE  

IND_PRO 

Industry (ff + 

bf) 

Mining (ff + 

bf) 

INDUSTRY (ff, bf) industrial (ff) 
cement (ff) 2.C.1, 2.C.2  

2.C.3, 2.C.4, 2.C.5, 

2.C.6, 2.C.7  

2.D.1, 2.D.2, 2.D.4  

2.A.1, 2.A.2, 2.A.3, 

2.A.4  

2.B.1, 2.B.2, 2.B.3, 

2.B.4, 2.B.5, 2.B.6, 

2.B.8  

settlements 

1.A.4 1.A.5.a, 

1.A.5.b.i, 1.A.5.b.ii  

settlements COM 

GOV 

RES 

FAG 

Residential 

(bf) 

gap-filled (ff) 

DOMESTIC (ff, bf) commercial (ff) 
residential (ff) 

aviation 

1.A.3.a_LTO aviation 

(LTO) 

AVI (LTO) 

(up to 1000 

m) 

gap-filled (ff) 

 

gap-filled (ff) airport (ff)  

(up 915m) 

transport 

1.A.3.b  transport VEH Transport (ff) 

 

ROAD_TRANSPORT (ff) 

gap-filled (bf) 

 

onroad (ff) 

1.A.3.d  BAR gap-filled (ff) gap-filled (ff) cmv (ff) 

1.A.3.c, 1.A.3.e  TRE gap-filled (ff) OTHER_TRANSPORT (ff) railroad (ff) 

nonroad (ff) 

other 

1.A.1.b, 1.A.1.c, 

1.A.5.b.iii, 1.B.1.c, 

1.B.2.a.iii.4, 

1.B.2.a.iii.6, 

1.B.2.b.iii.3  

other REF 

VEN 

- - - 

1.B.2.a.ii, 

1.B.2.a.iii.2, 

1.B.2.a.iii.3, 

1.B.2.b.ii, 

1.B.2.b.iii.2, 

1.B.2.b.iii.4, 

1.B.2.b.iii.5, 1.C  

3.C.2, 3.C.3, 3.C.4, 

3.C.7  

2.D.3, 2.B.9, 2.E, 

2.F, 2.G  
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2.2.4 Temporal re-distribution 

All regional inventories provide monthly emissions except DACCIWA 2.0 and INEMA 1.0. In these inventories, monthly 165 

emissions were calculated based on CAMS-GLOB-TEMPO 3.1 monthly profiles: FM_ene_co2 for energy_s and energy_a 

(country-specific), FM_ind for manufacturing (country-specific), FM_res for settlements (pixel-specific) and FM_tro for 

transport (country-specific). Several countries share the same country-specific profiles in regions where fewer information is 

available (e.g., Africa). Flat profiles were used in sectors not covered by CAMS-GLOB-TEMPO 3.1: aviation and other.  

2.2.5 Temporal gap-filling 170 

CoCO2-MOSAIC 1.0 covers 2015, 2016, 2017 and 2018. The only year when all regional inventories are available is 2015. 

From 2016 to 2018, missing years were gap-filled with the latest year available in each regional inventory (see limitations in 

Section 5.8). 

2.2.6 Masks 

CoCO2-MOSAIC 1.0 includes a country and an inventory mask. The country mask is based on the Geographic Information 175 

System of the COmmission (GISCO) 2020 dataset (1m) (EUROSTAT, 2020). GISCO 2020 labels countries with their ISO 

Alpha-3 codes and their English name. For rasterization, the ISO Numeric (3-digit) code was used. At coastal borders, all 

pixels touching the coastal line were considered as land and assigned to the corresponding country (Fig S2). At country borders, 

pixels including more than one country were assigned to the country covering most of the border pixel (Fig S3). Note that this 

could introduce a small error when using the country mask to aggregate the emissions per country in those countries with a 180 

significant share of their emissions close to their borders. These errors are negligible at global scale, but users could use their 

own aggregation algorithms accounting for the exact area covered by each country to eliminate them. 

The inventory mask maps each pixel to one input inventory (Fig 1). In each country, regional inventories were used only if 

they covered the whole country, excluding overseas territories (Table S13). The spatial extent of regional inventories was 

limited to inland pixels (all pixels touching some land). Pixels fully covered by sea were assigned to the default global inventory 185 

(mainly shipping emissions from CAMS-GLOB-SHIP 3.1).  

2.3 Complementary datasets 

2.3.1 CO2ff aviation emissions from climb, descent and cruise 

Regional inventories only include LTO emissions, which are approximated by most inventories as aviation emissions emitted 

below 1km (EDGAR, GEAA-AEI) or a roughly equivalent altitude of 3000” or 914 m (CAMS-REG-GHG, VULCAN). The 190 

remaining aviation emissions are calculated as the sum of EDGAR 6.0 climbing & descent (CDS) and cruise (CRS) sectors. 

Both domestic and international aviation are included. These emissions are provided in a separate file as they are not covered 

by regional inventories and are emitted into the atmosphere at different altitude. 
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2.3.2 LULUCF emissions 

EDGAR LULUCF (Crippa et al., 2022) net fluxes are used to complete the overview of CO2 anthropogenic emissions. They 195 

are available at the regional level in four different categories: ‘forest land’ (living biomass), ‘deforestation’, ‘organic soil’, 

fires, and ‘other’ (including all other land uses). EDGAR LULUCF provides independent estimates for the living biomass pool 

in forest land (including fires), while emissions from the other categories are based on a compilation of official country reports 

to the UNFCCC (Grassi et al., 2022). The forest land CO2 fluxes are obtained combining the forest area from satellite-derived 

land use data and the IPCC Tier 1 approach, which uses IPCC default forest growth factors and country statistics on harvest.  200 

These fluxes are calculated over managed forests, derived from country information or approximated by means of a non-intact 

forest layer. Also biomass fire emissions are estimated by means of a Tier 1 approach, using the Global Wildfire Information 

System (GWIS) burned area product (Artés et al., 2019).  For this study, emissions from firewood harvest (preliminary estimate 

based on country statistics) were removed from forest land fluxes because these emissions are already accounted as CO2bf. A 

gridded EDGAR LULUCF dataset is not available yet, so LULUCF emissions are used for the analysis, but they are not 205 

integrated into CoCO2-MOSAIC 1.0.  

