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Abstract. Agricultural activities have been recognized as an important driver of land cover/land use change (LCLUC) 7 

and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable 8 

historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-9 

related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, 10 

there remains a dearth of a relatively high-resolution dataset with crop type details over a long period. To address this 11 

gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km×1 km 12 

by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different 13 

from other databases, we tracked the planting area dynamics of all the crops in the US, excluding idle/fallow farm 14 

land, and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map 15 

products are highly consistent with the county-level inventory data, with the residual less than 0.2 thousand hectares 16 

(Kha) in most counties (>75%) during the entire study period. Temporally, the US total crop acreage has increased by 17 

118 million hectares (Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, 18 

the hotspots of cropland distribution shifted from Eastern US to the Midwest and the Great Plains, and the dominant 19 

crop types (corn and soybean) expanded northwestward. Moreover, we found the US cropping diversity experienced 20 

a significant increase from 1850s to 1960s, followed by a dramatic decline in the recent six decades under the 21 

intensified agriculture. Generally, this newly developed dataset could facilitate the spatial data development in 22 

delineating crop-specific management practices and enable the quantification of cropland change impacts.   23 
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1 Introduction 24 

Anthropogenic land cover/land use change (LCLUC) has altered nearly 70% of global ice-free land (Arneth et 25 

al., 2019), exerting significant effects on ecosystem services by changing biogeochemical and biophysical processes 26 

(Foley et al., 2005; Goldewijk et al., 2017; Johnson, 2013; Betts et al., 2007; Lark, 2023). In particular, agricultural 27 

activities have been identified as the dominant driver of LCLUC (Cao et al., 2021), with approximately one-third of 28 

the land surface altered for agricultural use to meet human demands of food, feed, fiber, and fuel (Zhang et al., 2007). 29 

These changes have led to a range of environmental issues, including greenhouse gas emissions (De Noblet-Ducoudré 30 

et al., 2012; Yu et al., 2018), agricultural water pollution (Ouyang et al., 2014), and soil degradation (Vanwalleghem 31 

et al., 2017). In addition, the intensification of agriculture causes the decline of crop diversity, which can reduce the 32 

resilience of crops to various environmental stresses and threaten the crop yield (Burchfield et al., 2019; Gaudin et al., 33 

2015; Renard and Tilman, 2019; Aizen et al., 2019). Therefore, gaining a better understanding of spatiotemporal 34 

cropland extent and type changes is critical to quantify the environmental effects of cropland change and promote 35 

sustainable agricultural practices (Tilman et al., 2011; Lambin and Meyfroidt, 2011).  36 

As a leading agricultural producer, the conterminous US has experienced a substantial transformation in crop area, 37 

distribution, and type over the last two centuries. From 1850s to 1980s, the crop area increased about eightfold from 38 

around 20 million hectares to about 160 million hectares, primarily through the conversion of forest, grassland, and 39 

other land types  (Li et al., 2023; Turner, 1988). Spatially, the development of canals, waterways, and railroads 40 

contributed to the cropland expansion to the west (Meinig, 1993). Especially, the Homestead Acts in 1862 played a 41 

significant role in stimulating agricultural reclamation. Moreover, in crop commodities, the dominant crop types have 42 

shifted. Before the mid-twentieth century, corn and wheat were the dominant crops. However, the cultivated area of 43 

soybean has gradually surpassed wheat and became the second widely produced crop type across the US in recent 44 

decades (Lubowski et al., 2006). Although these changes have been reported by the government and social scientists 45 

(Waisanen and Bliss, 2002), there is still a lack of a long-term cropland dataset to depict the spatial patterns of crop 46 

type choice and distribution in the US over a long time period. Despite that long-term crop-specific management 47 

information has been available in the US for quite a long period, large uncertainties remain in developing historical 48 

management maps and assessing their environmental and economic consequences spatially, because not knowing 49 

“what is planted where” is a big hurdle before the remote sensing data is available. 50 

A wide variety of land use datasets have been used to explore the spatiotemporal patterns of agricultural land in 51 

the contiguous US. For instance, History database of global environment (HYDE) (Goldewijk et al., 2017) constructed 52 

a weighting algorithm involving dynamical social (historical population density and national/sub-national crop 53 

statistics, state level crop inventory in US) and stable environmental (soil suitability, temperature, and topography) 54 

factors to reconstruct the historical crop distribution at the resolution of 5 arc-minute. Similarly, Zumkehr and Cambell 55 

(2013) adopted a land-use model of Romankutty and Foley (Ramankutty and Foley, 1999) and a satellite-derived 56 

cropland distribution map to calculate the historical crop area grid by grid under the control of crop inventory records. 57 

Although these datasets present the long-term land use change history, their coarse resolutions offer limited spatial 58 

details. Growing remote sensing technology and machine learning methods enhance the capability to monitor land 59 

surface change with the high resolution LCLUC products (Tian et al., 2014; Shi et al., 2020). For instance, Cropland 60 
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Data Layer (CDL), National Land Cover Database (NLCD), and Land Change Monitoring, Assessment, and 61 

Projection (LCMAP) provide the gridded cropland distribution maps at the resolution of 30m by 30m (Homer et al., 62 

2020; Xian et al., 2022; Lark et al., 2017). However, these high-resolution datasets lack the capability to depict 63 

historical cropland change patterns before the emergence of satellite images. Recently, Cao et al. (2021) harmonized 64 

cropland demands from HYDE and Land-Use Harmonization 2 datasets with the combination of cropland suitability, 65 

kernel density, and other constraints to generate a cropland dataset from 10000 BCE to 2100 CE. Li et al. (2023) 66 

integrated an artificial neural network-based probability of occurrence estimation tool and multiple inventories to 67 

generate the historical cropland maps at the resolution of 1km by 1km. However, the crop type details are still missing 68 

in these datasets, making it challenging to identify the specific crop type change over space and time. On the other 69 

hand, Monfreda et al. (2008) combined a global cropland dataset and multi-level census statistics (national, state, and 70 

county) to generate a map depicting the area and yield of 175 crops circa the year 2000 around the world, and Tang et 71 

al. (2023) further updated it to depict 173 crops circa the year 2020. Their products also provide information that is 72 

only available in the recent two decades, limiting our understanding of historical US crop type development. Overall, 73 

the currently available datasets either have short periods, low spatial resolution, or lack specific crop type information. 74 

This limits our capability in assessing how crop type changes and crop-specific management before 2000 have affected 75 

the climate system and environmental quality at a finer scale. Thus, it is urgent to develop a long-term spatially explicit 76 

cropland dataset with crop type details to comprehend the US agricultural land use history.  77 

In this study, we aim to reconstruct the cropland density and crop type maps in the conterminous US from 1850 78 

to 2021 at 1 km by 1 km resolution. The cropland density maps present the distribution and percentage of crop planting 79 

area in each 1 km by 1 km pixel. The crop type maps display the distribution of nine major crop types (corn, soybean, 80 

winter wheat, spring wheat, durum wheat, cotton, sorghum, barley, and rice) and one category labeled as “others” 81 

(including all remaining crop types but excluding idle/fallow farm land, and cropland pasture). This study consists of 82 

three sections: Section 2 describes the materials and methods used to reconstruct the dataset, Section 3 analyzes the 83 

spatiotemporal changes in dominant crop types and cropping diversity based on the reconstructed dataset, and Section 84 

4 discusses the differences between our dataset and other datasets, the drivers of cropland change, the implications of 85 

