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Abstract. Burned area estimates are an essential component of cropland management systems, inventory-based fire emission 

calculations, and air quality models, and any inaccuracies in those estimates propagate into the final emission outputs and 

decision-making process. While satellite-based global burned area and fire emission datasets (e.g. GFED, FireCCI51, and 

MCD64A1) are frequently cited within the scientific literature and used by a range of users from atmospheric and carbon 

modelers to policy-makers, they are generally not optimized for cropland burning – a quintessential small-fire type. Here we 10 

describe a new dataset (GloCAB; Global Cropland Area Burned) which represents the first attempt at a global cropland-

focused burned area product. The GloCAB dataset provides global, monthly cropland burned area at 0.25° spatial resolution 

from July 2002 – December 2020. Crop-specific burned area conversion factors for several widespread burnable crops (winter 

wheat, spring wheat, maize, rice, and sugarcane) were calculated from extensively-mapped cropland reference regions 

spanning 190,6501,560 fields over 5 different countries. We found global annual cropland burned area (2003 – 2020) ranged 15 

between 64 Mha (2018) and 102 Mha (2008) with an average of 81 Mha using our lower-bound estimates which are 

substantially higher than the annual average of 32 Mha in the MCD64A1 C6 product. Region-specific trend analysis found 

some areas with significant increasing trends (northwest India), while the heterogeneity of many other regions found no burned 

area trends. This cropland-focused burned area methodology is the first step toward improving the representation of global 

crop-residue burning emissions – an often overlooked small-fire source of trace gas and aerosol emissions within global fire 20 

emission inventories. 

1 Introduction 

Burned area estimates are an essential component of inventory-based fire emission calculations (e.g., Seiler and Crutzen, 1980; 

UNFCCC, 2022), and any inaccuracies in this component contribute to uncertainties in estimates of emissions and fire impacts 

on atmospheric composition. Satellite-based global burned area and fire emission datasets are generally not optimized for 25 

cropland burning – a quintessential small fire type – yet these datasets are frequently employed by a broad range of users from 

atmospheric and carbon modelers to policy-makers in the context of cropland fire monitoring. Reliable remotely sensed fire 

products are required to quantify trends in fire occurrence and behavior, assess impacts of biomass burning on social and 

environmental systems, characterize fire behavior and potential future risks, and provide key inputs to fire emission and air 

quality models. Cropland burned area and associated emissions estimates have been incorporated into socio-economic 30 
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decisions, such as economic incentives to reduce crop residue burning (Jack et al., 2022), extension service programs (e.g., 

ABC-iCAP, 2022), public health policy (e.g., USDA, 1999), and national emission inventories (e.g., UNFCCC, 2022). Despite 

the widespread use of cropland burned area and emissions estimates, the methodologies used to produce these estimates are 

often not well adapted to the complications that are specific to agricultural fires. 

 35 

Fire management within agricultural landscapes typically occur either before planting a new crop or after harvest, depending 

on a range of factors that include, crop-type, double-cropping, available machinery, pest control, and socio-economic 

circumstances (e.g. McCarty et al., 2007). For example, sugarcane is typically burned before harvest to get rid of pests before 

it is (often) manually-harvested, however, there has been a growing trend toward harvesting “green cane” as mechanization 

has improved in many areas around the world (Leal, et al., 2013; Pryor et al., 2017). This socio-economic shift towards 40 

reducing burning has implications for mapping products that employ assumptions about the burning characteristics within this 

heterogeneous landscape. Further, double-cropping areas, such as the rice/corn rotations in Arkansas, United States, often 

result in burning of the rice residue after harvest and before planting of the corn. Despite the level of mechanization within 

this area, burning still helps clear the fields quickly before the next planting. The heterogeneity of cropland fire types, the small 

field sizes, and the quick nature of these burns results in a very difficult mapping problem that requires a specialized 45 

methodology to help improve the accuracy of these burns within burned area and emissions products.  

  

 

Although a single cropland fire has negligible emissions compared to a large wildfire, improved representation of crop-residue 

burned area and emissions is essential for detection and attribution of trends in air quality in many regions (e.g., Yevich & 50 

Logan, 2003; Liu et al., 2021). Post-harvest and/or pre-planting agricultural fires are recurrent, typically occurring once or 

twice a year (McCarty et al., 2009; Zhang et al., 2018). Due to similar local weather conditions and planting/harvesting cycles 

in many areas, these fires often occur on or around the same day leading to a pulse of emissions across a region. Given the 

proximity of cropland fields to population centers and the magnitude of these emission pulses, health impacts related to 

exposure from repeated crop-residue burning can be extensive (e.g., Argarwal et al., 2013; Saggu et al., 2018). In addition, 55 

despite the low atmospheric injection heights of these burns, crop-residue emissions have the potential to travel great distances 

and impact locations far beyond the cropland area (Zhou et al., 2018; Hall and Loboda, 2017). For example, Hall and Loboda 

(2017) found black carbon emissions from crop-residue fires in Russia – as far south as 40°N – were transported to the Arctic 

and deposited on snow- and ice- covered areas. Due to the seasonal timing of the spring pre-planting fires in Russia, the black 

carbon contributed to the accelerated melting of snow and sea ice (Hall and Loboda, 2017; Hall and Loboda, 2018). Finally, 60 

the widespread use of global burned area and emissions products, such as the Global Fire Emissions Database (GFED; van der 

Werf et al., 2017), within the scientific community (e.g., Friedlingstein et al., 2020; Gao et al., 2018; Kong et al., 2021; Lin et 

al., 2020) can compound systematic and random errors in cropland burned area and emissions estimates. The increasing 

conversion to cropland observed around the world (particularly in Africa; e.g., Brinks et al., 2014; Abera et al., 2020; Li et al., 
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2019) will likely further increase the need for crop-specific remote sensing approaches that take into account regional and 65 

crop-specific differences in management practice and satellite detection efficiencies.  

 

Many factors make accurate satellite-based mapping of crop-residue burned area particularly challenging, including i) the 

heterogeneity of the global agricultural landscape, ii) the rapid nature of these burns and possible subsequent plowing and/or 

seeding, and iii) the human-driven changes in fire timing. To effectively map the spatial extent of these small fires, it is ideal 70 

to have remote sensing data with high temporal resolution (e.g., less than 2 hours between observations [Hall et al., 2021]), 

high spatial resolution (less than 10 m to capture pile burns and partial field burns), and appropriate spectral bands. Even using 

a combination of Landsat, Sentinel, and Planet imagery would not provide adequate coverage to capture the vast majority of 

these burns. Furthermore, unlike the 22-year Moderate Resolution Imaging Spectroradiometer (MODIS) record, the longevity 

and temporal coverage of the Sentinel and Planet platforms is not adequate for long-term studies. Therefore, designing a long-75 

term, global cropland burned area dataset requires a methodology that could balance these requirements while ensuring the 

magnitude of these fires is adequately captured. 

