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Abstract. Burned area estimates are an essential component of inventory-based fire emission calculations, and any 

inaccuracies in those estimates propagate into the final emission outputs. While satellite-based global burned area and fire 

emission datasets (e.g. GFED, FireCCI51, and MCD64A1) are frequently cited within the scientific literature and used by a 

range of users from atmospheric and carbon modelers to policy-makers, they are generally not optimized for cropland 

burning – a quintessential small-fire type. Here we describe a new dataset (GloCAB; Global Cropland Area Burned) which 10 

represents the first attempt at a global cropland-focused burned area product. The GloCAB dataset provides global, monthly 

cropland burned area at 0.25° spatial resolution from July 2002 – December 2020. Crop-specific burned area conversion 

factors for several widespread burnable crops (winter wheat, spring wheat, maize, rice, and sugarcane) were calculated from 

extensively-mapped cropland reference regions spanning 190,650 fields over 5 different countries. We found global annual 

cropland burned area (2003 – 2020) ranged between 64 Mha (2018) and 102 Mha (2008) with an average of 81 Mha using 15 

our lower-bound estimates which are substantially higher than the annual average of 32 Mha in the MCD64A1 C6 product. 

Region-specific trend analysis found some areas with significant increasing trends (northwest India), while the heterogeneity 

of many other regions found no burned area trends. This cropland-focused burned area methodology is the first step toward 

improving the representation of global crop-residue burning emissions – an often overlooked small-fire source of trace gas 

and aerosol emissions within global fire emission inventories. 20 

1 Introduction 

Burned area estimates are an essential component of inventory-based fire emission calculations (e.g., Seiler and Crutzen, 

1980; UNFCCC, 2022), and any inaccuracies in this component contribute to uncertainties in estimates of emissions and fire 

impacts on atmospheric composition. Satellite-based global burned area and fire emission datasets are generally not 

optimized for cropland burning – a quintessential small fire type – yet these datasets are frequently employed by a broad 25 

range of users from atmospheric and carbon modelers to policy-makers in the context of cropland fire monitoring. Reliable 

remotely sensed fire products are required to quantify trends in fire occurrence and behavior, assess impacts of biomass 

burning on social and environmental systems, characterize fire behavior and potential future risks, and provide key inputs to 

fire emission and air quality models. Cropland burned area and associated emissions estimates have been incorporated into 

socio-economic decisions, such as economic incentives to reduce crop residue burning (Jack et al., 2022), extension service 30 
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programs (e.g., ABC-iCAP, 2022), public health policy (e.g., USDA, 1999), and national emission inventories (e.g., 

UNFCCC, 2022). Despite the widespread use of cropland burned area and emissions estimates, the methodologies used to 

produce these estimates are often not well adapted to the complications that are specific to agricultural fires. 

 

Although a single cropland fire has negligible emissions compared to a large wildfire, improved representation of crop-35 

residue burned area and emissions is essential for detection and attribution of trends in air quality in many regions (e.g., 

Yevich & Logan, 2003; Liu et al., 2021). Post-harvest and/or pre-planting agricultural fires are recurrent, typically occurring 

once or twice a year (McCarty et al., 2009; Zhang et al., 2018). Due to similar local weather conditions and 

planting/harvesting cycles in many areas, these fires often occur on or around the same day leading to a pulse of emissions 

across a region. Given the proximity of cropland fields to population centers and the magnitude of these emission pulses, 40 

health impacts related to exposure from repeated crop-residue burning can be extensive (e.g., Argarwal et al., 2013; Saggu et 

al., 2018). In addition, despite the low atmospheric injection heights of these burns, crop-residue emissions have the potential 

to travel great distances and impact locations far beyond the cropland area (Zhou et al., 2018; Hall and Loboda, 2017). For 

example, Hall and Loboda (2017) found black carbon emissions from crop-residue fires in Russia – as far south as 40°N – 

were transported to the Arctic and deposited on snow and ice covered areas. Due to the seasonal timing of the spring pre-45 

planting fires in Russia, the black carbon contributed to the accelerated melting of snow and sea ice (Hall and Loboda, 2017; 

Hall and Loboda, 2018). Finally, the widespread use of global burned area and emissions products, such as the Global Fire 

Emissions Database (GFED; van der Werf et al., 2017), within the scientific community (e.g., Friedlingstein et al., 2020; 

Gao et al., 2018; Kong et al., 2021; Lin et al., 2020) can compound systematic and random errors in cropland burned area 

and emissions estimates. The increasing conversion to cropland observed around the world (particularly in Africa; e.g., 50 

Brinks et al., 2014; Abera et al., 2020; Li et al., 2019) will likely further increase the need for crop-specific remote sensing 

approaches that take into account regional and crop-specific differences in management practice and satellite detection 

efficiencies.  

 

Many factors make accurate satellite-based mapping of crop-residue burned area particularly challenging, including i) the 55 

heterogeneity of the global agricultural landscape, ii) the rapid nature of these burns and possible subsequent plowing and/or 

seeding, and iii) the human-driven changes in fire timing. To effectively map the spatial extent of these small fires, it is ideal 

to have remote sensing data with high temporal resolution (e.g., less than 2 hours between observations [Hall et al., 2021]), 

high spatial resolution (less than 10 m to capture pile burns and partial field burns), and appropriate spectral bands. Even 

using a combination of Landsat, Sentinel, and Planet imagery would not provide adequate coverage to capture the vast 60 

majority of these burns. Furthermore, unlike the 22-year Moderate Resolution Imaging Spectroradiometer (MODIS) record, 

the longevity and temporal coverage of the Sentinel and Planet platforms is not adequate for long-term studies. Therefore, 

designing a long-term, global cropland burned area dataset requires a methodology that could balance these requirements 

while ensuring the magnitude of these fires is adequately captured. 
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 65 

