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Comments from Reviewer #2: 

General comments: 

Long-term and accurate cropland monitoring is quite important for provisioning food 

security and environmental sustainability. This study developed an annual cropland 

dataset in China (CACD) from 1986 to 2021 by using a novel cost-effective annual 

cropland mapping framework that integrated time-series Landsat imagery. The authors 

have done a good job in training and validation dataset selection and annual cropland 

mapping. The accuracy assessment indicates that CACD has relatively high reliability. 

Comparisons between CACD and other cropland datasets show its improvements 

spatially. Overall, I think the CACD is a good annual cropland extent dataset with fine 

resolution. However, I still have some concerns about the methods and results analysis 

and have been provided in the specific comments. 

> Thanks for your detailed assessment and positive comments. Based on your 

constructive suggestions, we have carefully revised our manuscript to better present the 

methods, results, and discussion. Please find our point-by-point responses to your 

specific comments below. 

 

Specific comments: 

1. Lines 61-64. You listed two crop type data (i.e., NASS-CDL, European Union 10 m 

crop type map) and introduced the research gap, but your dataset also does not include 

the crop type information and making readers a little disappointed. Meanwhile, I can’t 

agree with “To date, no fine resolution annual cropland dataset of China exists yet”. In 

your literature review, Yang and Huang (2021) developed the 30 m annual land cover 

dataset in China (CLUD) from 1990 to 2019. There are no essential differences between 

cropland in this study and cropland from CLUD, because your dataset also doesn’t 

include the crop type information. 

> Thank you for your comment. We acknowledge the significance and complexity of 

crop type mapping, and we are actively engaged in addressing this issue, as highlighted 

in the Discussion section of the revised manuscript (Lines 415-417). To achieve it, 

however, one pre-request is to precisely delineate the spatial-temporal distributions of 

cropland, which constitutes the primary focus of our research. While the CLCD datasets 

offered by Yang and Huang (2021) did encompass cropland, our assessment indicated 

that its cropland classification accuracy was comparatively lower than ours (Fig. 5 in 

the manuscript). Additionally, we observed an overestimation of cropland area in the 

CLCD dataset (Fig. 8). To bolster the credibility of our findings, especially in capturing 

dynamic cropland changes, we showed multi-year Landsat images and corresponding 

cropland classification maps of different datasets in Chengdu, Sichuan Province (Fig. 

R1). This region, once a traditional agricultural area until 2016, experienced significant 

losses of croplands for airport construction. Our datasets distinctly identified these 

transformations, whereas both CLCD and CLUD datasets fell short. This is a simple 

illustrative example, yet we have found many similar cases during evaluation (see 

supplementary materials Figs. S12-16). Several key factors contributed to these 

disparities. On the one hand, our methodologies were specifically tailored for annual 

cropland mapping, whereas products like CLCD and CLUD encompass a broader 
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spectrum of land cover types. In their results, croplands were sometimes misclassified 

as other vegetative cover types. On the other hand, the definition of cropland varied 

among products. In summary, precise knowledge of where and when croplands are 

distributed holds paramount importance for subsequent applications like crop type 

classification. Although existing land cover products may partially address this, they 

still present limitations and challenges. Therefore, thematic mapping, as exemplified in 

our study and as many studies on forests (Hansen et al., 2013), water body (Pekel et al., 

2016), impervious surfaces (Gong et al., 2020) have been done, remains imperative to 

enrich our understanding of the Earth's landscape. 

 

  

Figure R1. Comparisons of Landsat images and cropland products across years in 

Chengdu, Sichuan, with cropland shown in white and non-cropland shown in black. All 

the figures are generated using © Google Earth Engine. 
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2. Lines 103. “The aim of this study is to propose a novel paradigm for large-scale fine-

resolution cropland dynamics monitoring.” I think the paradigm is not very innovative. 

A study titled “Forest management in southern China generates short term extensive 

carbon sequestration” applied a similar framework to analyze the forest dynamics. You 

two used the same methods: RF-based probability prediction of cropland or forest, and 

LandTrendr-based segmentation. 