US crop diversity change, and the data uncertainty. 86 

2 Materials and method 87 

In this study, we combined three inventory datasets and four gridded datasets to reconstruct the historical cropland 88 

density and crop type maps. As illustrated in Figure 1, the entire process involves three stages: reconstructing annual 89 

inventory data for each crop type at the county level (Section 2.2), rebuilding cropland density maps (Section 2.3), 90 

and generating crop type maps (Section 2.4). In particular, we adopted the following assumptions for reconstructing 91 

the cropland maps: (1) the USDA inventory datasets provide the most reliable acreage information for determining 92 

cropland area in each county; (2) Cropland data layer (CDL), History database of the global environment 3.2 (HYDE) 93 

(Goldewijk et al. 2017), and Land change monitoring, assessment, and projection (LCMAP) provide the potential 94 

distribution of cropland, which were used to allocate cropland grids under the control of the rebuilt inventory data (Yu 95 

and Lu, 2018); (3) The rotation percentage between corn and soybean remained constant when the rotation information 96 
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was unavailable from 1940 to 2009. Furthermore, based on the generated crop type maps, we explored the historical 97 

US crop diversity pattern through the true diversity index (Jost, 2006). 98 

 99 

Figure 1. The methodology flow chart. Three boxes with red dashed lines correspond to Section 2.2, 2.3, and 2.4, 100 

respectively. The county-level total and crop-specific cropland area generated in the box (1) are fed into box (2) and 101 

box (3) to reconstruct cropland density and crop type maps, respectively. (NASS-CPAS: Crop Production Annual 102 

Summary data from Nation agricultural statistical service of USDA; NASS-COA: Census of Agriculture from Nation 103 

agricultural statistical service of USDA; CDL: Cropland data layer; NLCD: National land cover database; LCMAP: 104 
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Land change monitoring, assessment, and projection; HYDE: History database of the global environment 3.2 105 

(Goldewijk et al. 2017). 106 

2.1 Datasets 107 

Three inventory datasets and four gridded LCLUC datasets were used in this study (Table 1). Specifically, NASS-108 

CPAS (Crop Production Annual Summary data from the Nation agricultural statistical service of USDA) and NASS-109 

COA (Census of Agriculture from Nation agricultural statistical service of USDA) provide the total cropland area in 110 

each state and each county. USDA-NASS Quickstat was used to track the acreage of specific crop types. These 111 

inventory datasets were adopted to reconstruct the historical crop-specific planting area for each county from 1850 to 112 

2021, which served as a benchmark for adjusting the spatial maps in terms of planting acreage. CDL is the most 113 

detailed satellite-based cropland dataset for the period of 2010-2021, which has been intensively validated by ground 114 

truths and other ancillary data with crop classification accuracies up to 90% for major crop commodities (Boryan et 115 

al., 2011; Yu and Lu, 2018). Here, we extracted ten crop types (Table S1) from CDL. We compared the planting area 116 

between inventory data and CDL for nine crop types across counties from 2010 to 2021 (Figure S1). For most counties 117 

(>75%), the residuals (the inventory-based crop area minus CDL-based crop area) are less than 10 Kha for durum 118 

wheat while they are less than 5 Kha for other crops. NLCD and LCMAP, both derived from Landsat images with a 119 

resolution of 30m×30m, were integrated to provide the spatial information of cropland distribution from 1985 to 2009. 120 

NLCD crop area is highly consistent with CPAS and COA, except that the crop area was significantly underestimated 121 

in NLCD 1992 (Figure 4 in Yu and Lu, 2018), so it was excluded for reconstructing historical crop maps (Johnson, 122 

2013). Due to its consistency in cropland area, we utilized NLCD for identifying the spatial distribution of cropland 123 

(Homer et al., 2020). However, NLCD provides around 5-year cyclical land cover maps from 2001 to 2019 (Homer 124 

et al., 2020). LCMAP offers annual land use data from 1985 to 2021. LCMAP adopts Anderson Level I-based legend, 125 

grouping cropland and pasture into one category (Xian et al., 2022). In contrast, NLCD uses a Level Ⅱ-based legend 126 

where cropland and pasture are separately tracked (Xian et al., 2022) (Table S4). To generate a reliable cropland 127 

distribution, the long-term non-crop trajectory derived from NLCD was used to exclude all grids identified as cropland 128 

the LCMAP map (more details are presented in Supplementary Methods: (1) Preprocesses for LCMAP). For the period 129 

of 1850-1984, although both ZCMAP and HYDE provide the cropland distribution, HYDE considers the impacts of 130 

various environmental factors (soil suitability, temperature, and topography) on crop distribution compared with 131 

ZCMAP (Goldewijk, 2001; Goldewijk et al., 2011; Goldewijk et al., 2017; Zumkehr and Campbell, 2013). 132 

Consequently, HYDE (available every 10 years) was initially used to identify the cropland distribution by calculating 133 

the fraction of cropland to the physical area for each grid. We further linearly interpolated the fraction for the missing 134 

years between two available years to provide a potentially continuous cropland distribution (more details are presented 135 

in (2) Linear interpolation in HYDE of Supplementary Methods). All gridded datasets were resampled to 1km. We 136 

employed a 1km*1km window to aggregate the total cropland area from the 30m*30m map and assigned the area to 137 

the corresponding 1km*1km grid. To resample the CDL crop type map from 30m to 1km, the crop type in each 1km 138 

by 1km pixel was assigned to the dominant crop type with the largest fraction of land area within the 1km*1km 139 

window. Conversely, the cropland percentage in each 5 arc-min grid is interpolated to 1km*1km grid cells with an 140 

assumption that cropland percentage is evenly distributed within the 5 arc-min by 5 arc-min window. 141 
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Table 1. The gridded and inventory dataset sources. 142 

Data variables 

(period, resolution) 
 Properties Adjustment  

CDL 

(2010-2021, 30m) 

The most detailed crop type maps. 

Providing info of crop type and 

distribution. 

Resampled to 1km and reclassified 

into ten crop types (nine major crop types 

and one type of “others”). 

LCMAP 

(1985-2021, 30m) 

Anderson Level Ⅰ-based legend 

classification including eight primary 

land types (Xian et al., 2022). The 

cropland includes cropland and pasture. 

Filtering pasture from cropland based on 

NLCD crop trajectory. 

NLCD 

(2001-2019, 3-5 years 

intervals, 30m) 

Anderson Level Ⅱ-based legend including 

20 land cover classes (Xian et al., 2022).  
Providing cropland distribution. 

HYDE 3.2 

(1600-2017, 5arc-min) 

Including cropland, grazing land, pasture, 

irrigated rice, etc. Providing cropland 

distribution. 

Linear interpolation in missing years 

(1850-1985) (Equation S2). 

NASS-CPAS 

(1909-2021) 

State-level total planting area of major 

principal crops*.  
Gap-filling in missing years (Section 2.2). 

NASS-COA 

(1924-2017, 4-5 years 

intervals) 

State and county-level total cropland area 

of harvest, failure, and fallow crops. 
Gap-filling in missing years (Section 2.2). 

USDA-NASS 

Quickstat 

(1866-2021) 

State and county level crop-specific 

planting and harvesting area. Including 

corn, soybean, winter wheat, spring 

wheat, durum wheat, cotton, sorghum, 

barley, rice, and all other crop types. 

Gap-filling in missing years (Section 

2.2). 