Our new dataset (GloCAB; Global Cropland Area Burned) provides global, monthly cropland burned area at 0.25° spatial 

resolution from July 2002 to December 2020, encompassing the Aqua and Terra time period. Unlike many remotely-sensed 

burned area datasets such as MCD64A1 (Giglio et al., 2018) and the FireCCI51 (Pettinari et al., 2021), our methodology 

does not attempt to directly map burned area. Instead, it aims to estimate the area of cropland burned in each grid cell based 

on a combination of MODIS active fire observations and our novel high-resolution database of mapped field-level burned 70 

area conversion factors. The active fire product offers both an accurate time of burning and is also able to identify fires that 

are much smaller than the minimum size that can be mapped with the MODIS burned area product (Giglio et al., 2003; 

McCarty et al., 2009). Although the Visible Infrared Imaging Radiometer Suite (VIIRS) 375-m active fire product 

(Schroeder et al., 2014) is even better suited for identifying small fires, the MODIS product has the longevity required for 

long-term analyses. 75 

 

Here we first present a description of the GloCAB methodology, followed by an intercomparison with the MODIS 

MCD64A1 burned area product (the primary input for the burned area component of GFED), global and regional 

assessments, and finally product caveats and conclusions. 

2 Data 80 

2.1 MODIS Land Cover Product 

The Collection-6 MODIS 500-m Land Cover Type (MCD12Q1; Sulla-Menashe and Friedl, 2018) annual International 

Geosphere-Biosphere Programme (IGBP) classification product (2002 – 2020) Class 12 (Croplands) and Class 14 

(Cropland/Natural Vegetation Mosaic) was used as the base cropland extent. Although other global products exist at a higher 

spatial scale (e.g., GFSAD30; Phalke et al., 2020), or are delineated by crop type for a single year (e.g., SPAM; International 85 

Food Policy Research Institute, 2019), the annual layers of the MCD12Q1 product have a temporal advantage given the 

nearly 20-year timespan of this analysis. For this analysis, it was assumed that the MODIS IGBP cropland classes 

represented the full extent of cropland area each year. As with all remotely-sensed land cover classification data sets, the 

product contains both omission and commission errors (e.g., Tsendbazar et al., 2016; Zubkova et al., 2023) that represent a 

significant source of uncertainty in our regional and global burned area estimates. 90 

2.2 MODIS and VIIRS Active Fire Products 

The 1-km MODIS Aqua and Terra active fire location product (MCD14ML C6 V3; Giglio et al., 2016) served as the primary 

input dataset for GloCAB and was obtained from the University of Maryland’s SFTP server (sftp://fuoco.geog.umd.edu; 

Giglio et al., 2020). The MCD14ML product contains multiple variables including latitude, longitude, date, time, and type 

for each fire pixel. Active fire pixels were filtered to include only presumed vegetation fires (type = 0) having a center within 95 
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500-m of an MCD12Q1 IGBP class-12 or class-14 cropland grid cell. Filtering by pixel-center locations (versus spatially 

buffered active fire pixel boundaries) helped reduce the double-counting of active fires associated with neighboring land 

cover classes. The presumed cropland active fire points were summed per month within 0.25° grid cells. To account for the 

impact of latitude on the sampling frequency, and hence the number of active fires mapped, the monthly active fire counts 

per 0.25° grid cell (AFcount) were adjusted using Eq. (1) assuming a reference latitude of 40°N or, equivalently, 40°S (Giglio 100 

et al., 2006): 

𝐴𝐴𝐴𝐴corrected = 𝐴𝐴𝐴𝐴count  ×  cos (latitude) 
cos (40°) 

               (1) 

The adjusted MODIS Aqua and Terra monthly active fire counts (AFcorrected) were used in the calculation of the effective 

burned area per fire pixel per cropland burning reference region (see Sect. 2.4 for details) and the monthly adjusted burned 

area (Sect. 3.3). 105 

 

The 0.25-degree, monthly MODIS Aqua and Terra Active Fire Climate Modeling Grid (CMG) Collection-6 products 

(MOD14CMQ/MYD14CMQ; Giglio et al., 2006) were used to obtain the mean monthly cloud fraction over all cropland 

land cover pixels. The CMG products contain gridded summaries that include corrected fire pixel counts, mean cloud 

fraction, and mean fire radiative power. 110 

 

The Collection-1 375-m VIIRS fire location product from Suomi NPP (VNP14IMGML; Schroeder et al., 2014) was also 

obtained from the University of Maryland’s SFTP server. All active fire locations contain a number of attributes, including 

the latitude, longitude, date, and UTC time to the nearest minute. The VNPIMG14ML product was only used in the creation 

of the cropland burned area reference maps (see Sect. 2.4 for details) using the same approach as Hall et al. (2021). 115 

2.3 Global Crop Type Maps 

We focused on five burnable crop types: winter wheat, maize, rice, spring wheat, and sugarcane. Although there are other 

crop types that burn (e.g., soybean and cotton), and other agricultural landscapes (e.g., pastures) within each 0.25° grid cell, 

we focused on these main crop types due to their larger global extent and greater proportion of under-represented fire 

activity. Global crop type maps were used to assign each 500-m MCD12Q1 IGBP cropland pixel a specific crop type. The 120 

crop type data will be used to assign crop-specific burned area conversion factors and emission coefficients (Hall et al., 

2022) in later steps, and are an improvement over the generic agricultural waste models often used in previous studies (e.g., 

GFED4.1s; van der Werf et al., 2017; Randerson et al., 2018).  