> We generously appreciate your insight into the innovation within our methodology. 

Our core advancement lies in the seamless integration of advanced techniques, 

including automatic training sample generation, RF-based probability prediction, 

LandTrendr-based segmentation, rule-based annual cropland discrimination, and post-

classification. While we did not develop these methods individually, their collective 

application, attuned to the specific traits of agricultural landscape in China, stands as a 

pivotal innovation. Furthermore, we conducted thorough experiments in study area 

division, sample design, and parameter testing. These seemingly small yet highly 

nuanced aspects have played a decisive role in the triumph of our novel paradigm for 

mapping annual cropland dynamics. We firmly believe that our results and insights will 

significantly contribute to future mapping endeavors in similar domains. By 

emphasizing these unique elements, we thus convey the innovative aspects of our study 

and distinguish it from previous work such as forest dynamic analysis. In the Discussion 

section of the revised manuscript (Lines 378-396), we have reinforced our contributions 

to the literature, which can be summarized as follows: 

 

“This research introduces an integrated framework for monitoring annual cropland 

dynamics at the 30 m spatial resolution. Our methods offer several contributions to the 

existing literature. First, we leverage baseline land cover maps and the TWDTW 

discrimination algorithm to realize automated training sample generation. This 

eliminates the time-consuming and labor-costive process of traditional training sample 

collection, enabling cost-effective cropland mapping at large scales. Second, we adopt 

the random forest classifier for annual cropland probabilities estimation and then 

integrate time series of these probabilities as spectral metrics into LandTrendr for 

cropland trajectory modeling. The incorporation of machine learning and change 

detection techniques not only increases accuracy but also improves the spatial-

temporal consistency of classification results. Third, we establish a set of transition 

rules to convert the LandTrendr fitting results to pixel-wise annual cropland types, 

which can capture various cropland use changes such as abandonment or fallow. This 

novel strategy is distinct from existing initiatives (Potapov et al., 2022; Dara et al., 

2018; Xu et al., 2018; Yin et al., 2020). Our results highlight the potential of change 



4 

 

detection algorithms like LandTrendr to complement traditional classification 

processes in identifying dynamic land cover changes effectively. 

In practice, we partitioned the study area into nine agricultural zones and performed 

localized annual cropland mapping within each 0.8°×0.8° subregion. We also 

evaluated the impacts of training sample size and LandTrendr parameter settings on 

classification accuracy. Localized classifications may greatly improve the accuracy in 

heterogeneous regions such as southern China. Our experiments provide valuable 

insights for future land cover and land use mapping endeavors. Moreover, we took 

advantage of the powerful data storage, computing, and analysis capabilities of GEE 

to build an end-to-end framework, which enables fast annual cropland mapping in any 

given area of interest worldwide. Theoretically, the proposed framework is highly 

adaptable and can be extended to map other land use types.” 

 

3. Lines 116-117. “Cropland in this study is defined as a piece of land of 0.09 ha in 

minimum (minimum width of 30 m) that is sowed/planted and harvestable at least once 

within the 12 months after the sowing or planting date.” The definition of cropland in 

this study differs from that in previous studies. The vegetation indices (e.g., NDVI, EVI) 

of cropland samplings in the training and validation dataset could reflect the planting 

or harvest signals. Thus, statistics of vegetation indices variations during the growth 

period of the samples could improve the reliability rather than depending on visual 

interpretation only. Additionally, how do you exclude the sugarcane plantation and 

cassava crop in the training and validation samples? What’s the difference of spectral 

signals between sugarcane plantation/cassava crop and other crops? 

