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Abstract. The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest

height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into

small stands, requiring 10 to 50 m spatial resolution data to be correctly separated.  Further,  35 % of the French forest

territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a

deep-learning  model  based on multi-stream remote sensing measurements  (NASA’s  GEDI LiDAR mission and ESA’s

Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a

second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m

resolution  above-ground  biomass  density  (AGBD)  map  (Mg  ha-1)  of  France  (FORMS-B).  Extensive  validation  was

conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a

mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B

was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from

the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than

other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies

with  recent  advances  in  computer  science  to  bring  material  insights  to  climate-efficient  forest  management  policies.

Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution,

making  the  maps  reproducible  and  easily  scalable.  FORMS  products  can  be  accessed  from

https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023).
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1 Introduction

Forests  play  a  key  role  in the  environment  and  human  well-being,  providing  ecosystem  services  such  as  carbon

sequestration,  biodiversity  conservation,  and  climate  regulation  (IPCC,  2019).  Human  activities  such  as  deforestation,

degradation, fragmentation, and non-sustainable forest management threaten these ecosystems. To preserve these important

resources,  accurate and up-to-date information on forest  structure, such as height, volume, and biomass, is essential  for

effective forest management policies. Destructive sampling has long been the only method to actually measure the biomass

of a tree,  which involves felling trees and weighing the biomass components  (Fayolle et al.,  2013; Gibbs et al.,  2007;

Goodman et al., 2014). More recently, terrestrial laser scanning (TLS) has emerged as a promising alternative for an accurate

estimation of  tree volume without destruction (Calders et al., 2022; Demol et al., 2022; Disney et al., 2019; Liang et al.,

2016) but  remains limited to very few ecological research sites.  These measurements are used to derive species-specific

allometric equations applied to diameter and height measured routinely in the field across multiple NFI plots (Chave et al.,

2005; Nogueira et al., 2008) to obtain stand-level biomass estimations. Although tree height and basal area are correlated

with the wood volume used to estimate biomass, uncertainties in tree-level allometry propagate into errors when estimating

the biomass of a stand containing multiple trees (Chave et al., 2014).  Forest inventories play a critical role in accurately

estimating forest biomass at regional and national scales (Fang et al., 1998; Shvidenko and Nilsson, 2002) and are often used

as calibration data for models used in remote sensing-based biomass estimation (Morin et al., 2019; Næsset et al., 2020). For

instance, Saatchi et al. (2011) developed a global biomass map at 1km resolution based on the Geoscience Laser Altimeter

System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) and trained with field measurements and airborne

LiDAR.  Since  2019,  the  Global  Ecosystem Dynamics  Investigation  (GEDI)  mission  (Dubayah  et  al.,  2020) has been

collecting high-resolution measurements of  vertical  forest structures through LiDAR data. Although the sampling is too

sparse to derive continuous maps, this new dataset brings a tremendous amount of information on global forest structures.

For instance, the GEDI  Level 4 Biomass (L4B) product provides 1-km  aggregated estimations of above-ground biomass

density (AGBD) that come from allometric equations based on waveform metrics calibrated on the biomass measured across

forest plots (Dubayah et al., 2022; Duncanson et al., 2022). However, to properly monitor forests at a local scale, especially

in Europe, where forests are divided into small stands of a few hectares, a typical 10 to 50 m spatial resolution is needed. In

recent  years, studies  started  to  address  this  issue  by  spatially  extrapolating  GEDI  height  measurements  with  ancillary

continuous satellite data such as Sentinel-1 (S1), Sentinel-2 (S2), or Landsat data, thus creating 10 to 30 m resolution height

maps (Lang et al., 2022; Morin et al.,  2022; Potapov et al., 2021; Schwartz et al.,  2022).  Additionally, the use of deep

learning, and particularly convolutional neural networks (CNNs), has brought new tools to process remote sensing data with

improved  accuracy  and  the  ability  to  automatically  learn  complex  multi-scale  features  like  texture  from large  training

datasets (Ball et al., 2017; Lang et al., 2019; LeCun et al., 2015; Liu et al., 2023; Zhu et al., 2017) . Applied to GEDI data,
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these models have  proven increased performance compared to standard machine learning approaches  (Lang et al., 2022;

Schwartz et al., 2022; Fayad et al., 2023). 

Here  we use GEDI forest  vertical  structure  measurements  in  France  (more than 90 million points)  with deep learning

techniques to derive 10 m  resolution canopy height, 30 m  resolution  AGBD, and wood volume density (WVD) maps of

France.  These  products  will  be  referred  to  as  FORMS-H,  FORMS-B  and  FORMS-V  (FORest  Multiple  Source

Height/Biomass/Volume) in the following. FORMS-H is computed from a U-Net deep learning model trained with Sentinel-

1 (S1), Sentinel-2 (S2), and GEDI data, following the methods described in  Schwartz et al. (2022).  Then, we developed

allometric equations based on NFI data to produce FORMS-B and FORMS-V. Comprehensive validation of FORMS-H is

carried out with  thousands of plots from the French National Forest Inventory (NFI) data and Airborne Laser Scanning

(ALS).  As we used NFI for  calibration, we further validated FORMS-B estimates using two independent sets of non-NFI

forest plot data. Finally, we conducted a comparative analysis with other height and AGBD maps available over France to

highlight the increased performances of our products. These results contribute to a better understanding of  France's forest

structure and carbon stocks at an unprecedented spatial resolution, with potential applications in forest management, climate

change adaptation, and mitigation efforts.