3 Inter-comparison 

3.1 Global emission inventories  

Table 4 shows the global CO2 emission inventories benchmarked against CoCO2-MOSAIC 1.0. Note that CAMS-GLOB-

ANT 5.3 (with the addition of DACCIWA 2.0) is the so called CoCO2-PED 2018, i.e., the bottom-up inventory used as prior 210 

for CoCO2 global inversions. A full description of each inventory is available as supplementary material. 

 

Table 4 Description of the global inventories compared against CoCO2-MOSAIC 1.0 

Inventory 
Temporal 

coverage 

Spatial 

resolution 

Temporal 

resolution 
CO2 Reference 

EDGAR 6.0  1970-2019 0.1˚×0.1˚ monthly ff, bf (Crippa et al., 2021) 

CAMS-GLOB-ANT 5.3 2000-2023 0.1˚×0.1˚ monthly ff, bf (Soulie et al., 2023), 

CEDS v2021_04_21 1750-2019 0.1˚×0.1˚ monthly  ff (Hoesly et al., 2018; McDuffie et al., 2020) 

ODIAC 2020b 2000-2019 1/120˚×1/120˚ monthly ff (ODIAC2021b; Oda et al., 2018). 

CAMS-GLOB-AIR 1.1 2000-2023 0.5˚×0.5˚ monthly ff (Granier et al., 2019) 

3.2 Pre-processing 

The global inventories were pre-processed as follows: 215 
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 Spatial re-gridding:  CAMS-GLOB-ANT 5.3, EDGAR 6.0 and CEDS v2021_04_21 are already available at the 

mosaic resolution. ODIAC v2020b (1/120˚×1/120˚) was directly averaged to 0.1˚×0.1˚. CAMS-GLOB-AIR 1.1 

(0.5˚×0.5˚) were downscaled by replicating the 0.5˚×0.5˚ fluxes to the 0.1˚×0.1˚ grid.  

 Temporal resolution: All inventories provided monthly emissions. 

 Sector aggregation: EDGAR sectors were already mapped to CoCO2-MOSAIC ones (Table 3).  The only difference 220 

is that, for the inter-comparison, EDGAR shipping emissions were used instead of CAMS-GLOB-SHIP 3.1. CAMS-

GLOB-ANT 5.3 and CEDS v2021 sectors were aggregated as shown in Table 5. Aviation emissions are missing in 

CEDS, CAMS-GLOB-ANT and ODIAC, at least in their highest resolution products. Some CEDS sectors do not 

fully match the definition of the corresponding mosaic sectors: energy emissions include fuel exploitation and 

transformation (accounted as ‘other’ in the mosaic) and auto-producers (accounted as ‘manufacturing’ in the mosaic). 225 

Both CEDS and ODIAC only provide CO2ff emissions. 

Table 5 Sectorial re-aggregation of the global emission inventories for the inter-comparison. Sector definitions available as 

supplementary material. 

Sector CAMS-GLOB-ANT 5.3 CEDS v2021_04_21 ODIAC 2020b 

energy ene (power generation) + 

swd (waste incineration) 

energy + waste  

no disaggregation 
 manufacturing ind (industrial processes) industrial 

settlements res (residential) residential 

aviation - - - 

transport 
tro (road) + tnr (off-road) + 

shp (ships) 

transportation +  

int. shipping 

 

no disaggregation 
 other ref (refineries) + fef  

(fugitives)+ ags (agricultural 
soils)+ slv (solvents) 

solvents + agriculture 

3.3 Inter-comparison methodology 

The inter-comparison was made in 2015 as this is the only year when all regional inventories are simultaneously available. 230 

Monthly CO2ff and CO2bf emissions from CoCO2-MOSAIC 1.0 and the global inventories were compared per region. The 

aviation sector was treated separately (Section 2.3.3) because it is not provided by most global inventories. energy_s and 

energy_a sectors were analysed together to remove the influence of the different number of super-emitters in each inventory. 

The temporal disaggregation of the emissions was analysed by comparing the monthly temporal factors (FT) per sector and 

CoCO2-MOSAIC region:  235 

𝐹𝑇𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑚𝑜𝑛𝑡ℎ =
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑚𝑜𝑛𝑡ℎ

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟
 

where 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑚𝑜𝑛𝑡ℎ and 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟  are the total monthly and annual emissions in each region 

and sector, respectively. The spatial disaggregation was assessed based on the annual spatial weight factors (FS) in each pixel 

per sector: 
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𝐹𝑆𝑝𝑖𝑥𝑒𝑙,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟 =
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑖𝑥𝑒𝑙,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 240 

where 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑖𝑥𝑒𝑙,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟  are the annual emission flux in each pixel and 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟𝑒𝑔𝑖𝑜𝑛,𝑠𝑒𝑐𝑡𝑜𝑟,𝑦𝑒𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the annual 

mean emission flux over the corresponding region. The spatial factors were based on the histograms of pixels with non-zero 

emissions. Both temporal and spatial factors were calculated separately for CO2ff and CO2bf. 

3.3.1 Analysis of super-emitters 

The number and magnitude of super-emitters (energy sources > 7.9e-6 kg/m2/s) depend on the power and heat plant emissions 245 

(IPCC sector 1A1a) and the total number of emitting pixels, so we inter-compared both quantities per inventory and region. 

CEDS was excluded as the energy sector includes other activities besides power plant emissions. We used the CoCO2 1.0 

global power plant database (Guevara et al., 2023) to analyse the geo-location of super-emitting pixels. We checked if all 

super-emitting pixels contained a power plant, defining the total number of true positives (TP), super-emitters collocated with 

a power plant, false positives (FP), super-emitters not collocated with a power plant, and a special case of false positives (FP*), 250 

super-emitters not collocated with a power plant but with a power plant in one of the 8 surrounding pixels. The last group was 

created to find potential geo-location errors either from the power plant database or from the global inventories.  

3.3.2 Analysis of aviation emissions 

Aviation emissions above 1km were analysed by comparing CoCO2-MOSAIC 1.0 (EDGAR 6.0 CDS + CRS) and CAMS-

GLOB-AIR 1.1 (sum of the 23 levels above 1 km, from 1.525 km to 14.945 km).  For the aviation emissions below 1km 255 

(LTO), we compared CoCO2-MOSAIC 1.0 against EDGAR 6.0 (LTO) and CAMS-GLOB-AIR 1.1 (first two levels – 305m 

and 915m).  We also evaluate the spatial allocation of LTO emissions in those regions where LTO emissions were available 

(USA, Europe, Argentina and Africa), applying the same method used for super-emitters. CoCO2-MOSAIC 1.0 LTO 

emissions were used as the reference to define TP, a pixel with LTO emissions in both local and regional inventories, FP, a 

pixel with LTO emissions in the global inventory and no emissions in the regional one, and FN, a pixel with LTO emissions 260 

in the regional inventory and no emissions in the global one.  