> Thanks for pointing out these issues. We would like to reiterate the definition of our 

annual cropland, which is defined as a piece of land of 0.25 ha in minimum 

(minimum width of 30 m) that is sowed/planted and harvestable at least once 

within the 12 months after the sowing or planting date. This definition is established 

based on the widely accepted criteria set forth by the Joint Experiment of Crop 

Assessment and Monitoring (JECAM) (Defourny et al., 2014) and is consistent with 

the Food and Agriculture Organization’s (FAO) Land Cover Meta Language for 

cropland (Di Gregorio, 2005). The overarching objective of JECAM is to achieve 

consensus on methodologies, establish monitoring and reporting protocols, and 

promote best practices for a diverse range of global agricultural systems (Waldner et al., 

2016). Over the past few years, this definition has been applied in various mapping 

endeavors, particularly in annual cropland mapping (Matton et al., 2015; Jolivot et al., 

2021; Zhang and Wu, 2022). We believe that employing this definition enables the 

global agricultural monitoring community to compare results based on disparate 

sources of data, using various methods, across a variety of global cropping systems. 

 

As you rightly emphasized, the temporal variations in vegetation indices throughout the 

growth cycle serve as crucial indicators for cropland identification, and we do take this 

aspect into consideration during the sample collection process. Our developed Cropland 

Inspector Tool not only provides visual access to Landsat images across different 

periods but also presents the time-series NDVI trends for a given area of interest. Within 
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this framework, a pivotal criterion for discerning annual cropland is that its vegetation 

signals must demonstrate noticeable variations over a 12-month span, mirroring the 

planting and harvesting activities. Samples failing to meet this criterion are not 

categorized as cropland in our research. 

 

Regarding your raised concern about sugarcane plantations and cassava crops, we have 

included several examples in Fig. R2. It is evident that while the signals of sugarcane 

and cassava also exhibit periodic changes, they do not consistently demonstrate obvious 

planting and harvesting variations within a year (red circles in Fig. R2b-c), as is typical 

for general crops. This is attributed to their perennial nature. Therefore, in such cases, 

we do not classify them as cropland. 

 

Taking together, we have highlighted our definition of annual cropland in the revised 

manuscript Section 2 (Lines 116-127) and incorporated Fig. R2 to the supplementary 

materials Fig. S1. It now stands as follows: 

 

“Annual cropland in this study is defined as a piece of land of 0.25 ha in minimum 

(minimum width of 30 m) that is sowed/planted and harvestable at least once within the 

12 months after the sowing or planting date. This definition aligns with the criteria 

established by the Joint Experiment of Crop Assessment and Monitoring (JECAM) 

network (Defourny et al., 2014) and adopts a shared scope of cropland that meets FAO’s 

Land Cover Meta Language (Di Gregorio, 2005). One crucial criterion for discerning 

annual cropland in this study is that its vegetation signals in remote sensing imagery 

must demonstrate noticeable variations over a 12-month period, reflecting the planting 

and harvesting activities (Fig. S1a). Consequently, certain exceptions are excluded in 

the definition of annual cropland: (1) Perennial crops like sugarcane and cassava, 

which have longer vegetation cycles and are not planted annually (Fig. S1b-c). 

However, if they are planted and harvested within a 12-month timeframe, we would 

consider them as croplands for that specific year. (2) Fruit, tea, and coffee plantations, 

as their vegetation signals more closely resemble those of trees (Fig. S1d-f). (3) 

Greenhouse crops, as they exhibit distinct remote sensing characteristics compared to 

other cropland types (Fig. S1g). (4) Small plots such as legumes that do not meet the 

minimum size criteria of cropland.” 
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Figure R2. Comparisons of satellite images and NDVI time series between annual 

cropland defined in this study and other crops. (a) Rice fields in Hengyang, Hunan. (b) 

Sugarcane plantation in Zhanjiang, Guangdong. (c) Cassava crops in Nanning, Guangxi. 

(d) Citrus trees in Ganzhou, Jiangxi. (e) Tea gardens in Wuyishan, Fujian. (f) Coffee 

trees in Pu’er, Yunnan. (g) Recent greenhouse construction in Ningbo, Zhejiang. All the 

figures are generated using © Google Earth Engine. 
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4. Lines 146-147. As you said, “The threshold value was set following 

recommendations by Ghorbanian et al. (2020)”. But I didn’t find a threshold table to 

show the difference among the nine agricultural zones. In each subregion, ~800 training 

samples were used. So, how many cropland and non-cropland samples are there in each 

subregion? 

