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Summary

Accurate forest height and biomass mapping and monitoring is important for forest management and
biodiversity conservation. Here Schwartz et al., generated a 10 m resolution canopy height map in
2020, by integrating multis-source remote sensing dataset and a deep-learning model; subsequently,
with allometric equations fitted to nation forest inventory (NFI), they generated a 30 m resolution
above-ground biomass density (AGBD) map. The fine resolution from 10 m to 30 m is essential for
analyzing forests in France, which are typically divided into small stands. Through extensive
validation against multi-source independent and observational dataset, they showed greater
performance for their generated dataset compared to existing canopy height and AGBD products. The
manuscript is generally well organized and well written, and the research is important. Here, I listed a
few concerns regarding the manuscript.

Thank you for this nice summary of our work. We will try our best to address your concerns in the
revised manuscript.

Specific comments

1) Line 104-105, does the randomness of the split affect the model performance? Generally, in
computer science and Earth science, such random split will be repeated for a few times. The mean
and standard deviation of the performance metrics derived from a few experiments will be used to
show the model performance and related uncertainty.

Thank you for your comment. We rely in this study on a 1-fold cross-validation, meaning that we only
divided our data into Train, Validation, and Test dataset only once. Ideally, it would have been better
to do an N-fold cross-validation with N greater than one to evaluate how the randomness of the split
affects the model performances and obtain the mean and standard deviation of the performance
metrics. However, for extensive datasets like the one used in this study (~100,000,000 GEDI
footprints), we can argue that two random splits must have similar properties. Additionally, the
computational costs of model training (~24 h) make it complex to repeat this process several times.
Finally, we used several external validation sources (ALS and NFI height data), which are in good
agreement with the GEDI Test validation and give a good idea of the performance metrics of the
model on independent validation datasets.

2) Line 108-109, “We used the 10 by 10 m pixel corresponding to the center of the GEDI footprint
as a target”. It seems that the spatial resolution of the input data is 10 m, but the output GEDI data
has a resolution of 25m, the sub-pixel (i.e., across 10 m grid cells) heterogeneity within each GEDI
footprint should not be contained in the output data. Also the NFI data has a resolution of 30m, then
how to validate that the generated canopy height data at 10 m resolution captured the heterogeneity at
that scale? Why not unify the input data to the same resolution (e.g., 30m) of GEDI or NFI or
generated AGBD?
We fully agree that this scale issue could bring uncertainties to our model. All studies that use data
fusion face the same type of issues as the shape and scales of different data never match perfectly. In



our study, GEDI is used only to train the model. When we produce FORMS-H, we use S1 and S2
images. Thus, the uncertainty brought by the scaling issue only adds label noise to the data, especially
for heterogeneous canopies. In more homogeneous forest cover, this effect should be reduced.

We checked if the model tends to “smooth” its predictions to handle this noise, thus creating “false”
10 m resolution maps. To do so, we designed a modified U-Net model (the “modified model” in the
following) where a 2x2 convolution with stride 2 has replaced the last layer. Because of this final
layer, the output of the modified model is now at a 20 m resolution. We trained this model with GEDI
data rasterized on a 20 m grid, hence reducing the scaling issue. The following figure describes this
model and shows the 20 m resolution GEDI target.

Figure 1: Details of the original and modified models' two last layers. In the modified model, the last 1x1
convolution is replaced by a 2x2 convolution with a stride value of 2, hence creating a 20 m resolution output
that can be compared to GEDI footprints rasterized at 20 m to train the model. The reference height data used
for the 20 m resolution model are much closer to the footprint size of GEDI than the one used for the original
model, hence addressing the scaling issue.

To proceed to a fair comparison with the output of our model that has a native pixel size of 10 m, we
applied a bilinear upsampling to the output of the modified model, thus creating a ‘super-resolution’
map with 10 m pixels.



Figure 2: Workflow proposed to compare the model trained with GEDI footprints rasterized at 20 m, and the
model that used GEDI footprints rasterized at 10 m. The output map at 20 m is resampled at 10 m in order to
create a 10 m map for a fair comparison to our original product.