* Principal crops refer to grains, hay, oilseeds, cotton, tobacco, sugar crops, dry beans, peas, lentils, potatoes, and 143 

miscellaneous crops. 144 

2.2 Reconstructing crop acreage history at the county level 145 

By integrating and gap-filling multiple inventory and gridded datasets, we reconstructed the county-level time 146 

series of planting area and the planting area for nine major crop types and other crops from 1850 to 2021. Our 147 

reconstruction process was initiated with the development of crop-specific planting areas at the state level. NASS-148 

CPAS reports the annual total planting area of major crops for each state from 1909 to 2021. However, some minor 149 

crop types, such as vegetables and fruits, are excluded. USDA-COA provides the total areas of crop harvest, failure, 150 

and fallow for each state from 1925 to 2017 with 4~5-year intervals. We computed the difference between these two 151 

datasets for available years and linearly interpolated unavailable years during 1909-2021. The difference was assumed 152 
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to be the planting area of those minor crops. The interpolated difference was then added back to NASS-CPAS to 153 

generate the annual state-level total crop planting area of all crops from 1909 to 2021. We used the interannual 154 

variations of arable land of each state extracted from HYDE to extrapolate the total planting area from 1908 to 1850 155 

(Equation 1). To identify the planting acreage change for nine major crop types, we obtained the state-level crop-156 

specific harvesting and planting area from USDA-NASS Quickstat. The available harvesting and planting areas vary 157 

among crop types and states, for which the harvesting areas usually have earlier-year reports than those of planting 158 

areas (Table S2). The harvesting area is highly correlated to planting area in terms of interannual variation. We 159 

calculated the ratio of planting area to harvesting area for the earliest available year of planting area. We then converted 160 

the harvesting areas to planting areas by timing the ratio with the harvesting areas to extend the planting areas to an 161 

earlier period. For the period that the harvesting areas are unavailable, we interpolated the planting area from 1850 to 162 

2021 based on the total planting area generated above as a referenced trend. Equation 1 was used when only the 163 

beginning or the ending year of the period is available, while Equation 2 was used when both beginning and ending 164 

years are available. The planting area of “others” was obtained by calculating the difference between the total planting 165 

area and the summation of planting area of 9 major crops. 166 

We adopted the same approach as for the state-level planting area generated above to obtain the county-level total 167 

planting area and the planting area of 9 major crop types and “others”. USDA-COA reports the total county cropland 168 

area from 1925 to 2017 with 4~5-year intervals.  We gap-filled the total county planting area from 1850 to 2021 by 169 

using state total planting area as a referenced trend (using Equation 1 for gap-filling in cases where only beginning or 170 

ending year is available and Equation 2 in cases where both beginning and ending years are known). Similar to the 171 

state-level crop-specific planting area, we converted the harvesting areas to planting areas of nine major crops in each 172 

county from USDA-NASS Quickstat, with varied availability (Table S1). For the period when harvesting areas are 173 

unavailable, we gap-filled the planting areas of each crop during 1850-2021 based on the state-level crop-specific 174 

planting area generated above as a referenced trend (Equation 1 and 2). The planting area of all other crops (“others”) 175 

in each county was estimated by calculating the difference between the total cropland area and the total area of 9 major 176 

crops. 177 

𝑅𝑎𝑤 𝑑𝑎𝑡𝑎𝑖+𝑘 =
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑡𝑟𝑒𝑛𝑑𝑖+𝑘

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑡𝑟𝑒𝑛𝑑𝑖
 ×  𝑅𝑎𝑤 𝑑𝑎𝑡𝑎𝑖 , (1) 178 

𝑅𝑎𝑤 𝑑𝑎𝑡𝑎𝑖+𝑘 =
Referenced trend𝑖+𝑘× 𝑅𝑎𝑤 𝑑𝑎𝑡𝑎𝑖

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑡𝑟𝑒𝑛𝑑𝑖
 ×

𝑘−𝑖

𝑗−𝑖
+  

Referenced trend𝑖+𝑘× 𝑅𝑎𝑤 𝑑𝑎𝑡𝑎𝑗

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑡𝑟𝑒𝑛𝑑𝑗
 ×

𝑗−𝑘

𝑗−𝑖
,  (2) 179 

Where 𝑅𝑎𝑤 𝑑𝑎𝑡𝑎 is the raw data that contains missing values, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑡𝑟𝑒𝑛𝑑 is the complete data from 180 

which the interannual variations that raw data can refer to, 𝑖 and 𝑗 are the beginning and ending year of the gap, 𝑖 + 𝑘 181 

is the 𝑘th missing year.  182 

2.3 Spatializing county-level cropland density  183 

By incorporating the county-level inventory (Section 2.2) and gridded cropland products, we reconstructed annual 184 

cropland density maps with 1 km by 1 km resolution to represent the area and distribution of cultivated land in the 185 

conterminous US from 1850 to 2021. This process was divided into three periods: 2010-2021 (P2010), 1985-2009 186 
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(P1985), and 1850-1984 (P1850). CDL, LCMAP, and HYDE were used to provide the potential cropland distribution 187 

in P2010, P1985, and P1850, respectively. For the initial density maps in P2010 and P1985, we used a 1 km window 188 

to count cropland fraction in each grid resampled from the raw CDL and LMCAP (30m×30m), respectively, while 189 

initial annual density maps in P1850 were resampled and linear interpolated from the HYDE maps. The pixel value 190 

in the resampled density map, representing the proportion of the cultivated land over the total pixel area, was further 191 

corrected based on the reconstructed county-level inventory data (Equation 3). 192 

Specifically, when the total cropland area in a county from the initial density map is larger than that of the 193 

inventory area, the extra area from all grid cells in the initial map would be deducted to keep consistent with the 194 

magnitude of the inventory data; On the contrary, if the cropland area was less than the inventory data, the inadequate 195 

area would be added to all pixels (Yu and Lu 2018). If the fraction in a grid is reduced below zero, the cropland 196 

fraction in that grid is assigned to zero and the remaining difference area between the map and the inventory data is 197 

subtracted from other grids. Conversely, if the fraction in a grid increases above one (100%), then the value in that 198 

grid is assigned to one, and the remaining area will be added to other grids. 199 

 𝐴𝑑𝑗𝑃𝑖𝑥𝑒𝑙𝑘 = 𝑃𝑖𝑥𝑒𝑙𝑘 +
(𝑖𝑛𝑣−∑ 𝑃𝑖𝑥𝑒𝑙𝑘

𝑛
1 )

𝑛
 ,                                                                                                                              (3) 200 

Where 𝑛 is the total number of valid cropland pixels in a county; 𝑘 is the pixel ID in that county, which is from 1 201 

to 𝑛; 𝑖𝑛𝑣 is the inventory crop area in that county; 𝑃𝑖𝑥𝑒𝑙𝑘  is the initial cropland density in pixel 𝑘; 𝐴𝑑𝑗𝑃𝑖𝑥𝑒𝑙𝑘  is the 202 

adjusted cropland density in pixel 𝑘. 203 

To eliminate the gap between CDL and LCMAP, we used the adjusted CDL 2010 density map as a baseline map 204 

to retrieve the cropland density maps during 1985-2009 by adopting the year-to-year gridded changes from the 205 

resampled LCMAP maps. Taking the year 2009 as an example, the interannual difference in each grid between 206 

LCMAP 2009 and 2010 was applied to the adjusted CDL 2010 to generate the potential crop density map in year 2009. 207 