4 Uncertainty analysis 

According to the Guide of the expression of Uncertainty in Measurements (GUM) (JCGM, 2008), the pixel-level uncertainties 

of CoCO2-MOSAIC 1.0 should be calculated by propagating the pixel-level uncertainties of the input inventories through the 

different steps of the methodology. This would allow propagating CoCO2-MOSAIC uncertainties in inversion models and 265 

closing the uncertainty budget in comparisons against other inventories. Similarly, pixel-level uncertainties of input inventories 

should be obtained by propagating the uncertainties of their input datasets (country emissions, spatial and temporal proxies,  

etc.) through their models. However, we could not apply this methodology because, unfortunately, only VULCAN 3.0 provides 
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pixel-level uncertainties. Instead, we used the methodology described by Choulga et al. (2021) to calculate the country level 

uncertainties based on the IPCC uncertainty framework (IPCC, 2006). For each IPCC sector, the methodology takes the IPCC 270 

default uncertainties for activity data and emission factors and propagates them first to EDGAR sectors and then to the CoCO2-

MOSAIC sectors. CoCO2-MOSAIC 1.0 does not have this level of sector disaggregation. Thus, we combined the relative 

uncertainties reported by Choulga et al. (2021) for EDGAR sectors with EDGAR 6.0 emissions to calculate the relative 

uncertainty per CoCO2-MOSAIC sector and country, and then we applied CoCO2-MOSAIC 1.0 emissions to obtain the 

absolute uncertainties at country level. We split countries into well-developed (WDS) and less well-developed (LDS) statistical 275 

systems as made by Choulga et al. (2021). LDS uncertainties were also applied to emissions not covered by national inventories 

(shipping, aviation above 1km). The methodology was only applied for CO2ff emissions due to the lack of default uncertainties 

for CO2bf. CO2bf uncertainty is expected to be larger due to less information available (Solazzo et al., 2021).  

5 Results and Discussion 

5.1 Description of CoCO2-MOSAIC 1.0 280 

The total CO2 emissions in 2015 based on CoCO2-MOSAIC 1.0 are 36.7 Gt of CO2ff and 5.9 Gt of CO2bf (Table 6). These 

emissions are partly offset by a LULUCF sink of –10.9 Gt (Table 7). This sink is much bigger than the -3.7 Gt net LULUCF 

sink reported by Crippa et al. (2022) because here the emissions from firewood harvest (preliminary estimated around +7.2 

Gt, based on country statistics) have been removed from forest land, as these emissions are already counted as CO2bf emissions. 

The discrepancy between the +5.9 Gt of CO2bf and the +7.2 Gt of firewood harvests is due to the different years of harvest 285 

and burning, the additional sources of CO2bf besides firewood, and the different methodologies used by each dataset. Note 

that to calculate the total CO2 emissions according to the IPCC reporting guidelines, the 36.7 Gt (without CO2bf) should be 

added to the total sink of -3.7 Gt (without removing firewood harvest). 

CO2ff emissions are driven by energy production (35.4% of CO2ff), manufacturing (29.4% of CO2ff), and transport (18.5% of 

CO2ff). China, USA, India, Russia, Japan and Germany are the largest emitters due to their large energy emissions, though 290 

manufacturing has the largest emission share in China and India. CO2bf emissions mainly come from settlements (55.9% of 

CO2bf) and manufacturing (20.3% of CO2bf), with India, Nigeria and Brazil being the largest emitters. The LULUCF sink of 

-10.9 (or -3.7 Gt, including firewood) is driven by a forest land sink of –16.0 Gt (or -8.8 Gt, including firewood) partly offset 

by deforestation (+4.2 Gt) and organic soils (+1.1 Gt). The main contributors to the sink are large countries with a strong forest 

land sink: China, Russia, USA and Canada. The largest LULUCF sources are Indonesia, driven by organic soils and 295 

deforestation, Brazil, driven by deforestation, and Australia, driven by fires. When LULUCF fluxes are normalized by the 

country extension, the largest relative sinks appear in Central Africa (Gabon, Cameron, Congo and Central Africa Republic) 

due to a strong forest land sink. On the contrary, Ghana, Indonesia, Vietnam, Nigeria and Brazil have the largest relative 

LULUCF sources due to deforestation.  
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 300 

Table 6 Total CO2ff and CO2bf anthropogenic emissions per sector during 2015 based on CoCO2-MOSAIC 1.0 

 Sector 
CO2ff 

[Mt/year] 

CO2bf 

[Mt/year] 

CO2 

[Mt/year] 

Ground 

emissions 

Land  

energy_s 798.9 - 798.9 

energy_a 12183.2 677.6 12860.8 

manufacturing 10824.2 1158.3 11982.5 

settlements 3339.9 3331.8 6671.7 

aviation (LTO) 148.1 - 148.1 

transport 6783.9 235.3 7019.2 

other 1127.0 505.7 1632.6 

Sea  transport 716.5 - 716.5 

Emissions 
above ~1 km 

Global 
aviation  

(climb, descent, cruise) 
768.0 - 768.0 

TOTAL 36689.7 5908.7 42598.3 

 

Table 7 Net LULUCF CO2 flux during 2015 based on EDGAR-LULUCF. 

