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Abstract  18 

Evaporation (ET) is one of the crucial components of the water cycle, which serves as the nexus between global water, energy, 19 

and carbon cycles. Accurate quantification of ET is, therefore, pivotal in understanding various earth system processes and 20 

subsequent societal applications. The prevailing approaches for ET retrievals are either limited in spatiotemporal coverage or 21 

largely influenced by the choice of input data or simplified model physics, or a combination thereof. Here, using an independent 22 

mass conservation approach, we develop water balance-based ET datasets (ET-WB) for the global land and the selected 168 23 

major river basins. We generate 4669 probabilistic unique combinations of the ET-WB leveraging multi-source datasets (23 24 

precipitation, 29 runoff, and 7 storage change datasets) from satellite products, in-situ measurements, reanalysis, and 25 

hydrological simulations. We compare our results with the four auxiliary global ET datasets and previous regional studies, 26 

followed by a rigorous discussion of the uncertainties, their possible sources, and potential ways to constrain them. The 27 

seasonal cycle of global ET-WB possesses a unimodal distribution with the highest (median value: 65.61 mm/month) and 28 

lowest (median value: 36.11 mm/month) values in July and January, respectively, with the spread range of roughly ±10 29 

mm/month from different subsets of the ensemble. Auxiliary ET products illustrate similar intra-annual characteristics with 30 

some over/under-estimation, which are completely within the range of the ET-WB ensemble. We found a gradual increase in 31 

global ET-WB from 2003 to 2010 and a subsequent decrease during 2010-2015, followed by a sharper reduction in the 32 

remaining years primarily attributed to the varying precipitation. Multiple statistical metrics show reasonably good accuracy 33 
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of monthly ET-WB (e.g., a relative bias of ±20%) in most river basins, which ameliorates at annual scales. The long-term 34 

mean annual ET-WB varies within 500-600 mm/yr and is consistent with the four auxiliary ET products (543-569 mm/yr). 35 

Observed trend estimates, though regionally divergent, are evidence of the increasing ET in a warming climate. The current 36 

dataset will likely be useful for several scientific assessments centering around water resources management to benefit society 37 

at large. The dataset is publicly available in various formats (NetCDF, Mat, and Shapefile) at 38 

https://doi.org/10.5281/zenodo.8339655 (Xiong et al., 2023).    39 

 40 

1 Introduction 41 

Land evaporation (ET), the total amount of water evaporating from the land surface to the atmosphere, is a crucial component 42 

of the terrestrial water cycle (Rodell et al., 2015; Wang and Dickinson, 2012). It includes the water evaporating from the bare 43 

soil, open water bodies, canopy-intercepted precipitation, sublimation, and transpiration from the plant stomata (Miralles et 44 

al., 2020). Since the global ET returns about two-thirds of the land precipitation back to the atmosphere, it sustains the water 45 

cycle by providing the moisture supply for precipitation and directly affects the partitioning of the Earth’s surface heat fluxes 46 

and subsequent heating and cooling effects (Good et al., 2015; Koster et al., 2004; Oki and Kanae, 2006). Thus, ET links the 47 

Earth’s surface and the atmosphere and acts as the key element for the interconnected global water, energy, and carbon cycles 48 

(Jung et al., 2010). Accurate quantification of ET is, therefore, imperative for studying the water cycle changes, freshwater 49 

availability and demand, weather and climate dynamics, earth system processes, and surface energy budget closures. However, 50 

ET is poorly constrained, especially at large scales compared to the other components of the water cycle (Syed et al., 2010; 51 

Jasechko et al., 2013; Chandanpurkar et al., 2017), which may become more uncertain with an intensifying hydrological cycle 52 

under a warming climate. To this end, the trends and variability of the global ET fluxes still remain contested (Dong and Dai, 53 

2017; Fisher et al., 2017; Pascolini-Campbell et al., 2020).  54 

Over the past few decades, ET-based science has advanced significantly across scales from leaf to global scales 55 

(Fisher et al., 2017). Several ET products derived from the data-driven and data assimilation methods, satellite observations, 56 

and simulations from the physically or empirically based land surface models have been developed (Long et al., 2014; Liu et 57 

al., 2016); a community effort that is still ongoing (Miralles et al., 2016). These ET products are dedicated to minimizing the 58 

existing shortcomings stemming from varying spatiotemporal scales and are tailored to specific forcing variables (Miralles et 59 

al., 2016). For example, Moderate Resolution Imaging Spectroradiometer (MODIS) ET data provides regular 1 km2 land 60 

surface ET over 109.03 million km2 of global vegetated land areas at 8-day, monthly and annual intervals (Mu et al., 2011). 61 

