
1 
 

A dense station-based long-term and high-accuracy dataset of 1 

daily surface solar radiation in China 2 

 3 

Wenjun Tang1,*, Junmei He1,2, Jingwen Qi1, Kun Yang3,1,* 4 

 5 

1. National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan 6 

Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan 7 

Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. 8 

2. Faculty of Geography, Yunnan Normal University, Kunming 650500, China. 9 

3. Department of Earth System Science, Ministry of Education Key Laboratory for 10 

Earth System Modeling, Institute for Global Change Studies, Tsinghua University, 11 

Beijing 100084, China. 12 

 13 

 14 

Corresponding authors: Prof. Wenjun Tang (tangwj@itpcas.ac.cn); Prof. Kun Yang 15 

(yangk@tsinghua.edu.cn) 16 

 17 



2 
 

Abstract: The lack of long-term and high-quality solar radiation data has been an 18 

obstacle for scientific and industrial fields. In this study, a dense station-based long-19 

term and high-accuracy dataset of daily surface solar radiation was developed using 20 

two surface radiation models. One is the model developed by Yang et al. (2006) for 21 

global radiation estimation, and the other is the model developed by Tang et al. (2018) 22 

for direct radiation estimation. The main inputs for the development of the dataset are 23 

surface pressure, air temperature, relative humidity, horizontal visibility, and sunshine 24 

duration, which are the routine meteorological variables observed at the 2743 China 25 

Meteorological Administration (CMA) weather stations. Validation against in-situ 26 

observations and comparisons with two satellite-based radiation products show that our 27 

station-based radiation dataset clearly outperforms the satellite-based radiation 28 

products at both daily and monthly scales. In addition, our dataset is available for more 29 

than 60 years and includes three radiation components of global, direct, and diffuse 30 

radiation, which is not possible with satellite products. This station-based radiation 31 

dataset will contribute to the climate change research and solar energy engineering 32 

applications in the future. The station-based dataset is now available at 33 

https://doi.org/10.11888/Atmos.tpdc.300461 and 34 

https://data.tpdc.ac.cn/en/disallow/55fc9768-ea6a-4d16-9207-28f6aed4900b (Tang, 35 

2023). 36 

Keywords: Global radiation; Direct radiation; Diffuse radiation; High-accuracy; Long-37 

term; Dataset.  38 
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1. Introduction 39 

Solar radiation provides energy to everything on Earth, drives the water, energy 40 

and carbon cycles of the Earth’s climate system, and largely determines the climatic 41 

conditions of human habitats (Wild et al., 2009). Therefore, solar radiation information 42 

at the Earth's surface is crucial in research of agriculture, hydrology, ecology, climate 43 

change, and simulations of land surface processes (Wang et al., 2012). Solar radiation 44 

reaching the horizontal surface is called as total solar radiation or global radiation (Rg), 45 

and is composed of direct radiation (Rdir) and diffuse radiation (Rdif). Global radiation 46 

is an important component of the surface energy budgets (Wild et al., 2015), and 47 

accurate global radiation data will contribute to the simulation of land surface-related 48 

processes, such as ecological, hydrological, agricultural, and glacial simulations (Tang 49 

et al., 2019a). In addition, both direct and diffuse radiation provide energy for plant 50 

photosynthesis and transpiration, and are essential for hydrological and agricultural 51 

studies (Lee et al., 2017). Due to its multidirectional nature, diffuse radiation penetrates 52 

in the vegetation canopy more than direct radiation, and more diffuse radiation can 53 

increase light energy use efficiency of the canopy (Mercado et al., 2009, Yang et al., 54 

2019). For example, under the same global radiation condition, increasing the 55 

proportion of diffuse radiation can increase the light energy use efficiency of different 56 

vegetation types by 6-180% (Gu et al., 2002; Alton et al., 2007). 57 

In addition to basic scientific research, the distribution and intensity of surface 58 

solar radiation is urgently needed for solar energy applications. All three components 59 

of solar radiation, i.e., global radiation, direct radiation, and diffuse radiation, are 60 
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prerequisites for the siting, design, evaluation, and optimization of different solar 61 

energy systems (Karakoti et al., 2011; Mellit et al., 2010). For example, photovoltaic 62 

(PV) power systems rely on global radiation to generate electricity, and global radiation 63 

on arbitrarily oriented PV panels can be calculated by direct and diffuse radiation, while 64 

concentrated solar power systems use only direct radiation to generate electricity 65 

(Boland et al., 2013; Tang et al., 2018). In addition, recently developed bifacial PV 66 

panels also use the backside of the PV panel to generate electricity, and the source of 67 

solar radiation on the backside is diffuse radiation (Rodríguez-Gallegos et al., 2018; 68 

Pelaez et al., 2019). 69 

In-situ measurements are considered the most effective and direct means of 70 

obtaining surface solar radiation data. However, the number of radiation observation 71 

stations is very low due to high maintenance and calibration costs. For example, 72 

radiation fluxes measured at about 2500 stations worldwide are stored in the Global 73 