2 Data

This study relies on 15 datasets to generate and evaluate the high-resolution tree height, AGBD and WVD maps of France.

Three spaceborne datasets from GEDI, S1, and S2 were employed to train the deep learning model and generate the 10 m

resolution FORMS-H product. To derive 30 m resolution FORMS-B/V products, we applied allometric equations based on

in situ measurements  from the French NFI data,  along with a broadleaf/coniferous mask obtained from the Copernicus

Dominant Leaf Type (DLT) map. FORMS-H was validated against several datasets, including the French NFI height data

and  ALS  data  from  the  French  LiDAR  HD  campaign.  Furthermore,  FORMS-B/V  were  evaluated  against  two  forest

inventory datasets (GLORIE and Renecofor) and aggregated data at the French ecoregion scale ("SylvoEcoRegion," SER,

https://inventaire-forestier.ign.fr/spip.php?article773). Finally, we compared FORMS-H and FORMS-B with existing height

(Liu et al., 2023; Potapov et al., 2021; Lang et al., 2022) and AGBD (Santoro and Cartus, 2023; Liu et al., 2023) products

available for France. Table 1 provides comprehensive details about the datasets used in this study and how they were used to

train and assess the accuracy of our FORMS products.

Table 1: Datasets used in this paper. The column “In this study” indicates where the datasets were used in our work.

Product
name Type of Data Metrics used Date Size and

resolution Processing References Data Source In this study
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GEDI
Spaceborne full

waveform
LiDAR

L2A product v002,
RH95 height

Apr
2019-
Jan

2022

25 m circular
footprint.

234,747,773 raw
footprints before
and 91,537,289

(39 %) after
filtration

Filters: 
- Quality flag=1

- Detected modes >0
- RH95<60 m

Dubayah et al.
(2021)

https://
lpdaac.usgs.gov/

products/
gedi02_av002/#tools

Train and
validation of
FORMS-H

Sentinel-1
(S1)

Synthetic
Aperture Radar
(SAR) from the
European Space
Agency (ESA)

Copernicus
Mission

Ground Range
Detected (GRD)

scenes. Ascending
and descending
orbits: Vertical-

Vertical (VV) and
Vertical-Horizontal
polarization (VH)

2020-
05-01

to
2020-
10-01
(Leaf-

on
season)

4,522 raw scenes,
pixel size: 10 m

Pixel-wise temporal
median for ascending
and descending orbits

https://
sentinels.Copernicus

.eu/web/sentinel/
missions

Processed and
downloaded on

Google earth engine
(GEE)

Model
training/
inference

Sentinel-2
(S2)

Multi-Spectral
Imager (MSI)
from ESA’s
Copernicus

Mission

L2A product: bottom
of the atmosphere

reflectances: Bands
(B) 2-4: Blue,

Green, Red. B 5-7:
Red edge, B8: Near

Infrared (NIR),
B8A: ”narrow” NIR,
B11,12: Short Wave

Infrared (SWIR).

1,253 descending
orbit and 1,203

ascending scenes
Pixel size: 10 m

- Cloud content <50 % +
Cloud mask

- Resampling of all the
bands at 10 m,

- Pixel-wise temporal
median

French
National
Forest

Inventory
(NFI)

Field data from
forest inventory
measurements

Dominant height of
the plot

2020
5,475 circular
plots (30 m) in

France

Istitut National de
l’Information

Géographique et
Forrestiere (IGN)
(https://inventaire-

forestier.ign.fr/)

Requested to IGN

FORMS-H
validation

WVD

Conversion to MgC.ha-1

with expansion factors
(ADEME and IGN,

2019)

Height-
biomass

allometry

French
LIDAR HD

Airborne Laser
Scanning (ALS)
point-cloud data

RH95 of height
ALS 1:
2022;

ALS 2:
2021

Point
cloud
data.
10pts
.m-²
at

least

ALS 1: 1
large area

of 2500 km²

Extraction of the RH95

height at 10 m resolution
with pdal algorithm

1. Estimate height above
ground (HAG) of

vegetation points with
pdal hag_delaunay filter

2. Rasterize the point
cloud keeping only the
max value of the HAG
for each pixel at 50 cm

resolution
3. Downsample at 10 m

resolution by keeping the
95th percentile height

IGN (https://geoservices.ign.fr/lidarhd) FORMS-H
validation

ALS 2: 20
tiles of 1

km²

Copernicus
Dominant
Leaf Type

(DLT)

Broadleaf /
Coniferous map

from the
Copernicus

Land
monitoring

service

Tree type for each
pixel 2018

Pixel size: 10 m.
© European Union,
Copernicus Land

Monitoring Service
2018, European

Environment
Agency (EEA)

https://
land.Copernicus.eu/
pan-european/high-
resolution-layers/

forests/forest-type-1

Model
training and
testing (filter
GEDI data)

30 m Resampling at 30 m with
the dominant leaf type.

Production
FORMS-B/V

Renecofor
permanent

plot network

Forest plots
mainly from
mature old-

growth forest

DBH, Tree species,
Height 2019

102 plot (0.5 ha)
distributed

throughout France

allometric equations
from Forrester et al.