Also, recent deep learning-based methods have shown an enhanced ability for global ET estimation when compared against 62 

proxy estimates from satellite observations and sparse in-situ data (Koppa et al., 2022). Despite the large spatial and temporal 63 

scale ET retrievals, all of these datasets inherently possess several uncertainties originating either from the forcing datasets or 64 

propagated (and amplified at times) uncertainty through the varying model structures or a combination thereof. For example, 65 
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accurate estimations of ET utilizing the land surface temperature (LST) or other satellite optical and thermal observations need 66 

clear skies and hence are limited in temporal coverage due to the cloud cover issues (Long et al., 2014; Wang and Dickinson, 67 

2012; Yang and Shang, 2013). Similarly, the mismatch between the spatial scales of the forcing data and the vegetation data, 68 

in the case of the Normalized Difference Vegetation Index-based ET products, can result in large uncertainties (Yang et al., 69 

2013).  70 

Owing to all these uncertainties associated with the different methodological approaches, model assumptions, and 71 

scaling issues, the resulting observed ET estimates and their future projections have huge variations from product to product 72 

(Liu et al., 2016; Wang and Dickinson, 2012; Wang et al., 2015). Such disparities generally impede selecting the most 73 

appropriate ET data and even make it contentious, at times, for their application in various hydrometeorological modeling 74 

studies, management, and policymaking frameworks, among others. Moreover, the traditional estimations and the standards 75 

for the validation of ET solely from ground-based measurements from, for example, lysimeters and eddy covariance flux 76 

towers, are also insufficient for larger basin-scale evaluations because of the sparsely distributed network (Pascolini-Campbell 77 

et al., 2020; Wang and Dickinson, 2012). Such limited point observations can further lead to high spatiotemporal heterogeneity 78 

variability in the ET, suffering mainly from the uncertainties arising from the data gap filling and upscaling beyond their 79 

representative local areas (Liu et al., 2016; Pascolini-Campbell et al., 2020). Therefore, in the context of a changing climate 80 

and continually intensifying human activities, the paramount importance of ET in global and regional water cycles and 81 

associated land-atmosphere interactions fosters the need and underscores the importance of independent, large-scale, and 82 

better-constrained ET estimates.  83 

Since the multifaceted variable, ET, is difficult to measure from space or from in-situ records directly, it has to be 84 

derived through the physically driven models incorporating a variety of controlling atmospheric, radiative, and vegetative 85 

factors (Fisher et al., 2017). However, the recent advancement in mapping the other components of the water cycle, changes 86 

in the terrestrial water storage (TWS), in particular, has enabled an alternate assessment of ET at large basin scales, which 87 

often is the scale of interest in water resources management (Pascolini-Campbell et al., 2020). The Gravity Recovery And 88 

Climate Experiment (GRACE) and its successor GRACE Follow-On (both jointly referred to as GRACE hereafter) have 89 

provided the TWS (sum of all of the water storage components within a land mass) variations with unprecedented accuracy 90 

since 2002 (Tapley et al., 2004; Sneeuw et al., 2014; Rodell et al., 2018). When used in combination with the precipitation and 91 

runoff in a water balance equation, the changes in TWS can be used for an independent and mass conservation-based estimate 92 

of ET, which will be free from most of the above-mentioned shortcomings in the modeled, upscaled, or in-situ products (Rodell 93 

et al., 2004; Bhattarai et al., 2019). Moreover, the resulting ET will be better constrained since the GRACE inferred TWS 94 

contains the embedded signals of both the natural variability and the anthropogenic influences. The major limitation with 95 

GRACE TWS variations is, however, its coarse spatial resolution (Ramillien et al., 2006) which we take the edge off by 96 

limiting our analysis to the global land and major global basins.  97 
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Previous studies used the water balance approach that either relies on single constituent datasets (e.g., precipitation 98 

and/or runoff) (Gibson et al., 2019; Liu et al., 2016) or focuses on the regional scales (Castle et al., 2016; Pascolini-Campbell 99 

et al., 2020; Rodell et al., 2004; 2011; Swann et al., 2017; Wan et al., 2015). A few global studies (e.g., Liu et al., 2016; 100 