Then, the potential density map was further corrected by the inventory data through Equation 3. Following the same 208 

rule, the difference between the interpolated HYDE 1985 and 1984 was applied to the adjusted LCMAP 1985 to 209 

retrieve the density maps in P1850. 210 

2.4 Spatializing county-level crop type map 211 

Based on the reconstructed county-level crop type inventory data (Section 2.2), corrected cropland density maps 212 

(Section 2.3), and CDL, spatializing annual crop type maps was divided into two periods:  2010-2021 (P1) and 1850-213 

2009 (P2). For P1, the raw 30m resolution CDL crop type maps were resampled to 1 km to provide the potential crop 214 

type distribution. In this process, we assigned the resampled grid to a type with the biggest percentage in a 1 km 215 

window. By integrating resampled crop type maps and reconstructed cropland density maps, we counted the total area 216 

for each type at the county level, and identified the crop types whose area is greater than the corresponding inventory 217 

record. We further converted the surplus pixels from these types to other types whose area is less than inventory data 218 

(Equation 4 and 5). In particular, to avoid a grid planted by a fixed type for a long time, the surplus pixels are randomly 219 

selected for the conversion across different crop types. For P2, we assumed that the crop type pattern in two 220 
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consecutive years wouldn’t change significantly, and used the rebuilt crop type map in yeari+1 to provide the potential 221 

crop type distribution in yeari. Then, we followed the same rule in P1 to reconstruct the crop type map in yeari. 222 

𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗 = 𝑖𝑛𝑣𝑗 − ∑ (𝐴𝑑𝑗𝑃𝑖𝑥𝑒𝑙𝑗𝑘
)𝑛

1 ,                                                                                                                         (4) 223 

Where 𝑗 is the crop type ID ranging from 1 to 10, which is identified from the initial crop type map; 𝑛 is the 224 

number of total valid pixels in crop type 𝑗; 𝑘 is the pixel ID of crop type 𝑗 ranging from 1 to 𝑛 identified from the 225 

initial crop type map; 𝑖𝑛𝑣𝑗 is the inventory area of type 𝑗;  𝐴𝑑𝑗𝑃𝑖𝑥𝑒𝑙𝑗𝑘  is the adjusted cropland percentage in pixel 𝑘;  226 

𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗 is the crop area converted to other types; For yeari between 2010 and 2021, the initial crop type map is 227 

resampled from CDL; For yeari from 1850 to 2009, crop type map is the adjusted crop type map in yeari+1. 228 

{
𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗  𝑓𝑟𝑜𝑚 𝑡𝑦𝑝𝑒 𝑗 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑡𝑦𝑝𝑒𝑠, 𝑖𝑓 𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗 < 0;

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗  𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑡𝑦𝑝𝑒𝑠 𝑡𝑜 𝑡𝑦𝑝𝑒 𝑗, 𝑖𝑓 𝐴𝑑𝑗𝑇𝑦𝑝𝑒𝑗 > 0;
 (5) 229 

Considering the dominant crop rotation type in US, soybean and corn rotation, we simulated the corn-soybean 230 

rotation by randomly switching a certain area between corn and soybean according to the rotation rate. The crop 231 

rotation information from 1996 to 2010 at state level was documented by the “Tailored Reports: Crop Production 232 

Practices” of USDA’s Agricultural Resource Management Survey (ARMS) 233 

(https://data.ers.usda.gov/reports.aspx?ID=17883). The rotation rate was calculated as the ratio of the sum of corn-234 

soybean and soybean-corn acreage to the total area of corn and soybean. We found that the rotation rate in each state 235 

kept relatively stable in the ARMS-available years, and assumed that the rotation rate in the missing years is the same 236 

as the mean rate from available years (Table S3), which is further applied to corresponding counties. Because soybean 237 

was rarely planted in the Corn Belt before 1940 (Yu et al., 2018), we only considered the corn-soybean rotation during 238 

the period 1940-2009 in 17 states (Table S3) (Padgitt et al., 1990).  239 

2.5 Evaluation method 240 

Here, we adopted multiple indexes to evaluate the crop area discrepancy between the reconstructed maps and 241 

inventory data at various scales. At the county level, we utilized the residual ( 𝑟𝑒𝑠𝑑𝑖𝑗 ) and relative residual 242 

(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑠𝑑𝑖𝑗 ) to describe the crop area difference and relative difference between the rebuilt maps and the 243 

inventory data (Equation 6 and 7). In addition, at the national scale, the Root Mean Squared Error (RMSE) and R-244 

squared (R2) are used to assess the crop area consistency between the crop maps and the inventory data. 245 

𝑟𝑒𝑠𝑑𝑖𝑗 =  𝑖𝑛𝑣𝑖𝑗 − 𝑚𝑎𝑝𝑖𝑗 ,                                                                                                                                             (6) 246 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑠𝑑𝑖𝑗 = (𝑖𝑛𝑣𝑖𝑗 − 𝑚𝑎𝑝𝑖𝑗) ∗ 100/𝑖𝑛𝑣𝑖𝑗,                                                                                                      (7) 247 

Where, 𝑖𝑛𝑣𝑖𝑗and 𝑚𝑎𝑝𝑖𝑗  are the crop area derived from the inventory data and the rebuilt maps at year i and in 248 

county j, respectively. 𝑟𝑒𝑠𝑑𝑖𝑗  and 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑠𝑑𝑖𝑗  are the residue and relative residue at year i and in county j, 249 

respectively. 250 

https://data.ers.usda.gov/reports.aspx?ID=17883


10 

 

2.6 Cropping diversity analysis 251 

Cropping diversity has been identified as a potential factor affecting crop yield (Renard and Tilman, 2019; 252 

Driscoll et al., 2022). Here, we adopted a true diversity index proposed by Jost (2006) to analyze the US crop diversity 253 

pattern. The true diversity (D) quantifies the effective number of crop species (Equation 6), where a given D value is 254 

equivalent to the number of crop species with an equal area in a certain space. D is calculated as the exponent of 255 

Shannon diversity index (H).  256 

𝐷 = exp(− ∑ (𝑃𝑗 ∗ 𝑙𝑛𝑃𝑗)𝑛
𝑗=1 ) = exp (𝐻),                                                                                                                    (8) 257 

Where, 𝑃𝑗 is the proportion of the cropland area occupied by crop type j over the total cropland area, and 𝑛 is the 258 

number of crop species. In this study, the diversity calculated involves ten crop types, including nine major crop types 259 

and a category of “others”. 260 

3 Result 261 

3.1 Validation of the data products 262 

In this study, we adopted the inventory data to refine the gridded map, recognizing that achieving exact alignment 263 

for each crop type within each county might be challenging due to constraints related to the limited cropland area 264 

available for allocation. Here, we examined the crop-specific area alignment between the inventory data and our map 265 

products at multiple scales. We compared the annual crop type-specific acreage extracted from our maps with the raw 266 

inventory data at county level in 1920, 1960, 2000, and 2020 (Figure S2). The county-level acreages derived from our 267 

products and inventory data are close to the 1:1 line, with R2 exceeding 0.95 and RMSE < 1 Kha for all the major crop 268 

types except for winter wheat (R2 = 0.98, RMSE = 2.79 Kha) and cotton (R2 = 0.95, RMSE = 3.97 Kha). Although 269 

winter wheat and cotton present a relatively greater RMSE, the counties with crop area bias greater than 10% only 270 

account for 9.7% and 6.1% of total winter wheat- and cotton-planting counties in the selected four years, respectively. 271 