(2017) to infer biomass

Ulrich (1995)
http://www1.onf.fr/

renecofor/

Available upon
request to

M.Nicolas, French
forest office, (ONF)
manuel.nicolas@onf

.fr

FORMS-B
validation
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GLORIE
forest

inventory

Forest plots
from a

coniferous
plantation in
south-west of
France (Les

Landes)

AGBD 2016 104 plots (50 m
circular plots )

Motte et al. (2016),
Zribi et al. (2019)

Available upon
request to D.Guyon
(INRAE Bordeaux-

Aquitaine)
dominique.guyon@i

nrae.fr

FORMS-B
validation

French
Sylvoecoregi

on (SER)
statistics

Average WVD
and AGBD
estimations

based on NFI
plots statistical

aggregation

WVD
(m3 ha-1) 2020 91 SER https://inventaire-forestier.ign.fr/spip.php?

rubrique127

FORMS-B/V
validationAbove- and below-

ground biomass
density (MgC ha-1)

2014 40 groups of SER Conversion to AGBD
(Mg ha-1)

ADEME and IGN,
(2019)

https://
librairie.ademe.fr/

produire-autrement/
808-contribution-de-

l-ign-a-l-
etablissement-des-
bilans-carbone-des-

forets-des-territoires-
pcaet.html

Potapov
height map

Global canopy
height map
based on

Landsat, GEDI,
and Machine

Learning.

Canopy Height 2019 Global map at 30
m resolution Potapov et al. (2021)

https://
glad.umd.edu/
dataset/gedi

FORMS-H
comparison

Lang height
map

Global canopy
height map
based on

Sentinel-2,
GEDI, and Deep

Learning

Canopy Height 2020 Global map at 10
m resolution Lang et al. (2022)

https://
langnico.github.io/

globalcanopyheight/

FORMS-H
comparison

Liu height
map

European
canopy height
map based on
PlanetScope,

ALS, and Deep
Learning

Canopy Height 2019 European map at
~3 m resolution.

Conversion to 10 m
resolution with a

maximum resampling
method

Liu et al. (2023)

Available upon
request to to Siyu
Liu (University of

Copenhaghen),
sliu@ign.ku.dk

FORMS-H
comparison

ESACCI
Biomass

map

Global AGBD
map

AGBD in oven dry
biomass (Mg.ha-1).
Product version 4

2020 Global map at 100
m resolution

Santoro and Cartus,
(2023)

https://dx.doi.org/
10.5285/

af60720c1e404a9e9
d2c145d2b2ead4e

FORMS-B
comparison

Liu Biomass
map

European
AGBD map

AGBD in oven dry
biomass (Mg.ha-1) 2019 European map at

30 m resolution Liu et al. (2023)

Available upon
request to to Siyu
Liu (University of

Copenhaghen),
cnliusiyu@gmail.co

m

FORMS-B
comparison

3 Methods 

3.1 Mapping canopy height at high resolution (10 m)

To map canopy height in France at 10 m resolution, we adapted  the methods developed and presented  in Schwartz et al.

(2022). The processing is based on a deep learning U-Net model (Ronneberger et al., 2015) adapted from (Milesi, 2022) that

learns multi-scale features in S1 and S2 images to predict canopy height. This model is trained on a pixel-wise regression
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process with GEDI RH95  height data. The RH95 height means that 95 % of the energy returned to the sensor comes from

photon reflections  below this  height.  It  is  a  widely used proxy for  canopy height  as  it  is  less  sensitive  than RH100 to

atmospheric disturbances  (Fayad et al., 2021; Potapov et al., 2021). Prior to the model training, France was divided into

10,000 km² areas, which we will refer to as “tiles” in the following, that we randomly split into 4408 (75 %) train, 887 (15

%) validation, and 589 (10 %) test tiles. The detailed training processes are described in Fig. 1: (1) Random selection of a

train tile (2) Random selection of a 2560x2560 m subset of this tile to reduce overfitting (3) Input of the corresponding

256x256-pixel image with 14 layers from S1 and S2 (See Table 1) to the U-Net model. (4) Creation of a target height image

from the GEDI RH95 height. We used the 10 by 10 m pixel corresponding to the center of the GEDI footprint as a target (5)

Calculation of the  MAE loss between the model outputs and the GEDI height values (6) Loss backpropagation: Model

weights are modified according to the value of the loss gradient with respect to them. This process is a key element in the

training of neural networks. We performed it here with the Adam optimizer and a learning rate of 0.01 that we decreased

manually when the loss function stopped decreasing. The complete training process took approximately 24 hours and was

done with the Amazon AWS cloud platform on a GPU NVIDIA Tesla T4 (16 GB). 

Figure 1: U-Net training process. (1) Random draw of a train tile (2) Random draw of a 2560x2560 m subset (3) Input of the
corresponding S1 and S2 layers to the model. (4) Rasterization of the corresponding GEDI data on a 10 m grid. (5) Calculation of
the MAE loss (6) Loss backpropagation: Model weights are modified according to the value of the loss gradient with respect to
them.
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3.2 From height to wood volume and biomass

To produce an AGBD map at 30 m resolution (in Mg.ha -1), we derived power-law allometric equations from the French NFI

plot data (See Table 1).  We chose a 30 m resolution to correspond to the size of the NFI plots and to obtain a sufficient

number of trees within one pixel so that AGBD has real significance. Every year, the French Geographical Institute (IGN)

measures~ 6000 new plots for the French NFI (IGN, 2018). For each 30 m circular NFI plot, dendrometric measurements are

made in concentric plots of 6, 9, and 15 m radius according to the DBH, and for trees having a minimum of 7.5 cm DBH.