 

The GEO Global Agricultural Monitoring (GEOGLAM) Best Available Global Crop-Specific Maps (BACS) are available 125 

for several crops, including winter wheat, spring wheat, maize, and rice at 0.05° resolution (Becker-Reshef et al., 2020; 

Whitcraft et al., 2019). These crop percentage maps are continually updated and are only available as one layer per crop 
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type. The GEOGLAM initiative is mainly focused on gathering data for the major crop-producing countries participating in 

the Agricultural Market Information System (AMIS): United States of America, Canada, Mexico, Brazil, Argentina, EU-28, 

Egypt, Nigeria, South Africa, Turkey, Saudi Arabia, Ukraine, Russia, Kazakhstan, China, India, Thailand, Viet Nam, 130 

Philippines, Indonesia, and Australia. These maps use a combination of the best-available remotely sensed crop maps for 

each region and crop type. These crop maps were resampled and projected to match the 500-m sinusoidal MCD12Q1 IGBP 

cropland layers. The GEOGLAM-BACS does not map sugarcane, therefore the 2010 Spatial Production Allocation Model 

(SPAM) global sugarcane physical area (0.08333° spatial resolution) data layer was also resampled and projected to match 

the MCD12Q1 cropland layers (International Food Policy Research Institute, 2019). 135 

 

Any areas where the crop type maps and the MCD12Q1 cropland did not agree were either assigned as a “generic” crop or 

were eliminated at the 500-m scale. Specifically, if the MCD12Q1 product labeled a pixel as cropland, and none of the five 

crop type maps had an associated crop percentage, then that 500-m grid cell was recorded as a “generic” crop type. These 

500-m crop type maps (Figure 1) are used in the calculation of the majority crop type that burns per month per 0.25° grid cell 140 

(Sect. 3.2 for details). 

 
Figure 1: Example of a 500-m converted crop type MODIS MCD12Q1 cropland layer. The coarser-resolution crop type data from 
GEOGLAM-BACS and SPAM were used in the creation of these 500-m annual layers. These annual layers, in conjunction with 
the MODIS active fire location product, are used in the generation of the majority crop type that burns per month per 0.25° grid 145 
cell (Sect. 3.2 for details). 
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2.4 Cropland Burning Reference Areas 

Twenty-two cropland burning reference areas were manually digitized and each polygon classified to create highly detailed 

cropland field maps over a range of countries, crop types, and dates (Table 1; Figure 2). These reference areas, in 150 

conjunction with the MODIS active fire data, were used to calculate the effective burned area per fire pixel (α), which 

ultimately serves as a conversion factor that is used to extrapolate our reference areas to much larger regions (Giglio et al., 

2006; see Sect. 3.1). These regions are an extension of previously created cropland field-level burned area maps within 

Ukraine (Hall et al., 2021a, Hall et al., 2021b) using a combination of all available 20-m Sentinel-2 Multi-Spectral 

Instrument (MSI), 30-m Landsat-8 Operational Land Imager (OLI), and 3-m PlanetScope imagery (www.planet.com), in 155 

conjunction with filtered VIIRS (VNP14IMGML) and MODIS (MCD14ML) active fire location data. The creation of the 

reference regions used the more sensitive 375-m VIIRS active fires alongside the 1-km MODIS active fires as an 

independent verification for some of the burned fields. 

 

Each digitized polygon was classified via visual interpretation of all available imagery and attributed with the following field 160 

classification: 1 = active flame/smoke or burned area with corresponding active fire polygon (i.e., an overlapping polygon 

with a date aligned with the visual change on the field); 2 = definite burned area but with no flame/smoke or active fire 

point; 3 = ambiguous (a distinct darkening occurred on the field, but the analysts are unsure if the field was burned then 

plowed or only plowed); 4 = definitely unburned; 5 = not cropland or fields are too small that land cover conditions were 

difficult to determine on very high resolution (3-m) imagery. Each Class 1, 2, and 3 polygon was also tagged with the 165 

fraction burned (see Hall et al., 2021a for details). For the sake of clarity, the classes will hereafter be referenced using the 

following naming convention: definite burn (Class 1 and Class 2), possible burn (Class 3), unburned (Class 4), and non-

cropland/other (Class 5). In total, 190,650 cropland fields were manually digitized by a team of 20 trained analysts and 

classified as either a definite burn, possible burn, or unburned. 
Table 1: Summary information on the twenty training reference areas used in the burned area conversion factor analysis and the 170 
two validation reference regions. The locations of reference areas are shown in Figure 2. 

Reference area 
(Country_ID) 

Mapping start 
date 

Mapping end 
date 

Predominant 
crop type 

Mapped cropland 
area (km2) 

Cropland fields 
classified 

Training Regions 
Brazil_A 15 Aug 2019 15 Oct 2019 Sugarcane 1,104 4,523 
Brazil_B 1 Jul 2019 15 Sep 2019 Maize 1,361 1,219 

Canada_A 1 May 2018 30 Jun 2018 Spring Wheat 1,016 569 
Russia_A 15 Jul 2019 31 Aug 2019 Winter Wheat 1,165 1,740 
Russia_B 15 Aug 2019 30 Sep 2019 Winter Wheat 4,601 2,295 
Russia_C 1 Apr 2019 15 May 2019 Spring Wheat 1,309 1,116 
Russia_D 15 Apr 2019 31 May 2019 Spring Wheat 3,362 1,362 

Ukraine_A 1 Mar 2017 31 Mar 2017 Maize 1,498 3,995 
Ukraine_B 1 Mar 2017 31 Mar 2017 Maize 3,569 6,168 
Ukraine_C 1 Jul 2017 4 Aug 2017 Winter Wheat 3,862 9,327 
Ukraine_D 1 Aug 2016 31 Aug 2016 Winter Wheat 2,519 5,091 
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Ukraine_E 15 Jul 2017 15 Aug 2017 Winter Wheat 2,480 5,433 
Ukraine_F 1 Jun 2017 27 Jul 2017 Winter Wheat 1,300 2,758 
Ukraine_G 15 Jun 2017 31 Jul 2017 Winter Wheat 2,810 10,161 
Ukraine_H 1 Jul 2020 7 Aug 2020 Winter Wheat 38,377 123,726 