Energy Balance Archive (GEBA), a database that stores the different components of 74 

the surface energy budget from different data sources, such as national meteorological 75 

services, various experimental observation networks, and project reports (Wild et al., 76 

2017). Among the GEBA, there are only about 100 radiation stations (Jiang et al. 2020a), 77 

which are provided by the China Meteorological Administration (CMA). Another issue 78 

is that the radiation observation stations are very unevenly distributed, with most of 79 

radiation stations being located in flat and densely populated areas, and with a very 80 

small number of stations being located in the complex terrain areas and sparsely 81 

populated areas. In addition, almost all radiation stations include global radiation 82 
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observations, but most of them do not include direct radiation and diffuse radiation 83 

observations. In addition, radiation measurements are considered to be more prone to 84 

problems and unreliable data than those of other meteorological variables. For example, 85 

erroneous or spurious data were frequently found in the CMA radiation observations 86 

(Shi et al., 2008; Tang et al., 2011). Therefore, the lack of long-term and dense solar 87 

radiation observations has become a tough challenge. 88 

Satellites can provide continuous spatiotemporal observations, and retrieval based 89 

on satellite remote sensing is considered one of the most effective and commonly used 90 

means to fill the gap in ground-based radiation measurements (Lu et al., 2011; Zhang 91 

et al., 2014; Huang et al., 2019; Wang et al., 2022; Letu et al., 2021). In the past, 92 

satellite-based retrieval algorithms and corresponding radiation products have emerged, 93 

and the retrieval accuracy of the corresponding products has improved (Huang et al., 94 

2019). In particular, retrievals applied to the new generation of geostationary satellites 95 

have improved in temporal resolution, spatial resolution, and accuracy to varying 96 

degrees (Tang et al., 2019b; Letu et al., 2020). Especially, Li et al. (2023) produced a 97 

high-spatiotemporal-resolution radiation product based on the new generation of 98 

geostationary satellites from the United States and Japan, with accuracy higher than 99 

other existing satellite products. In general, the accuracy of the satellite-based radiation 100 

product is higher than that of the reanalysis product (Jiang et al., 2020b). In addition, 101 

Hao et al. (2020) developed a global radiation product based on the unique Deep Space 102 

Climate Observatory (DSCOVR) satellite, whose orbit is at the Lagrange point. Despite 103 

the obvious advantages, there are still several problems with satellite-based radiation 104 
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products. First, the time series of satellite radiation products are generally not long 105 

enough to meet the demand for long time series data, such as for climate change studies. 106 

Second, the updating of satellite sensors and the fusion of multi-source satellites would 107 

lead to inconsistent data quality and introduce large uncertainties into the analysis of 108 

long-term variations (Feng and Wang, 2021a; Shao et al., 2022). Third, most satellite 109 

radiation products only provide global radiation, but do not include direct and diffuse 110 

radiation, because the uncertainty in algorithms for estimating direct and diffuse 111 

radiation is much larger than the uncertainty in global radiation. 112 

Alternatively, estimation based on meteorological variables observed at routine 113 

weather stations is another effective solution that can overcome the scarcity of radiation 114 

data, since the number of routine weather stations is much denser than that of radiation 115 

stations (Feng and Wang, 2021b). For example, the number of radiation stations 116 

maintained by the CMA is only about 100, but the number of routine weather stations 117 

with long-term observations is much denser, exceeding 2400 stations. Empirical models 118 

for estimating global radiation using surface meteorological variables were usually 119 

found in the hydrological and agricultural fields (Wang et al., 2016), and these models 120 

can be broadly classified into three types: air temperature-based models, sunshine 121 

duration-based models, and cloud cover-based models (Liu et al., 2009; Ehnberg & 122 

Bollen, 2005). In general, a well-calibrated sunshine duration-based model was 123 

considered to perform better than the other two types of models (Pohlert, 2004). 124 

Although the above empirical models, especially the Ångström-Prescott relationships 125 

(Ångström, 1924; Prescott, 1940), have been widely used and have achieved great 126 
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success, these models require ground radiation observations for calibration and the 127 

calibrated parameters are usually site-dependent, which poses significant risks and 128 

challenges when applied in areas with sparse or no radiation observations. 129 

Yang et al. (2001) developed a hybrid model to estimate daily global radiation by 130 

combining pure physical processes under clear skies and a parameterization formula 131 

for cloud transmission under cloudy skies. The hybrid model has been shown to work 132 

well without local calibration (Yang et al., 2006; Yang et al., 2010). Tang et al. (2013) 133 

used this hybrid model to construct a dataset of daily global radiation at 716 CMA 134 

weather stations during 1961-2010, and also found that its accuracy was generally 135 

higher than that of locally calibrated empirical models and satellite-based retrievals. 136 