DBH and species are collected for all the trees, and height is measured for one tree per species and DBH class. The tree

volumes are computed using allometric  models involving DBH and height,  and a WVD estimation (in  m3.ha-1),  which

corresponds to the main stem’s volume up to 7 cm diameter, is then derived for each NFI plot. In this study, we used ratios

estimated from the CARBOFOR project  (Loustau, 2010), a previous work specific to French forests, to convert the NFI

wood volume to oven-dry AGBD: 0.59 Mg.m-3 for coniferous and 0.89 Mg.m-3 for broadleaved forests. These ratios combine

an expansion factor that accounts for the volume of the whole tree, including branches (1.34 for coniferous and 1.61 for

broadleaf)  and a tree density factor  (0.44 Mg.m-3 for coniferous and 0.55 Mg.m-3 for broadleaf)  to obtain the oven-dry

AGBD. After applying these ratios to the NFI plot WVD estimations, we  compared  them to the mean of  the FORMS-H

height in each NFI plot's 30 m circular area. Based on the dominant tree species given in the NFI data, we divided coniferous

and broadleaved  plots  and  fitted  two power-law  allometric  equations (Fig.  2.a,b)  with  a  Huber  Regressor  (Huber  and

Ronchetti, 1981) method that has the advantage of being less sensitive to outliers. Even though height and biomass are two

different physical quantities, height-biomass power-law allometric equations have been widely used and showed satisfying

results when no other variables were available to carry out  biomass predictions  (Enquist, 2002; Chave et al., 2005). The

estimation of AGBD obtained using these power law relationships (Fig. 2.c) shows a MAE of 61.7 Mg ha-1 and a R² of 0.4

when compared to the NFI AGBD. We observe a saturation for higher AGBD values > 400 Mg ha-1, explained by the broad

range of AGBD values observed for a given height in Fig. 2.a,b, especially for higher heights. 
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Figure 2: (a,b) Comparison of the AGBD from NFI plot data to FORMS-H for broadleaved and coniferous forests. The red line
corresponds to the power-law allometric equation that we fitted on the data and used to transform our tree height map into an
AGBD map. (c) Comparison of the AGBD estimated from the allometric equations and the actual AGBD of the NFI plots. The red
dashed line corresponds to the 1:1 fit.

To obtain the AGBD map of France, we first resampled our FORMS-H height map at 30 m resolution. Then we used the

Copernicus DLT map (Table 1) to estimate the fraction of broadleaf /coniferous forests within each 30 m pixel and applied

these power-laws allometries  (Fig.  2.a,b)  accordingly  to  obtain an AGBD map (Mg ha-1)  of  France  for  2020 at  30 m

resolution (FORMS-B). We also produced a  WVD map (FORMS-V) at 30 m resolution (m3.ha-1) with the same method

without using the volume-to-biomass ratios detailed above. 

3.3 Products validation 

To evaluate the accuracy of our 10 m resolution FORMS-H product,  we compared it to four independent datasets:  the

2,479,668 GEDI Test footprints, the 5,475 French NFI plots measured in 2020, and two ALS datasets (one large area of

2500 km² and one set of 20 smaller areas of 1 km² each) from an ongoing French Lidar HD campaign that aims at covering

the whole national territory within the next years (Table 1). GEDI Test footprints were taken from the 589 Test tiles (Fig. 1)

and filtered with the Copernicus DLT map (Table 1) to remove non-forest data. We compared here the maximum FORMS-H

value within the 30 m circular plot area to the dominant height variable provided in the NFI data. This height is computed

from ~ 7 representative trees and stands for the mean height of the 100 highest trees within a surface area of 1 hectare. The

ALS point-cloud data come from the French LiDAR HD measurement campaign (Table 1). The first ALS site is a large
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2500 km² area in the North of Paris with flat terrain (Fig. 3). The other 20 sites cover smaller areas (1 km² each) and are

distributed in different sites with more complex topography. We used ALS data point cloud classification (See Table 1) to

create  a 50 cm resolution canopy height model that  we resampled at  10 m by taking the 95 th percentile  of height and

compared it to FORMS-H. Additionally, we conducted a comparative analysis with three height maps available globally or

in Europe to assess the novelty of FORMS-H (Lang et al., 2022; Liu et al., 2023; Potapov et al., 2021). These maps will be

referred to as “Lang”, “Liu”, and “Potapov” respectively in the following. 