Miralles et al., 2016; Ramillien et al., 2006; Zeng et al., 2012; Lehmann et al., 2022) are limited either in terms of data used or 101 

in the temporal coverage. Here, we leverage a multitude of precipitation, runoff, and TWS changes (23, 29, and 7, respectively) 102 

datasets and employ the water balance approach to generate a total of 4669 subsets of ET during 2002-2021 for global land 103 

and major 168 river basins. We rigorously assess the uncertainty bounds of the resulting ET and also analyze the relationship 104 

with various attributes such as the basin area, climate (aridity index, AI), and human interventions (irrigation). This water 105 

balance approach checks global and basin scale ET given the spatial accumulation of errors in LSM- or RS-based ET products 106 

(Pascolini-Campbell et al., 2020). Given the ongoing controversy over the reliability of existing ET products, while in situ 107 

observation data are scarce (Douville et al., 2013; Zhang et al., 2016), the inter-comparison of mass-balance derived monthly 108 

ET ensemble estimates with several existing ET datasets provides a way to benchmark and improve the estimate of ET. We 109 

expect our product will be relevant for various scientific and societal applications, including the study of extreme events, water 110 

and carbon cycle, agricultural management, sea level budgeting, biodiversity assessments, global and regional hydrological 111 

cycle, water resources management, ecosystem resilience, and for improving weather predictions across scales.  112 

2 Methods 113 

2.1 Water balance equation 114 

The terrestrial water balance method was used to produce the ET-WB dataset. For a basin scale, it can be written as follows: 115 

𝐸𝑇 = 𝑃 − 𝛥𝑆 − 𝑅	 ± 	𝑊𝐷 (1)		 116 

where P is the basin-averaged precipitation, and R is the river flow or runoff going outside the basin. ΔS is the monthly storage 117 

change which is calculated as the backward difference of the terrestrial water storage (i.e., the changes in the month of 118 

calculation and the previous month), while different computation methods, such as the backward difference combined with a 119 

three-month running average might produce subtle difference (Long et al., 2014; Pascolini-Campbell et al., 2020). WD denotes 120 

the diverted water volume inside/outside the basin. All the water fluxes are on the monthly scale from May 2002 to December 121 

2021 and expressed in the unit of millimeters (mm/month) of equivalent water depth. WD is not considered in our study 122 

because the amplitude of the transferred water of most projects is generally small relative to other water components and/or 123 

directly flows outside the basin through the river channels. Therefore, the WD influences on the water balance ET estimations 124 

might be considered small, even for the 14 major existing projects located across the 168 studied basins from the Global Water 125 

Transfer Megaprojects depository (Shumilova et al., 2018) (Table S1). Although the terrestrial water balance method has been 126 

extensively applied in different river basins of the world (Rodell et al., 2004; Long et al., 2014; Li et al., 2019), a global 127 
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database is still lacking, and the systematic uncertainty, variation, and distribution also remain unexplored from a global 128 

perspective. 129 

We performed the calculation over the 168 major river basins of the world from the Global Runoff Data Centre 130 

(GRDC, https://www.bafg.de/GRDC/EN/Home/homepage_node.html) and the global land excluding Antarctic and Greenland 131 

(Fig. 1). These selected basins cover a wide range of climate conditions and human intervention with a minimum area of 132 

~64,000 km2, which is sufficiently large for the retrieval of TWSA from GRACE solutions at basin scale at least in the 133 

hydrology community (Vishwakarma et al., 2018). Apart from the terrestrial water balance, the atmospheric water balance 134 

also offers an effective alternative framework to estimate ET as it is also an important factor in the atmospheric water cycle, 135 

i.e., the residual precipitation, the horizontal divergence of the vapor flux, and the change in column water vapor. Although 136 

such an alternative estimation of ET from the independent atmospheric data can potentially supplement the water balance-137 

based ET (referred to as ‘ET-WB’ hereafter), this is outside the scope of our study.  138 

 139 

 140 
Figure 1: Location and attributes of the 168 studied river basins. The labeled numbers represent the basin ID. Please find further 141 
details in Table S2. The irrigation information is obtained from the latest version of the Food and Agricultural Organization (FAO) 142 
Global Map of Irrigated Areas (https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-143 
version/). The aridity index information is collected from the Version 3 of the Global Aridity Index and Potential Evapotranspiration 144 
Database (Zomer et al., 2022). The inserted pie chart indicates the percentage of irrigation area from different water sources to the 145 
basin area. The radii are proportional to the total percentage of the equipped irrigation area, which has been re-scaled using the 146 
natural logarithms after adding 10 to avoid negative (very small) values for better visualisation.  147 
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2.2 Evaluation metrics 148 