Sector CO2  [Mt/year] 

Forest land (excluding firewood) -15963.0 

Deforestation 4175.0 

Organic soil 1071.0 

Fires 824.1 

Other -1005.4 

TOTAL (excluding firewood)  -10898.3 

Firewood 7232.2 

TOTAL (including firewood) -3666.1 

5.2 Comparison of the inventories per region and sector 

CoCO2-MOSAIC 1.0 has the largest CO2ff emissions overall (Fig 5), which could be even larger due to not gap-filling regional 305 

inventories (VULCAN 3.0, REAS 3.2.1, INEMA 1.0) in which ‘other’ emissions were missing. The total ‘other’ emissions in 

these regions are 1.3 Gt based on EDGAR 6.0, so despite they may be partly included in other sectors, CoCO2-MOSAIC 1.0 

emissions could be up to 3.7% higher. The total CO2ff emissions of EDGAR 6.0 and CAMS-GLOB-ANT 5.3 are similar, and 

just slightly smaller (<1%) than those of CoCO2-MOSAIC 1.0. The sectorial emissions of EDGAR and CAMS-GLOB-ANT 

are also very consistent due to the strong dependence of CAMS-GLOB-ANT 5.3 on EDGAR 5.0. However, both diverge with 310 

CoCO2-MOSAIC 1.0 at the sector level: they have smaller emissions in manufacturing (-14 to -16%, mainly REAS region) 

and transport (-7 to -8%, mainly USA and Europe) sectors, and larger emissions in the energy (+3 to +4%, mainly Europe and 

REAS region) and other (+137 to +139 %, due to not gap-filling) sectors. CEDS v2021_04_21 has the smallest CO2ff emissions 

overall (-6.2% of CoCO2-MOSAIC 1.1), and the largest discrepancies at the sector level due to the different definitions of the 
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sectors. CEDS v2021_04_21 has the largest energy emissions (+2.2 Gt or +17.0 % of CoCO2-MOSAIC) because they include 315 

fuel exploitation and transformation (‘other’ in CoCO2-MOSAIC) and auto producers (‘manufacturing’ in CoCO2-MOSAIC). 

Consequently, both CEDS manufacturing (-2.3 Gt or -21.5%) and ‘other’ emissions (-1.0 Gt) are smaller. Despite the different 

sectorial aggregations, the total CEDS emissions in these sectors are –1.1 Gt smaller than those of the CoCO2-MOSAIC. The 

remaining difference is explained by the smaller emissions in settlements (-8.3 % than CoCO2-MOSAIC) and transport (-

9.0% than CoCO2-MOSAIC). ODIAC 2020b has also smaller CO2ff emissions than CoCO2-MOSAIC 1.0 (-3%), CAMS-320 

GLOB-ANT (-2%) and EDGAR (-2%), but larger than CEDS. Compared to the other global inventories, ODIAC has the 

smallest CO2ff emissions in Europe and the REAS region but the largest ones in USA and Chile. ODIAC is the only gridded 

inventory not providing sectoral emissions to analyse the source of these discrepancies.  

 

 325 

Figure 2 Global CO2ff and CO2bf emissions in 2015 over land pixels: (a) per sector and (b) total (aviation LTO emissions are 

excluded).  

 

CoCO2-MOSAIC 1.0 also has the largest CO2bf emissions followed by EDGAR 6.0 (-4.1%) and CAMS-GLOB-ANT 5.3 (-

15.9%). The difference between EDGAR and CAMS, not observed in CO2ff, is due to the large CO2bf manufacturing 330 

emissions of EDGAR 6.0. Compared to CoCO2-MOSAIC 1.0, EDGAR 6.0 has smaller CO2bf emissions in energy (-15.5%) 

and other (-88.7%) sectors, mainly due to differences in Africa, and in the settlements sector (-8.8%). On the contrary, EDGAR 

6.0 has again larger CO2bf manufacturing emissions globally (+52.1%) and in all the regions evaluated. This is due to the 

inclusion of emissions from bagasse in food industry, which were calculated from UN statistics in EDGAR. However, a better 

assessment of the uncertainty of these statistics is yet needed. In EDGAR 6.0 the larger CO2bf manufacturing emissions can 335 

compensated partially the lower CO2bf settlements and energy emissions, as like in the case of different sector allocations due 

to slightly different interpretations of definitions. Overall, the differences between inventories are larger in CO2bf than in 
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CO2ff, especially over Africa or at the national level (Chile, Argentina), which could be linked to the less information available 

on biofuels emission. 

 340 
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Figure 3 Regional CO2ff and CO2bf emissions in 2015 over land pixels: (a) per sector and (b) total. Aviation LTO emissions are 

excluded. Red asterisks denote regions of the CoCO2-MOSAIC 1.0 with missing ‘other’ emissions. Black dots indicate CoCO2-

MOSAIC 1.0 sectors fully/partly gap-filled with EDGAR 6.0. 

The differences between inventories are analysed per region and sector in Fig 3. Note that differences in regions comprising 345 

many countries are biased towards countries with the largest emission share. Total and sectorial emissions are very similar in 

countries without a regional inventory, likely because all inventories use similar data sources due to the less information 

available in these countries. The only discrepancies are the abovementioned larger CO2bf manufacturing emissions by EDGAR 

6.0, and the larger CO2ff energy emissions by CEDS, which are even larger than in other regions. 

The best agreement between regional and global inventories is observed in Europe and the REAS region. In both regions, the 350 

total emissions of the regional inventory are similar to EDGAR 6.0 and CAMS-GLOB-ANT 5.3, and +3 to +7% larger than 

those of ODIAC and CEDS. Some differences exist at the sector level. In Europe, compared to the global inventories, CAMS-

REG-GHG 5.3 has larger CO2ff emissions in transport (all countries) and manufacturing (largest emitting countries except 

Turkey and Ukraine), smaller CO2ff emissions in energy (Germany, Great Britain, and Italy), and larger CO2bf emissions in 

settlements (all countries but France). In Asia, REAS 3.2.1 has the smallest energy emissions, the largest manufacturing 355 

emissions, and zero “other” emissions, but these differences cancel out so they may be partly explained by different sector 

definitions. Global inventories are also very consistent in USA, but all of them have smaller (-6 to -12%) total CO2ff emissions 

than VULCAN 3.0 due to the larger regional emissions in energy, manufacturing and transport sectors. The larger 

manufacturing emissions of VULCAN are due to the inclusion of oil refineries and transformation industry, which is included 

as ‘other’ emissions in the global inventories and account for 272 out of 359 Mt CO2ff of the total ‘other’ emissions in the 360 

USA (EDGAR estimates). This is also the only region where EDGAR and CAMS-GLOB-ANT emissions are smaller than 

ODIAC ones, which suggests that both global inventories likely have too low emissions in this region. 