USA_A 1 Nov 2018 31 Dec 2018 Sugarcane 74 1,091 
USA_B 1 Oct 2019 30 Nov 2019 Sugarcane 155 2,404 
USA_C 15 Apr 2018 15 Jun 2018 Spring Wheat 1,610 1,344 
USA_D 1 Sep 2020 31 Oct 2020 Rice 294 746 
USA_E 1 Sep 2017 3 Nov 2017 Rice 304 1,501 

Validation Regions 
Russia_E 1 Oct 2018 31 Oct 2018 Winter Wheat 404 2,614 
USA_F 1 Sep 2017 31 Oct 2017 Rice 497 1,467 

 

 
Figure 2: Location of the twenty-two mapped reference areas (top) with examples of the field-level mapped reference regions from 
Brazil (bottom left; 15 August 2019 – 15 October 2019), Canada (middle bottom; 1 May 2018 – 30 June 2018), and Ukraine 175 
(bottom right; 1 March 2017 – 31 March 2017). These examples illustrate the variety in cropland fields witnessed during the 
mapping process. For visual distinction, the colored letters (top) represent each individual country: green (Brazil), blue (USA), red 
(Canada), purple (Ukraine), and black (Russia). 
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3 Methods 

3.1 Effective Burned Area Per Fire Pixel 180 

As in Hall et al. (2021a), the conversion factor α was used to extrapolate our high-resolution reference areas to much larger 

regions. Because our high-resolution reference areas include an indeterminate label (class 3) for fields that could not be 

unambiguously labeled as burned or unburned, we calculated a lower limit conversion factor (αL) using only the fields with 

definitive burns (classes 1 and 2) and an upper limit conversion factor (αH) using the definitive burns (classes 1 and 2) and 

the ambiguously labeled burned fields (class 3). Each burned field’s area for classes 1, 2 and 3 was weighted by its burned 185 

area fraction, summed, and then divided by the total number of cropland-filtered MODIS active fire points within the spatial 

and temporal constraints of each reference area, i.e., 

 

𝛼𝛼 =  Ʃ(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

    (2) 

 190 

Although care was taken to account for different crop burning seasons, crop types, and spatial locations within the twenty 

training reference areas, several challenges limited the mapping. Most importantly, small fields and poor air quality in 

several countries (e.g. India and Thailand) prevented the analysts from observing changes in the fields even with 3-m Planet 

data. Therefore, the final αL and αH values for each crop type were based on the median values of a particular combination of 

reference regions (see Table 2 and Table 3); the generic crop type was assigned the median value of all twenty training 195 

reference regions. We chose the median value over the mean to reduce the impact of any outliers. 
Table 2: Low (αL) and high (αH) conversion factors and the adjusted sum of MODIS Aqua and Terra (A&T) active fire counts for 
each reference area. The lower limit conversion factor (αL) represents the effective burned area per fire pixel when only including 
the fields with definitive burns (Class 1 and Class 2), whereas, the higher limit conversion factor (αH) includes both the definite 
burned fields and the ambiguous fields (Class 3). The locations of the reference areas are shown in Figure 2. 200 

Reference area 
(Country_ID) 

αL 
(MODIS 

A&T) 

αH 
(MODIS 

A&T) 

Adjusted active 
fire count  

(MODIS A&T) 
Brazil_A 2.11 2.30 31.8 
Brazil_B 4.69 5.33 8.9 

Canada_A 3.92 4.55 40.9 
Russia_A 4.02 4.66 46.1 
Russia_B 3.69 4.12 54.3 
Russia_C 0.29 0.40 113.9 
Russia_D 7.81 8.75 45.6 

Ukraine_A 1.84 1.96 29.5 
Ukraine_B 1.67 2.06 223.5 
Ukraine_C 1.38 1.69 226.5 
Ukraine_D 1.56 1.80 156.2 
Ukraine_E 1.54 1.69 120.3 
Ukraine_F 2.22 2.57 91.4 
Ukraine_G 1.84 1.96 448.2 
Ukraine_H 1.67 2.06 806.2 
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USA_A 1.02 1.31 11.3 
USA_B 0.89 1.14 49.8 
USA_C 2.69 7.54 20.3 
USA_D 1.85 2.25 13.8 
USA_E 1.31 1.43 81.2 

 

Table 3: Low (αL) and high (αH) conversion factors for each crop type used in the calculation of the monthly adjusted burned area. 

Crop type αL 
(MODIS A&T) 

αH 
(MODIS A&T) 

Winter Wheat A 1.76 2.01 
Spring Wheat B 3.30 6.05 

Maize C 1.45 2.70 
Sugarcane D 1.02 1.31 

Rice E 1.58 1.84 
Generic F 1.76 2.16 

A – Median Ukraine (C – H) and Russia (A and B) summer reference areas 
B – Median Russia (C and D) spring, Canada (A), and United States (C) reference areas 
C – Median Ukraine (A and B) spring and Brazil (B) reference areas 205 
D – Median United States (A and B) and Brazil (A) reference areas 
E – Median United States (D and E) reference areas 
F – Median of all reference regions 

3.2 Monthly Majority Crop Type That Burns in 0.25° Grid Cells 

To assign the appropriate value of α to the larger 0.25° grid cell, we first identified the majority crop type (winter wheat, 210 

spring wheat, maize, rice, sugarcane, or other/generic) associated with burning – at the 500-m scale – within the grid cell 

each month. The 500-m sinusoidal crop type maps (Sect. 2.3) were reprojected and resampled to 0.005° to nest inside the 

larger 0.25° grid cell. The filtered MCD14ML fire pixels were then associated with these 0.005° crop-type grid cells to 

identify the crop types that burned that month. The majority crop type within a 0.25° grid cell was chosen based on the 

number of “burned” 0.005° cells. If there was a tie (i.e., more than one crop type had the same number of active fires) then 215 

the majority crop type for that 0.25° grid cell was assigned the crop type with the lowest ObjectID (ArcGIS Shapefile 

database) of those tied classes. This data layer is used to not only assign the crop type α values (Sect. 3.1) but will also be 

used in a later emissions analysis to assign crop-specific emission factors and combustion completeness. 