We further examined the time-series residual between the inventory data and maps (Figure 2 and S3). It is evident that 272 

the residuals (the inventory-based crop area minus the rebuilt-map-based crop area (Equation 7)) are generally smaller 273 

than 0.2 Kha for the majority counties (>75%) across all years for nine crop types. Relatively greater residuals are 274 

observed in spring wheat, durum wheat, and rice before 1875 (Figure 2d, g, and i), which might be attributed to the 275 

marginal area of these three crops during the early years. Similarly, the relative errors (the ratio of residual to the 276 

inventory crop area (Equation 8)) in most counties remain within ±2% for different crops, except for spring wheat, 277 

durum wheat, and rice before 1875 (Figure S3d, g, and i). We also checked the consistency in national crop-specific 278 

acreage between our maps and the inventory data during 1850-2021 (Figure S4). The results show that the map 279 

products match well with the inventory data (R2 close to 1 and RMSE < 0.3 Mha for all crop types), indicating that the 280 

developed maps are highly consistent with the inventory data at national scale. The multiple-scale validations 281 

demonstrate that the developed dataset has the strong capacity to capture the interannual crop-specific area variation. 282 
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 283 

 284 
Figure 2. The distribution of residual (the inventory-based crop area minus the rebuilt-map-based crop area, defined 285 

by Equation 6) between the rebuilt inventory and maps from 1850 to 2021 (Kha is a thousand hectares). In each year, 286 

“Min-Max”, “Median”, and “25%-75%” reflects the extent of residual from all counties at levels of “minimum value 287 

to maximum value”, “50th percentile”, and “25th percentile to 75th percentile”, respectively, which are corresponding 288 

to five percentiles in a box plot.  289 

We examined the historical changes in cropland area among various crop types in the US from 1850 to 2021 290 

(Figure 3). In general, the US cropland expanded rapidly from 21.66 Mha in 1850 to 149.28 Mha in 1919, followed 291 

by a wide fluctuation ranging from 134.78 Mha to 161.80 Mha until 1990, and then kept relatively stable around 292 

140.00 Mha until 2021. Corn was the dominant crop in the US, accounting for more than 20% of the national total 293 

cropland area throughout the study period. Temporally, it rose sharply from 7.47 Mha in 1850 to 50.47 Mha in 1917, 294 

followed by a continuous drop to 26.26 Mha until 1962, and slowly increased to 37.75 Mha during 1962-2021. 295 

Soybean soared significantly from 4.35 Mha in the 1940s to 35.25 Mha in 2021, becoming the second most extensive 296 

crop type in the US. Winter wheat constantly increased from 3.25 Mha in 1850 to 26.43 Mha in 1981 and then dropped 297 

to 12.88 Mha in 2021, while spring wheat fluctuated dramatically after it plateaued at 8.28 Mha in 1933. Barley and 298 

sorghum climbed to peaks of around 8 Mha in 1940s and 11 Mha in 1950s, and then dropped to about 1 Mha and 3 299 
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Mha by 2021, respectively. Besides, cotton and durum wheat both reached their peaks before the 1930s and then fell 300 

to a relatively stable level. Throughout the study period, the total US cropland increased by 118 Mha, predominantly 301 

driven by corn (30 Mha), soybean (35 Mha), and others (31 Mha). The remaining row crops shared about 18% of this 302 

increase, including winter wheat (9.6 Mha), spring wheat (4.5 Mha), sorghum (2.8 Mha), cotton (2.7 Mha), and rice 303 

(1 Mha).  304 

 305 
Figure 3. Annual area of major crop types and total US cropland area from 1850 to 2021. 306 

3.2 Dynamics of cropland distribution 307 

The spatial patterns of cropland density and crop type are presented in Figure 4. Generally, the hotspots of 308 

cropland are concentrated in the Midwest and Great Plains regions (the spatial pattern of US subregions showed in 309 

Figure 5(2-a)), starting from 1950, where large crop field sizes were likely to occur (Yan and Roy, 2016). The results 310 

show that the cropland was mainly distributed in the eastern region of the US in 1850 with a low distribution 311 

percentage (< 40%) (Figure 4(a)). Then, the cropland density enhanced substantially (40%-80%) in 1900 (Figure 4(b)). 312 

Meanwhile, a large area of the Great Plains was cultivated to plant corn and spring wheat in the Northern Great Plains 313 

and winter wheat in the Southern Great Plains during 1850-1900 (Figure 4(f)). From 1900 to 1950, the cropland 314 

fraction was continuously elevated (>60%) (Figure 4(c)), especially in the Midwest and the Great Plains. During 1950-315 

2021, spring wheat expanded westward to Montana (Figure 4(h)), enhancing the cropland fraction in the Northern 316 

Great Plains. Moreover, the category of “others” substantially substituted corn, winter wheat, and cotton in the 317 

Southeast of US, and lowered the cropland density in this region (Figure 4(d)). It was noted that the soybean increased 318 

tremendously since 1950 in the Midwest, the Dakotas, and the rice belt, replacing parts of spring wheat, winter wheat, 319 

barley, and rice in these regions. Overall, the hotspots of US cropland have shifted from the Eastern US to the Midwest 320 

and the Great Plains with the increasing cropland percentage over the past 170 years.  321 
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 322 
Figure 4. The spatial patterns of cropland percentage (a-d) and crop type (e-h) at 1 km by 1km resolution in 1850, 323 

1900, 1950, and 2021. The color bar of “Percentage” indicates the percentage of planting area to the grid area. “Others” 324 

represents the remaining crop types. 325 

Furthermore, the spatiotemporal patterns of each major crop type were examined in this study to present a 326 

systematic understanding of the US cropland extent and type changes (Figure 5, Figure S5 and S6). Specifically, corn 327 
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was mainly planted in the east in 1850, with a low cropland fraction (<40%) (Figure 5(1-a)). Then, it gradually 328 

expanded to the Great Plains, and the total area increased by 43 Mha from 1850 to 1917. Meanwhile, the hotspots of 329 

corn planting areas shifted to the Midwest, the southeast of the Northern Great Plains, and the northeast of the Southern 330 

Great Plains (Figure 5(1-b)).  From 1917 to 1962, the spatial extent of corn had shrunk in South Dakota, Nebraska, 331 

Kansas, and the Southeast, with a total area decrease of 24.21 Mha (Figure 5(1-c)). Although the Southeast 332 

experienced a large decline in corn acreage during 1962-2021, the planting density of corn significantly increased in 333 

the Midwest and the southeast of the Northern Great Plains, resulting in the corn area peaking at 37.75 Mha in 2021 334 

(Figure 5(1-d)).   335 

Temporally, soybean was rarely cultivated in the US from 1850 to 1900 with a total area less than 1 Mha (Figure 336 

5 (2-a and 2-b)). During 1900-1940, the planting area of soybean had a small expansion in the Midwest, with a total 337 

area rising to 4.35 Mha (Figure 5(2-c)). But then, it had a dramatic expansion from 1940 to 2021 to the Midwest, 338 

Southeast, and the east of Northern Great Plains, with the total soybean area increasing to 35.25 Mha (Figure 5(2-b)). 339 