> Thank you for pointing out this issue. The threshold mentioned here corresponds to 

20% following Ghorbanian et al. (2020). In practical terms, we generated a pool of 

4000 potential samples from the intersected area of CLCD and CLUD datasets for each 

0.8°×0.8° subregion. From this pool, we selected and retained 800 samples (20%) with 

the lowest dissimilarity value compared to the referencing set. This underscores our use 

of an areal-proportional allocation-based sampling strategy - a common method (Huang 

et al., 2002; Jin et al., 2014; Zhang et al., 2023) in land cover mapping initiatives. 

However, it is worth noting that in the application of areal-proportional sampling, rare 

land-cover types may have smaller sample sizes and may consequently be 

underrepresented, leading to their poor classification performance. To mitigate this, Zhu 

et al. (2016) recommended a minimum sample size of 600 for rare land-cover types. A 

recent study also used this parameter for sample balancing in global annual land cover 

mapping within each 5°×5° geographical tile (Zhang et al., 2023). Given that the 

subregion size in our research (0.8°×0.8°) is considerably smaller than that in Zhang's 

study (5°×5°), we established the minimum sample size as 100. This means that we 

initially generated 800 samples for each 0.8°×0.8° subregion including both cropland 

and non-cropland categories. If either category fell below the specified threshold, we 

increased it to a minimum of 100 samples. 
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We have revised the manuscript Section 2.1 (Lines 154-162) for a clearer explanation 

of our sample design, which is duplicated as follows: 

 

“In practice, we employed the widely adopted areal-proportional sampling strategy 

(Huang et al., 2002; Jin et al., 2014) for allocating both cropland and non-cropland 

samples. However, one limitation of this approach is that it can result in extremely small 

sample sizes for rare land-cover types in homogeneous landscapes. When these types 

are underrepresented in the samples, it may lead to subpar classification performance. 

To address this concern, Zhu et al. (2016) recommended a minimum sample size of 600 

for rare land-cover types. A recent study also applied this parameter for sample 

balancing in global annual land cover mapping within each 5°×5° geographical tile 

(Zhang et al., 2023). Given that the subregion size in our research (0.8°×0.8°) is 

significantly smaller than that in Zhang's study (5°×5°), we established the minimum 

sample size as 100. This means that we initially generated 800 samples for each 

0.8°×0.8° subregion, encompassing both cropland and non-cropland categories. If 

either category fell below the specified threshold, we increased it to a minimum of 100 

samples.” 
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5. Lines 176-207. I think these two steps are important for the final cropland layer. The 

authors give two examples (Figure 2 and Figure S2) to illustrate how the LandTrendr 

algorithm works. I think more examples should be given to prove the robustness of the 

cropland mapping method. For example, how cropland probabilities and vegetation 

indices changed when cropland was converted to urban/grassland/forest, and 

grassland/forest was reclaimed to cropland.  

> Thank you for your valuable suggestion. We have selected four regions, each 

representing a unique agricultural landscape, to exemplify dynamic cropland changes 

in CACD (Figs. R3-6). Specifically, these four regions denote scenarios of cropland to 
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urban land, cropland to forest, grass to cropland, and forest to cropland, respectively. In 

these cases, subfigure (a) displays the original Landsat images alongside corresponding 

high-resolution images sourced from Google Earth for selected regions spanning 

multiple years. Subfigure (b) presents the corresponding NDVI time series derived from 

all available Landsat data. Subfigure (c) provides comprehensive details, including the 

estimated cropland probabilities, LandTrendr segmentation results, and the final 

cropland mapping outcomes for the specific point of interest. These visualizations 

effectively demonstrate the accuracy and robustness of our proposed methodologies in 

discerning dynamic cropland changes across diverse agricultural landscapes. We have 

attached these examples and analyses to the supplementary materials Figs. S6-9, which 

we believe significantly enhance the comprehensiveness of our study. 