 

Our new dataset (GloCAB; Global Cropland Area Burned) provides global, monthly cropland burned area at 0.25° spatial 

resolution from July 2002 to December 2020, encompassing the Aqua and Terra time period. Unlike many remotely-sensed 80 

burned area datasets such as MCD64A1 (Giglio et al., 2018) and FireCCI51 (Lizundia-Loiola et al., 2020; Pettinari et al., 

2021), our methodology does not attempt to directly map burned area. Instead, it aims to estimate the area of cropland burned 

in each grid cell based on a combination of MODIS active fire observations and our novel high-resolution database of mapped 

field-level burned area conversion factors. GloCAB presents a unique resource to improve the overall representation of 

cropland burning within global burned area and fire emissions datasets. Version 1 presented here is a stepping stone toward 85 

addressing this gap by way of a crop-type-focused burned area methodology that addresses several of the limitations found in 

other global burned area products. Firstly, Tthe active fire product is used as the primary fire input and offers both an accurate 

time of burning and is also able to identify fires that are much smaller than the minimum size that can be mapped with the 

MODIS burned area product (Giglio et al., 2003; McCarty et al., 2009). Although the Visible Infrared Imaging Radiometer 

Suite (VIIRS) 375-m active fire product (Schroeder et al., 2014) is even better suited for identifying small fires, the MODIS 90 

product has the longevity required for long-term analyses. Secondly, GloCAB is designed around a specialized cropland burned 

area reference dataset, comprised of almost 200,000 manually classified cropland fields. This unique dataset allowed us to 

develop a new technique to estimate burned area from this highly ephemeral fire type. Finally, the use of MODIS data as the 

primary input allows for analysis of the impacts from changes in agricultural management practises over a period spanning 

more than two decades. Going forward, since the MODIS instruments will be decommissioned in the next several years, an 95 

inter-calibrated MODIS-VIIRS input data stream will be used to produce later versions of GloCAB as the forthcoming 

Collection 2 VIIRS land products become publicly available. 
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Here we first present a description of the GloCAB methodology, followed by an intercomparison with the MODIS MCD64A1 

burned area product (the primary input for the burned area component of GFED), global and regional assessments, and finally 100 

product caveats and conclusions. 

2 Data 

2.1 MODIS Land Cover Product 

The Collection-6 MODIS 500-m Land Cover Type (MCD12Q1; Sulla-Menashe and Friedl, 202218) annual International 

Geosphere-Biosphere Programme (IGBP) classification product (2002 – 2020) Class 12 (Croplands) and Class 14 105 

(Cropland/Natural Vegetation Mosaic) was used as the base cropland extent. Although other global products exist at a higher 

spatial scale (e.g., GFSAD30; Phalke et al., 2020), or are delineated by crop type for a single year (e.g., SPAM; International 

Food Policy Research Institute, 2019), the annual layers of the MCD12Q1 product have a temporal advantage given the nearly 

20-year timespan of this analysis. For this analysis, it was assumed that the MODIS IGBP cropland classes represented the full 

extent of cropland area each year. As with all remotely-sensed land cover classification data sets, the product contains both 110 

omission and commission errors (e.g., Tsendbazar et al., 2016; Zubkova et al., 2023) that represent a significant source of 

uncertainty in our regional and global burned area estimates. 

2.2 MODIS and VIIRS Active Fire Products 

The 1-km MODIS Aqua and Terra active fire location product (MCD14ML C6 V3; Giglio et al., 2016) served as the primary 

input dataset for GloCAB and was obtained from the University of Maryland’s SFTP server (sftp://fuoco.geog.umd.edu; Giglio 115 

et al., 2020). The MCD14ML product contains multiple variables including latitude, longitude, date, time, and type for each 

fire pixel. Active fire pixels were filtered to include only presumed vegetation fires (type = 0) having a center within 500-m of 

an MCD12Q1 IGBP class-12 or class-14 cropland grid cell. Filtering by pixel-center locations (versus spatially buffered active 

fire pixel boundaries) helped reduce the double-counting of active fires associated with neighboring land cover classes. The 

presumed cropland active fire points were summed per month within 0.25° grid cells. To account for the impact of latitude on 120 

the sampling frequency, and hence the number of active fires mapped, the monthly active fire counts per 0.25° grid cell (AFcount) 

were adjusted using Eq. (1) assuming a reference latitude of 40°N or, equivalently, 40°S (Giglio et al., 2006): 

𝐴𝐹corrected = 𝐴𝐹count  ×  
cos (latitude) 

cos (40°) 
               (1) 

The adjusted MODIS Aqua and Terra monthly active fire counts (AFcorrected) were used in the calculation of the effective burned 

area per fire pixel per cropland burning reference region (see Sect. 2.43.1 for details) and the monthly adjusted burned area 125 

(Sect. 3.34). 
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The 0.25-degree, monthly MODIS Aqua and Terra Active Fire Climate Modeling Grid (CMG) Collection-6 products 

(MOD14CMQ/MYD14CMQ; Giglio et al., 2006) were used to obtain the mean monthly cloud fraction over all cropland land 

cover pixels. The CMG products contain gridded summaries that include corrected fire pixel counts, mean cloud fraction, and 130 

mean fire radiative power. 

 

The Collection-1 375-m VIIRS fire location product from Suomi NPP (VNP14IMGML; Schroeder et al., 2014) was also 

obtained from the University of Maryland’s SFTP server. All active fire locations contain a number of attributes, including the 

latitude, longitude, date, and UTC time to the nearest minute. The VNPIMG14ML product was only used in the creation of 135 

the cropland burned area reference maps (see Sect. 3.12.4 for details) using the same approach as Hall et al. (2021). 