Winter wheat was mainly located in the Midwest in 1850 with a total area of 3.25 Mha (Figure 5(3-a)). In the 340 

following five decades, it spread to the Great Plains, California, Washington, and Oregon, with the total area increasing 341 

to 14.45 Mha in 1900 (Figure 5(3-b)). From 1900 to 1981, although its spatial extent had shrunk in Midwest, it 342 

expanded significantly in the Southern Great Plains, the Southeast, and Montana (Figure 5(3-c)). Meanwhile, the 343 

cropland density also enhanced in this period. These changes led to the planting area of winter wheat reaching the 344 

peak of 26.43 Mha in 1981. However, during 1981-2021, a large area of winter wheat was replaced by other crop 345 

types or other land use types in the Midwest, Southeast, Montana, Washington, and California (Figure 5(3-d)), which 346 

reduced the total area of winter wheat to 12.88 Mha in 2021. 347 

Cotton was mainly distributed in the Southeast in 1850 with a low density (Figure S5(1-a)). It sharply expanded 348 

to the Southern Great Plains and California with the increased density during 1850-1925 (Figure S5(1-b)), and the 349 

total area of cotton increased by 16.53 Mha in this period. But the period of 1925-2021 was characterized by a huge 350 

contraction of cotton area in the Southeast and Southern Great Plains, with a total area declining to 4.50 Mha (Figure 351 

S5(1-c and 1-d)). 352 

For spring wheat, there was a significant expansion from Montana and Wisconsin to the Midwest and Northwest 353 

during 1850-1933, resulting in a total area increase to 8.28 Mha (Figure S5 (2-a) and (2-b)). But the distribution of 354 

spring wheat had largely shrunk in the Midwest and Northwest from 1933 to 1969 (Figure S5 (2-b) and (2-c)), resulting 355 

in the area decreasing to 3.11 Mha. In recent decades, it mainly centered in the northern part of the Northern Great 356 

Plains with the enhanced density in each grid, and its total area increased to 4.67 Mha in 2021 (Figure S5 (2-d)).  357 

Sorghum consistently expanded in the Southern Great Plains from 1850 to 1957, with its total area increasing by 358 

10.70 Mha (Figure S6 (1-a to 1-c)). However, there was a subsequent area decline thereafter, leaving the total at 3.03 359 

Mha in 2021 (Figure S6 (1-d)). Similarly, barley experienced a continuous expansion in the Midwest, Great Plains, 360 

Northeast, California, and Colorado, with the total area rising from 0.06 Mha in 1850 to 7.94 Mha in 1942 (Figure S6 361 

(2-b to 2-c)). However, between 1942 and 2021, the distribution of barley had a dramatic contraction across the entire 362 

US and shrank to 1.02 Mha in 2021, with a small extent in the Northern Great Plains (Figure S6 (2-d)).  363 



15 

 

Compared with other major crop types, both the distribution of durum wheat and rice only occupied a small area 364 

of the US over the entire study period (<3 Mha). Specifically, durum wheat underwent significant expansion in North 365 

Dakota and South Dakota from 1850 to 1928 (Figure S5 (3-a and 3-b)), reaching a peak area of 2.86 Mha in 1928. 366 

Subsequently, it contracted to the eastern part of North Dakota during 1928-1958, with a total area declining to 0.42 367 

Mha (Figure S5 (3-c)). From 1958 to 2021, its planting area shifted to the junction of North Dakota and Montana 368 

(Figure S5 (3-d)). Rice consistently expanded in Arkansas, Louisiana, Mississippi, and Texas from 1850 to 1981, 369 

resulting in a total area increase of 1.55 Mha (Figure S6 (3-a to 3-c)). This expansion gradually formed the current 370 

rice belt pattern, followed by a small shrinkage (0.52 Mha) in these regions between 1981 and 2021 (Figure S6 (3-d)). 371 

The category of “others” includes various minor crop types such as peanuts, oats, alfalfa, etc., collectively accounting 372 

for 27%~43% of the total US cropland area and distributing across the entire US (Figure S5).  373 
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 374 
Figure 5. The spatial density pattern of corn, soybean, and winter wheat at 1km by 1km resolution in the area turning 375 

years. The first, second, and third columns are the density pattern of corn, soybean, and winter wheat, respectively. 376 

The total planting area for each crop type is presented in the bottom left of each subfigure. The color bar at the bottom 377 

indicates the percentage of planting area to the total grid area. 378 

3.3 Changes in cropping diversity over time 379 

Here, the value of true diversity (D) is interpreted as the number of crop species with an equal area in a certain 380 

space (L Jost, 2006; Hijmans et al., 2016), so a higher D value reflects more crop types, or more even distribution, or 381 

both. As shown in Figure 6, the US cropping system diversity had undergone dramatic change over time, with a sharp 382 

increase from 1850 to 1963 and a significant decline in the recent 60 years. Among different regions, the Southwest, 383 

Northern Great Plains, Southern Great Plains, and Southeast had a higher cropping system diversity than the remaining 384 
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regions. Specifically, the diversity in Southwest, Southern Great Plains, and Northern Great Plains presented a similar 385 

change during 1850s-1940s, with a drop from 1850s to 1880s followed by an obvious increase to 1940s (Figure 6 (b)). 386 

Starting from 1940s, the diversity in Northern Great Plains peaked around 1990s and then constantly decreased to 387 

2021, while Southern Great Plain’s diversity presented an opposite trend in this period. Meanwhile, Southwest 388 

witnessed a continuous decline in crop diversity from 1940s to now. The Southeast kept its diversity stable during 389 

1850s-1930s and then experienced a significant increase from 1940s to 2000s. However, in the recent 20 years, the 390 

diversity in Southeast dropped sharply. The diversity in Northeast showed an increase trend across the entire study 391 

period. Northwest’s crop diversity fluctuated between 2.5 and 3 from 1850s to 1970s and then had a continuous 392 

increase to now. Midwest’s crop diversity kept relatively stable during 1850s-1920s. After increasing to its peak 393 

between 1920s and 1930s, it kept stable from 1930s to 1980s, followed by a dramatic decrease to 2021.  394 

 395 
Figure 6. The temporal trend of diversity value in US (a) and seven regions (b). NW, SW, NGP, SGP, MW, SE, and 396 

NE are the abbreviation of Northwest, Southwest, Northern Great Plains, Southern Great Plains, Midwest, Southeast, 397 

and Northeast, respectively. The spatial map of seven regions is presented in Figure 5 (2-b). To get a better visual 398 

pattern, the trends of seven regions in (b) were smoothed by the gaussian function. The diversity value is calculated 399 

based on the reconstructed inventory data.  400 

4 Discussion 401 

4.1 Comparison with other datasets 402 

We systematically compared our product with previous datasets regarding the historical total cropland area 403 

(Figure 7) and their spatial patterns (Figure 8) to provide a complete reference for potential applications. By combining 404 

NASS-CPAS and NASS-COA to reconstruct state- and county-level inventory data, the US total cropland area derived 405 

from our density maps matches well with that from NASS-CPAS from 1850 to 1940 and consistently aligns with the 406 

magnitude of NASS-COA and the interannual variations of NASS-CPAS between 1940 to 2021 (Figure 7). We 407 

extracted the US total cropland area from two widely used geospatial satellite products (USDA-CDL and USGS-408 