 

 

Figure R3. An illustration of cropland to urban land conversion in Chengdu, Sichuan. 

(a) Landsat and © Google Earth high-resolution images over time. (b) NDVI time series 

for the selected point of interest. (c) Estimated cropland probabilities, LandTrendr 

segmentations, and final mapping outcomes (green: cropland, white: non-cropland) for 

the selected point. All the Landsat images are freely provided by USGS. 
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Figure R4. An illustration of cropland to forest conversion in Yan’an, Shaanxi. (a) 

Landsat and © Google Earth high-resolution images over time. (b) NDVI time series 

for the selected point of interest. (c) Estimated cropland probabilities, LandTrendr 

segmentations, and final mapping outcomes (green: cropland, white: non-cropland) for 

the selected point. All the Landsat images are freely provided by USGS. 
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Figure R5. An illustration of grass to cropland conversion in Chifeng, Inner Mongolia. 

(a) Landsat and © Google Earth high-resolution images over time. (b) NDVI time series 

for the selected point of interest. (c) Estimated cropland probabilities, LandTrendr 

segmentations, and final mapping outcomes (green: cropland, white: non-cropland) for 

the selected point. All the Landsat images are freely provided by USGS. 
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Figure R6. An illustration of forest to cropland conversion in Shaoguan, Guangdong. 

(a) Landsat and © Google Earth high-resolution images over time. (b) NDVI time series 

for the selected point of interest. (c) Estimated cropland probabilities, LandTrendr 

segmentations, and final mapping outcomes (green: cropland, white: non-cropland) for 

the selected point. All the Landsat images are freely provided by USGS. 

 

6. Lines 217-218. A spatial-temporal consistency check approach proposed by Li et al. 

(2015) was applied to refine the annual cropland maps. I don’t think this consistency 

check algorithm can be used to cropland without any improvements. In Li et al. (2015), 

there is a very important assumption that “…the transition from urban to other land 

cover types is not likely and should be avoided… (Section 2.3.2 in Li et al. (2015))”. 

However, the conversion rule of cropland differs from urban land. More descriptions 

should be given if there are any improvements to this algorithm. 

> Thank you for bringing this to our attention. In Li’s study, the temporal consistency 

check approach consists of two major components: temporal filtering and logic 

reasoning. The strong assumption you mentioned was mainly considered in the latter 

one (“…the obtained sequence may not be logical, containing urban and non-urban 
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segments occurring alternatively. Therefore, the logical reasoning check was applied.”). 

However, our spatial-temporal consistency check approach was basically followed and 

modified from the temporal filtering method. Specifically, for each pixel i in year t, we 

calculated its spatial-temporal consistency probability Probi,t within the surrounding 

3×3×3 window: 

𝑃𝑟𝑜𝑏𝑖,𝑡 =
1

𝑁
∑ ∑ ∑ 𝐶𝑜𝑛(𝐿𝑖,𝑡 = 𝐿𝑗)

𝑛+1
𝑦=𝑛−1

𝑚+1
𝑥=𝑚−1

𝑡+1
𝑡′=𝑡−1 ,      (R1) 

where Li,t denotes the label of the target pixel i in year t, and Lj denotes the label of 

pixels in the neighborhood window. N signifies the total number of pixels (i.e., N=27), 

and x and y indicate the coordinates of pixel i within the window. The core of this 

approach is the consistency check function Con(), which equals 1 if Li,t = Lj, and 0 

otherwise. Here we employed the threshold of 0.5, as suggested by Li et al. (2015), to 

discern the label transition between cropland (1) and non-cropland (0): if Probi,t is less 

than 0.5, then the label of pixel i in year t is altered to the opposite category. 

 

In the revised manuscript, we have incorporated the above information into Section 2.6 

(Lines 231-239) for improved clarity. 

 

7. Lines 264-265. Why do western and southeastern coastal areas have relatively low 

accuracy (F1 score)? Some explanations should be given. Is it because the cropland in 

southeastern coastal areas more fragmented? 