The ET-WB dataset was compared with multiple global ET products (see details in the Data 149 

section) at various temporal and spatial scales. Firstly, the comparisons were conducted 150 

at the monthly and annual time scales over global land and selected 168 river basins to 151 

investigate the sensitivity of the ET-WB performance using various evaluation metrics, 152 

including Pearson correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), root mean 153 

square error (RMSE), and relative bias (RB). They describe different aspects of ET-WB 154 

performance; for example, CC [-1,1] measures the linear correlation with auxiliary ET 155 

products, and NSE (≤1) determines the relative magnitude of residuals between 156 

observations and predictions relative to the variance of the former. RMSE (⩾0) quantifies the 157 

differences between ET-WB and other existing ET products, while it is not normalized and challenging to compare basins with 158 

different ET amplitudes. As such, the metric RB (can be negative or positive) is used to express the relative bias of ET-WB 159 

compared with other ET datasets over the period. Mathematically, these metrics are defined as follows: 160 

𝐶𝐶 =
∑(𝐸𝑇! − 𝐸𝑇3333!) ∙ (𝐸𝑇"# − 𝐸𝑇3333"#)

5∑(𝐸𝑇! − 𝐸𝑇3333!)$ ∙ 5∑(𝐸𝑇"# − 𝐸𝑇3333"#)$
(2) 161 

𝑁𝑆𝐸 = 1 −
∑(𝐸𝑇! − 𝐸𝑇"#)$

∑(𝐸𝑇! − 𝐸𝑇3333!)
$ (3) 162 

𝑅𝑀𝑆𝐸 = :;
∑(𝐸𝑇! − 𝐸𝑇"#)$

𝑛 = (4) 163 

𝑅𝐵 =
∑(𝐸𝑇𝑊𝐵−𝐸𝑇𝐺)

∑ 𝐸𝑇𝐺
∙ 100% (5)164 

where 𝐸𝑇! represents the auxiliary global ET products for comparison with the ET-WB, i.e., 𝐸𝑇"# in Equations 2-5. Secondly, 165 

further comparisons were performed at the level of long-term mean and trend, which were calculated using Sen’s slope method 166 

(Sen, 1968). Sen’s slope method can overcome the impacts of outliers on time series and can be more accurate than the 167 

traditional linear regression, especially for the heteroskedastic time series (Sen, 1968). Different temporal coverage of the 168 

auxiliary global ET datasets is considered, so only consistent periods with the ET-WB are used for calculations. 169 

2.3 Uncertainty estimation 170 

Uncertainty in ET-WB and its contributing variables (e.g., P) is quantified using different methods. Specifically, we estimated 171 

the uncertainty in various TWSA datasets from GRACE solutions and GHM as the residual after removing the long-term trend, 172 

interannual signals, and seasonal cycles based on the Seasonal and Trend decomposition using Loess (STL) method (Cleveland 173 
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et al., 1990). The STL method can robustly decompose the TWSA monthly time series into long-term, seasonal, and residual 174 

components, in which the long-term signal can be further separated as a long-term trend and the non-linear (interannual) signals 175 

(Cleveland et al., 1990; Scanlon et al., 2018; Vishwakarma et al., 2021) as: 176 

𝑆()(*+ = 𝑆+),-.(/01 + 𝑆2/*2),*+ + 𝑆0/2345*+ (6) 177 

where 𝑆()(*+is the original TWSA time series, 𝑆+),-.(/01 is the long-term components of time series consisting of the long-178 

term trend and the remaining interannual components, 𝑆2/*2),*+ is the seasonal cycle time series of  TWSA, and 𝑆0/2345*+ is 179 

the noise and/or other high-frequency (i.e., sub-seasonal) signals. Further, the uncertainty in ΔS was computed from the 180 

uncertainties in TWSA for back and forward months added in quadrature, followed by the determinations of the root mean 181 

squares (RMS) from different results (Long et al., 2014). However, a few studies also indicate that this method might 182 

overestimate the actual uncertainty as the residual temporal signals might contain real information (e.g., sub-seasonal signals) 183 