2.3 Global Crop Type Maps 

We focused on five burnable crop types: winter wheat, maize, rice, spring wheat, and sugarcane. Although there are other crop 

types that burn (e.g., soybean and cotton), and other agricultural landscapes (e.g., pastures and orchards) within each 0.25° 

grid cell, we focused on these main crop types due to their larger global extent and greater proportion of under-represented fire 140 

activity (e.g. Becker-Reshef et al., 2023; Blickensdorfer et al., 2022; McCarty et al., 2009). Global crop type maps were used 

to assign each 500-m MCD12Q1 IGBP cropland pixel a specific crop type. The crop type data will be used to assign crop-

specific burned area conversion factors and emission coefficients (Hall et al., 2022) in later steps, and are an improvement 

over the generic agricultural waste models often used in previous studies (e.g., GFED4.1s; van der Werf et al., 2017; Randerson 

et al., 2018).  145 

 

The GEO Global Agricultural Monitoring (GEOGLAM) Best Available Global Crop-Specific Maps (BACS) are available for 

several crops, including winter wheat, spring wheat, maize, and rice at 0.05° resolution (Becker-Reshef et al., 2020; Whitcraft 

et al., 2019). These crop percentage maps are continually updated and are only available as one layer per crop type. The 

GEOGLAM initiative is mainly focused on gathering data for the major crop-producing countries participating in the 150 

Agricultural Market Information System (AMIS): United States of America, Canada, Mexico, Brazil, Argentina, EU-28, 

Egypt, Nigeria, South Africa, Turkey, Saudi Arabia, Ukraine, Russia, Kazakhstan, China, India, Thailand, Viet Nam, 

Philippines, Indonesia, and Australia. These maps use a combination of the best-available remotely sensed crop maps for each 

region and crop type. These crop maps were resampled and projected to match the 500-m sinusoidal MCD12Q1 IGBP cropland 

layers. The GEOGLAM-BACS does not map sugarcane, therefore the 2010 Spatial Production Allocation Model (SPAM) 155 

global sugarcane physical area (0.08333° spatial resolution) data layer was also resampled and projected to match the 

MCD12Q1 cropland layers (International Food Policy Research Institute, 2019). 

 

Any areas where the crop type maps and the MCD12Q1 cropland did not agree were either assigned as a “generic” crop or 

were eliminated at the 500-m scale. Specifically, if the MCD12Q1 product labeled a pixel as cropland, and none of the five 160 
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crop type maps had an associated crop percentage, then that 500-m grid cell was recorded as a “generic” crop type. These 500-

m crop type maps (Figure 1) are used in the calculation of the majority crop type that burns per month per 0.25° grid cell (Sect. 

3.2 3 for details). 

 

Figure 1: Example of a 500-m converted crop type MODIS MCD12Q1 cropland layer. The coarser-resolution crop type data from 165 
GEOGLAM-BACS and SPAM were used in the creation of these 500-m annual layers. These annual layers, in conjunction with the 

MODIS active fire location product, are used in the generation of the majority crop type that burns per month per 0.25° grid cell 

(Sect. 3.2 3 for details). 

 

3 Methods 170 

2.4 3.1 Cropland Burning Reference Areas 

Twenty-two four cropland burning reference areas were manually digitized and each polygon classified to create highly 

detailed cropland field maps over a range of countries, crop types, and dates (Table 1; Figure 2). These reference areas, in 

conjunction with the MODIS active fire data, were used to calculate the effective burned area per fire pixel (α), which 

ultimately serves as a conversion factor that is used to extrapolate our reference areas to much larger regions (Giglio et al., 175 

2006; see Sect. 3.12). These regions are an extension of previously created cropland field-level burned area maps within 

Ukraine (Hall et al., 2021a, Hall et al., 2021b) using a combination of all available 20-m Sentinel-2 Multi-Spectral Instrument 

(MSI), 30-m Landsat-8 Operational Land Imager (OLI), and 3-m PlanetScope imagery (www.planet.com), in conjunction with 

filtered VIIRS (VNP14IMGML) and MODIS (MCD14ML) active fire location data. The creation of the reference regions 
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used the more sensitive 375-m VIIRS active fires alongside the 1-km MODIS active fires as an independent verification for 180 

some of the burned fields. 

 

Each digitized polygon was classified via visual interpretation of all available imagery and attributed with the following field 

classification: 1 = active flame/smoke or burned area with corresponding active fire polygon (i.e., an overlapping polygon with 

a date aligned with the visual change on the field); 2 = definite burned area but with no flame/smoke or active fire point; 3 = 185 

ambiguous (a distinct darkening occurred on the field, but the analysts are unsure if the field was burned then plowed or only 

plowed); 4 = definitely unburned; 5 = not cropland or fields are too small that land cover conditions were difficult to determine 

on very high resolution (3-m) imagery. Each Class 1, 2, and 3 polygon was also tagged with the fraction burned (see Hall et 

al., 2021a for details). For the sake of clarity, the classes will hereafter be referenced using the following naming convent ion: 

definite burn (Class 1 and Class 2), possible burn (Class 3), unburned (Class 4), and non-cropland/other (Class 5). In total, 190 

190,6501,560 cropland fields were manually digitized by a team of 20 trained analysts and classified as either a definite burn, 

possible burn, or unburned. 

Table 1: Summary information on the twenty training reference areas used in the burned area conversion factor analysis and the 

fourtwo validation reference regions. The locations of reference areas are shown in Figure 2. 

Reference area 

(Country_ID) 

Mapping start 

date 

Mapping end 

date 

Predominant 

crop type 

Mapped cropland 

area (km2) 