NLCD) in recent two decades. These two datasets demonstrate a smaller area than that of NASS-COA before 2017, 409 

but their estimation of crop area magnitude and interannual variation have demonstrated greater consistency with this 410 

study over the recent five years. Meanwhile, Yu and Lu (2018) and Li et al. (2023) all used NASS-CPAS to develop 411 
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YLMAP and CONUS, respectively, resulting in a lower US total cropland area after 1940 than this study. This is 412 

because the NASS-CPAS only includes the cropland area of principal crops in each state, which is lower than the total 413 

cropland area reported by NASS-COA, especially after 1940. Among the existing databases, LCMAP, HYDE, GBC, 414 

and ZCMAP represented an upper bound of the US total cropland area. Especially for GBC, it reported the national 415 

total crop acreage about 50% higher than the upper range of all other data products (~300 Mha vs ~200 Mha around 416 

the 1980s in Figure 7).  417 

The divergence among these data products is mostly caused by different cropland definitions and cropland map 418 

generation processes. Spatially, we observed that HYDE exhibits broader cropland extent and a higher fraction of 419 

cropland per grid than our products, particularly in regions with low-density cropland distribution, such as the 420 

Northwest, Southeast, and Southwest (Figure 8 and Figure 9). This disparity might be attributed to the definition of 421 

cropland in HYDE, which includes both arable land and permeant cropland (Goldewijk, 2001) while our map 422 

exclusively accounts for crop planting area of crops. More importantly, the crop planting area of our map was 423 

constrained based on county level inventory data. Meanwhile, HDYE spatialized the subnational level inventory data 424 

to allocate cropland area to each grid in accordance with “cropland suitability maps” informed by dynamical social 425 

(historical population density) and stable environmental (soil suitability, temperature, and topography) information 426 

(Klein Goldewijk et al., 2011; Yu and Lu, 2018). As a result, greater acreage and wider extent of cropland were 427 

estimated by HYDE and were allocated to each grid (Figure 7, Figure S8, and Figure S9). Similarly, the category of 428 

cropland in LCMAP and ZCMAP contains crop and pasture (Zumkehr and Campbell, 2013; Xian et al., 2022), while 429 

GBC cropland refers to arable land (Goldewijk et al., 2017; Cao et al., 2021), leading to their higher cropland area 430 

than our result (Figure 7). Also, the grid density of ZCMAP was higher than this study in low-density regions (the 431 

first row in Figure 9) because ZCMAP adopted an assumption that the historical spatial crop pattern kept roughly 432 

similar to the basemap 2000, in which the fraction in each grid is higher in these regions (Ramankutty et al., 2008; 433 

Zumkehr and Campbell, 2013). Moreover, CONUS showed a more extensive cropland distribution than our maps 434 

(especially in the Great Plains and Southeast, Figure 8 and the third row in Figure 9). This is likely because they 435 

produced more potential cropland grids than the county records through an artificial neural networks-based land cover 436 

probability occurrence model (Li et al., 2023). GBC feeds population density and eight biophysical variables 437 

(including elevation, temperature, soil water, etc.) into a random forest model to generate the cropland distribution 438 

(Cao et al., 2021). As a result, the spatial pattern between GBC and our maps shows a high agreement at the national 439 

scale (Figure 8). However, the cropland percentage in each grid cell of GBC is significantly higher than other maps 440 

(Figure 8 and the second row in Figure 9), which might be related to the base map used in their study and the lack of 441 

inventory records for limiting the total cropland area in US (Cao et al., 2021).   442 

In terms of spatial details among these datasets, our products, YLMAP, CONUS, and GBC (1km×1km) can 443 

provide more detailed spatial information than HYDE and ZCMPA (5 arc-min) (Figure 9). Furthermore, compared 444 

with YLMAP, CONUS, and HYDE incorporating state-level census, our products are likely to demonstrate more 445 

reliable cropland density heterogeneity within state (the third row in Figure 9) since we adopted county-level census 446 

to control the total cropland area in each county. Thus, the rebuilt map is capable of capturing spatial shifts between 447 
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counties within a same state, such as cropland abandonment in some counties but expansion in others (Figure 9). This 448 

indicates that the county inventory-derived datasets are more appropriate for subregion applications (Yang et al., 2020). 449 

Overall, our product keeps highly consistent with the county-level inventory data and presents similar cropland 450 

distribution to YLMAP and GBC that involves both biophysical and socioeconomic drivers to generate crop pixels. 451 

In addition, unlike cropland involving arable land in HYDE or harvesting land in CONUS mentioned above, the 452 

definition of cropland in our product refers to the crop-planting areas and excludes idle/fallow farm land and cropland 453 

pasture, providing real surface information disturbed by agriculture. This improvement enhances the estimation 454 

cropland change’s effect on the environment. Therefore, the developed maps can provide a more comprehensive 455 

cropland tracking for ecological and environmental assessment, covering both cropland distribution and crop types at 456 

national and regional scales. 457 

 458 
Figure 7. Comparison of the US total cropland area from different sources. CDL: Cropland data layer; NLCD: National 459 

land cover database; LCMAP: Land change monitoring, assessment, and projection; YLMAP: the US cropland map 460 

from Yu and Lu (2018); ZCMAP: the US cropland map from Zumkehr and Campbell (2013); CONUS: the cropland 461 

map from Li et al.(2023); GBC: the US cropland extracted from the global cropland dataset developed by Cao et al. 462 

(2021); HYDE: History database of the global environment 3.2 (Goldewijk et al., 2017); NASS-CPAS: the Crop 463 

Production Annual Summary data from Nation agricultural statistical service of USDA; NASS-COA: the Census of 464 

Agriculture from Nation agricultural statistical service of USDA. In particular, YLMAP, ZCMAP, CONUS, and GBC 465 

are not used in this study.  466 
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 467 
Figure 8. The spatial patterns of cropland from different datasets in selected years of 1850, 1900, 1950, and 2000. 468 

YLMAP (1km): the US cropland map from Yu and Lu (2018); ZCMAP (5 arc-min): the US cropland map from 469 

Zumkehr and Campbell (2013); CONUS (1km): the cropland map from Li et al. (2023); GBC (1km): the US cropland 470 

extracted from the global cropland dataset developed by Cao et al. (2021); HYDE (5 arc-min): History database of the 471 

global environment 3.2 (Goldewijk et al. 2017). 472 

 473 

Figure 9. The detailed spatial pattern from different datasets in the year 2000. YLMAP (1km): the US cropland map 474 

from Yu and Lu (2018); ZCMAP (5 arc-min): the US cropland map from Zumkehr and Campbell (2013); CONUS 475 

(1km): the cropland map from Li et al. (2023); GBC (1km): the US cropland extracted from the global cropland dataset 476 

developed by Cao et al. (2021); HYDE (5 arc-min): History database of the global environment 3.2 (Goldewijk et al. 477 

2017). The spatial extent in each row from (a) to (c) is Southwest, Iowa, and Texas, respectively. 478 

4.2 The drivers for US cropland change 479 

Between 1850 and 1900, there was a notable cropland expansion toward the west (Figure 4). This was mainly 480 

driven by the Homestead Act of 1862, which provided 160 acres of land to the public for farming purposes (Anderson, 481 



21 

 

2011). Additionally, the end of the Civil War, the disbanding of armies, and the building of canals and railroads toward 482 

the west, further contributed to the agricultural market and export, accelerating agricultural reclamation (Ramankutty 483 

and Foley, 1999). At the same time, corn, cotton, and wheat were the dominant crop types and expanded rapidly to 484 

the west (Figure 5 and Figure S2). From 1900 to 1950, advanced irrigation systems, industrial technology, and 485 

mechanization further promoted agricultural development. For instance, the areas of winter wheat, sorghum, and 486 

barley increased substantially in this period (Figure 5 and Figure S2-S3). Subsequently, the fluctuation of the market, 487 

policy structure, and weather conditions played a dominant role in affecting the interannual variations of agricultural 488 

areas (Spangler et al., 2020). For example, the farm crisis of 1980s resulted in a significant cropland drop. Moreover, 489 

a series of historical acreage-reduction programs, such as the conservation adjustment act program, cropland acreage-490 

reduction program, and conservation reserve program, resulted in the total cropland reduction (Lubowski et al., 2006). 491 