However, few studies have focused on the development of empirical models for direct 137 

and diffuse radiation estimates. Fortunately, Tang et al. (2018) also developed a similar 138 

hybrid model to estimate daily direct radiation by adopting the strategy of Yang et al. 139 

(2001) to estimate global radiation. Therefore, these two hybrid models provide us with 140 

an opportunity to construct daily surface solar radiation at routine weather stations, once 141 

the observations of meteorological variables are available. The constructed dataset will 142 

contribute to simulations of land surface processes, climate change analysis, and solar 143 

energy applications. 144 

In this study, based on our previous study by Tang et al. (2013) for global radiation 145 

estimation, we expanded the number of stations, radiation elements and time length, 146 

and finally developed a dense station-based long-term and high-accuracy daily surface 147 

solar radiation dataset in China, which includes three elements: global radiation, direct 148 
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radiation, and diffuse radiation. This long-term dataset will contribute to the analysis of 149 

long-term variations in surface process simulations and solar energy applications, such 150 

as the assessment of solar energy potential, the determination of the optimal angle for 151 

solar PV panels and their long-term variation analysis, as well as the assessment of 152 

historical extreme events on solar energy systems. The rest of the paper is organized as 153 

follows. The methods used to estimate daily global, direct, and diffuse radiation at 154 

weather stations are presented in Section 2, and Section 3 describes the input data used 155 

to drive the station-based models, the in-situ data used to validate the accuracy of the 156 

developed dataset, and two satellite-based radiation products used for comparison with 157 

our products. The performance of our dataset and two satellite-based radiation products 158 

against the in-situ data is evaluated in Section 4, and the information on data availability 159 

is described in Section 5. Finally, Section 6 presents the summary of this study. 160 

 161 

2. Methods 162 

In this study, daily global radiation and daily direct radiation were estimated using 163 

the hybrid model of Yang et al. (2006) and the method developed by Tang et al. (2018), 164 

respectively. Finally, daily diffuse radiation was calculated by subtracting direct 165 

radiation from global radiation. The methods for estimating daily global, direct, and 166 

diffuse radiation can be simply described by the following five mathematical formulas: 167 

𝑅𝑅g = (𝑅𝑅b,clr+𝑅𝑅d,clr)τc,g,                                                                                             (1) 168 

 𝑅𝑅b = 𝑅𝑅b,clrτc,b,                                                                                                          (2) 169 

𝑅𝑅d = 𝑅𝑅g − 𝑅𝑅b,                                                                                                                (3) 170 
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τc,g = 0.2505 + 1.1468 �𝑛𝑛
𝑁𝑁
� − 0.3974 �𝑛𝑛

𝑁𝑁
�
2
,                                                                       (4) 171 

τc,b = 0.4868 �𝑛𝑛
𝑁𝑁
� + 0.5132 �𝑛𝑛

𝑁𝑁
�
2
,                                                                                 (5) 172 

where 𝑅𝑅g, 𝑅𝑅b, and 𝑅𝑅d [W m-2] are the daily all-sky global, direct, and diffuse radiation 173 

at the horizontal surface, respectively. 𝑅𝑅b,clr and 𝑅𝑅b,clr [W m-2] are the daily clear-sky 174 

global and direct radiation at the horizontal surface, respectively. τc,g and τc,b are the 175 

cloud transmittance for the daily global and direct radiation, respectively. n and N are 176 

the actual sunshine duration and the maximum possible sunshine duration, respectively. 177 

The daily clear-sky global and direct radiation (𝑅𝑅b,clr  and 𝑅𝑅b,clr ) at the horizontal 178 

surface are calculated by the following equations: 179 

𝑅𝑅b,clr = 1
24hours ∫ 𝐼𝐼0

𝑡𝑡2
𝑡𝑡1 τ�bd𝑡𝑡,                                                                                        (6) 180 

𝑅𝑅d,clr = 1
24hours ∫ 𝐼𝐼0

𝑡𝑡2
𝑡𝑡1 τ�dd𝑡𝑡,                                                                                          (7) 181 

τ̅b ≈ max (0, τ̅oτ̅wτ̅gτ̅rτ̅a),                                                                                                               (8) 182 

τ̅d ≈ max (0, 0.5τ̅oτ̅wτ̅g(1 − τ̅rτ̅a)),                                                                                             (9) 183 

τ̅o = exp [−0.0365(𝑚𝑚𝑚𝑚)0.7136],                                                                                               (10) 184 

τ̅g = exp [−0.0117(𝑚𝑚c)0.3139],                                                                                                   (11) 185 

τ̅w = min [1.0, 0.909 ln(𝑚𝑚𝑚𝑚)],                                                                                               (12) 186 

τ̅r = exp [−0.008735𝑚𝑚c(0.547 + 0.014𝑚𝑚c − 0.00038𝑚𝑚c
2 +187 

                                    4.6 × 10−6𝑚𝑚c
3)−4.08],                                                                                         (13) 188 