To avoid long training times, we restricted our training to a maritime pine plantation in southwest
France called the Landes de Gascogne (~ 130,000 GEDI footprints). We trained a first model as we
did for FORMS-H (“original U-Net”) and a second one as described above (“modified U-Net”). We
can visually see that the original 10 m model is more able to retrieve heterogeneous canopy cover,
despite the fact that GEDI footprints have a resolution closer to 20 m. As an illustration, in the
following examples, the red squares indicate holes in the canopy that the modified model at 20 m
could not capture.



Figure 3: Visual comparison between Sentinel-2 images, our model trained at 10 m resolution and the modified
model trained at 20 m resolution here upsampled at 10 m for a fair comparison. Complex forest structures in the
canopy indicated by red squares are not well retrieved in the modified model outputs, while our model can
retrieve them.

Based on these elements, we are confident that the label noise created by the scaling difference
between GEDI and Sentinel is well handled by the deep learning model. Heterogeneous canopy height
is well retrieved by the model at 10 meters, and the use of GEDI at a 10 m scale yields better results
than at a 20 m scale, even if 20 m is closer to the original 25 m GEDI footprint shape. Therefore we
think that, even though there is a scale and shape difference between GEDI footprints and S1-S2
pixels, it is possible to train the model with GEDI sampled at a 10 m scale. To our understanding, this
is mostly because of the U-Net model that is able to cope with label noise.
In the methods section of the revised manuscript, we will mention this scaling difference between
Sentinel 10 m resolution images and GEDI 25 m footprints. We will explain our attempt to use GEDI
at a coarser scale, more consistent with the physical signal measured, that led to a decline in model
performance.

We acknowledge that the comparison with 30 m circular plots from the French NFI data cannot
validate if our map captures real forest heterogeneity at 10 m. However, in Fig.5, we show in the
comparison of FORMS-H with two high-resolution ALS images that FORMS-H captures
heterogeneity at the 10 m scale.

3) Line 111-112, the loss function should be the loss on the validation dataset, right? Please clarify
it. To make sure the results reproducible, it could be better to list the learning rate used. In addition,
are there any strategies used to avoid overfitting of the trained models?
Thank you for this comment. During the validation phase, after each training epoch, the loss function
is applied to the outputs of the model applied to images from the validation dataset. It allows us to
follow the evolution of the model’s performances on an independent set of data. When this validation
loss stopped decreasing, we decreased the learning rate by a factor of ten (after ~20 hours of training).
We will modify the manuscript to add this information.
As stated in line 107, when a tile is selected to be part of a training batch, we only take a random 256
x 256 pixel subset of this tile, making (1000-256+1)² = 555,025 different possibilities for each tile.
This process reduces model overfitting as the input images of the model are always different, even if
they come from the same tile.

4) Line 133-134, “we compared them to the mean of the FORMS-H height in each NFI plot's 30 m
circular area”. For the finally generated dataset, how did you upscale from 10 m to 30 m resolution?
First calculate the mean FORMS-H height within each 30m grid cell, then calculate its corresponding
AGBD or wood volume? Please clarify it in the main text. Then again, why not generate the canopy
height data at 30 m resolution during the first step?
The method to generate the final dataset at 30 m resolution is described in lines 147-151: “To obtain
the AGBD map of France, we first resampled our FORMS-H height map at 30 m resolution. Then we
used the Copernicus DLT map (Table 1) to estimate the fraction of broadleaf /coniferous forests
within each 30 m pixel and applied these power-laws allometries (Fig. 2.a,b) accordingly to obtain an
AGBD map (Mg ha-1) of France for 2020 at 30 m resolution (FORMS-B).” To upscale to 30 m
resolution, we took the mean height within each 30m grid cell. This information will be added to the
revised version of the manuscript.



The FORMS-H dataset has a resolution of 10 m and was not generated at 30 m resolution during the
first step. We chose to keep this resolution as the level of detail for height is higher at 10 m, enabling
us to accurately describe gaps in the canopy and forest edges that would not be visible at a lower
resolution (See answer to comment #2). However, for AGBD and WVD, a 30 m resolution seems
more appropriate and is needed due to the way we built the allometric equations with NFI plots.