We evaluated FORMS-B by comparison to two independent forest inventory datasets and to aggregated NFI statistics at a

larger scale. The NFI does not provide official plot-level biomass estimates, but rather only volume and height, and our

method for establishing the height-AGBD relationships shown in Fig. 2 would lead to large errors and a degree of circularity

if AGBD inferred for individual plots was used for validation. Further, it would not be an independent validation since the

NFI AGBD data are used to define the relationship for transforming height maps to AGBD maps. For these reasons, we used

for validation two smaller inventories (“Renecofor”, “GLORIE”, described hereafter) that are independent of the NFI. The

Renecofor permanent plot network (Ulrich, 1995) gathers 102 forest plots distributed over France (Fig. 3) that grow under

different climatic and soil conditions. Measurements of numerous parameters, including DBH, are performed yearly by the

French National Forest Office (ONF) to monitor and understand changes in forest ecosystems. These monitoring plots were

installed in public forests, and their stands are managed by local foresters with the same thinning intensity as the surrounding

stands. To derive a biomass estimation that we could use as reference data to evaluate our FORMS-B product, we used

species-dependent DBH-based allometric equations and wood densities described in  Forrester  et  al.  (2017). We applied

generic equations based on the tree leaf type (coniferous/broadleaf) for the tree species not covered by this study. Thus, by

dividing by the plot surface (0.5 ha), we obtained an AGBD estimation for each forest plot of the Renecofor network. These

values were compared here to the mean FORMS-B values within a 100 m diameter circle around the location of the plot. The

GLORIE forest inventory (Motte et al.,  2016; Zribi et al.,  2019) includes measurements of tree heights, DBH, and tree

density in 104 forest stands of maritime pine located in the Landes Forest (Fig. 3). This area represents mainly private and

intensively managed forests, representative of the Les Landes area. In the GLORIE data set, AGBD estimations were derived

from allometric equations applied to plot measurements of DBH (Shaiek et al. (2011) for DBH => 10 cm and Baldini et al.

(1989) otherwise). These values were compared to the mean FORMS-B values within a 50 m diameter circle around the

location of the plot, which corresponds to the average plot dimensions. At a regional scale, we also evaluated our FORMS-

B/V products  over forest  ecoregions  (SER, see  Sect.  2).  France  is  categorized  into 91 SER based on forest  types and

management practices. Every year, aggregated WVD (See Table 1) estimations are provided at the SER scale by the French

forest  inventory service (IGN) from the NFI plot  data.  To evaluate the capability of our model to carry out consistent

estimation at this scale, we compared for each SER the average FORMS-V WVD estimations on forest pixels, determined

with the Copernicus DLT map (Table 1), to these official data. Besides, in a report evaluating the French carbon footprint by

ADEME and IGN in 2019, France's above and below-ground carbon densities were assessed for groups of these SERs in
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2014.  These  estimations,  given  in  above-  and  below-ground carbon per  hectare,  were  converted  to  AGBD with ratios

described in Loustau et al. (2010): the values were divided by 0.475 MgC.Mg -1 to estimate the oven-dry biomass and by a

1.3 root expansion factor to account for AGB only. As for FORMS-V, we further compared these estimates to FORMS-B to

assess its performance at a regional scale. Additionally, we compared FORMS-B to two other biomass products available

globally or for Europe (Liu et al., 2023; Santoro and Cartus, 2023), which were converted when necessary to WVD maps

with the factors detailed in Sect. 3.2. These maps will be referred to as “Liu” and “ESACCI” respectively in the following.

In this study, we used several  error  metrics, including the mean absolute error (MAE), the mean error (ME), the mean

absolute percentage error (MAPE), and the coefficient of determination (R²). The MAE gives information about the overall

error, the ME highlights the model's bias, and the MAPE computes the relative error percentage to compare the model’s

performances on different validation datasets. We applied MAPE only to heights > 5 m and to AGBD > 10 Mg ha -1 to avoid

infinite values and to evaluate our model’s performances solely on forests. The R² score indicates the performance of a

regression task. A score of 1 indicates that the predicted values perfectly fit the reference data. A score below zero indicates

that the model performs worse than a model predicting the average value. The detailed formula of these metrics can be found

in Appendix A. 
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Figure 3: Presentation of the study site with the French NFI plots (green), the Renecofor forest plots (blue), the GLORIE forest
plots (orange) and ALS 1, ALS 2 data (red) used for validation.

4 Results

4.1 FORMS-H: France canopy height map at 10 m resolution (2020)

Our 2020  FORMS-H  product  for France at 10 m resolution is presented in Fig.  4.a.  The overall  picture highlights the

fragmentation and the variety of forest types in France with forest heights mainly ranging from 0 to 30 meters. The details of

height prediction presented in  Fig. 4.b show the ability of our map to retrieve precisely forest landscape units visible on

Google Maps on a broad range of heights. Forest parcels are distinctly visible with precise borders.
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Figure 4: (a) FORMS-H: Tree height map of France at 10 m resolution for the year 2020. (b) Examples at three different locations
of height prediction (left) with the corresponding Google map images (right). Brighter colors indicate higher heights.

We evaluated FORMS-H using four different datasets, including the GEDI Test RH95 (Fig. 5.1) height data, French NFI

dominant height data collected in 2020 (Fig. 5.2 ), and two ALS datasets from the French LiDAR HD campaign (Fig. 5.3,4).

The comparison with the Test GEDI footprints (See 3.1) yields an MAE of 4.48 m and R² of 0.33 (Fig. 5.1.a). This initial

validation step demonstrates the ability of our model to correctly map the GEDI RH95 variable for a broad range of heights.