In the recent three decades, the total US cropland has kept relatively constant, but the crop commodities changed 492 

significantly. Corn and soybean gradually became the predominant types due to the rising demand for corn as biofuel 493 

and the higher market price for soybean, which pushed framers to convert other types to corn and soybean (Bigelow 494 

and Borchers, 2017; Aguilar et al., 2015). Overall, the US cropland experienced significant growth between the 1850s 495 

and 1920s, driven by population growth, industrialization, mechanization, and market change. It subsequently 496 

underwent a process of stabilization after experiencing fluctuations in crop types and area.   497 

4.3 The implications for cropping diversity change 498 

In general, the US cropping diversity experienced a dramatic change throughout the entire period. From 1850 to 499 

1963, it constantly increased (Figure 6 (a)), primarily attributed to the rising areas of all major crop types during this 500 

stage (Figure 3). Spatially, the diversity increases in the Southwest, Southeast, and Great Plains contributed to the 501 

overall increase in US cropping diversity (Figure 6 (b) and 10). From 1960s to 2021, the cropping diversity had a 502 

significant decrease mainly due to the increased planting area for corn and soybean and the decreased cultivated area 503 

for winter wheat, spring wheat, sorghum, and barley. Meanwhile, the diversity drop in the Northern Great Plains, 504 

Southwest, Southeast, and Midwest might contribute to the US crop diversity decline (Figure 6 (b) and 10). This 505 

finding shows a strong agreement with the results of Aguilar et al. (2015), in which the crop species diversity declined 506 

from 1980s to 2010s in the Heartland Resource Region.  507 

On the other hand, crop species diversity is an important component of biodiversity within a cropping system, 508 

and a decrease in crop species diversity is often associated with a decline in overall biodiversity (Altieri, 1999). Some 509 

researchers have pointed out that the biodiversity plays an essential role in the functioning of real-world ecosystem. 510 

High biodiversity would increase soil fertility, mitigate the impact of pests and diseases, improve resilience to climate 511 

change, and promote food production and nutrition security(Altieri, 1999; Duffy, 2009; Frison et al., 2011). For 512 

example, Delphine and David’s research indicated that crop species diversity could stabilize food production (Renard 513 

and Tilman, 2019), and Emily et al. (2019) found that agricultural diversification can increase crop production. Thus, 514 

had this significant drop in the US cropping diversity in the past six decades affected yield and ecosystem productivity? 515 

Moreover, under more frequent climate extremes anticipated in the future, whether the decreasing cropping diversity 516 

will affect the sustainability and resilience of the US agricultural system is an important question to answer.  517 
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 518 
Figure 10. The spatial pattern of crop diversity in 1900, 1963, 1990, and 2021 at the county level. The diversity 519 

value is calculated based on the gap-filled and multi-source harmonized inventory data in each county. 520 

4.4 Uncertainty  521 

In this study, we integrated the inventory data and the gridded LCLUC products to generate annual cropland 522 

density and crop type maps at a resolution of 1 km×1km from 1850 to 2021. Although our data is highly consistent 523 

with inventory data, some uncertainties remain:   524 

(1) In the upscaling process of CDL from 30m to 1km, we assigned each pixel to a dominant crop type with the biggest 525 

fraction of land area within the pixel. Although the area of each crop was constrained by the inventory data at the 526 

county level, this resampling process may overlook certain crop type distributions with minor fraction within a pixel.  527 

(2) The inventory is crucial for reconstructing historical cropland maps. Here, the rebuilt inventory data in missing 528 

years is interpolated. Although this study is based upon our best knowledge and available, this method may not reflect  529 

the real interannual cropland area fluctuations in the missing years.  530 

(3) In the process of spatializing crop types, we randomly convert the cropland grids from specific types with higher 531 

map area than inventory data to other crop types within each county. In addition, grids identified with corn-soybean 532 

rotation were randomly selected within a county based on the corn-soybean rotation ratio, aiming to prevent a grid 533 

cell from being consistently occupied by a single crop type over time. While the extent of the random processes varied 534 

among counties based on the difference between intermediate map data and inventory data, it is important to note that 535 

they may influence the temporal trajectory of grid-based crop type changes. Thus, users should exercise caution when 536 

employing this data product for time sequencing analyses, such as crop rotation patterns (e.g., continuous corn, corn-537 

soybean-corn, etc.) at the pixel level.  538 
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(4) The diversity in this study mainly reflects the change in diversity among ten crop types (nine major types and one 539 

category of “others”). It is important to note that “others” in the study is not a single crop type, but a combined category 540 

including various minor crop types (peanuts, oats, etc.). Thus, the diversity changes quantified in this study capture 541 

the diversity of major row crops (accounting for 70% of the national total cropland area in the 2010s) and the “others-542 

as-one-category” in the US over time. A more comprehensive diversity analysis involving all crop types would require 543 

a more detailed time-series crop type record, which is currently lacking. 544 

5 Data availability 545 

The developed dataset is available at https://doi.org/10.6084/m9.figshare.22822838.v2(Ye et al., 2023). This 546 

dataset includes annual cropland density map and crop type map with Geotiff format at 1km by 1km spatial resolution. 547 

6 Conclusion 548 

In this study, the annual cropland density and crop type map from 1850 to 2021 in the conterminous US was 549 

developed by integrating the multi-source cross-scale inventory and gridded datasets. In general, our maps have a high 550 

consistency with inventory data both at the national level (R2>0.99, RMSE <0.3 Mha) and county level (the residual 551 

less than 0.2 Kha for most counties (>75%) ). Compared with other datasets, the spatial pattern of the developed maps 552 

matches well with YLMAP and GBC. Throughout the study period, the total US cropland increased by 118 Mha, 553 

mainly driven by corn (30 Mha), soybean (35 Mha), and others (31 Mha). The hot spots have shifted from the East to 554 

the Midwest and the Great Plains. Specifically, the Homestead Act of 1862 significantly contributed to the cropland 555 

expansion toward the west, and the rising demand for biofuel and the elevated market price resulted in the dramatic 556 

increase of corn and soybean planting areas. Meanwhile, the intensified corn and soybean substituted other crops, 557 

leading to the decrease of the cropping diversity in the Midwest, which may further influence crop yield and co-benefit 558 

of agroecosystem services. Additionally, there were random processes in generating crop type maps. This might bring 559 

uncertainty to pixel-based crop type sequence detection, but the area for each crop type was well constrained by gap-560 

filled long-term inventory data at the county level. The county-level area control also enables the developed maps to 561 

depict regional spatial shifts within state. Different from previous datasets, the cropland in our products refers to the 562 

planting area of all the crops, excluding idle/fallow farm land, and cropland pasture. Hence, the cropland map provides 563 

reliable cultivated information and reveals the surface disturbance conducted by agricultural activities, which can 564 

improve the estimation of cropland change’s impact on climate system. Overall, the developed datasets provide a 565 

historical cropland distribution pattern, filling the data gap by providing long-term crop extent and type maps. We 566 

envision this database could better support the US agricultural management data development with crop-specific 567 

information, as well as improve the environmental assessment and socioeconomic analysis related to agriculture 568 

activities.   569 
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