(Scanlon et al., 2018). For other water components, including P and R, we assumed the standard deviation (SD) across the 184 

ensemble as the uncertainties since we do not have the formal error budget for the multi-source global products from models, 185 

satellites, and field monitoring networks. Uncertainty in the auxiliary ET products used for comparison with ET-WB is also 186 

estimated using the SD method. It should be noted that the SD estimations may underestimate the actual uncertainty because 187 

of the inadequate number of datasets considered in our study. We took different strategies to estimate the uncertainty in ΔS 188 

and other variables because of the strong correlation of the selected GRACE solutions, which can lead to a very low SD among 189 

datasets. A similar situation can occur in R, where 23 out of 29 R datasets are from the G-RUN ensemble with similar 190 

algorithms (but with different meteorological forcing data). The SD of different auxiliary global ET products was also 191 

calculated for comparison, which can be written as: 192 

𝑆𝐷 = :∑(𝑋 − 𝑋
3)$

𝑛
(7) 193 

where X is the hydrological time series of different variables. Thus, we could estimate the uncertainty in the ET-WB by 194 

propagating the above uncertainties in quadrature with the assumption of independence and normal distribution among 195 

different water fluxes (Rodell et al., 2004): 196 

𝑈67."# = HIJ𝑈8$ +𝑈9$ +𝑈∆;$K
$ (8) 197 

where 𝑈8, 𝑈9, and 𝑈∆; are the estimated uncertainty for P, R, and ΔS on the monthly scale, respectively. We utilized the RMS 198 

to represent the average uncertainty over the whole study period as:	199 

𝑅𝑀𝑆 = :;
∑𝑌$

𝑛 = (9) 200 
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where Y denotes the monthly estimates of uncertainty in different variables (e.g., ET-WB). The relationships between 201 

uncertainty in ET-WB and basin area, climate condition (aridity), and human activities (irrigation) are also detected to 202 

thoroughly investigate the influential factors on the performance of ET-WB. 203 

3 Data 204 

Several criteria are applied to select the appropriate datasets for the development of ET-WB: (1) only the publicly available 205 

global datasets are chosen to increase the transparency and reproducibility of our study, (2) the temporal resolution should be 206 

equal to or smaller than one month, spanning at least from 2002 to 2014, (3) the spatial resolution should be finer than 2° to 207 

constrain the uncertainties over small river basins (~64,000 km2 for the minimum), and the spatial coverage should be 208 

(quasi-)global to reach most river basins. Alternative factors like the frequency of data updates (mostly are near-real-time and 209 

a few are yearly), the recognition in the community (some datasets not being widely used were excluded), and the data types 210 

(try taking more categories of datasets into account, e.g., satellite, modeling, reanalysis, and in-situ-based products) are also 211 

considered. As such, we used 23 P, 29 R, and 7 ΔS datasets to generate a total of 4669 subsets of ET-WB during May 2002-212 

December 2021 over 168 river basins and global land, excluding Greenland and Antarctica. We simultaneously selected the 213 

datasets belonging to the same series but with different versions, for example, GLDAS-v1/v2 and NCER/CFSR, because the 214 

older version (e.g., NCER/NCEP) is still updating, and the improvements of the newer version might not be significant and 215 

consistent over all the regions of the world (Qi et al., 2018, 2020). Despite this, it is acknowledged that it is impossible to 216 

consider all the existing datasets meeting the above inclusion criteria because the development of global datasets is advancing 217 

rapidly. All the selected datasets are provided on a grid cell scale and converted into basin-scale based on the changing area of 218 

grid cells over latitude. Hence the varying spatial resolutions of datasets do not require the up/down-scaling processes in our 219 

study. Moreover, most of the products are on a monthly time scale, consistent with the ET-WB estimations. A few daily 220 

datasets are aggregated into monthly time scales by taking the sum from the first to the last day of the certain month, which 221 

might cause some discrepancies with the GRACE solutions because the time sampling of GRACE products is not strictly 222 

distributed within a month (Tapley et al., 2004). As different datasets might have varying temporal and spatial coverage (Fig. 223 

2), the missing months in recent one or two years due to update latency, as well as the basins suffering from incomplete spatial 224 

coverage, are set as NA values. Only the overlapping period between ET-WB and four auxiliary ET products are extracted for 225 

comparisons, i.e., 2002-2014 for MODIS, 2002-2015 for FLUXCOM, 2002-2021 for GLEAM, and 2002-2016 for WGHM, 226 

respectively. Please find detailed information on the datasets used in our study in Table S3. A more intuitive work chain for 227 

the generation of ET-WB and the related data processing flow is presented in Fig.2. 228 