Greater discrepancies are observed in Africa. Compared to global inventories, DACCIWA 2.0 has -0.1 Gt (-7%) CO2ff 

emissions and +0.7 Gt (+58%) CO2bf emissions, leading to a total positive difference of around +0.6 Gt of CO2. DACCIWA 

CO2ff is smaller due to its small ‘other’ emissions (mostly in Algeria and Egypt). The greater DACCIWA CO2bf emissions 365 

are due to 264 Mt (energy) and 432 Mt (other) of CO2bf not accounted by any global inventory likely due to the exclusion of 

charcoal making emissions (Liousse et al., 2014).   

The largest discrepancies are observed in national inventories. Both Argentinean and Chilean national inventories have the 

smallest CO2ff and CO2bf emissions in each country. In Argentina, this is explained by the smaller GEAA-AEI 3.0 CO2ff 

emissions in energy, manufacturing and "other” sectors. Compared to global inventories, GEAA-AEI accounts for energy and 370 

manufacturing emissions as point sources, considering the direct fuel consumption at each power plant. In Chile, INEMA has 

smaller CO2ff emissions in manufacturing and “other” sectors and very low CO2bf emissions in energy and manufacturing 

sectors. These CO2bf emissions were calculated with regional CO2ff/CO2bf ratios, but this does not explain the observed 

differences because the total CO2 emissions of INEMA in these sectors are also smaller. The low INEMA manufacturing 

emissions could be related to the use of the emissions self-reported by the companies to RETC, which are also lower than the 375 
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national inventory values (Álamos et al., 2022). The smaller CO2bf emissions are likely due to the limited number of biofuels 

considered by INEMA, but are partly offset by its large CO2bf settlements emissions due to a detailed accounting for domestic 

firewood consumption. 

5.3 Analysis of the temporal profiles 

 380 

Figure 4 Monthly CO2ff weight factors per sector and region in 2015. Factors are calculated with the total monthly emissions per 

region and sector (monthly weight factor = total monthly emissions per region / total annual emissions per region). Note that the 

settlement sector has a different scale due to its larger seasonality. 

The total monthly profiles in CO2ff (Fig 4) and CO2bf (Fig S9) are driven by settlements (largest seasonality) and energy 

profiles (largest emissions and second largest seasonality). These two sectors have similar profiles in Europe, Chile and 385 

Argentina, with a peak in their respective cold season, but differ in the USA, Asia and Africa due to an additional peak during 
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the warm season. All inventories gather these peaks and differ mostly in the magnitude of the oscillations. CEDS and ODIAC 

have the flattest profiles (completely flat in many sectors/regions), whereas the regional inventories and CAMS-GLOB-ANT 

5.3 show the largest seasonality. Another notable difference is a lag of around one month in the CEDS temporal profiles that 

is observed in several sectors and regions. Note that the profiles from each inventory are independent: CAMS-GLOB-ANT 390 

5.3 uses CAMS-GLOB-TEMPO 3.1, CEDS uses ECLIPSE profiles, ODIAC uses the seasonal changes of Andres et al (2011), 

and EDGAR applies its own methodology. 

A good agreement in the main sectors is again observed in Europe and South-East Asia. The main discrepancy in Europe 

appears in ‘other’ profiles, where the regional inventory shows a high seasonality not shown by global inventories. The 

temporal profiles of South-East Asia are the flattest overall, mainly driven by those of China. This is also the only region where 395 

regional profiles are flatter than global ones. The main discrepancy in this region appears in the manufacturing sector, where 

CAMS-GLOB-ANT has a peak in Dec followed by a valley in Jan-Feb not shown by global inventories and likely related to 

a production peak at the end of the year. The agreement between CAMS-GLOB-ANT and the regional inventory is also good 

in the USA. On the contrary, the lag of CEDS is very evident and EDGAR 6.0 profiles are much flatter. The latter is clearly 

observed in the transport sector, where EDGAR 6.0 does not to gather the summer peak shown by VULCAN and CAMS-400 

GLOB-TEMPO. 

The African profiles are mostly driven by North Africa countries and South Africa. In Africa, both CAMS-GLOB-ANT 5.3 

and DACCIWA 2.0 are based on CAMS-GLOB-TEMPO 3.1, and clearly differ from EDGAR 6.0 showing even opposite 

profiles (e.g., energy) likely due to the scarce temporal information available in this continent. The regional energy profile is 

mainly driven by South Africa seasonality where CAMS-GLOB-TEMPO indicates a winter (Jun-Jul) peak that contrasts to 405 

the summer (Jan) peak of EDGAR 6.0. In North Africa, CAMS-GLOB-TEMPO shows a pronounced summer (Jul-Aug) peak, 

consistent with the increase in electricity demand for air cooling, not shown by EDGAR (except for Morocco). The agreement 

is better in the settlements sector, with both inventories showing a Dec-Jan peak in Northern Africa and a Jun-Jul peak in South 

Africa, but the magnitude of EDGAR oscillations doubles those of CAMS-GLOB-TEMPO. Again, EDGAR and CAMS-

GLOB-TEMPO have opposite profiles in the manufacturing sector because CAMS-GLOB-TEMPO applies country-specific 410 

profiles whereas EDGAR uses country-constant values. Both inventories also apply a country-constant profile in the transport 

sector due to the lack of information (CAMS-GLOB-TEMPO applies TomTom congestion statistics mainly coming from 

South Africa).  

Chile and Argentina have similar temporal profiles due to their similar climatic conditions. Note that the regional profiles in 

Chile are based on CAMS-GLOB-TEMPO 3.1. In both countries, all the inventories show a decrease in the energy emissions 415 

in Oct-Nov-Dec, and a winter (Jun-Jul-Aug) peak in settlements sector consistent with heating consumption. Manufacturing 

profiles are quite flat except for those of the Argentina regional inventory, where the use of local data introduces a higher 

seasonality. A small discrepancy is also observed in the Chilean transport emissions in February. CAMS-GLOB-TEMPO 
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(based on TomTom congestion statistics) shows a strong valley not gathered by EDGAR, which is consistent with a traffic 

reduction in Chilean cities during the holiday period. 420 

 

5.4 Analysis of the spatial disaggregation 

 

Figure 5 Histogram of annual CO2ff spatial weight factors (pixel emission flux / average emission flux in the region) during 2015 per 

region and sector. The annotation shows the number of pixels with non-zero emissions. Pixels with zero emissions are excluded from 425 
the histograms. 
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The analysis of the spatial disaggregation for CO2ff (Fig 5) and CO2bf (Fig S10) focuses on the comparison of CoCO2-

MOSAIC 1.0 against EDGAR 6.0 because both CAMS-GLOB-ANT 5.3 and CEDS v2020_04_21 are based on EDGAR 

spatial factors. CoCO2-MOSAIC 1.0 has more pixels with non-zero emissions than EDGAR 6.0 in most regions and sectors 430 

evaluated. The additional pixels of regional inventories have mostly low emissions (spatial weight factor < 0.25). This pattern 

is only reversed when regional inventories provide the emissions as point sources (energy sector in Argentina, Chile, 

manufacturing in Chile). 