> Thank you for proposing the point. The fragmentation of cropland does pose a huge 

challenge for accurate classification, particularly in the western and southeastern 

coastal areas. Recent studies have underscored notable discrepancies between products 

in these regions (Lu et al., 2016; Zhang et al., 2022; Xue et al., 2023). According to 

their results, factors such as intricate land use patterns, smallholder farming practices, 

and unique topographical features contribute to lower agreement levels. Therefore, it is 

imperative to conduct comprehensive investigations in these specific areas to improve 

mapping precision. We have emphasized this in the Discussion section of the revised 

manuscript (Lines 413-426), which is reiterated below:  

 

“A few limitations regarding methodology and data are included in the study. First, we 

track cropland dynamics on an annual basis but do not account for intra-annual 

variations in crops, such as different crop calendars and cropping intensity. 

Consequently, our results may not be effective in identifying perennial crops. Second, 

we depict the general extent of croplands but do not differentiate specific types. This 

becomes essential when evaluating yields or climate responses of different crops. 

Future work needs to explore advanced methods for fine-resolution crop types mapping. 

Third, despite the high accuracy, CACD is subject to several levels of uncertainty. 

Temporally, CACD has a relatively low accuracy before 2000, given the uneven 

coverage of Landsat 5 data. Spatially, mapping accuracy varied across different 

regions, where the western and southeastern coastal areas have a comparatively high 

error compared to others. Accurately classifying cropland in these regions has 

consistently been challenging, with recent research highlighting significant 



14 

 

discrepancies between products (Lu et al., 2016; Zhang et al., 2022b; Xue et al., 2023). 

This challenge stems from characteristics of local topography and landscapes, 

including factors like elevation, slope, field size, and farmland fragmentation (Lu et al., 

2016; Zhang et al., 2022b; Xue et al., 2023). Besides, the low quality of Landsat data 

(e.g., unmasked clouds), as well as the sensitivity of LandTrendr parameters, further 

constitute the influence on mapping outcomes. Looking ahead, it is crucial to embark 

on comprehensive investigations and formulate targeted adaptation strategies to 

enhance the accuracy of cropland classification in these specific areas.” 
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8. Line 316. “Additionally, cropland areas in some inland provinces (such as Guizhou) 

remained rather stable.” The area of Guizhou province should be rechecked. As I know, 

Guizhou is the core area of ecological restoration projects of the karst region. Cropland 

was converted into forest (Yue et al., 2020, Landscape Ecology). 

> Thank you for your suggestion. We have acquired statistics on provincial farmland 

area from the Guizhou Statistical Yearbook, covering years as those mentioned in the 

reference paper (i.e., 2005-2016). We then compared the data with the cropland area 

calculated from the five products (Fig. R7). Our analysis reveals that neither the 

statistical data nor the remote sensing products show significant fluctuations in 

cropland area in Guizhou Province. Therefore, our initial discussion remains unbiased. 

While the issue of ecological restoration in the Karst region that you mentioned is 

indeed valid, it's worth noting that this perspective focuses solely on the loss of cropland, 

without accounting for its expansion. Additionally, differences in the definition of 

cropland and other relevant factors may have contributed to the misunderstanding in 

this context. We greatly appreciate your attention to this matter and value the 

opportunity to clarify it. 
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Figure R7. Cropland area comparison of Guizhou province among the five cropland 

products and official statistics. 

 

9. Lines 328-330. “In the Ar Horqin Banner of Chifeng city, Inner Mongolia, large-

scale croplands were developed for pasture reclamation and cultivation during the past 

decades”. It should be noted that pasture is a type of grassland rather than crops. 

> Thank you for your observation. We re-examined the site and confirmed that the 

dominant crop type was indeed alfalfa, an important forage source for grassland 

agricultural development. As a perennial legume, alfalfa is extensively cultivated in 

Northern China for its high-quality forage, serving as crucial feed for livestock, 

especially dairy cattle and horses (Wang et al., 2022; Du et al., 2023). As shown in Fig. 