Cropland fields 

classified 

Training Regions 

Brazil_A 15 Aug 2019 15 Oct 2019 Sugarcane 1,104 4,523 

Brazil_B 1 Jul 2019 15 Sep 2019 Maize 1,361 1,219 

Canada_A 1 May 2018 30 Jun 2018 Spring Wheat 1,016 569 

Russia_A 15 Jul 2019 31 Aug 2019 Winter Wheat 1,165 1,740 

Russia_B 15 Aug 2019 30 Sep 2019 Winter Wheat 4,601 2,295 

Russia_C 1 Apr 2019 15 May 2019 Spring Wheat 1,309 1,116 

Russia_D 15 Apr 2019 31 May 2019 Spring Wheat 3,362 1,362 

Ukraine_A 1 Mar 2017 31 Mar 2017 Maize 1,498 3,995 

Ukraine_B 1 Mar 2017 31 Mar 2017 Maize 3,569 6,168 

Ukraine_C 1 Jul 2017 4 Aug 2017 Winter Wheat 3,862 9,327 

Ukraine_D 1 Aug 2016 31 Aug 2016 Winter Wheat 2,519 5,091 

Ukraine_E 15 Jul 2017 15 Aug 2017 Winter Wheat 2,480 5,433 

Ukraine_F 1 Jun 2017 27 Jul 2017 Winter Wheat 1,300 2,758 

Ukraine_G 15 Jun 2017 31 Jul 2017 Winter Wheat 2,810 10,161 

Ukraine_H 1 Jul 2020 7 Aug 2020 Winter Wheat 38,377 123,726 

USA_A 1 Nov 2018 31 Dec 2018 Sugarcane 74 1,091 

USA_B 1 Oct 2019 30 Nov 2019 Sugarcane 155 2,404 

USA_C 15 Apr 2018 15 Jun 2018 Spring Wheat 1,610 1,344 

USA_D 1 Sep 2020 31 Oct 2020 Rice 294 746 

USA_E 1 Sep 2017 3 Nov 2017 Rice 304 1,501 

Validation Regions 

Australia_A 1 Mar 2019 31 Mar 2019 Winter Wheat 578 627 

South_Africa_A 1 Dec 2018 31 Dec 2018 Winter Wheat 84 283 

Russia_E 1 Oct 2018 31 Oct 2018 Winter Wheat 404 2,614 

USA_F 1 Sep 2017 31 Oct 2017 Rice 497 1,467 
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Figure 2: Location of the twenty-fourtwo mapped reference areas (top) with examples of the field-level mapped reference regions 

from Brazil (bottom left; 15 August 2019 – 15 October 2019), Canada (middle bottom; 1 May 2018 – 30 June 2018), and Ukraine 

(bottom right; 1 March 2017 – 31 March 2017). These examples illustrate the variety in cropland fields witnessed during the mapping 200 
process. For visual distinction, the colored letters (top) represent each individual country: green (Brazil), blue (USA), red (Canada), 

purple (Ukraine), and black (Russia), cyan (South Africa), and brown (Australia). 
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3 Methods 

3.1 2 Effective Burned Area Per Fire Pixel 

As in Hall et al. (2021a), the conversion factor α was used to extrapolate our high-resolution reference areas to much larger 205 

regions. Because our high-resolution reference areas include an indeterminate label (class 3) for fields that could not be 

unambiguously labeled as burned or unburned, we calculated a lower limit conversion factor (αL) using only the fields with 

definitive burns (classes 1 and 2) and an upper limit conversion factor (αH) using the definitive burns (classes 1 and 2) and the 

ambiguously labeled burned fields (class 3). Each burned field’s area for classes 1, 2 and 3 was weighted by its burned area 

fraction, summed, and then divided by the total number of cropland-filtered MODIS active fire points within the spatial and 210 

temporal constraints of each reference area, i.e., 

 

𝛼 =  
Ʃ(𝑓𝑖𝑒𝑙𝑑 𝑎𝑟𝑒𝑎 × 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 𝑏𝑢𝑟𝑛𝑒𝑑)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑀𝑂𝐷𝐼𝑆 𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
    (2) 

 

Although care was taken to account for different crop burning seasons, crop types, and spatial locations within the twenty 215 

training reference areas, several challenges limited the mapping. Most importantly, small fields and poor air quality in several 

countries (e.g. India and Thailand) prevented the analysts from observing changes in the fields even with 3-m Planet data. This 

resulted in the spatial distribution of our 24 reference areas to be focused in high-density cropland regions with fields large 

enough to confidently identify the changing conditions (Figure 2). Therefore, the final αL and αH values for each crop type 

were based on the median values of a particular combination of reference regions (see Table 2 and Table 3); the generic crop 220 

type was assigned the median value of all twenty training reference regions. We chose the median value over the mean to 

reduce the impact of any outliers. 

Table 2: Low (αL) and high (αH) conversion factors and the adjusted sum of MODIS Aqua and Terra (A&T) active fire counts for 

each reference area. The lower limit conversion factor (αL) represents the effective burned area per fire pixel when only including 

the fields with definitive burns (Class 1 and Class 2), whereas, the higher limit conversion factor (αH) includes both the definite 225 
burned fields and the ambiguous fields (Class 3). The locations of the reference areas are shown in Figure 2. 

Training 

Reference area 

(Country_ID) 

αL 
(MODIS 

A&T) 

αH 
(MODIS 

A&T) 

Adjusted active 

fire count  

(MODIS A&T) 

Brazil_A 2.11 2.30 31.8 

Brazil_B 4.69 5.33 8.9 

Canada_A 3.92 4.55 40.9 

Russia_A 4.02 4.66 46.1 

Russia_B 3.69 4.12 54.3 

Russia_C 0.29 0.40 113.9 

Russia_D 7.81 8.75 45.6 

Ukraine_A 1.84 1.96 29.5 

Ukraine_B 1.67 2.06 223.5 

Ukraine_C 1.38 1.69 226.5 

Ukraine_D 1.56 1.80 156.2 

Ukraine_E 1.54 1.69 120.3 
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Ukraine_F 2.22 2.57 91.4 

Ukraine_G 1.84 1.96 448.2 

Ukraine_H 1.67 2.06 806.2 

USA_A 1.02 1.31 11.3 

USA_B 0.89 1.14 49.8 

USA_C 2.69 7.54 20.3 

USA_D 1.85 2.25 13.8 

USA_E 1.31 1.43 81.2 

 

Table 3: Low (αL) and high (αH) conversion factors for each crop type used in the calculation of the monthly adjusted burned area. 

Crop type 
αL 

(MODIS A&T) 

αH 
(MODIS A&T) 

Winter Wheat A 1.76 2.01 

Spring Wheat B 3.30 6.05 

Maize C 1.45 2.70 

Sugarcane D 1.02 1.31 

Rice E 1.58 1.84 

Generic F 1.76 2.16 
A – Median Ukraine (C – H) and Russia (A and B) summer reference areas 
B – Median Russia (C and D) spring, Canada (A), and United States (C) reference areas 230 
C – Median Ukraine (A and B) spring and Brazil (B) reference areas 
D – Median United States (A and B) and Brazil (A) reference areas 
E – Median United States (D and E) reference areas 
F – Median of all training reference regions 

3.2 3 Monthly Majority Crop Type That Burns in 0.25° Grid Cells 235 

To assign the appropriate value of α to the larger 0.25° grid cell, we first identified the majority crop type (winter wheat, spring 

wheat, maize, rice, sugarcane, or other/generic) associated with burning – at the 500-m scale – within the grid cell each month. 