3.3 Monthly Adjusted Burned Area in 0.25° Grid Cells 

 Monthly burned area was estimated by multiplying the crop-specific α values by the adjusted active fire counts per 0.25° 220 

grid cell. Adjustments to these layers were needed to ensure the burned area did not exceed the crop area. Typically, crop-

residue burning occurs once or twice a year depending on the crop type and agricultural practices. Depending on the crop 

type, the two main burning periods occur either before planting and/or after harvest (e.g., Lasko & Vadrevu, 2018; McCarty 

et al., 2007; Rangel et al., 2018) and often occur in spring and late summer/fall seasons. To account for any double burning 

within a 12-month period, the final burned area was adjusted to ensure the 6-month cumulative sum (centered on the peak 225 
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burning month) did not exceed the crop area within the 0.25° grid cell. The peak burning month was calculated over larger 

1° grid cells to identify the month with the largest number of fires on average between July 2002 and December 2020 and 

this formed the “middle” month of the initial 6-month window. For example, if a 1° cell’s peak month was August, the first 

6-month window quantified the cumulative burned area between May and October (encompasses the peak in the middle) and 

compared that to the cropland area, while the second 6-month window quantified the cumulative burned area between 230 

November and April (encompasses a second smaller peak if there was double burning in that region). If there was a tie for 

peak month, the earliest month was chosen. Quality assessment layers were created to identify the grid cells that were scaled 

to match the crop area within the 6-month window. 

3.4 Cloud Cover Analysis 

An implicit assumption in estimating burned area with counts of active fire pixels (Sect. 3.3) is that the proportion of fire 235 

pixels obscured by cloud (and which were therefore not reported in the MODIS fire product) is approximately the same each 

burning season. Here it is important to distinguish between raining versus non-raining clouds, and during the cropland 

burning season we are primarily dealing with the latter, thus for this category of burning clouds must be treated as a source 

of missed rather than suppressed fires. To understand the potential impact of cloud obscuration on the burned area estimates, 

the mean cloud fraction for each cropland grid cell was extracted over the burning season (nominally peak burning month +/- 240 

1 month, but in some cases longer). We examined the resulting regional mean cloud fraction (MCF) time series for trends 

and/or anomalous years that could potentially distort our burned area estimates and trends. 

4 Results and Discussion 

4.1 Product Intercomparison and Accuracy Assessment 

Validating a cropland burned area dataset requires a more stringent standard than the paired reference-image approach 245 

(Boschetti et al., 2009) recommended in the Committee on Earth Observing Satellites Working Group on Calibration and 

Validation (CEOS) Land Product Validation (LPV; https://lpvs.gsfc.nasa.gov/) protocol. That approach is suitable for more 

persistent burn scars (e.g., forest fires) but is unsuitable for small and comparatively fleeting cropland fires (Boschetti et al., 

2019; Hall et al., 2021b). Given the enormous undertaking required to create the high-resolution reference maps, a large-

scale validation assessment is not feasible. Furthermore, given i) the high omission errors within cropland burned area 250 

studies, ii) the inappropriate mapping methodologies typically used for this fire type in previous studies, and iii) the 

differences in spatial resolution (0.25° in this study compared to 10-30 m resolution in other higher-resolution studies), even 

a seemingly straightforward product intercomparison is also difficult. Therefore, we conducted several different assessments 

using two different methods to help understand the accuracy of this product. 

 255 
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For the first accuracy assessment, we compared the manually mapped burned area within two validation regions and the 

corresponding 0.25° grid cells over the same time period (Figure 3). Given the high cost to create the high-resolution 

cropland reference regions, our Stage 1 accuracy assessment (Boschetti et al., 2009) was limited to just two 0.25° reference 

grid cells. Only two out of twenty-two reference regions were chosen for an initial accuracy assessment to ensure sufficient 

global coverage for the generation of the GloCAB product. We recognize that this sample is much too small to yield 260 

statistically meaningful results, and this proof of concept demonstrates the difficulty in validating cropland burning given the 

heterogeneity of the landscape. The first validation grid cell was within a predominantly rice area in the United States 

between 1 September 2017 and 31 October 2017. The average field size within this grid cell was 0.3 km2, which is 

comparable to the 0.37 km2 average size of fields with the 22 reference regions. The second grid cell was located in a 

predominantly winter wheat area in Russia between 1 October 2018 and 31 October 2018 with a much smaller average field 265 

size of 0.08 km2. Our validation reference maps found 75 – 84 km2 (using only the definite burn class for the lower estimate) 

of burned area in the USA grid cell and 69 – 81 km2 burned area in the Russia grid cell, compared to 92 – 107 km2 and 185 

– 211 km2 in the respective estimates obtained with αL and αH. The USA grid cell showed close agreement to the reference 

burned area, while within the Russian grid cell, the estimated burned area was approximately double the reference burned 

area. There are several possible explanations for this discrepancy, including a lack of reference training data within areas 270 

with very small fields (i.e., the inability to view the fields using Planet or Sentinel-2 limited our scope in the dataset 

creation). 