The best agreement is again observed in Europe, where the main discrepancy is the larger number of low-emitting pixels of 

CAMS-REG-GHG 5.3 in the energy and transport sectors. This pattern is also observed in South-East Asia, USA and Africa. 435 

In South-East Asia, the larger number of emitting pixels of REAS 3.2.1 is explained by the downscaling procedure applied to 

the original dataset (0.25°×0.25°), but otherwise, the distributions have similar shapes. The largest difference in the number of 

emitting pixels is observed in Africa. Fig S6 shows that all DACCIWA 2.0 pixels inside each country have non-zero emissions 

for energy, manufacturing and sectors, due to disaggregating part of the emissions based on the population density. This 

procedure was not applied in the transport sector but the number of transport emitting pixels of DACCIWA 2.0 still doubles 440 

that of EDGAR 6.0, despite DACCIWA using EDGAR road network as a spatial proxy. The largest discrepancies are observed 

again in Chile and Argentina. Both national inventories have fewer non-zero pixels in the energy and manufacturing sectors 

due to the representation of power plants and manufacturing companies as point sources. Besides, the Argentinean settlements 

sector is the only one in all the regions evaluated where the regional inventory has a more uniform distribution than the global 

one. GEAA applies a bottom-up approach at very fine resolution estimating the consumption of census fractions up to 100-445 

150 m in urban areas, which could explain the fewer number of emitting pixels and the more uniform distribution in GEAA.  

5.5 Analysis of super-emitting locations 

Table 8 Summary of the super-emitting pixels (flux > 7.9e-6 kg/m2/s) from each inventory per region. Regions without super-emitters 

are excluded. Common super-emitters are pixels identified as a super-emitter by all the inventories.  

Region Inventory 

All power plants 

(1A1a) 
Super-emitters 

Common  

super-emitters 

Emissions 

[Mt/year] 
N_pixels 

Emissions 

[Mt/year] 
N_pixels 

Emissions 

[Mt/year] 
N_pixels 

Europe 

CAMS-REG-GHG 5.1 

CoCO2-MOSAIC 1.0 1445.6 27584 138.9 5 60.7 2 

EDGAR 6.0 1535.6 5577 127.7 5 44.4 2 

CAMS-GLOB-ANT 5.3 1515 5567 115.7 5 44.3 2 

Africa 

DACCIWA 2.0 

CoCO2-MOSAIC 1.0 511.3 308 27.8 1 - - 

EDGAR 6.0 470.9 16781 41 1 - - 

CAMS-GLOB-ANT 5.3 480.5 16795 71.6 2 - - 

South-East Asia 
REAS 3.2 

CoCO2-MOSAIC 1.0 6383.4 200577 152.7 5 59.5 2 

EDGAR 6.0 6928 4521 615.5 18 89.2 2 

CAMS-GLOB-ANT 5.3 7072.2 4512 668.5 20 89.2 2 

Other regions 

EDGAR 6.0 

CoCO2-MOSAIC 1.0 2425 5906 480.2 15 428 13 

EDGAR 6.0 2425 5906 480.2 15 428 13 

CAMS-GLOB-ANT 5.3 2389.7 5891 469.7 15 417.4 13 
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 450 

The number and magnitude of the super-emitters in each inventory is a combination of (i) the magnitude of power plant 

emissions (1A1a) per country, (ii) the total number of emitting pixels, and (iii) the methodology used to spatially allocate 

these emissions. The emissions of 1A1a sector have a small uncertainty so in principle the regional differences between 

inventories should be small. This is true for Europe, but differences up to 10% are observed between regional and global 

inventories in South-East Asia and Africa (Table 8). However, the largest discrepancies are due to the different number of 455 

energy-emitting pixels in each inventory. Figure 6 analyses the geolocation of super-emitting pixels by evaluating their 

agreement with the CoCO2 power plant database. Regional inventories have a perfect match with the power plant database, 

with all super-emitting pixels containing a power plant. By contrast, both EDGAR 6.0 and CAMS-GLOB-ANT 5.3 have 6 

and 8 false positives in the pixels covered by regional inventories. These cases are analysed individually in Section 5 of 

Supplementary Material. Countries without regional inventories present the worst agreement likely due to the lower quality 460 

of both global inventories and global power plant databases in Russia and the Middle East. The total power plant emissions 

of global and regional inventories in Europe are similar, but CAMS-REG-GHG 5.1 has five times more emitting pixels than 

the global inventories likely due to the use of CORINE land cover dataset to distribute emissions not linked to a specific 

point source. Despite this, the number of super-emitters in global and regional inventories is the same, and the magnitude of 

the regional super-emitting pixels is even 36% greater in the two common super-emitters.  All the super-emitters identified 465 

by CAMS-REG-GHG 5.1 contain a power plant, but CAMS-GLOB-ANT 5.3 and EDGAR 6.0 have the same false positive 

in Serbia. In Africa, the number of super-emitters identified by all the inventories is similar. All of them are in South Africa 

but each inventory points out different super-emitters likely due to different geo-location errors in the global inventories. The 

largest discrepancies are observed in Asia. REAS 3.2.1 has 8.5% less power plant emissions than EDGAR 6.0 spread over a 

much larger number of pixels (200577 vs 4521-4512). This is partly due to the coarse native resolution of REAS 3.2.1. 470 

However, REAS 3.2.1 super-emitters are not influenced by the downscaling process because the most-emitting stations are 

available as point sources and were mapped directly to the 0.1°x0.1° grid. Nevertheless, both the smaller power plant 

emissions and the higher number of energy sources could be the reason behind the smaller number of super-emitters in 

REAS (5 vs 18-20). The use of the regional data significantly improves the agreement with the power plant database. All 

REAS super-emitters contain a power plant while EDGAR 6.0 and CAMS-GLOB-ANT 5.3 have 5 and 6 false positives, 475 

respectively. 
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.