The 500-m sinusoidal crop type maps (Sect. 2.3) were reprojected and resampled to 0.005° to nest inside the larger 0.25° grid 

cell. The filtered MCD14ML fire pixels were then associated with these 0.005° crop-type grid cells to identify the crop types 

that burned that month. The majority crop type within a 0.25° grid cell was chosen based on the number of “burned” 0.005° 240 

cells. If there was a tie (i.e., more than one crop type had the same number of active fires) then the majority crop type for that 

0.25° grid cell was assigned the crop type with the lowest ObjectID (ArcGIS Shapefile database) of those tied classes. This 

data layer is used to not only assign the crop type α values (Sect. 3.12) but will also be used in a later emissions analysis to 

assign crop-specific emission factors and combustion completeness. 

3.3 4 Monthly Adjusted Burned Area in 0.25° Grid Cells 245 

 Monthly burned area was estimated by multiplying the crop-specific α values by the adjusted active fire counts per 0.25° grid 

cell. Adjustments to these layers were needed to ensure the burned area did not exceed the crop area. Typically, crop-residue 

burning occurs once or twice a year depending on the crop type and agricultural practices. Depending on the crop type, the 

two main burning periods occur either before planting and/or after harvest (e.g., Lasko & Vadrevu, 2018; McCarty et al., 2007; 
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Rangel et al., 2018) and often occur in spring and late summer/fall seasons. To account for any double burning within a 12-250 

month period, the final burned area was adjusted to ensure the 6-month cumulative sum (centered on the peak burning month) 

did not exceed the crop area within the 0.25° grid cell. The peak burning month was calculated over larger 1° grid cells to 

identify the month with the largest number of fires on average between July 2002 and December 2020 and this formed the 

“middle” month of the initial 6-month window. For example, if a 1° cell’s peak month was August, the first 6-month window 

quantified the cumulative burned area between May and October (encompasses the peak in the middle) and compared that to 255 

the cropland area, while the second 6-month window quantified the cumulative burned area between November and April 

(encompasses a second smaller peak if there was double burning in that region). If there was a tie for peak month, the earliest 

month was chosen. Quality assessment layers were created to identify the grid cells that were scaled to match the crop area 

within the 6-month window. 

3.4 5 Cloud Cover Analysis 260 

An implicit assumption in estimating burned area with counts of active fire pixels (Sect. 3.34) is that the proportion of fire 

pixels obscured by cloud (and which were therefore not reported in the MODIS fire product) is approximately the same each 

burning season. Here it is important to distinguish between raining versus non-raining clouds, and during the cropland burning 

season we are primarily dealing with the latter, thus for this category of burning clouds must be treated as a source of missed 

rather than suppressed fires. To understand the potential impact of cloud obscuration on the burned area estimates, the mean 265 

cloud fraction for each cropland grid cell was extracted over the burning season (nominally peak burning month ± 1 month, 

but in some cases longer). We examined the resulting regional mean cloud fraction (MCF) time series for trends and/or 

anomalous years that could potentially distort our burned area estimates and trends. 

4 Results and Discussion 

4.1 Product Intercomparison and Accuracy Assessment 270 

Validating a cropland burned area dataset requires a more stringent standard than the paired reference-image approach 

(Boschetti et al., 2009) recommended in the Committee on Earth Observing Satellites Working Group on Calibration and 

Validation (CEOS) Land Product Validation (LPV; https://lpvs.gsfc.nasa.gov/) protocol. That approach is suitable for more 

persistent burn scars (e.g., forest fires) but is unsuitable for small and comparatively fleeting cropland fires (Boschetti et al., 

2019; Hall et al., 2021b). Given the enormous undertaking required to create the high-resolution reference maps, a large-scale 275 

validation assessment is not feasible. Furthermore, given i) the high omission errors within cropland burned area studies, ii) 

the inappropriate mapping methodologies typically used for this fire type in previous studies, and iii) the differences in spatial 

resolution (0.25° in this study compared to 10-30 m resolution in other higher-resolution studies), even a seemingly 

straightforward product intercomparison is also difficult. Therefore, we conducted several different assessments using two 

different methods to help understand the accuracy of this product. 280 
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For the first accuracy assessment, we compared the manually mapped burned area within two four validation regions and the 

corresponding 0.25° grid cells over the same time period (Figure 3; Table 4). Given the high cost to create the high-resolution 

cropland reference regions, our Stage 1 accuracy assessment (Boschetti et al., 2009) was limited to just fivetwo 0.25° reference 

grid cells. Only fourtwo out of twenty-two four reference regions were chosen for an initial accuracy assessment to ensure 285 

sufficient global coverage for the generation of the GloCAB product. We recognize that this sample is much too small to yield 

statistically meaningful results, and this proof of concept demonstrates the difficulty in validating cropland burning given the 

heterogeneity of the landscape. The first validation grid cell was within a predominantly rice area in the United States between 

1 September 2017 and 31 October 2017. The average field size within this grid cell was 0.3 km2, which is comparable to the 

0.37 km2 average size of fields with the 224 reference regions. The second grid cell was located in a predominantly winter 290 

wheat area in Russia between 1 October 2018 and 31 October 2018 with a much smaller average field size of 0.08 km2. The 

third grid cell contained primarily winter wheat fields (0.9 km2 average) in Australia, mapped between 1 March 2019 and 31 

March 2019. The final validation region in South Africa covered two grid cells and contained predominantly winter wheat, 

irrigated fields (0.3 km2 average) and was mapped between 1 December 2018 and 31 December 2018.  

 295 

Table 4: Lower and upper limits of grid cell-level validation analysis. 

 Cropland burned area (km2) 

Year Lower Limit Upper Limit 
 GloCAB Validation Region GloCAB Validation Region 

Australia_A 70 58 80 70 

South_Africa_A 23 23 35 43 

Russia_E 185 69 211 81 

USA_F 92 75 107 84 

 

Our validation reference maps analysis found 75 – 84 km2 (using only the definite burn class for the lower estimate) of burned 

area in the USA grid cell and 69 – 81 km2 burned area in the Russia grid cell, compared to 92 – 107 km2 and 185 – 211 km2 

in the respective estimates obtained with αL and αH. Tthe South Africa, Australia, and USA grid cells showed close agreement 300 

to the reference burned area, while within the Russian grid cell, the estimated burned area was approximately double the 

reference burned area. There are several possible explanations for this discrepancy, including a lack of reference training data 

within areas with very small fields (i.e., the inability to view the fields using Planet or Sentinel-2 limited our scope in the 

dataset creation). Furthermore, the mapped burned area agreement in South Africa and Australia is promising since these areas 

did not contain any nearby training reference regions. 305 
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Figure 3: Maps of the two four validation reference regions in the USA (left panela), and Russia (right panelb), Australia (c), and 

South Africa (d). 