τ̅a = exp {−𝑚𝑚β[0.6777 + 0.1464(𝑚𝑚β) − 0.00626(𝑚𝑚β)2]−1.3},                                (14) 189 

𝑚𝑚 = 1/[sin(ℎ) + 0.15(57.296ℎ + 3.885)−1.253],                                                                  (15) 190 

𝑚𝑚c = 𝑚𝑚𝑝𝑝s/𝑝𝑝0,                                                                                                                                    (16) 191 

where 𝐼𝐼0 [W m-2] is the horizontal solar radiation at the top of the atmosphere (TOA), 192 
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and t1 [hour] and t2 [hour] are the times of sunrise and sunset, respectively. τ̅b and τ�d 193 

are the transmittances for the daily direct and diffuse radiation under clear skies, 194 

respectively. τ�o , τ�g , τ�w , τ̅r , and τ̅a  are transmittances due to ozone absorption, 195 

permanent gas absorption, water vapor absorption, Rayleigh scattering, and aerosol 196 

absorption and scattering in the atmospheric layer, respectively. 𝑚𝑚 is the air mass, and 197 

𝑚𝑚 (cm) is ozone layer thickness.  𝑚𝑚c is the pressure-corrected air mass, and 𝑚𝑚 (cm), 𝑖𝑖𝑖𝑖 198 

the precipitable water. β and ℎ [radian] are the Ångström turbidity coefficient and the 199 

solar elevation angle, respectively. 𝑝𝑝0 [Pa] is the standard atmospheric pressure, and 𝑝𝑝s 200 

[Pa] is the surface pressure. 201 

The overall flowchart for the estimation of the station-based radiation products is 202 

shown in Figure 1, which consists mainly of input, model and output sections. The 203 

inputs are surface pressure, air temperature, relative humidity, ozone amount, aerosol 204 

data and sunshine duration. Air temperature and relative humidity are used to estimate 205 

precipitable water. The aerosol Ångström turbidity is mainly converted from horizontal 206 

visibility observations measured at weather stations using the method of Tang et al. 207 

(2017a). The ozone amount is obtained from the zonal means of the Total Ozone 208 

Mapping Spectrometer (TOMS). The outputs are daily global, direct and diffuse 209 

radiation, respectively. For more detailed information on the above methods, we can 210 

refer to the articles by Yang et al. (2006) and Tang et al. (2018). 211 

 212 
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 213 

Figure 1 Flowchart of data production, including input, model, and output sections. 214 

 215 

3 Data 216 

3.1 Input data 217 

The inputs to the above methods for estimating daily global, direct, and diffuse 218 

radiation are mainly surface pressure, air temperature, relative humidity, horizontal 219 

visibility, sunshine duration, and ozone amount. Except for ozone, all input data are 220 

observed at the 2473 CMA routine meteorological stations, where the estimation 221 

methods can work well. Here, the ozone amount was used from the climatological data 222 

obtained from the TOMS zonal means. Figure 2 shows the spatial distribution of these 223 

routine meteorological stations, indicated by the small blue circles, with characteristics 224 

of a dense distribution in the eastern and southern regions of China and a sparse 225 

distribution in the western and northern regions of China. 226 

 227 
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 228 

Figure 2 Spatial distribution of China Meteorological Administration weather station 229 

and radiation station. Red triangles represent radiation stations, and blue 230 

circles denote weather stations without radiation observation.  231 

Finally, in this study, a dataset of more than 60 years of daily global, direct and 232 

diffuse radiation was constructed using the methods described above at the 2473 CMA 233 

routine meteorological stations from the 1950s to 2021, with most stations covering the 234 

period of 1961-2021. 235 

 236 

3.2 In-situ radiation data 237 

Due to the extensive renewal and replacement of radiation instruments in 1993, 238 

and because more erroneous observations were found before 1993, radiation 239 

observations during the period 1993-2010 were used to evaluate the performance of our 240 

developed station-based radiation dataset and the other two satellite-based radiation 241 
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products. Among the 2473 CMA routine meteorological stations, there are about 96 242 

radiation stations (denoted by the upper red triangle in Figure 2) where radiation 243 

observations have been carried out in addition to routine meteorological observations 244 

since 1993. Among the 96 CMA radiation stations, there are only 19 stations where 245 

direct and diffuse radiation observations are carried out in addition to global radiation 246 

observations. 247 

One issue to note is that we did not use the direct radiation observations as 248 

validation basis, but the value obtained by subtracting the diffuse radiation observations 249 

from the global radiation observations, because the quality of the direct radiation 250 

observations is significantly lower than those of the global and diffuse radiation 251 

observations (Tang et al., 2018). Another issue that we need to be aware of is that 252 

obviously erroneous or false values have usually been found in the CMA radiation data 253 