5) Line 150-151, so you fitted FORMS-H height against NFI WVD for the final WVD data
generation, right? Please clarify it. Since NFI WVD and NFI AGBD have a linear relationship (i.e.,
linked through the volume-to-biomass ratio), the fitted non-linear relationship between AGBD-height
and WVD-height should be the same except for a scaling factor, correct? It could be better to put the
fitted results of WVD-height in the supplementary to help the readers to better understand the methods
and interpret the results.
You are absolutely right. As long as we used volume-to-biomass ratios, the fit is the same for AGBD
or WVD except for a scaling factor (which is different for coniferous and broadleaved forests). For
this reason, the way we obtained FORMS-V was to convert FORMS-B to WVD with these
volume-to-biomass ratios. We did not write it as it was equivalent to fitting a FORMS-H and NFI
WVD relationship. We will modify the manuscript to clarify this point.

6) Fig. 4b, it seems that the generated canopy height in the third column is not well matched with
Google map, any reasons for that?
We suppose here that you talk about the third row rather than the third column. We are unsure here
what you mean by “not well matched”. The main delineations of the fields and forests are visible, and
the generated canopy height matches the image from Google Maps. However, there is a time
mismatch between the Sentinel-2 images (2020) used to produce the canopy height map and the
Google Maps images (2019) used here for visualization purposes. Some forest parcels on the
middle-left part of the image must have been clear-cut between the two satellite acquisitions. We will
add the dates of the Google Maps images (2020, 2018, and 2019) in the caption of the figure to warn
readers of time mismatch.

7) Fig. 6, why select those four regions for comparison? What’s the model performance across the
entire ALS dataset? Does the generated dataset still outperform other products?
These four regions were selected only to interpret the comparison between the products visually.
However, the scatterplots and error metrics were calculated for the entire ALS1 and ALS2 datasets,
showing that the generated dataset tends to be better than other products. We acknowledge here that
this needed to be stated clearly, and we will modify the caption of Fig. 6 to clarify it.

8) Fig. 7, similar problem to my comment#6
Thank you for this comment. As FORMS-B is derived from FORMS-H, we observe the same
phenomenon here. Please refer to the answer to comment #6 for further details.

9) Fig.8e-f, do the data points represent the AGBD data across all sites in GLORIE and Renecofor
or only represent sites falling into selected regions of Fig.8a-d? Please clarify it in the figure caption.
As for comment #7, we acknowledge that it must clearly be stated that the scatterplot corresponds to
the whole dataset. We will modify the caption of Fig.8 to clarify this point.

10) Fig.9, what about the R2 metric for the comparison?



Thank you for this comment. We will add it to the modified version of the manuscript.

11) Any potential limitations for the generated dataset so that the readers can further improve it?
We can raise the following limitations and potential improvements for further studies: The quality of
FORMS-H is lower for steep slopes, as shown by the comparison with ALS 2. Further studies,
specifically focused on mountainous areas, are needed to improve the accuracy in these regions.
Additionally, our deep learning model is trained only on composite S1 and S2 images for 2020.
Applying the same model to other years may lead to significant errors, as composite images would
look different. It would be interesting to have a year-agnostic model that is able to derive a canopy
height map from S1 and S2 images from any year. The creation of FORMS-B relies on two
height-biomass power-law allometric equations for broadleaved and coniferous forests. Even though
this very simple approach yields acceptable results for biomass, there is still a significant difference
against validation data. In the future, one could consider deriving plot-level allometry by tree
species/ecoregions to obtain a more precise biomass estimation. This would involve using tree species
maps and enough NFI AGBD samples for each species. Introducing other predictors than height to
infer biomass could also be interesting. It is well established that dominant tree height alone is not
evidently related to biomass because of tree cover, density, saturation of height at high biomass, and
understory trees. For instance, maps of tree cover obtained from GEDI may help the retrieval of forest
biomass, especially in forests where tree cover is less than one.
We will add text about limitations and possible ways to overcome them at the end of our revised
manuscript.

12) The title and main text contain FORMS-H, FORMS-V and FORMS-B, but the abstract only
showed the results of FORMS-H and FORMS-B. Briefly introducing the performance of FORMS-V is
therefore needed to show the quality of the generated dataset.
Thank you. We will introduce the performances of FORMS-V shown in Fig. 9 in the abstract, as
suggested.