 
Figure 3: Maps of the two validation reference regions in the USA (left panel) and Russia (right panel). 
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Given that the GloCAB product is designed to be used at a much larger scale than an individual grid cell, we also undertook 275 

two regional accuracy assessments in Ukraine and Turkey. The first compared the estimated annual cropland burned area 

totals for 2016 and 2017 in Ukraine with those calculated in a previous study (Hall et al., 2021b) using higher resolution 

datasets and a similar methodology but one designed specifically for Ukraine cropland (Table 4). Unsurprisingly, the values 

in this study’s 0.25° output are higher (8 – 11% higher for the lower-limit estimate) compared to the previous study. This is 

expected given i) the different reference regions used to derive α values, ii) the coarser 500-m resolution of the MODIS land 280 

cover data versus the 10-m land cover map used in the Ukraine-specific study, and iii) the use of MODIS active fires in this 

study compared to the highly-filtered VIIRS active fire data in the Ukraine-specific study. Visual assessment of both 

cropland burned area products also show similar spatial and temporal burning patterns – i.e., predominantly maize 

springtime burning in northern and central Ukraine and predominantly winter wheat burning in southern Ukraine. 
Table 4: Lower and upper limits of 2016 and 2017 estimated annual cropland burned area within Ukraine derived from this study 285 
and a previous Ukraine-focused analysis (Hall et al., 2021b). 

 Ukraine cropland burned area (km2) 
Year Lower Limit Upper Limit 

 This Study Hall et al., 2021b This Study Hall et al., 2021b 
2016 31,000 28,000 37,000 34,000 
2017 42,000 35,000 50,000 45,000 

 

The second regional assessment compared the May - November 2019 cropland burned area in the southeastern Anatolia 

Region of Turkey. Bahsi et al. (2022) estimated cropland burned area through calculating burn severity (difference in 

Normalized Burn Ratio, dNBR) using Sentinel-2A/B imagery (10-30m spatial resolution; ~5 day revisit time). Their study 290 

estimated 5,100km2 compared to GloCAB’s estimates of 5,200km2 (lower limit) and 5,800km2 (upper limit). Given the 

temporal revisit time of the Sentinel-2 constellation and the propensity for farmers to manipulate their fields shortly after 

burning (e.g., plowing), it is not surprising that Bahsi et al.’s (2022) values are lower than the GloCAB results. Nevertheless, 

our cropland burned area estimates are very similar, and given the different methodologies (active fire based versus dNBR-

based), lends credibility to these results. 295 

4.2 Spatial Distribution and Annual Time Series 

Our study found global annual cropland burned area (January 2003 – December 2020) ranged between 64 Mha (2018) and 

102 Mha (2008), with an average of 81 Mha using our lower-bound estimates compared to an annual average of 32 Mha in 

the MCD64A1 Collection 6 product (Figure 4; Table S1). This 2.7 fold increase in annual average cropland burned area is 

unsurprising given the known limitations of the MCD64A1 product within cropland regions (e.g., Giglio et al., 2018; Zhang 300 

et al., 2022) and the high omission errors associated with small fires. Breaking these results down by crop type highlights the 

important contribution of winter wheat and maize burning to global annual cropland burned area, and spring wheat as a 

contributor to the declining trend.  
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Figure 4: Annual burned area (Mha) by global cropland burning fire year (June - May) segmented by crop type and overlaid by 305 
MCD64A1 (black line). 

Visualizing the annual average burned area (2003 – 2020) both as a fraction of the cropland area within each 0.25° grid cell 

(Figure 5) and as an absolute area (Figure 6) highlights i) the geographic hot-spots of cropland burning, ii) areas with 

double-cropping, and iii) areas where neighboring fields with varying harvest cycles are within the same 0.25° grid cell (i.e., 

fires are recorded in the two crop residue burning seasons but were on different fields). For example, the prevalent wheat and 310 

rice crop-residue burning in the double-cropped areas within northern India (e.g., Singh et al., 2020; Sahu et al., 2021), 

sugarcane burning in Florida and Louisiana, USA (e.g., Hiscox et al., 2015; Sevimoğlu et al., 2019), sugarcane burning in 

Thailand (e.g., Kumar et al., 2020), and spring wheat burning in central Russia (e.g., McCarty et al., 2012) are all visible. 

The figures also highlight the prevalence and spatial extent of cropland burning within Ukraine where over 70% of the land 

area is associated with sown/cropped fields (Hall et al., 2021a). Since the MCD12Q1 IGBP class 12 and 14 pixels also 315 

include other agricultural landscapes, certain regions (e.g., Africa) will include more fire activity associated with land 

clearing and wildfires within pastures as opposed to crop-residue burning. A future refinement will include a separate 

methodology for non-cropped agricultural landscapes. 
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Figure 5: Average annual area burned (2003 – 2020), expressed as the fraction of cropland within each 0.25° grid cell that burns 320 
each calendar year. Grid cells with more than 100% cropland burned area are seen within double-cropping regions or within grid 
cells where neighboring fields are on different harvest cycles. 

 
Figure 6: 2003 – 2020 average annual cropland area burned (units: km2/y) per 0.25° grid cell. 
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4.3 Cropland Burned Area Trends, Interannual Variability, and Cloud Cover 325 

Analyzing the annual cropland burned area trends requires an understanding of the interannual variability in the timing of the 

post-harvest/pre-planting burning cycles, the magnitudes of the burned area within broad agricultural regions (see 

supplementary Figure S1 for monthly burned area trends in the GFED regions), as well as the variability and trends in cloud 

cover over the peak burning months. Given the complexities (e.g., different crop types, burning practices, and local climates) 

and heterogeneity within the cropland land cover class, we selected a subset of 6 agricultural regions, including a global 330 

extent, representing a range of majority crop types to analyze. For this representative subset, we apply knowledge from a 

variety of sources including our previous studies (e.g., Hall et al., 2016; Hall et al., 2021a), information gleaned from the 22 

manually mapped regions, and scientific and government literature. For each broad agricultural region (and the global 

estimate) we defined the crop fire year with the month of minimum fire activity indicating the start of the fire year (Giglio et 

al., 2013). For example, if the month with the least fire activity on average between 2003 and 2020 was September, then the 335 

2003 fire year will run from September 2003 through August 2004. The definition of the cropland fire year will change 

based on the scale of analysis, and users are therefore encouraged to employ crop fire seasons appropriate for their area of 

interest. Furthermore, in regions with two distinct cropping cycles, additional trend information can be gleaned by dividing 

the analysis into 6-month segments – ensuring the two peaks are in the middle of the 6-month window. Finally, only fire 

years containing all 12 months were used in trend calculations, therefore, some regions contain an extra year of data 340 

depending on their monthly burned area distributions.  