(Shi et al., 2008), although a preliminary quality check of the raw radiation observations 254 

was carried out before release. Therefore, we further applied the quality control 255 

procedures developed by Tang et al. (2010) to the raw radiation observations and 256 

filtered out the corresponding spurious and erroneous observations. More detailed 257 

information on the quality control scheme can be found in the article by Tang et al. 258 

(2010). 259 

 260 

3.3 Satellite-based radiation products 261 

In this study, two satellite-based radiation products (Jiang et al., 2020a; Tang et 262 

al., 2019a) were used for comparison with our station-based radiation dataset estimated 263 
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at 2743 CMA routine meteorological stations. 264 

One is the product of Jiang et al. (2020a), which provides hourly global radiation 265 

and diffuse radiation in China with a spatial resolution of ~5 km and a time span from 266 

2007 to 2018. The product was generated using a deep learning algorithm developed 267 

by Jiang et al. (2019) to retrieve global radiation, and a transfer learning approach to 268 

retrieve diffuse radiation from Multi-functional Transport Satellites (MTSAT) imagery. 269 

The algorithm successfully tackled spatial adjacency effects induced by photon 270 

transport through convolutional neural networks, resulting in excellent performance in 271 

instantaneous radiation retrieval, especially for diffuse radiation (Jiang et al., 2020c). 272 

The other is the high-resolution global product of global radiation developed by 273 

Tang et al. (2019a) based on the latest cloud products of the International Satellite 274 

Cloud Climatology Project H-series pixel-level global (ISCCP-HXG), routine 275 

meteorological variables of the ERA5 reanalysis data, aerosol optical thickness of the 276 

MERRA-2 reanalysis data, and albedo of the MODIS and CM-SAF products with the 277 

physical algorithm of Tang et al. (2017b). This global product has a spatial resolution 278 

of 10 km, a temporal resolution of 3 hours, and spans the period of 1983.7-2018.12. 279 

Global comparative validation with observations shows that the accuracy of this global 280 

radiation product is generally better than several global satellite radiation products, such 281 

as the Earth's Radiant Energy System (CERES; Kato et al., 2013), the Global Energy 282 

and Water Cycle Experiment surface radiation budget (GEWEX-SRB; Pinker and 283 

Laszlo, 1992), and the ISCCP flux dataset (ISCCP-FD; Zhang et al., 2004).  284 

In this study, these two satellite-based radiation products were first averaged to 285 
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daily and monthly means, and then validated against observations collected at the CMA 286 

radiation stations, and finally compared with our station-based radiation dataset in 287 

China. 288 

 289 

4 Results and Discussion 290 

The station-based radiation dataset was first validated against the CMA radiation 291 

observations at daily and monthly scales, respectively, then compared with two other 292 

satellite-based radiation products, and finally its spatial distribution characteristics were 293 

further analyzed. These are described in detail in the following four subsections. In this 294 

study, we used the statistical metrics of mean bias error (MBE), relative MBE (rMBE), 295 

root mean square error (RMSE), relative RMSE (rRMSE) and correlation coefficient 296 

(R) to measure the accuracies of our station-based dataset and the other two satellite-297 

based radiation products. 298 

 299 

4.1 Validation at daily scale 300 

Figure 3 shows the validation results for the daily global radiation estimates 301 

against observations from 96 CMA radiation stations over the period of 1993-2010. 302 

Overall, our station-based estimates over China perform well, with an MBE of 2.5 W 303 

m-2, a RMSE of 23.2 W m-2, and an R of 0.96 (Figure 3 a). This indicates that the 304 

accuracy of our station-based estimates is significantly higher than that of almost all of 305 

the satellite products (such as, ISCCP-FD, GEWEX-SRB, CERES, GLASS and 306 

ISCCP-HXG) and reanalysis data (such as, ERA5 and MERRA-2), as well as other 307 
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regional satellite-based radiation products from Tang et al. (2016), Jiang et al. (2020a), 308 

and Letu et al. (2021). Therefore, we would expect our station-based estimates to be 309 

more accurate than the five global radiation products mentioned by Li et al. (2021), as 310 

CERES generally performs best among them. Of course, this speculation needs to be 311 

further verified with in-situ measurements collected in China in the future. In terms of 312 

MBE, there is a slight positive deviation, but the relative deviation is close to 2%, which 313 

is within the tolerance range of the PV potential assessment. 314 

In addition, we also calculated the statistical metrics for each radiation station and 315 

their boxplots and spatial distributions are shown in Figure 3 (b)-(d). It can be seen that 316 

most of the stations had MBE between −4 and 8 W m-2, RMSE less than 25 W m-2, and 317 