Given that the GloCAB product is designed to be used at a much larger scale than an individual grid cell, we also undertook 310 

two regional accuracy assessments in Ukraine and Turkey. The first compared the estimated annual cropland burned area totals 

for 2016 and 2017 in Ukraine with those calculated in a previous study (Hall et al., 2021b) using higher resolution datasets 

and a similar methodology but one designed specifically for Ukraine cropland (Table 45). Unsurprisingly, the values in this 

study’s 0.25° output are higher (8 – 11% higher for the lower-limit estimate) compared to the previous study. This is expected 

given i) the different reference regions used to derive α values, ii) the coarser 500-m resolution of the MODIS land cover data 315 

versus the 10-m land cover map used in the Ukraine-specific study, and iii) the use of MODIS active fires in this study 

compared to the highly-filtered VIIRS active fire data in the Ukraine-specific study. Visual assessment of both cropland burned 

area products also show similar spatial and temporal burning patterns – i.e., predominantly maize springtime burning in 

northern and central Ukraine and predominantly winter wheat burning in southern Ukraine. 

 320 
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Table 45: Lower and upper limits of 2016 and 2017 estimated annual cropland burned area within Ukraine derived from this study 

and a previous Ukraine-focused analysis (Hall et al., 2021b). 

 Ukraine cropland burned area (km2) 

Year Lower Limit Upper Limit 
 This Study Hall et al., 2021b This Study Hall et al., 2021b 

2016 31,000 28,000 37,000 34,000 

2017 42,000 35,000 50,000 45,000 

 

The second regional assessment compared the May - November 2019 cropland burned area in the southeastern Anatolia Region 325 

of Turkey. Bahsi et al. (2022) estimated cropland burned area through calculating burn severity (difference in Normalized 

Burn Ratio, dNBR) using Sentinel-2A/B imagery (10-30m spatial resolution; ~5- day revisit time). Their study estimated 

5,100km2 compared to GloCAB’s estimates of 5,200km2 (lower limit) and 5,800km2 (upper limit). Given the temporal revisit 

time of the Sentinel-2 constellation and the propensity for farmers to manipulate their fields shortly after burning (e.g., 

plowing), it is not surprising that Bahsi et al.’s (2022) values are lower than the GloCAB results. Nevertheless, our cropland 330 

burned area estimates are very similar, and given the different methodologies (active fire based versus dNBR-based), lends 

credibility to these results. 

4.2 Spatial Distribution and Annual Time Series 

Our study found global annual cropland burned area (January 2003 – December 2020) ranged between 64 Mha (2018) and 

102 Mha (2008), with an average of 81 Mha using our lower-bound estimates compared to an annual average of 32 Mha in the 335 

MCD64A1 Collection 6 product (Figure 4; Table S1). This 2.7- fold increase in annual average cropland burned area is 

unsurprising given the known limitations of the MCD64A1 product within cropland regions (e.g., Giglio et al., 2018; Zhang 

et al., 2022) and the high omission errors associated with small fires. Breaking these results down by crop type highlights the 

important contribution of winter wheat and maize burning to global annual cropland burned area, and spring wheat as a 

contributor to the declining trend.  340 
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Figure 4: Annual burned area (Mha) by global cropland burning fire year (June - May) segmented by crop type and overlaid by 

MCD64A1 (black line). 

Visualizing the annual average burned area (2003 – 2020) both as a fraction of the cropland area within each 0.25° grid cell 

(Figure 5) and as an absolute area (Figure 6) highlights i) the geographic hot-spots of cropland burning, ii) areas with double-345 

cropping, and iii) areas where neighboring fields with varying harvest cycles are within the same 0.25° grid cell (i.e., fires are 

recorded in the two crop residue burning seasons but were on different fields). For example, the prevalent wheat and rice crop-

residue burning in the double-cropped areas within northern India (e.g., Singh et al., 2020; Sahu et al., 2021), sugarcane burning 

in Florida and Louisiana, USA (e.g., Hiscox et al., 2015; Sevimoğlu et al., 2019), sugarcane burning in Thailand (e.g., Kumar 

et al., 2020), and spring wheat burning in central Russia (e.g., McCarty et al., 2012) are all visible. The figures also highlight 350 

the prevalence and spatial extent of cropland burning within Ukraine where over 70% of the land area is associated with 

sown/cropped fields (Hall et al., 2021a). Since the MCD12Q1 IGBP class 12 and 14 pixels also include other agricultural 

landscapes, certain regions (e.g., Africa) will include more fire activity associated with land clearing and wildfires within 

pastures as opposed to crop-residue burning. A future refinement will include a separate methodology for non-cropped 

agricultural landscapes. 355 
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Figure 5: Average annual area burned (2003 – 2020), expressed as the fraction of cropland within each 0.25° grid cell that burns 

each calendar year. Grid cells with more than 100% cropland burned area are seen within double-cropping regions or within grid 

cells where neighboring fields are on different harvest cycles. 

 360 

Figure 6: 2003 – 2020 average annual cropland area burned (units: km2/y) per 0.25° grid cell. 
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4.3 Cropland Burned Area Trends, Interannual Variability, and Cloud Cover 