 
Figure 7: (a) Global monthly distribution of cropland burned area between July 2002 and December 2020 (units: Mha). Outliers 
(diamonds) are defined as monthly burned area values greater than 1.5 times the interquartile range above the upper quartile (Q3 
+ 1.5 × IQR). The monthly median values are represented by the solid line. (b) Global cropland burned area by global fire year 345 
(June – May) overlaid with Theil-Sen estimator trend lines with 95% confidence for this study (grey; red) and MCD64A1 (black; 
blue). Tau represents the ordinal association between two measured quantities.   

Figure 7 shows the global monthly cropland burned area (2003 – 2020) and the annual fire year (June – May) burned area for 

the lower-limit (αL-based) estimates, alongside the corresponding burned area reported in the MCD64 burned area product, 

with associated Theil-Sen estimator trend lines and significance statistics (95% confidence). Analysis of the autocorrelation 350 

function (ACF) plot and the Durbin-Watson statistic (Durbin and Watson, 1950) confirmed the data were not autocorrelated. 
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Despite the difference in the magnitude of the two time series, both products show a statistically significant decreasing trend 

for fire years 2003 through 2019. However, the year-to-year variability in the MCD12Q1 land cover product cropland 

classes, especially in Africa (e.g., Wei et al., 2020), will have an impact on the burned area trend that is unrelated to the true 

burned area patterns (e.g., Verburg et al., 2011; Zubkova et al., 2023). Furthermore, given the limited availability of global 355 

crop type datasets, this analysis assumes crop types are constant. Therefore, caution is required when analyzing crop-type 

land-cover-specific burned area trends by also studying the underlying ancillary datasets within their area of interest to 

ensure any artificial signals are minimized. Figure S2 highlights the annual global burned area and trends excluding Africa. 

 

Although the globally-aggregated trend is consistent with several other broader studies (e.g., Andela et al., 2017; Arora & 360 

Melton, 2018) the heterogeneity within cropland regions is lost at the global scale. Therefore, a regional analysis was 

undertaken highlighting the differing seasonal cycles and overall annual trends within regional cropland areas (Figure 8). For 

example, northwest India shows a strong increasing trend and a distinct drop in burned area in the 2019 fire year (August 

2019 – July 2020), which likely corresponded to a combination of the Covid-19 pandemic and the 2019 financial incentives 

(2,400 rupees; $32 per acre) imposed by India’s Supreme Court to help reduce the stubble burning in the northern states 365 

(BBC, 2020; News, 2021). In contrast, other regions showed no significant trend. Partitioning the burned area estimates into 

smaller cropland regions further highlights the difficulty of applying trend lines to these data. For example, the oscillating 

time series in Ukraine and the abrupt decline in burning in European Russia since 2010 clearly fall outside the domain of a 

simple linear trend analysis (Figure 8).  

 370 

Assessing changes in annual cloud cover fraction provided evidence that none of the regional burned area trends were driven 

by trends in cloud cover or anomalous cloud cover at the beginning or end of the time series. While not a large effect, 

variations in cloud cover did contribute to the interannual variability in burned area, e.g., in European Russia (with an annual 

cloud fraction of 30% to 60% during the peak cropland burning months), in 2014 (Figure 9a, bottom) and 2019 (Figure 9b, 

bottom).  375 
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Figure 8: (a) Regional cropland monthly burned area (July 2002 – December 2020; Mha) and (b) cropland burned area by region-
specific fire year, with respective Theil-Sen estimator trend lines with 95% confidence. Note the difference in vertical axis scales. 
European Russia had a distinct change in burned area, therefore, the trend lines were subdivided into two periods: 2003 – 2010 380 
(P1; red dashed line) and 2011 – 2020 (P2; blue dashed line). 
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It is beneficial to subdivide the trend analysis into crop harvest seasons when further information on the burning of 

predominant crop types (for that time period and geographic location) is warranted. Particular care is required when inferring 385 

local patterns with coarse-resolution global products such as GFED and MCD64A1 aggregated to a 0.25° climate modeling 

grid. Figure 9 shows the differing magnitudes, spatial patterns, and trends within the contiguous cropland regions of the 

United States and European Russia for two periods approximately representing the predominant spring and fall burning 

seasons: January – June and July – December. It is clear that the “decreasing trend” in European Russia is driven by the 

distinct change in the summer (predominantly winter wheat) burning season compared to the spring burning season 390 

(predominantly spring wheat). This distinct change in burning in 2010 is likely caused by i) the agricultural machinery 

deficit between 1990 and 2010, which in turn drove a widespread need to remove crop residue from the fields after harvest 

prior to 2010 (Sidorenko et al., 2017), ii) the rise in agro-holdings (i.e., corporate farms) since the early 2000s that led to 

large parcels of cropped land no longer being burned and instead efficiently managed with new machinery (Rada et al., 

2017), and iii) the widespread administrative and legal action banning open burning (e.g., Decree of the Government of the 395 

Russian Federation of November 20, 2015, no. 1213; http://government.ru/docs/20511/) after the devastating 2010 fires 

(Bondur et al., 2020; Loboda et al., 2017). Figure 8 also shows the seasonal interannual variability within the contiguous 

U.S. summer/fall cropland burned area (predominantly post-harvest burning) compared to the relatively stable burning 

pattern within the springtime burning seasons (predominantly pre-planting burning). 

 400 

 
Figure 9: (a) January – June and (b) July – December cropland burned area time series (grey bars), burned area trends (blue and 
red lines), and burning-season mean cloud fraction (black lines) for the Contiguous United States (top) and European Russia 
(bottom). The fire year for the contiguous USA and European Russia runs from January to December. European Russia had a 
distinct change in burned area, therefore, the trend lines were subdivided into two periods: 2003 – 2010 (P1; red dashed line) and 405 
2011 – 2020 (P2; blue dashed line). 
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5 Caveats and Limitations 

Several caveats and limitations apply to the input datasets and our methodology. First, this study uses static crop-type maps. 