R greater than 0.95. The stations with relatively large errors were mainly found in the 318 

southern and eastern regions of China. This is largely due to the fact that these regions 319 

have more cloud cover and overcast skies, making it difficult to use sunshine duration 320 

to accurately parameterize cloud transmission. In addition, the uncertainty in the aerosol 321 

data would also partly contribute to the large errors. 322 



17 
 

 323 

Figure 3 Validation results for our station-based daily global radiation dataset against 324 

observations collected at 96 CMA radiation stations during 1993-2010. (a) 325 

Comparison of daily global radiation between our dataset and observations, 326 

(b) Boxplots of three statistical error metrics (MBE, RMSE and R), (c) spatial 327 

distribution of MBE for individual radiation station, and (d) spatial 328 

distribution of RMSE for individual radiation station.  329 

 330 

Similar evaluations for the daily direct and diffuse radiation estimates are 331 

presented in Figure 4 and Figure 5, respectively. Averaged over 19 CMA radiation 332 

stations, our estimates for daily direct radiation produces an MBE of 7.4 W m-2, a 333 

RMSE of 27.2 W m-2 and an R of 0.92, respectively; while our estimates for daily 334 

diffuse radiation produces an MBE of -3.3 W m-2, a RMSE of 19.2 W m-2 and an R of 335 
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0.83, respectively. Both accuracies for direct and diffuse radiation are lower than for 336 

global radiation, as can be seen from their rRMSE and rMBE. The absolute rMBE for 337 

global radiation is about 2%, while those for direct and diffuse radiation are about 9% 338 

and 4%, respectively. The rRMSE for global radiation is about 14%, while those for 339 

direct and diffuse radiation are about 33% and 22%, respectively. We found that there 340 

is a slight overestimation for direct radiation, with an MBE of about 7.4 W m-2. This 341 

may be due to the presence of high clouds, in which case the cloud transmission for 342 

direct radiation cannot be well parameterized by the sunshine duration (Tang et al. 343 

2018). For direct radiation, the RMSE at most stations is less than 29 W m-2 and the R 344 

at most stations is greater than 0.91; for diffuse radiation, the RMSE at most stations is 345 

less than 21 W m-2 and the R at most stations is greater than 0.81. The largest RMSE 346 

for both direct and diffuse radiation is found at the Lhasa station, where popcorn clouds 347 

were common, posing a major challenge to the simulation of cloud transmittance with 348 

sunshine duration. 349 
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 350 

Figure 4 Same as Figure 3, but for daily direct radiation. 351 

 352 

Figure 5 Same as Figure 3, but for daily diffuse radiation. 353 
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4.2 Validation at monthly scale 354 

Based on the daily estimates, we also calculated their monthly averages and 355 

validated them against observations. Figure 6 shows the validations for the estimates of 356 

monthly global radiation against observations at the CMA radiation stations. Averaged 357 

over all stations, the monthly global radiation estimates give an MBE of 2.4 W m-2, a 358 

RMSE of 13.1 W m-2 and an R of 0.98. The rRMSE is about 8%. From the boxplots of 359 

the error indicators, R was greater than 0.98 and RMSE was less than 15 W m-2 at most 360 

stations. The spatial distribution features of MBE and RMSE are similar to those for 361 

daily global radiation, with relatively larger errors in the southern and eastern regions 362 

of China, and the largest MBE and RMSE are both found at Panzhihua station (with 363 

longitude of 101.717o and latitude of 26.583o). 364 

 365 

 366 
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Figure 6 Same as Figure 3, but for monthly global radiation. 367 

 368 

Figure 7 and Figure 8 also show the validation results for monthly direct and 369 

diffuse radiation against 19 CMA radiation stations. The rRMSE values for monthly 370 

direct and diffuse radiation are 20% and 12%, respectively. The MBE, RMSE and R for 371 

monthly direct radiation are 6.6 W m-2, 16.3 W m-2 and 0.94, respectively, while the 372 

MBE, RMSE and R for monthly diffuse radiation are -3.3 W m-2, 10.5 W m-2 and 0.94, 373 

respectively. Similar to the case of the daily scale, a slight overestimation is also found 374 

for the monthly direct radiation. The RMSE for monthly direct and diffuse radiation is 375 

less than 18 W m-2 and 13 W m-2, respectively, at most stations, while R for monthly 376 

direct and diffuse radiation is greater than 0.91 and 0.95, respectively, at most stations. 377 

The spatial distribution characteristics of MBE and RMSE are similar to those of daily 378 

conditions for both direct and diffuse radiation. 379 
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 380 

Figure 7 Same as Figure 3, but for monthly direct radiation. 381 

 382 

Figure 8 Same as Figure 3, but for monthly diffuse radiation. 383 
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4.3 Comparison with satellite-based products 384 

To demonstrate the superiority of the station-based radiation dataset developed in 385 

this study, we compared the station-based dataset with two widely used satellite-based 386 

radiation products. One is the product developed with deep learning and trained with 387 

surface radiation observations (Jiang et al., 2020a), and the other is the long-term global 388 

product of global radiation (Tang et al., 2019a), which was mainly developed based on 389 

the latest ISCCP-HXG cloud products with the improved physical algorithm (Tang et 390 

al., 2017b). The former can provide hourly global, direct and diffuse radiation, while 391 

the latter can only provide the 3-hourly global radiation. Here, we use a 3 × 3 spatial 392 

window to smooth the raw radiation product from Tang et al. (2019a), as its accuracy 393 

is clearly improved when upscaled to 30 km.  As we only have access to the CMA 394 

radiation observations up to 2010, the time period chosen for comparison is 2000-2010. 395 