Analyzing the annual cropland burned area trends requires an understanding of the interannual variability in the timing of the 

post-harvest/pre-planting burning cycles, the magnitudes of the burned area within broad agricultural regions (see 

supplementary Figure S1 for monthly burned area trends in the GFED regions), as well as the variability and trends in cloud 365 

cover over the peak burning months. Given the complexities (e.g., different crop types, burning practices, and local climates) 

and heterogeneity within the cropland land cover class, we selected a subset of 6 agricultural regions, including a global extent, 

representing a range of majority crop types to analyze. For this representative subset, we apply knowledge from a variety of 

sources including our previous studies (e.g., Hall et al., 2016; Hall et al., 2021a), information gleaned from the 22 manually 

mapped regions, and scientific and government literature. For each broad agricultural region (and the global estimate) we 370 

defined the crop fire year with the month of minimum fire activity indicating the start of the fire year (Giglio et al., 2013). For 

example, if the month with the least fire activity on average between 2003 and 2020 was September, then the 2003 fire year 

will run from September 2003 through August 2004. The definition of the cropland fire year will change based on the scale of 

analysis, and users are therefore encouraged to employ crop fire seasons appropriate for their area of interest. Furthermore, in 

regions with two distinct cropping cycles, additional trend information can be gleaned by dividing the analysis into 6-month 375 

segments – ensuring the two peaks are in the middle of the 6-month window. Finally, only fire years containing all 12 months 

were used in trend calculations, therefore, some regions contain an extra year of data depending on their monthly burned area 

distributions.  
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 380 

Figure 7: (a) Global monthly distribution of cropland burned area between July 2002 and December 2020 (units: Mha). Outliers 

(diamonds) are defined as monthly burned area values greater than 1.5 times the interquartile range above the upper quartile (Q3 

+ 1.5 × IQR). The monthly median values are represented by the solid line. (b) Global cropland burned area by global fire year 

(June – May) overlaid with Theil-Sen estimator trend lines with 95% confidence for this study (grey; red) and MCD64A1 (black; 

blue). Tau represents the ordinal association between two measured quantities.   385 

Figure 7 shows the global monthly cropland burned area (2003 – 2020) and the annual fire year (June – May) burned area for 

the lower-limit (αL-based) estimates, alongside the corresponding burned area reported in the MCD64 burned area product, 

with associated Theil-Sen estimator trend lines and significance statistics (95% confidence). Analysis of the autocorrelation 

function (ACF) plot and the Durbin-Watson statistic (Durbin and Watson, 1950) confirmed the data were not autocorrelated. 

Despite the difference in the magnitude of the two time series, both products show a statistically significant decreasing trend 390 

for fire years 2003 through 2019. Figure S2 highlights the annual global burned area and trends excluding Africa. Africa 

accounts for ~6770% of the global burned area within all land cover types (Giglio et al., 2010; Zubkova et al., 2023), therefore, 

this fire-prone continent has a large impact on the globally-averaged burned area trend. However, within cropland, the burned 

area is predominantly within Africa (27%; GFED regions NHAF and SHAF) and Central Asia (25%; GFED region: CEAS). 

Removing Africa from the analysis, shows a minor adjustment in the overall burned area trends. However, the year-to-year 395 

variability in the MCD12Q1 land cover product cropland classes, especially in Africa (e.g., Wei et al., 2020), will have an 

impact on the burned area trend that is unrelated to the true burned area patterns (e.g., Verburg et al., 2011; Zubkova et al., 

2023). Additional uncertainties stem from the overall small field sizes within the regions with the majority of cropland burned 

area. Furthermore, given the limited availability of global crop type datasets, this analysis assumes crop types are constant. 

Therefore, caution is required when analyzing crop-type land-cover-specific burned area trends by also studying the underlying 400 

ancillary datasets within their area of interest to ensure any artificial signals are minimized. Figure S2 highlights the annual 

global burned area and trends excluding Africa. 

 

Although the globally-aggregated trend is consistent with several other broader studies (e.g., Andela et al., 2017; Arora & 

Melton, 2018) the heterogeneity within cropland regions is lost at the global scale. Therefore, a regional analysis was 405 

undertaken highlighting the differing seasonal cycles and overall annual trends within regional cropland areas (Figure 8). For 

example, northwest India shows a strong increasing trend and a distinct drop in burned area in the 2019 fire year (August 2019 
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– July 2020), which likely corresponded to a combination of the Covid-19 pandemic and the 2019 financial incentives (2,400 

rupees; $32 per acre) imposed by India’s Supreme Court to help reduce the stubble burning in the northern states (BBC, 2020; 

News, 2021). In contrast, other regions showed no significant trend. Partitioning the burned area estimates into smaller 410 

cropland regions further highlights the difficulty of applying trend lines to these data. For example, the oscillating time series 

in Ukraine and the abrupt decline in burning in European Russia since 2010 clearly fall outside the domain of a simple linear 

trend analysis (Figure 8).  

 

Assessing changes in annual cloud cover fraction provided evidence that none of the regional burned area trends were driven 415 

by trends in cloud cover or anomalous cloud cover at the beginning or end of the time series. While not a large effect, variations 

in cloud cover did contribute to the interannual variability in burned area, e.g., in European Russia (with an annual cloud 

fraction of 30% to 60% during the peak cropland burning months), in 2014 (Figure 9a, bottom) and 2019 (Figure 9b, bottom).  
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Figure 8: (a) Regional cropland monthly burned area (July 2002 – December 2020; Mha) and (b) cropland burned area by region-

specific fire year, with respective Theil-Sen estimator trend lines with 95% confidence. Note the difference in vertical axis scales. 

European Russia had a distinct change in burned area, therefore, the trend lines were subdivided into two periods: 2003 – 2010 (P1; 

red dashed line) and 2011 – 2020 (P2; blue dashed line). 425 
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It is beneficial to subdivide the trend analysis into crop harvest seasons when further information on the burning of predominant 

crop types (for that time period and geographic location) is warranted. Particular care is required when inferring local patterns 

with coarse-resolution global products such as GFED and MCD64A1 aggregated to a 0.25° climate modeling grid. Figure 9 430 

shows the differing magnitudes, spatial patterns, and trends within the contiguous cropland regions of the United States and 

European Russia for two periods approximately representing the predominant spring and fall burning seasons: January – June 

and July – December. It is clear that the “decreasing trend” in European Russia is driven by the distinct change in the summer 

(predominantly winter wheat) burning season compared to the spring burning season (predominantly spring wheat). This 

distinct change in burning in 2010 is likely caused by i) the agricultural machinery deficit between 1990 and 2010, which in 435 

turn drove a widespread need to remove crop residue from the fields after harvest prior to 2010 (Sidorenko et al., 2017), ii) the 

rise in agro-holdings (i.e., corporate farms) since the early 2000s that led to large parcels of cropped land no longer being 

burned and instead efficiently managed with new machinery (Rada et al., 2017), and iii) the widespread administrative and 

legal action banning open burning (e.g., Decree of the Government of the Russian Federation of November 20, 2015, no. 1213; 

http://government.ru/docs/20511/) after the devastating 2010 fires (Bondur et al., 2020; Loboda et al., 2017). Figure 8 also 440 

shows the seasonal interannual variability within the contiguous U.S. summer/fall cropland burned area (predominantly post-

harvest burning) compared to the relatively stable burning pattern within the springtime burning seasons (predominantly pre-

planting burning). 