 229 
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 230 
Figure 2: Flowchart and the characteristics of the data sets in the study. Please see the data section for detailed descriptions of the 231 
various datasets. Numbers in the parentheses denote the number of the particular datasets used in our study.  232 

3.1 Precipitation 233 

As summarized in Table S3, 23 precipitation data sets from different sources were used as input for the water balance equation 234 

(Eq. 1). Three global datasets based on in-situ observations are collected, including the Climatic Research Unit Time Series 235 

(CRU TS) database, the Global Precipitation Climatology Centre (GPCC) project, and the unified suite from NOAA Climate 236 

Prediction Center (CPC Unified). They generally rely on the point-scale collections of rain gauges worldwide to interpolate 237 

the gridded global products. Specifically, the CRU TS dataset incorporates more than 10,000 gauge stations to derive the 238 
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monthly global gridded data since 1901 based on the angular-distance weighting method with an annual update (Harris et al., 239 

2020). The GPCC project contains the quality-controlled gauge measurements from approximately 67,200 stations worldwide 240 

with at least 10 uninterrupted years of available data and then interpolates and superimposes them on the final gridded product 241 

in the corresponding resolution (Schneider et al., 2020). The CRU TS and GPCC datasets have almost identical temporal 242 

coverage and resolution and mainly rely on national meteorological agencies and related international institutions like WMO 243 

and FAO. The CPC Unified dataset is constructed from over 30,000 rain gauges from Global Telecommunication System 244 

(GTS), Cooperative Observer Network (COOP), and other national and international institutions. The daily analysis is released 245 

on multiple spatial resolutions over the global domain from 1979 to the present (Chen and Xie, 2008). The main advantages 246 

of these gauge-based global datasets stem from their large historical records dating back to the beginning of the 20th century, 247 

high accuracy, and effective construction cost. However, they heavily suffer from inhomogeneous spatial distribution and 248 

substantial maintenance efforts, especially in developing regions with complicated topography like North Africa and Qinghai-249 

Tibetan Plateau. Therefore, the remote sensing technique has become a popular choice in learning global precipitation 250 

information in recent decades, which greatly improves precipitation measurement in ungauged and poorly gauged areas.  251 

Six remote sensing products have been collected to enrich our study, namely the Integrated Multi-Satellite Retrievals 252 

(IMERG) for Global Precipitation Measurement (GPM), Global Precipitation Climatology Project (GPCP), Precipitation 253 

Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record (PERSIANN-CDR), 254 

Tropical Rainfall Measuring Mission with 3B43 algorithm (TRMM 3B43), Global Satellite Mapping of Precipitation (GSMaP), 255 

and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). The TRMM 3B43 product algorithmically 256 

merges the microwave observations from multiple sensors, including precipitation radar and visible and infrared scanner (VIRS) 257 

loaded in the TRMM, which is a joint space satellite between NASA and Japan’s National Space Development Agency to 258 

monitor tropical and subtropical precipitation from 1997 to 2015 (Huffman et al., 2007). Then, the successor GPM mission, 259 

an international network of satellites carrying the first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) 260 

and a multi-channel GPM Microwave Imager (GMI), continued to provide the global precipitation data up to the present 261 

(Huffman et al., 2019). The IMERG algorithm can integrate all information from satellites constellation at a given time to 262 

estimate precipitation on the Earth’s surface. The satellite observations in the TRMM era were also re-processed using the 263 

IMERG algorithm to create long-term continuous records, but the production stopped at the end of 2019. The GSMaP is a 264 

blended satellite-based precipitation dataset from the passive microwave sensors in low Earth orbit and infrared radiometers 265 

in geostationary Earth orbit, which was developed by Japan Aerospace Exploration Agency (JAXA) and became the Japanese 266 

GPM standard product (Okamoto et al., 2005). The GSMaP product can distribute the global precipitation over the region from 267 