Table 1 and Table 2 present the comparison of the evaluation results among the three 396 

radiation products against the observations measured at all CMA radiation stations, for 397 

daily and monthly conditions, respectively. 398 

For daily data comparisons, our station-based estimate for daily global radiation 399 

obviously outperforms the other two satellite-based radiation products, with MBE of 400 

2.7 W m-2, RMSE of 23.2 W m-2 and R of 0.96, followed by the product of Tang et al. 401 

(2019a) (with MBE of 6.7 W m-2, RMSE of 26.8 W m-2 and R of 0.95) and the product 402 

of Jiang et al. (2020a) (with MBE of 4.4 W m-2, RMSE of 33.6 W m-2 and R of 0.92). 403 

Our station-based estimates for daily direct radiation are also apparently more accurate 404 

than the satellite-based product of Jiang et al. (2020a), with the former producing a 405 
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lower RMSE and a higher R. The RMSE of our estimates is about 9 W m-2 lower than 406 

that of the product of Jiang et al. (2020a). 407 

For the daily diffuse radiation, our estimate is comparable to the diffuse radiation 408 

product of Jiang et al. (2020a). It should be noted that the CMA radiation observations 409 

were used to train the deep learning model of Jiang et al. (2020a), while no observations 410 

were used in our estimates. Overall, these results indicate that the station-based 411 

estimates of global, direct, and diffuse radiation generally outperform those from 412 

satellite retrievals. 413 

 414 

Table 1. Accuracy comparisons of our estimates in this study with other two satellite-415 

based products at daily scale. The units of MBE and RMSE are both W m-2. 416 

Observations of global radiation measured at 96 CMA radiation stations, and 417 

observations of direct radiation and diffuse radiation measured at 19 CMA radiation 418 

stations during 2000-2010 are used. 419 

 This study Jiang et al. (2020a) 
Tang et al. 

(2019a) 

 global direct diffuse global direct diffuse global (30 km) 

MBE 2.7 8.6 -3.8 4.4 8.6 0.1 6.7 

RMSE 23.2 27.6 19.6 33.6 36.6 20.1 26.8 

R 0.96 0.92 0.83 0.92 0.85 0.84 0.95 

N 328977 43630 43630 328977 43630 43630 328977 

 420 

For the monthly comparisons, we also found that our estimate of monthly global 421 
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radiation is clearly more accurate than the two satellite products. The MBE and RMSE 422 

of our estimate are 2.6 W m-2 and 13.4 W m-2, respectively, which are lower than those 423 

of the two satellite products, with MBE and RMSE values of 4.6 W m-2 and 18.5 W m-424 

2 for the Jiang et al. (2020a) product and 6.7 W m-2 and 16.3 W m-2 for the Tang et al. 425 

(2019a) product. The R of our estimate is 0.98, which is higher than those of the two 426 

satellite products. Our direct radiation estimate also outperforms the satellite product of 427 

Jiang et al. (2020a), with the former having lower RMSE and MBE and higher R. 428 

Similar to the daily comparison, the two monthly diffuse products are comparable to 429 

each other. 430 

 431 

Table 2. Accuracy comparisons of our estimates in this study with other two satellite-432 

based products at monthly scale. The units of MBE and RMSE are both W m-2. 433 

Observations of global radiation measured at 96 CMA radiation stations, and 434 

observations of direct radiation and diffuse radiation measured at 19 CMA radiation 435 

stations during 2000-2010 are used. 436 

 This study Jiang et al. (2020a) Tang et al. (2019a) 

 global direct diffuse global direct diffuse global (30 km) 

MBE 2.6 7.9 -3.7 4.6 9.0 -0.5 6.7 

RMSE 13.4 16.5 10.9 18.5 21.3 12.1 16.3 

R 0.98 0.94 0.94 0.96 0.89 0.93 0.97 

N 12059 2088 2088 12059 2088 2088 12059 

 437 

4.4 Spatial distribution features of solar radiation in China 438 
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Based on the developed station-based solar radiation dataset, Figure 9 present the 439 

spatial distributions of the multi-year average global, direct, and diffuse radiation in 440 

China during 1961 -2021. The spatial distribution of direct radiation is similar to that 441 

of global radiation, with the highest value over the Tibetan Plateau and the lowest value 442 

over the Sichuan Basin. However, the spatial distribution of diffuse radiation is very 443 

different from that of global radiation, with the highest value being found at the 444 

southernmost tip of China, and the lowest value being found in northeastern China. In 445 

general, clear-sky days correspond to more direct radiation and cloudy days correspond 446 

to more diffuse radiation, mainly because the scattering effect of aerosols is much 447 

smaller than the scattering effect of clouds. Therefore, high direct radiation is usually 448 

found in areas with frequent sunny days, such as Northwest China, North China, and 449 