 

 445 
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Figure 9: (a) January – June and (b) July – December cropland burned area time series (grey bars), burned area trends (blue and 

red lines), and burning-season mean cloud fraction (black lines) for the Contiguous United States (top) and European Russia 

(bottom). The fire year for the contiguous USA and European Russia runs from January to December. European Russia had a 450 
distinct change in burned area, therefore, the trend lines were subdivided into two periods: 2003 – 2010 (P1; red dashed line) and 

2011 – 2020 (P2; blue dashed line). 

5 Caveats and Limitations 

Several caveats and limitations apply to the input datasets and our methodology. First, this study uses static crop-type maps. 

Higher-resolution, annual crop-type global maps once they become available (e.g., the 30-m Cropland Data Layer for the 455 

United States) will improve the identification of cropland areas, including those with either double cropping or crop-rotation 

practices. For this initial version, the GEOGLAM crop-type maps (https://cropmonitor.org/) were chosen as they are widely 

used by multiple international humanitarian, government, academic, and research partners and created using the best available 

data with involvement from local partners within each country (Becker-Reshef et al., 2020; Whitcraft et al., 2019). More 

accurate and dynamic land-cover data and agricultural-specific maps will help differentiate between field (cropland) and non-460 

field agricultural burning and applying suitable conversion factors and methodologies to each. Further, including a more 

adaptable partitioning of the crop calendar (i.e., the peak month analysis windows) alongside a more dynamic approach that 

can adapt to changes in the cropping calendars over time will further refine these results. 

 

Secondly, our results are influenced by the choice of land cover product used as a base cropland extent. While MCD12Q1 was 465 

selected since it offers yearly global land cover maps, its coarse resolution might limit the overall accuracy of the estimated 

cropland burned area, especially within regions where agricultural fields are smaller than MODIS pixel size (500m). 
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Inconsistencies between cropland extents based on various global land cover products in Africa were reported by Zubkova et 

al. (2023), demonstrating substantial variations in spatial distribution and year-to-year variability. An analysis of springtime 

burned area in Russia (Glushkov et al., 2021) also highlighted the variability in burned area by land cover class when 470 

comparing three separate global land cover products of varying spatial resolutions. Therefore, the availability of higher-

resolution yearly land cover products in the future can enhance the proposed methodology, however, the accuracy of those 

input products will always be an underlying limitation. 

 

Third, initial analysis found the 22 reference regions did not provide sufficient sampling and required too many assumptions 475 

for application to the Terra-only period. Additional cropland burned area reference data are required (created using a consistent 

methodology that is appropriate for cropland burning) over a broader selection of burnable crop types and geographic domains, 

particularly within areas with predominantly small (average size within 22 reference regions = 0.37 km2) field sizes. Further, 

the cropland burned area reference data should also span additional years as farming practices change over time and farmers 

may alter their daily burn times, which could in turn alter the active fire signal. Unfortunately, high-resolution, daily 480 

PlanetScope imagery is only widely available from ~2016, as are Sentinel-2 data, thus alternate solutions are needed for the 

earlier years of the MODIS record. Finally, future work will extend the GloCAB dataset to the Terra-only period from 

November 2000 – June 2002. 

6 Data Availability 

GloCAB is comprised of lower (low) and upper (high) cropland burned area estimates per month between July 2002 and 485 

December 2020 (Hall et al., 2023). The monthly, 0.25° GloCAB burned area (units: km2) data are available as annual GeoTIFF 

stacks: 12 monthly layers per stack between 2003 and 2020 and 6 layers (July – December) for 2002. The preliminary GloCAB 

dataset is publically available on the open repository Zenodo (https://doi.org/10.5281/zenodo.7860452). 

7 Conclusions 

Our new GloCAB dataset provides a global cropland-focused burned area product (0.25°; monthly-time step). GloCAB’s 490 

specifications (0.25°; monthly-time step) were selected to match the forthcoming GFEDv5 product (Chen et al., in 

pressreview), as GloCAB will be the source of cropland burned area in the updated GFED product. However, GloCAB’s 

specifications are designed to be useful for other products and applications, and modifications to the methodology can be 

applied for specific case-studies. Using twenty exhaustively-mapped field-level reference regions within five countries, the 

effective burned area per MODIS active fire pixel (α) was calculated for several crop types that are generally associated with 495 

burning: winter wheat, spring wheat, maize, rice, sugarcane, and other/generic. Using these active-fire-to-burned-area 

conversion factors (Table 3), we generated lower (αL) and upper (αH) cropland burned area estimates per month between July 
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2002 and December 2020. With these data we found the lower-limit global annual cropland burned area (2003 – 2020) ranged 

between 64 Mha (2018) and 102 Mha (2008) with an average of 81Mha compared to an annual average of 32 Mha in the 

MCD64A1 Collection 6 product. This increase in annual mean burned area compared to MCD64A1 is unsurprising given the 500 

GloCAB product is specifically designed for cropland burning. Subdividing by crop type also highlighted the substantial 

contribution of winter wheat and maize to global cropland burned area. Our analysis also highlighted the heterogeneity within 

cropland regions and how burned area trends can be impacted depending on the area of interest, while also discussing the 

impacts of cloud cover on burned area totals.  

 505 

Finally, our next steps include gathering crop-specific emission factors and combustion efficiencies that will be applied to the 

monthly majority crop type data layers created in this study. This next step will illuminate the contribution of crop types to 

emissions as the proportion of emissions compared to burned area will vary by crop type. Despite the current limitations, this 

study set out to develop a crop-specific global burned area methodology that was grounded in high-quality reference data 

gathered for this unique fire type. Although burned area reference datasets have recently become available (e.g., Franquesa et 510 

al., 2020), they are either developed for non-cropland fires, or are sporadic/opportunistic-based on field-work, surveys, etc. 

(e.g., Liu et al., 2020; Hall et al., 2016) and are therefore not appropriate for this methodology. In general, cropland emissions 

are severely underestimated, primarily due to the omission errors within burned area products. Understanding the temporal 

and spatial patterns of emissions can help stakeholders identify regions for focused mitigation efforts; therefore, this global 

cropland burned area product is the first step towards improving global cropland burning emissions. 515 
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