 

Figure 6 Comparison of the location of super-emitting pixels from global inventories (test datasets) against the CoCO2 1.0 power 480 
plant database (reference dataset). TP = true positive, FP = false positive, FP* = false positive, with a TP in the surrounding pixels. 

5.6 Analysis of aviation emissions 

The aviation sector presents some of the largest discrepancies (Fig 7). Global inventories have around 30% fewer LTO 

emissions than CoCO2-MOSAIC 1.0 due to the larger emissions of regional inventories particularly in the USA. Besides, 

despite both global inventories having similar total LTO emissions they have large discrepancies regionally. EDGAR 6.0 has 485 

larger emissions than CAMS-GLOB-AIR 1.1 in all the regions except for ‘Other countries’, where CAMS-GLOB-AIR LTO 

emissions are 60% larger.  
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Besides, the climb, descent and cruise (above ~1km) of CAMS-GLOB-AIR 1.1 are 14.7% smaller than those from EDGAR 

6.0, which also means that CAMS-GLOB-AIR total aviation emissions are smaller. CAMS-GLOB-AIR 1.1 is based on CEDS 

aviation emissions but since 2014, it extrapolates linearly the 2012-2014 emissions. The International Energy Agency (IEA) 490 

statistics (IEA, 2022) show that, since 2014, both domestic and international aviation increased exponentially up to the COVID 

pandemic, which may explain the smaller CAMS-GLOB-AIR 1.1 emissions in 2015. Note also that the differences observed 

are also due to the different vertical profiles of each inventory. CoCO2-MOSAIC 1.0 takes EDGAR aviation emissions for 

consistency with the other sectors, but more detailed information on global vertical profiles can be found at Olsen et al. (2013). 

 495 

 

Figure 7 (a) Comparison of the total monthly aviation emissions globally from the different inventories. (b) Comparison of the 

monthly aviation LTO emission per region. The annotation shows the number of pixels with LTO emissions. INEMA 1.0 and REAS 

3.2.1 LTO emissions were gap-filled with EDGAR 6.0. 

Table 8 analyses the emissions in regions with LTO information. Europe is the only region EDGAR 6.0 LTO emissions are 500 

larger (+69.7%) than those from the regional inventory, due to the larger emissions in pixels identified as LTO emitters by 

both inventories (28.6 vs 18.8 Mt) and the additional number of LTO emitting pixels (1143 vs 507, +6.1 Mt) . In Africa, 

EDGAR 6.0 emissions are 19.6% smaller than those of DACCIWA 2.0 despite EDGAR 6.0 having more LTO emitting pixels 

(963 vs 309). Besides, Africa presents a very low number of true positives (pixels with LTO emissions in both inventories), 

which indicates a strong discrepancy between the spatial proxies of both inventories. In Argentina, GEAA-AEI 3.0 and 505 

EDGAR 6.0 show the best agreement regarding both the number of LTO emitting pixels and the magnitude of the emissions. 
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The largest discrepancies are observed in the USA, with regional emissions being 2.4 times larger than global ones. VULCAN 

3.0 emissions are around 1.5 times larger than those of EDGAR 6.0 in pixels identified as LTO emitters by both inventories 

(29.7 vs 21.7 Mt), but the main difference is caused by the additional 13218 LTO emitting pixels included by VULCAN 3.0 

that add 49.62 Mt of CO2ff not accounted by EDGAR. This could be explained by the more extensive list of airports, including 510 

also helipads, used by VULCAN, whereas EDGAR uses a global database from the International Civil Aviation Organization 

(ICAO) that includes only the main airports and main flights. 

 

Table 9 CoCO2-MOSAIC 1.0 vs EDGAR 6.0 aviation LTO emissions in regions with regional LTO information. N = number of 

pixels with LTO emissions, Total = annual LTO CO2 emissions during 2015.  515 

  All True Positive (TP) False Negative (FN) False Positive (FP) 

Region inventory N 
Total 

[Mt/year] 
N 

Total 

[Mt/year] 
N 

Total 

[Mt/year] 
N 

Total 
[Mt/year] 

Europe 

CAMS-REG-GHG 5.1 

CoCO2-MOSAIC 1.0 507 19.99 401 18.83 106 1.16 - - 

EDGAR 6.0 1143 34.71 401 28.59 - - 742 6.12 

Africa 

DACCIWA 2.0 

CoCO2-MOSAIC 1.0 309 5.94 33 1.11 276 4.83 - - 

EDGAR 6.0 963 4.8 33 0.06 - - 930 4.74 

Argentina 

GEAA-AEI 3.0 

CoCO2-MOSAIC 1.0 74 0.34 38 0.26 36 0.07 0 0 

EDGAR 6.0 115 0.38 38 0.28 - - 77 0.09 

USA 

VULCAN 3.0 

CoCO2-MOSAIC 1.0 14291 79.29 1073 29.68 13218 49.62 - - 

EDGAR 6.0 2192 23.37 1073 21.69 - - 1119 1.68 

5.7 Uncertainty analysis 

The 95% expanded uncertainty of CoCO2-MOSAIC 1.0 annual global CO2ff emissions in 2015 is (-1.24, 1.55 Gt) or (-3.4, 

4.5%). Manufacturing (-0.70, 1.08 Gt), aviation LTO (-0.38, 0.77 Gt), energy_a (-0.39, 0.42 Gt), transport (-0.31, 0.46 Gt), 

and other (-0.11, 0.48 Gt) are the sectors with the largest contribution (Table S16). The absolute uncertainty of the 

manufacturing sector is a combination of its large magnitude, which is driven by Chinese manufacturing emissions, and its 520 

large relative uncertainty (-6.5, 10%), due to the large uncertainty of sub-sectors such as cement production. Aviation LTO 

has the second largest weight because we applied LDS uncertainties to global aviation emissions, which led to a relative 

uncertainty of (-50.1, 100.1%). A high-relative uncertainty (-9.4, 42.8%) also drives the contribution of ‘other’ emissions in 

the total uncertainty. 