Inner Mongolia, while low direct radiation is usually found in areas with frequent cloud 450 

cover, such as East China and South China. The opposite is true for diffuse radiation. 451 

It should be noted that our station-based products are spatially discontinuous, 452 

especially in northwestern China, which may introduce significant uncertainty when 453 

applied to the assessment of solar power system potential. However, the uncertainty 454 

caused by spatial discontinuity in flat areas would be relatively small, as the spatial 455 

representation of a station on flat ground is generally larger than 25 km (Hakuba et al., 456 

2013). Fortunately, most solar power systems are built on land with slopes of less than 457 

3%. In contrast, applications over complex terrain will introduce large uncertainties. 458 

Combining station-based data with satellite products will be a good solution in the 459 

future to improve the accuracy of solar energy potential assessment. 460 
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 461 

 462 

Figure 9 Spatial distribution of the multi-year mean (a) global radiation, (b) direct 463 

radiation, and (c) diffuse radiation from the station-based radiation dataset in 464 

China during 1961-2021. 465 

 466 

The spatial distribution of the multi-year average ratio of direct radiation to global 467 

radiation in China during the period of 1961-2021 is also shown in Figure 10. Direct 468 

radiation is mainly greater than diffuse radiation (ratio < 50%) in northern China, 469 

northeastern China, northwestern China, and the Tibetan Plateau, while diffuse 470 

radiation dominates in eastern and southern China. This information can guide the 471 

planning of solar PV power and concentrating solar power (CSP) in China. For example, 472 

regions such as Xinjiang, Inner Mongolia, Gansu, and the Tibetan Plateau with a high 473 
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proportion of direct radiation are suitable for the construction of CSP projects. Regions 474 

such as Hainan, Yunnan, Guangxi, and Guangdong with relatively high global and 475 

diffuse radiation are suitable for the use of bifacial PV panels, as both sides of the panels 476 

can be used to generate electricity and the main source on the back is from diffuse 477 

radiation. Conversely, in areas with low diffuse radiation, it may not be necessary to 478 

use bifacial PV panels.  479 

 480 

 481 

Figure 10 Spatial distribution of the multi-year mean ratio of direct radiation to global 482 

radiation from the station-based radiation dataset in China during 1961-483 

2021. 484 

 485 

5 Data availability 486 
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The dense station-based long-term dataset of daily global, direct and diffuse 487 

radiation product with high-accuracy is stored at the National Tibetan Plateau Data 488 

Center (https://data.tpdc.ac.cn/en/disallow/55fc9768-ea6a-4d16-9207-28f6aed4900b 489 

and https://doi.org/10.11888/Atmos.tpdc.300461, Tang, 2023), Institute of Tibetan 490 

Plateau Research, Chinese Academy of Sciences. 491 

 492 

6 Summary 493 

In this study, we have developed a dense station-based long-term dataset of daily 494 

surface solar radiation in China with high-accuracy. The dataset consists of estimates 495 

of three radiation components (global, direct and diffuse radiation) at the 2473 CMA 496 

meteorological stations during the period from the 1950s to 2021, with most stations 497 

covering the period of 1961-2021. The methods used to develop the dataset are the 498 

global radiation estimation model of Yang et al. (2006) and the direct radiation 499 

estimation model of Tang et al. (2018), and the main inputs are the five meteorological 500 

variables of surface pressure, air temperature, relative humidity, horizontal visibility, 501 

and sunshine duration measured at the meteorological stations. The developed dataset 502 

was evaluated against in-situ measurement collected at 96 CMA radiation stations, and 503 

further compared with other two satellite-based radiation products.  504 

Averaged over all radiation stations and the time period of 1993-2010, the total 505 

RMSE values for daily global, direct and diffuse radiation are 23.2, 27.6 and 19.6 W 506 

m-2, respectively. At the monthly mean scale, our estimates give RMSE values of about 507 

13.4, 16.5 and 10.9 W m-2, respectively, for monthly global, direct and diffuse radiation. 508 
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These error indicators on both daily and monthly scales are generally lower than those 509 

of the satellite radiation products, especially for global and direct radiation. 510 

Comparisons with the satellite-based radiation products indicate that our station-based 511 

estimates have a clear advantage in terms of accuracy and length of time series. 512 

However, our dataset does not provide radiation data beyond the weather stations. 513 

Merging the station-based estimates with the satellite-based retrievals will have good 514 

potential to improve the accuracy of the radiation products in the future. We expect that 515 

our station-based radiation dataset to contribute significantly to relevant basic research, 516 

engineering applications and fusion with satellite-based retrievals in the future.  517 
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