Figure 5.1.b boxplots highlight the high precision of our model with a low bias, especially in the 5-30 m height range (ME =

4.8 m (5-10 m), ME = - 0.2 m (15-20 m), ME = -3.8 m ( 25-30 m)). Higher heights are more challenging to predict, and the

model tends to underestimate them (ME = -6.7 m for the 30-35 height range).  Conversely,  FORMS-H indicates higher

heights than the labeled GEDI footprints for many areas categorized as low heights (Figure 5.1.a). This discrepancy can

likely  be  explained  by  the  quality  of  GEDI  data,  where  the  labels  could  be  wrong due  to  atmospheric  conditions  or

geolocation errors. Our comparison with the completely independent French NFI data (Fig. 5.2) excludes these types of

outliers as it focuses only on forests measured in 2020. It yields a smaller MAE of 2.94 m (Fig. 5.2.a) with a distribution of

predicted data very close to the NFI distribution of heights (Fig. 5.2.b). Similarly to the comparison vs. the GEDI Test data

set, the boxplots show that higher heights above 25 m tend to be underestimated with a ME of -2.8 m for the 25-30 m range

and - 4.5 m for the 30-35 m range of heights. The performances of the model are slightly better in coniferous forests (MAE =
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2.93 m, R² = 0.74) compared to broadleaved forests (MAE = 2.94 m, R² = 0.65, See Appendix B). The validation with ALS

1 (Fig. 5.3) and ALS 2 (Fig. 5.4) data from the French LiDAR HD campaign (Table 1) confirms the conclusions obtained

from the previous datasets. ALS 1 comparison (Fig. 5.3.a) yields a result similar to the French NFI with an MAE of 3.54 m,

R² of 0.61, and a comparable underestimation of higher heights (ME = -3.36 m for the 25-30 height range). Lower heights

tend to be overestimated (ME = 6.47 m for the 0-5 m height range) with some low-height pixels that our model predicted

much higher. This discrepancy can be attributed to forest borders, where FORMS-H has smooth height transitions while the

ALS data capture sharp edges more effectively. The ALS 2 data comes from a more diverse range of terrains and locations

but still yields a good correlation with an MAE of 4.51 m and R² of 0.53. However, we observe an increased tendency to

underestimate high height values (ME = -6.13 m for the 25-30 height range) and overestimate low values (ME = 4.82 m for

the 0-5 m height range). Notably, the peak of height distribution at ~17 m in the histogram of Fig. 5.4.b is 1.8 times higher

than in the ALS 2 distribution, indicating that the model tends to predict the mean value rather than spanning the whole

distribution of heights. 
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Figure 5: Comparison of FORMS-H with four reference datasets. The figure displays scatterplots (a) and histograms with box
plots (b) for each of the four datasets: (1) GEDI TEST RH95 height data, (2) French NFI height from 2020 measurements, and (3-4)
two ALS RH95 heights from French LiDAR HD measurements. Only forest pixels from the DLT map (See Table 1) are shown. In
each comparison, the scatterplot (a) shows a density plot of the predicted height plotted against the reference height, with brighter
colors indicating a higher density of points. The dashed line represents the 1:1 axis. The histograms with box plots (b) display the
differences between the predicted and reference height for each height range of 5 meters. The median value is represented by a red
line, while the upper and lower quartiles are represented by the upper and lower edges, respectively. The whiskers symbolize the
5th and 95th percentiles.

We conducted a comparative analysis between FORMS-H and three other existing tree height maps sampled over the entire

metropolitan French territory (See Sect. 3.3). A visual comparison of the three maps (Fig. 6.a,b,c,d) highlights the improved

ability of FORMS-H to reproduce spatial patterns visible on Google Maps and ALS data compared to the Lang and Potapov

maps. FORMS-H performed well in flat terrain (Fig. 6.a,b) as well as in areas with higher slopes (Fig. 6.c,d, slope ~30°).
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Lang’s map, released at a spatial resolution of 10 meters, appears to be coarser than FORMS-H, although it still captures

some height patterns observed in ALS data. In contrast, the Potapov map failed to capture most of these patterns. The Liu’s

map, based on PlanetScope data (3 m resolution) for predicting heights after training with ALS data in selected European

areas (all outside France), captures the spatial heterogeneity well and follows the pattern observed in ALS data. Furthermore,

individual tree crowns and very fine-scale landscape units are visible in this very high-resolution height dataset. To verify

our visual comparison, we further quantitatively compared FORMS-H to ALS data resampled at 10 m resolution (Fig. 6.e,f)

and found that it outperformed the other models significantly for Lang and Potapov, with an MAE of 3.54 m (ALS 1) and

4.5 m (AL2) compared to an MAE of 4.97 m (ALS 1) and 5.57 m (ALS 2) for Lang, and 5.72 m (ALS 1) and 6.8 m (ALS 2)

for Potapov. R² coefficients confirm the superiority of FORMS-H (ALS 1: 0.61, ALS 2: 0.53 ) compared to Lang (ALS 1:

0.27, ALS 2: 0.24) and Potapov (ALS 1: 0.07, ALS 2: -0.12 ). Interestingly, FORMS-H also performs better than the Liu

map resampled at 10 m resolution for ALS 1 (MAE = 4.76 m, R² = 0.41) and similarly for ALS 2 (MAE = 4.53 m, R² =