Figure 11 presents the 20 countries with the largest contribution to global uncertainty. The main goal of this figure is to identify 525 

countries where the uncertainty can be more easily reduced to improve global estimates, either because they have a less well-

developed statistical system or do not have regional, gridded information. Emission uncertainty can be particularly reduced in 

LDS countries without regional, gridded inventories: RUS, IRN, IRQ, MEX, KAZ, SAU, VEN, and BRA. The development 

of regional gridded inventories for Russia, the Middle East and Latin America is highly needed to reduce the global uncertainty 

of bottom-up CO2 inventories. A second group of countries is covered by regional inventories but do not have well-developed 530 

statistical system: KOR, ZAF and NGA. Their uncertainty could be smaller than the values reported in this study based on 
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LDS default uncertainties, due to the uptake of local information. This group also includes shipping emissions and aviation 

emissions above 1km, which both have been considered as LDS. The high uncertainty of aviation emissions agrees with the 

large discrepancies observed in the previous section. More work is needed to reduce the uncertainty of global datasets of 

shipping and aviation emissions. The last group of countries with room for improvement includes Canada and Australia, the 535 

only countries with a well-developed statistical system without regional, gridded information. The development of gridded 

inventories for these countries could especially reduce the uncertainty of their spatially explicit emissions.  

 

 

Figure 8 Total emissions ± 95% expanded uncertainty and 95% relative expanded uncertainty of CoCO2-MOSAIC 1.0 CO2ff 540 
emissions in the 20 countries with the largest absolute uncertainty. Countries are ranked top down according to their absolute 

uncertainty. Red points indicate countries with a well-developed statistical system (WDS). 

5.8 CoCO2-MOSAIC 1.0 limitations 

 Missing emissions: As abovementioned, VULCAN 3.0, REAS 3.2.1 and INEMA 1.0 emissions in ‘other’ sector are 

missing and have not been gap-filled to avoid double-counting. The ‘other’ emissions in these three inventories are 545 

1.3 Gt/year of CO2ff based on EDGAR 6.0. Despite some of them are partly included in other sectors, CoCO2-

MOSAIC 1.0 CO2ff emissions could be up to 3.7% higher. 

 Spatial consistency: CoCO2-MOSAIC 1.0 emissions are not only spatially inconsistent between regions, but also 

inside those regions where global inventories have been used to gap-filled missing sectors (e.g., Chile, South-East 

Asia). 550 

 Spatial coverage: CoCO2-MOSAIC 1.0 has global coverage, but regional inventories are missing in some regions 

with a high contribution to global CO2 emissions. The total uncertainty of the mosaic could be particularly reduced 
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by developing regional, gridded inventories in Canada and Australia (among WDS countries) and Russia, the Middle 

East and Latin America (among LDS countries).  

 Temporal coverage: CoCO2-MOSAIC 1.0 covers from 2015 to 2018, but only in 2015 all regional inventories are 555 

simultaneously available. Beyond 2015, regions with missing years (Chile, USA and South-East Asia) were gap-

filled with the last year available just for completeness. During this period, we recommend focusing on regions 

providing updated emissions. For more recent information on global CO2 emissions, we refer to CAMS-GLOB-ANT 

5.3 (available up to 2023).  

 Other GHG species: CoCO2-MOSAIC 1.0 does not include CH4 and N2O. For these species, we refer again to 560 

CAMS-GLOB-ANT 5.3. 

6 Data availability 

CoCO2-MOSAIC 1.0 is freely available at zenodo (https://doi.org/10.5281/zenodo.7092358) (Urraca et al., 2023) and at the 

JRC Data Catalogue (https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389) in NetCDF format. The 

main files include the monthly emissions per sector for one species (CO2ff and CO2bf) over one year (2015 to 2018). Three 565 

auxiliary layers are available: mask_inventory (inventory mask), mask_country (country mask), and cell_area (area of the grid 

cell). The aviation emissions above 1km are provided as a separate file.  

7 Conclusions 

This paper presents CoCO2-MOSAIC 1.0, a mosaic of regional emission gridded inventories that provides CO2ff and CO2bf 

monthly emission fluxes from 2015 to 2018 disaggregated in seven sectors. The regional inventories integrated are CAMS-570 

REG-GHG 5.1 (Europe), DACCIWA 2.0 (Africa), GEAA-AEI 3.0 (Argentina), INEMA 1.0 (Chile), REAS 3.2.1 (East, 

Southeast, and South Asia) and VULCAN 3.0 (USA). EDGAR 6.0, CAMS-GLOB-SHIP 3.1 and CAMS-GLOB-TEMPO 3.1 

are used for gap-filling. CoCO2-MOSAIC 1.0 could be considered a globally accepted reference that can be recommended as 

a global baseline emission inventory.  Based on this, we used CoCO2-MOSAIC 1.0 to inter-compare CAMS-GLOB-ANT 5.3, 

EDGAR 6.0, ODIAC v2020b, and CEDS v2020_04_24.  The mosaic provides harmonized access to regional inventories at a 575 

global scale facilitating the replication of inter-comparisons such as the one made in this study. 

CoCO2-MOSAIC has been used to benchmark global emission inventories identifying the main sources of discrepancy in each 

sector and region, giving valuable feedback to inventory developers to continue improving both regional and global emission 

datasets. CoCO2-MOSAIC 1.0 has the highest emissions overall (36.7 Gt of CO2ff, 5.9 Gt of CO2bf) despite not having gap-

filled missing ‘other’ emissions in some regions to avoid double-counting. Regional emissions are particularly larger than 580 

global ones in the USA (CO2ff) and Africa (CO2bf) and could be explained by the more complete information available at the 

regional level. All inventories represent the main seasonal changes, but regional inventories and CAMS-GLOB-TEMPO have 

https://doi.org/10.5281/zenodo.7092358
https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389
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higher seasonality that reflect better the local temporal patterns. Regional inventories generally disaggregate their emissions 

among a larger number of pixels, which could be also related to the use of region-specific spatial proxies. This pattern is the 

reverse in sectors such as energy or manufacturing, which are provided as point sources by most regional inventories. As a 585 

consequence, the agreement of regional inventories with the CoCO2 1.0 power plant database is better than for global 

inventories. All super-emitting pixels from regional inventories contained a power plant whereas around 25% of the super-

emitters from global inventories were likely incorrectly geolocated. Some of the largest discrepancies were found in the 

aviation sector, both in the magnitude of the emissions and the spatial allocation of LTO emissions, which agrees with the 

large uncertainty reported in this sector. Finally, we estimated the overall uncertainty of mosaic emissions to identify sectors 590 

and countries where improvements could be more easily made to reduce the uncertainty of CO2 emissions at a global scale.  
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