60° N to 60° S at a high spatial resolution of 0.1°×0.1°. In addition, the CHIRPS dataset, building on the ‘smart’ interpolation 268 

techniques and high resolution, long period of precipitation records from the infrared Cold Cloud Duration measurements, is 269 

developed by the USGS and Climate Hazards Group at the University of California. It has supplied precipitation estimates 270 

over global land within the range of 50° N to 50° S since 1981 (Funk et al., 2015). The PERSIANN product applies the trained 271 

artificial neural network on GridSat-B1 infrared satellite data of brightness temperature of cold cloud pixels to produce the 272 
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rain rate estimates in the latitude band 60° S-60° N from 1983 to the (delayed) present (Ashouri et al., 2015). The GPCP 273 

precipitation dataset dynamically merges various satellite-based information, such as passive microwave and infrared data, 274 

along with the GPCC gauge measurements, contributing to the monthly precipitation estimates from 1979-present worldwide 275 

(Huffman et al., 2022). To control the systematic bias of the satellite sensors, bias correction based on gauge observations (e.g., 276 

GPCC) and satellite observations (e.g., GPCP) is necessary, particularly over regions having poor gauge coverage, like Africa 277 

and the ocean.  278 

Although the remote sensing technique is a robust option for global precipitation estimations, it still has some 279 

drawbacks, like the relatively short lifetime, the complexity of the retrieval algorithm, and the need for in-situ observations for 280 

bias correction. Thus, global reanalysis products that synthesize multiple geophysical and climatological data to produce high-281 

resolution precipitation simulations have been developed. We obtained nine reanalysis datasets, including the fifth-generation 282 

reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5), the land component of ERA5 283 

(ERA5-land), the Twentieth Century Reanalysis by NOAA, the University of Colorado Boulder’s Cooperative Institute for 284 

Research in Environmental Sciences, and the U.S. Department of Energy (NOAA CIRES 20th Century), the Japanese 55-year 285 

Reanalysis (JRA55), the Modern-Era Retrospective analysis for Research and Applications (MERRA), the Reanalysis I project 286 

from the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP NCAR-287 

Reanalysis 1), the Reanalysis II project from the NCEP and DOE (NCEP DOE-Reanalysis 2), the NCEP Climate Forecast 288 

System Reanalysis (CFSR), and the WATCH Forcing Data methodology applied to ERA-Interim reanalysis data (WFDEI). 289 

The ERA5 reanalysis, as the latest global reanalysis following ERA-14, ERA-40, and ERA-Interim, provides a comprehensive 290 

field of the global atmosphere, land surface, and ocean waves by assimilating numerous historical observations (e.g., satellite 291 

precipitation data from microwave imagery and few gauge measurements) into the ECMWF Integrated Forecasting System 292 

(IFS) Cy41r2 (Hersbach et al., 2020). The ERA5 reanalysis can simulate the global precipitation with a sophisticated spatial 293 

and temporal resolution with a total of 137 mode layers of 0.01 hPa from 1959 to near real-time. ERA5-land is a re-run of the 294 

land component of ERA5, which is designed to provide a consistent view of land variables over several decades, but with an 295 

enhanced resolution than ERA5 (Muñoz-Sabater et al., 2021). The WFDEI meteorological forcing dataset, however, is 296 

generated based on the ERA-Interim reanalysis after bias correction from gridded observations (i.e., GPCC) and sequential 297 

elevation correction (Weedon et al., 2014). Several classic reanalyses from NCEP are used in our study. NCEP NCAR-298 

Reanalysis 1 project uses a state-of-the-art forecast system to perform data assimilation during the period 1948-now, while 299 

with a relatively coarse spatial resolution of ~2°, which might cause some errors in small basins upon calculation of basin-300 

average precipitation (Kistler et al., 2001). We note the precipitation observations are not assimilated into the assimilation 301 

system, so the precipitation from the reanalysis are short-range model forecast accumulations (Janowiak et al., 1998). The 302 

NCEP DOE-Reanalysis 2 is an improved version of the NCEP NCAR-Reanalysis 1, including an updated model with more 303 

realistic physical parameterizations, fixed data assimilation errors, and more digested data (Kanamitsu et al., 2002). The NCEP 304 