R5, remote sensing signals of alfalfa are notably distinct from those of pasture. In the 

revised manuscript Section 4.1 (Lines 350-351), we have rectified it as follows: 

 

“In the Ar Horqin Banner of Chifeng city, Inner Mongolia, large-scale croplands were 

developed for the reclamation and cultivation of crops over the past few decades.” 

 

References 

Du, G., Wang, X., Wang, J., Liu, Y., and Zhang, H.: Analysis of the 

Spatial&ndash;Temporal Pattern of the Newly Increased Cultivated Land and Its 

Vulnerability in Northeast China, Land, 12, 10.3390/land12040796, 2023. 

Wang, R., Shi, F., and Xu, D.: The Extraction Method of Alfalfa (Medicago sativa L.) 

Mapping Using Different Remote Sensing Data Sources Based on Vegetation 

Growth Properties, Land, 11, 10.3390/land11111996, 2022. 

 

“Similarly, vast agricultural land parcels sprang up in Aksu, Xinjiang for cotton 

cultivation.” The newly developed dataset doesn’t include crop type information, how 

do you get this conclusion? Some studies about cotton expansion in Xinjiang Province 

should be cited to support your conclusion. 
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> Thank you for your suggestion. We have included two references (Li et al., 2021; Liu, 

2022) to substantiate our statement. 

 

References 

Li, Q., Liu, G., and Chen, W.: Toward a Simple and Generic Approach for Identifying 

Multi-Year Cotton Cropping Patterns Using Landsat and Sentinel-2 Time Series, 

Remote Sensing, 13, 10.3390/rs13245183, 2021. 

Liu, G.: Understanding cotton cultivation dynamics in Aksu Oases (NW China) by 

reconstructing change trajectories using multi-temporal Landsat and Sentinel-2 

data, Geocarto International, 37, 4406-4424, 2022. 

 

10. Lines 336-354. In this part, the authors give much information about cropland 

abandonment in China. The newly developed shows the cropland loss in the Loess 

Plateau and Beijing–Tianjin Sand Source Control Project zone (Figure 11). However, 

there is only a little analysis about the cause of cropland abandonment or cropland loss. 

For example, cropland loss is mainly driven by the “Grain for Green” ecological project 

in Shanxi and Inner Mongolia. Cropland abandonment is also affected by factors such 

as lack of labor and low income (Zhang et al., 2019, Acta Geography Sinica). 

> We appreciate your diligent review. In the past, due to limited high-resolution data 

and efficient algorithms, detecting and monitoring cropland abandonment remained 

challenging and was often conducted at a regional scale (Dara et al., 2018; Yin et al., 

2018; Yin et al., 2020). With the advent of CACD, characterized by its high spatial-

temporal resolution and comprehensive coverage, we now possess a powerful tool to 

analyze the spatial-temporal changes of cropland abandonment in China. Our results 

revealed that approximately 419,342 km2 (17.57%) of croplands were abandoned 

during 1990-2015, with the central and western regions experiencing the most 

significant abandonment. These findings are in consonance with those of Li et al. (2018), 

who estimated provincial cropland abandonment areas based on statistical data. This 

serves as a compelling example of utilizing CACD in various applications. Going 

further, we cannot only investigate the driving forces behind China's cropland 

abandonment but also assess the impacts of abandonment on ecosystem service and 

biodiversity, all of which have garnered significant interest in the scientific community 

(Daskalova and Kamp, 2023; Crawford Christopher et al.). Given that this paper is a 

data description article, our primary focus lies in data production and validation. 