Higher-resolution, annual crop-type global maps once they become available (e.g., the 30-m Cropland Data Layer for the 

United States) will improve the identification of cropland areas, including those with either double cropping or crop-rotation 410 

practices. For this initial version, the GEOGLAM crop-type maps (https://cropmonitor.org/) were chosen as they are widely 

used by multiple international humanitarian, government, academic, and research partners and created using the best 

available data with involvement from local partners within each country (Becker-Reshef et al., 2020; Whitcraft et al., 2019). 

More accurate and dynamic land-cover data and agricultural-specific maps will help differentiate between field (cropland) 

and non-field agricultural burning and applying suitable conversion factors and methodologies to each. Further, including a 415 

more adaptable partitioning of the crop calendar (i.e., the peak month analysis windows) alongside a more dynamic approach 

that can adapt to changes in the cropping calendars over time will further refine these results. 

 

Secondly, our results are influenced by the choice of land cover product used as a base cropland extent. While MCD12Q1 

was selected since it offers yearly global land cover maps, its coarse resolution might limit the overall accuracy of the 420 

estimated cropland burned area, especially within regions where agricultural fields are smaller than MODIS pixel size 

(500m). Inconsistencies between cropland extents based on various global land cover products in Africa were reported by 

Zubkova et al. (2023), demonstrating substantial variations in spatial distribution and year-to-year variability. An analysis of 

springtime burned area in Russia (Glushkov et al., 2021) also highlighted the variability in burned area by land cover class 

when comparing three separate global land cover products of varying spatial resolutions. Therefore, the availability of 425 

higher-resolution yearly land cover products in the future can enhance the proposed methodology, however, the accuracy of 

those input products will always be an underlying limitation. 

 

Third, initial analysis found the 22 reference regions did not provide sufficient sampling and required too many assumptions 

for application to the Terra-only period. Additional cropland burned area reference data are required (created using a 430 

consistent methodology that is appropriate for cropland burning) over a broader selection of burnable crop types and 

geographic domains, particularly within areas with predominantly small (average size within 22 reference regions = 0.37 

km2) field sizes. Further, the cropland burned area reference data should also span additional years as farming practices 

change over time and farmers may alter their daily burn times, which could in turn alter the active fire signal. Unfortunately, 

high-resolution, daily PlanetScope imagery is only widely available from ~2016, as are Sentinel-2 data, thus alternate 435 

solutions are needed for the earlier years of the MODIS record. Finally, future work will extend the GloCAB dataset to the 

Terra-only period from November 2000 – June 2002. 
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6 Data Availability 

GloCAB is comprised of lower (low) and upper (high) cropland burned area estimates per month between July 2002 and 

December 2020 (Hall et al., 2023). The monthly, 0.25 degree GloCAB burned area (units: km2) data are available as annual 440 

GeoTIFF stacks: 12 monthly layers per stack between 2003 and 2020 and 6 layers (July – December) for 2002. The 

preliminary GloCAB dataset is publically available on the open repository Zenodo 

(https://doi.org/10.5281/zenodo.7860452). 

7 Conclusions 

Our new GloCAB dataset provides a global cropland-focused burned area product (0.25°; monthly-time step). GloCAB’s 445 

specifications (0.25°; monthly-time step) were selected to match the forthcoming GFEDv5 product (Chen et al., in review), 

as GloCAB will be the source of cropland burned area in the updated GFED product. However, GloCAB’s specifications are 

designed to be useful for other products and applications, and modifications to the methodology can be applied for specific 

case-studies. Using twenty exhaustively-mapped field-level reference regions within five countries, the effective burned area 

per MODIS active fire pixel (α) was calculated for several crop types that are generally associated with burning: winter 450 

wheat, spring wheat, maize, rice, sugarcane, and other/generic. Using these active-fire-to-burned-area conversion factors 

(Table 3), we generated lower (αL) and upper (αH) cropland burned area estimates per month between July 2002 and 

December 2020. With these data we found the lower-limit global annual cropland burned area (2003 – 2020) ranged between 

64 Mha (2018) and 102 Mha (2008) with an average of 81Mha compared to an annual average of 32 Mha in the MCD64A1 

Collection 6 product. This increase in annual mean burned area compared to MCD64A1 is unsurprising given the GloCAB 455 

product is specifically designed for cropland burning. Subdividing by crop type also highlighted the substantial contribution 

of winter wheat and maize to global cropland burned area. Our analysis also highlighted the heterogeneity within cropland 

regions and how burned area trends can be impacted depending on the area of interest, while also discussing the impacts of 

cloud cover on burned area totals.  

 460 

Finally, our next steps include gathering crop-specific emission factors and combustion efficiencies that will be applied to 

the monthly majority crop type data layers created in this study. This next step will illuminate the contribution of crop types 

to emissions as the proportion of emissions compared to burned area will vary by crop type. Despite the current limitations, 

this study set out to develop a crop-specific global burned area methodology that was grounded in high-quality reference 

data gathered for this unique fire type. Although burned area reference datasets have recently become available (e.g., 465 

Franquesa et al., 2020), they are either developed for non-cropland fires, or are sporadic/opportunistic-based on field-work, 

surveys, etc. (e.g., Liu et al., 2020; Hall et al., 2016) and are therefore not appropriate for this methodology. In general, 

cropland emissions are severely underestimated, primarily due to the omission errors within burned area products. 

Understanding the temporal and spatial patterns of emissions can help stakeholders identify regions for focused mitigation 
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efforts; therefore, this global cropland burned area product is the first step towards improving global cropland burning 470 

emissions. 
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