0.50), even though this model was trained on higher resolution images, with ALS as reference data, which is more precise

but with an uneven spatial  distribution and no data in France compared to our GEDI reference data.  All  maps tend to

underestimate the higher heights measured by ALS.
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Figure 6: Visual (a,b,c,d) and quantitative (e,f) comparison of ALS RH95 height data resampled at 10 m resolution to FORMS-H
(10 m resolution) and to three other products at 3 m (Liu et al., 2023), 10 m (Lang et al., 2022) and 30 m resolution (Potapov et al.,
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2021). (a) comes from ALS 1 data while (b,c,d) are in ALS 2 data. (a,b) are located on flat terrains. (c,d) are located on steep
terrain with 20° to 40 ° slopes. (e, f) show the comparison with all ALS 1 and ALS 2 data in forest pixels filtered with the DLT map
(Table 1). The black dashed line is the 1:1 axis. We applied a uniform noise value in the [-0.5, 0.5] range to the three other height
products  to  allow a  better  scatterplot  density  visualization  due  to  the  data  type  provided  as  integers  without  changing  the
performance metrics.

4.2 FORMS-B/V: France AGBD and WVD maps at 30 m resolution (2020)

Based on the power-law allometric equations fitted between NFI AGBD and our height estimates for each NFI plot, as

described in Sect. 3.2, we derived FORMS-B (Fig. 7.a), a 30 m resolution AGBD map of France in Mg ha -1, and FORMS-V,

a 30 m resolution WVD map of France in m3 ha-1. The different colors on the map represent varying levels of AGBD, with

brighter colors indicating higher values. 

Figure 7: (a) FORMS-B: AGBD map of France at 30 m resolution for 2020. (b) Examples at three different locations of biomass
prediction (left) with the corresponding Google map images (right). Brighter colors indicate higher AGBD.

To assess the performance of the 30 m resolution FORMS-B product, we compared it to two existing wall-to-wall biomass

maps from global and European studies, sampled over France (See Sect. 3.3). Even though the three maps were obtained

with different data sources and methods, they all mostly agree on biomass order of magnitudes and high biomass locations
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(Fig. 8.a,b,c,d).  Moreover,  FORMS-B, along with the Liu map, has a higher resolution, enabling more precise biomass

estimations at the forest parcel level, whereas the global product ESACCI has a coarser resolution (100 m) that precludes

detailed analyses. To gauge the accuracy of each map, we further quantitatively compared them to the two forest Renecofor

and  GLORIE  inventory  datasets  (Fig.  8.e,f,  Sect.  3.3).  The  Renecofor  forest  plots  mainly  consist  of  mature  forests,

considered more challenging for biomass estimations, due to the presence of understory trees not evidently sampled from

satellites. FORMS-B performs better on this “Challenging test” dataset than the two other biomass maps, with an MAE of

59.7 Mg ha-1, (vs 63.7 Mg ha-1 for Liu and 90.7 Mg ha-1 for ESACCI) for biomass values reaching up to 430 Mg ha -1.

Similarly as  for  FORMS-H, the FORMS-B product  (R² = 0.18) has  a  close performance to  the Liu map (R²  = 0.17).

FORMS-B is based on two height-biomass allometric equations for coniferous and broadleaved trees and cannot capture

specificity due to different tree species, which partly explains the under- or over-estimations of biomass for individual forest

plots. The comparison analysis with Renecofor plots for the two other biomass maps leads to the same conclusion but with a

higher MAE. The GLORIE forest plots are all located in the Landes Forest, an intensive maritime pine plantation in the

South West of France. On this dataset, with AGBD ranging from 0 to 160 Mg ha -1, FORMS-B has an MAE of 19.7 Mg ha-1,

better than the two other products with an MAE of 26.5 Mg ha -1  and 28.3 Mg ha-1 for Liu and ESACCI respectively. We

observe a tendency to overestimate lower AGBD values which can be explained here by the time difference between the date

of inventory and the date of the maps presented here, given the high growth rates of young maritime pines in the study area

(Lemoine, 1991). Overall, Fig. 8 highlights the capability of FORMS-B to estimate biomass density, compared to other

existing biomass maps, across various types of forests in France. Still, errors are larger (MAPE = 24.1 % for Renecofor, 39.9

% for GLORIE) than the ones obtained for the height map validation (MAPE = 18.4 % for the NFI plots, 16.9 % for ALS 1

and 22.5 % for ALS 2), which showcases the difficulty to derive an AGBD map only from a height-based product. Our

height-biomass allometric equations for both coniferous and broadleaved forests could be refined with other parameters such

as forest cover and detailed for specific species, which requires a high-resolution dominant species map to increase FORMS-

B accuracy. 
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Figure 8: Visual (a,b,c,d) and quantitative (e,f) comparison of FORMS-B to two other products (Liu et al., 2023; Santoro and
Cartus, 2023). (a,b) are located on flat terrains. (c,d) are located on steep terrain with slopes from 20° to 40 °. (e) shows the
comparison  with  the  biomass  from  Renecofor  forest  plots  (2019),  including  mainly  old-growth  mature  forests  uniformly
distributed over  France.  (f)  shows  the  comparison  with  maritime  pine  forest  plots  (2016)  from the  GLORIE project  in  an
intensively managed forest (Les Landes, southwest of France). Points circled in red represent outliers related to clear-cuts between
the date of the inventory and 2020 and were removed from the calculation of error metrics. The red dashed line represents the 1:1
axis.