Answers to RC2
RC2 original text is italicized and grey. Our answers are in plain text and black

I am happy to read this manuscrip from Schwartz et al. This manscript developed canopy height,
wood volue density, and aboveground biomass density data products in France using GEDI,
Sentinel-1 and Sentinel-2 datasets with a deep learning approach. The developed data products were
assessed with multiple independent datasets and showed improvements over previous developed data
products. Overall, this study is well organized and the data products are needed in time to support
forest structure and carbon assessment in facing climate change. I only have minor comments.

Thank you for this positive description of our work. We will do our best to answer your comments in
the revised manuscript, as explained in the following.

1. Abstract may also include the FORMS-V, which is one of the three data products develioed in this
study.

Thank you for this suggestion. FORMS-V will be added to the revised version of the manuscript.

2. Table 1. "In this study" should be "This study".

You are right. We will modify the revised version of the manuscript accordingly.

3. Figure 1. The rasterization of 25-m GEDI footprints to 10m grid may introduce some uncertainties
to the model and data products. Is there a way to reduce these uncertainties, for example, using more
data quality control or GEDI footprints in pure landscape types?

Thank you for this very relevant comment. In answer to reviewer #1, we acknowledged that this
method could introduce some uncertainties. Still, we showed that rasterizing GEDI on a 10 m grid
provided better results than rasterizing at a lower resolution, like 20 m. You can refer to it for
additional details. As you suggested, several techniques could be used to control the quality of GEDI
data and help reduce these uncertainties. We already applied basic filters to the GEDI footprints (e.g.,
quality flag =1), but other filters could have been used to refine the quality of the footprints, such as
taking the night GEDI shots and the full power beams only. However, we assumed here that our deep
learning model would be able to cope with these uncertainties, and we chose to keep as many
footprints as possible.
We also thought of filtering GEDI data based on landscape types, as suggested. It would avoid the
case where a GEDI footprint falls at the border between two landscape types (forest border for
instance), thus possibly creating a high uncertainty in the rasterized value. However, our attempts did
not yield significantly better results. Moreover, this type of landscape filtration would also remove all
GEDI data on isolated trees and hedges, making it more difficult for the model to predict the height of
these trees accurately. For these reasons, we finally decided not to use this type of filtration, but it is a
relevant matter that should be addressed in further studies. This will be explained in the revised
manuscript

4. Figure 5. What is the reason that the R2 values are so different in Figure 5a and Figure 5b?



We assume you are referring to the R² values of the figures 5.1.a and 5.2.a. They represent the
validation scatterplots between FORMS-H and two validation datasets: the GEDI Test dataset for Fig.
5.1.a (R² = 0.33, MAE = 4.48 m) and the French NFI plots for Fig. 5.2.a (R² = 0.69, MAE = 2.94 m).
We can indeed observe here a significant difference between the R² values and also between the MAE
values, not totally expected because NFI plots are more independent and should be more difficult to
predict than GED Test data. A visual interpretation of the scatterplots, associated with the histograms
shown in Fig. 5.1.b and Fig. 5.2.b, reveals that low heights are poorly predicted in the GEDI Test
dataset and thus greatly impact the R² value. This is rather due to GEDI label errors than an error from
the model as long as it cannot be observed in other validation datasets. This issue was already
addressed in the original manuscript in lines 228-233. The text in bold in the following has been
added or modified to address your comment and bring additional information: “Conversely,
FORMS-H indicates higher heights than the labeled GEDI footprints for many areas categorized as
low heights (Figure 5.1.a). This discrepancy can likely be explained by the quality of GEDI data,
where the labels could be wrong due to atmospheric conditions or geolocation errors. These
geolocation errors should normally have a symmetric pattern, with as many points overestimated
for lower heights as points underestimated for higher heights. However, as detailed in the figure
caption, we plotted only the footprints geolocated in forest pixels of the Copernicus DLT map.
Therefore the geolocation errors related to GEDI footprints located outside forests were excluded
from this graph. Our comparison with the completely independent French NFI data (Fig. 5.2)
excludes these types of outliers as it focuses only on forests measured in 2020 does not reveal the
same outlier pattern because these forest inventory measurements are more reliable and accurately
geolocated. It yields a smaller MAE of 2.94 m and a higher R² of 0.69 (Fig. 5.2.a) with a distribution
of predicted data very close to the NFI distribution of heights (Fig. 5.2.b).”