While we acknowledge the importance of understanding the cause of cropland 

abandonment or cropland loss, more in-depth analyses are expected to be conducted in 

the future. We have emphasized this in the Discussion section of the revised manuscript 

(Lines 397-411), which is duplicated as follows: 

 

“Based on the aforementioned mapping scheme, we produced the first 30-m annual 

cropland maps of China for the period 1986-2021. The accuracy of the dataset was 

validated through three independent validation sample sets and multi-perspective 

comparisons with other products. The CACD dataset is a valuable contribution to the 

field of agriculture and land use management in China. Its accuracy and high-



17 

 

resolution information provide insights into the changing dynamics of cropland use 

over time, helping inform policymakers and stakeholders in developing sustainable 

land use practices. Our subsequent analyses with CACD revealed a dramatic but 

heterogeneous change in cropland dynamics in China, with over a third of croplands 

experiencing at least one change of land use during the study period. Furthermore, we 

identified a total of 419,342 km2 (17.57%) of abandoned croplands from 1990 to 2015, 

mostly located in the central and western mountainous areas. With the ability to detect 

cropland abandonment patterns, targeted interventions can be implemented to bring 

abandoned land back into use, promoting food security and protecting arable land 

resources. Further efforts can also be directed towards scrutinizing the underlying 

driving forces of cropland abandonment as well as assessing its impacts on ecosystem 

service and biodiversity. Additionally, CACD can be utilized to conduct agriculture-

related studies, such as analyzing crop yield and productivity, assessing the impact of 

climate change on crop growth, and monitoring land use changes over time. Overall, 

CACD represents a powerful tool for promoting sustainable agriculture practices and 

ensuring the long-term availability of arable land resources in China.” 

 

References 

Crawford Christopher, L., Yin, H., Radeloff Volker, C., and Wilcove David, S.: Rural 

land abandonment is too ephemeral to provide major benefits for biodiversity 

and climate, Science Advances, 8, eabm8999, 2022. 

Dara, A., Baumann, M., Kuemmerle, T., Pflugmacher, D., Rabe, A., Griffiths, P., 

Hölzel, N., Kamp, J., Freitag, M., and Hostert, P.: Mapping the timing of 

cropland abandonment and recultivation in northern Kazakhstan using annual 

Landsat time series, Remote Sensing of Environment, 213, 49-60, 

https://doi.org/10.1016/j.rse.2018.05.005, 2018. 

Daskalova, G. N. and Kamp, J.: Abandoning land transforms biodiversity, Science, 

380, 581-583, 10.1126/science.adf1099, 2023. 

Li, S., Li, X., Sun, L., Cao, G., Fischer, G., and Tramberend, S.: An estimation of the 

extent of cropland abandonment in mountainous regions of China, Land 

Degradation & Development, 29, 1327-1342, 2018. 

Yin, H., Prishchepov, A. V., Kuemmerle, T., Bleyhl, B., Buchner, J., and Radeloff, V. 

C.: Mapping agricultural land abandonment from spatial and temporal 

segmentation of Landsat time series, Remote Sensing of Environment, 210, 12-

24, https://doi.org/10.1016/j.rse.2018.02.050, 2018. 

Yin, H., Brandão, A., Buchner, J., Helmers, D., Iuliano, B. G., Kimambo, N. E., 

Lewińska, K. E., Razenkova, E., Rizayeva, A., Rogova, N., Spawn, S. A., Xie, 

Y., and Radeloff, V. C.: Monitoring cropland abandonment with Landsat time 

series, Remote Sensing of Environment, 246, 111873, 2020. 

 

11. Figure 3. The cropland and non-cropland samples could be symbolized with 

different colors 

> Many thanks. We have revised the figure symbology for a better visual distinction. 
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12. Figure 9. The title of the legend is a little weird. “Loss area” should be “Area change” 

or “Cropland area change”. Additionally, this figure only shows the net change of 

cropland area. When comparing the total area of cropland gain (increase) and loss 

during the period, the spatial shift of cropland will be more significant. 

> Thank you for your valuable feedback. The legend title of Fig. 9 in the revised 

manuscript has been updated as “Area change”. The CACD dataset has now been 

published in a free data repository (Tu et al., 2023), allowing users to explore regions 

of their interest. Furthermore, we have generated an online visualization platform using 

CACD to show the spatial-temporal changes of cropland in China from 1986 to 2021, 

which can be accessed through the following link: 

https://thutyecology.users.earthengine.app/view/cacd-viewer. 
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