The agency responsible for the French NFI, IGN, produces yearly statistics of wood volume and sometimes biomass at

different scales from the statistical aggregation of French NFI plots. Here we compared the 2020 WVD statistics and the

2014 AGBD statistics (most recent AGBD available statistics) to our FORMS products and to Liu and ESACCI maps at the

Sylvo-Eco-Regions (SER) level (See Sec. 3.3). The AGBD maps were converted to WVD with the ratios defined in Sect.

3.3. Figure 9 shows these comparisons for WVD (a) and AGBD (b), where each point represents a SER or a SER group.

Both for WVD and AGBD, our FORMS products are closer to the NFI aggregated values. For wood volume, FORMS-V has

a MAE of 30.0 m3 ha-1, which is significantly smaller than other maps (Liu: 40.0 m3 ha-1, ESACCI: 55.8 m3 ha-1). For AGBD,

FORMS-B (MAE = 19.4 Mg ha-1) and Liu’s map (MAE = 22.4 Mg ha-1) have similar performances that outperform the

global ESACCI (MAE = 38.7 Mg ha-1) map. All the products underestimate the average WVD (ME for FORMS-V: -27 m3

ha-1, Liu: -25 m3 ha-1 , ESACCI: -48 m3 ha-1) and AGBD (ME for FORMS-B: -15 Mg ha -1, Liu: -12 Mg ha-1 , ESACCI: -35

Mg ha-1) of forests at SER scale. Fig. 8.e showed that all the products underestimated large AGBD values in Renecofor,

which could explain this underestimation at an aggregated regional scale. Additionally, we computed the WVD and AGBD

averages on all the forest pixels from the DLT Copernicus map, which includes areas not considered as forests by IGN and

that could have lower AGBD and WVD values. 
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Figure 9: (a) Comparison of FORMS-V, Liu, and ESACCI average WVD with the WVD disclosed in 2020 NFI statistics for the 91
French SER. The AGBD products were converted into wood volume with ratios described in Sect. 3.3. The average WVDs were
estimated for forest pixels only according to the Copernicus DLT map (Table 1) (b) Comparison of FORMS-B, Liu, and ESACCI
average AGBD with 2014 AGBD estimations (ADEME and IGN, 2019) for 40 groups of SER. The reference SER data were
converted from above and below-ground carbon to oven-dry AGB as described in Sect. 3.3. The average AGBDs were estimated
for forest pixels only according to the Copernicus DLT map (Table 1). The black dotted lines represent the 1:1 axis.

5 Data availability

FORMS  products  presented  in  this  paper  can  be  visualized  online  at

https://martinschwartz0.users.earthengine.app/view/forms-height-biomass-volume-viewer.  They  can  be  directly  used  as

Earth  Engine  images  datasets  named  "projects/ee-martinschwartz0/assets/FORMS-H",

"projects/ee-martinschwartz0/assets/FORMS-B", and "projects/ee-martinschwartz0/assets/FORMS-V") or downloaded from

the Zenodo online platform under https://doi.org/10.5281/zenodo.7840108 (Schwartz M., Ciais P., De Truchis A., Chave J.,

Ottlé C., Vega C., Wigneron JP., Nicolas M., Jouaber S., Liu S., Brandt M., & Fayad I. (2023). FORMS: Forest Multiple

Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and

GEDI data with a deep learning approach. [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7840108).

The availability of all the datasets used in this study is presented in Table 1. GEDI, S1, S2, HD LiDAR, Copernicus DLT

map,  SER  statistics,  Potapov,  Lang,  and  ESACCI  maps  are  open  access  and  freely  available  by  following  the  links

mentioned in Table 1. Other datasets were either protected by privacy rules or made available upon request to their owners.

These  dataset  providers  were  added  as  co-authors  of  this  paper  as  their  work  largely  contributed  to  the  creation  and

validation of our products. 

6 Conclusion

In this study, we produced three maps that bring material information on French forests for 2020. First, a canopy height map

of France at 10 m resolution (FORMS-H) based on a novel deep learning approach that combines GEDI, S1, and S2 data and

extends the previous work from Schwartz et al. 2022 on the forest of Les Landes. This map outperforms existing canopy

height estimations over France compared to reference ALS data. Then, we produced a WVD (FORMS-V), and an AGBD

(FORMS-B) maps at 30 m resolution, resulting from applying power law allometric equations to FORMS-H. Similarly,

compared to other available products, these maps show a better agreement with field data and pave the way towards a fine-

scale biomass monitoring of French forests. Such maps could be produced yearly and integrated into the NFI data, thus

following the guidance of the Global Forest Observation Initiative (GFOI) to integrate earth observation data into national

forest monitoring systems. Furthermore, our approach could be used to derive annual maps to monitor changes in forest

height and biomass and serve as a reliable baseline for forest monitoring.
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7 Appendices 

Appendix A: Error metrics

MAPE=100 ⋅ 1
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Where ei is the ith estimated value, ti the ith true value, t  the mean of ti values, and n the sample size.

Appendix B: NFI broadleaved/coniferous forests height validation

Figure B1: Comparison of FORMS-H to French NFI heights for broadleaved (a) and coniferous (b) forest plots measured in 2020.
Brighter colors indicate a higher density of points. The dashed line represents the x = y axis.
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