DOE-Reanalysis 2 replaces the model precipitation at the land surface with observed data from NCEP/CPC global precipitation 305 

analysis that merges satellite and gauge measurements (Xie and Arkin, 1997). Furthermore, as an important update from NCEP, 306 
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the CFSR uses a high-resolution model that is fully coupled with the atmospheric component at a resolution of 38 km with 64 307 

vertical levels from the land surface to 0.26 hPa between 1979 and the present (Saha et al. 2010). Similarly, the CFSR reanalysis 308 

applies the CMAP (Xie and Arkin, 1997) and CPC unified precipitation analysis to reduce the bias derived from the modeled 309 

precipitation in the initial version of NCEP NCAR-Reanalysis 1. Given most analyses only focus on the Earth’s status in the 310 

recent half-century, the NOAA CIRES 20th Century project is the first ensemble of sub-daily global atmospheric conditions 311 

spanning over 100 years from 1836 to 2015, providing the best estimate of the weather at any place and time based on the 312 

upgraded data assimilation method, higher resolution, and larger datasets of observations than the previous versions (Slivinski 313 

et al., 2019). We note the NOAA CIRES 20th Century did not incorporate any precipitation observations, meaning the 314 

reanalysis of precipitation is only from the predictions of models. Since the reanalysis provides 80 ensemble members to 315 

constrain the uncertainty fully, we take the ensemble mean as the final precipitation estimate. The JRA55 reanalysis, managed 316 

by Japan Meteorological Agency (JMA), also derives precipitation from remote sensing products combing the model forecasts 317 

since 1958, attempting to provide comprehensive fields of atmosphere to foster the applications in multidecadal variability and 318 

climate change (Kobayashi et al., 2015). The MERRA 2 analysis from the NASA Global Modeling and Assimilation Office 319 

using the GEOS-5.12.4 system covers the period from 1980 to the present with a latency of weeks, with the output resolution 320 

of 0.5°(latitude)×0.625°(longitude). The precipitation from MERRA2 reanalysis follows the assimilation strategy of CFSR, 321 

i.e., consider the CMAP and CPC Unified from NOAA CPC for assimilation. The quality of MERRA2 precipitation has been 322 

evaluated in a previous study, and relatively bad accuracy in high latitudes was reported (Reichle et al., 2017).  323 

We also consider several ‘combined products’ that merge the above-mentioned data sources, including gauges, 324 

satellites, and reanalysis to estimate precipitation, including the Multi-Source Weighted-Ensemble Precipitation (MSWEP), 325 

Princeton Global Forcings (PGF), and different versions of Global Land Data Assimilation System (GLDAS). The MSWEP 326 

dataset that is featured by full global coverage, high spatial (0.1°) and temporal (3-hourly) resolutions, and distributional bias 327 

corrections optimally merges the precipitation records from gauge measurements (e.g., GPCC), satellite solutions (e.g., 328 

TRMM), and reanalysis (e.g., JRA55) and achieve better performance than each of the members during the period 1979-now 329 

(Beck et al., 2019). The global and long-term PGF forcing dataset is constructed using the NCEO NCAR-Reanalysis 1 and 330 

multiple observation-based precipitation datasets such as TRMM, GPCP, and CRU TS products to perform the temporal and 331 

spatial downscaling, contributing to the high-resolution precipitation estimations from 1948 to 2016. The GLDAS forcing 332 

dataset generally applies precipitation of different types in different eras. Specifically, GLDAS (v1.0) switches from ECMWF 333 

reanalysis during 1979-1993 to NCEP NCAR-Reanalysis 1 during 1994-1999 and finally uses the CMAP fields from 2001 to 334 

2019 with the NOAA/GDAS atmospheric applied in the year 2000 (Wang et al., 2016). However, the GLDAS (v2.0) 335 

precipitation is from the PGF dataset as the only source from 1948 to 2014. Differently, the GLDAS (v2.1) simulations are 336 

forced with a combination of GDAS, disaggregated daily GPCP precipitation, and AFWA radiation datasets from 2000 to the 337 

present. Please find detailed information about the product version and spatial/temporal resolution in Table S3. 338 
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3.2 Runoff 339 

Similar to the precipitation, we also collected R datasets from different sources to feed the water balance equation. Firstly, we 340 

collected in-situ discharge measured at the mouths of the rivers from the dataset provided by Dai and Trenberth (2002), namely 341 

the Global River Flow and Continental Discharge Dataset. This observational dataset was compiled from many sources, 342 

including Bodo (2001), NCAR archive, and R-ArcticNET dataset (http://www.R-ArcticNET.sr.unh.edu), and has undergone 343 

the data quality controls during the compilation to avoid errata and inconsistencies. It contains monthly mean volume 344 

observations in 925 major rivers of the world since the 1900s (different rivers have varying lengths) and updates at an irregular 345 

time step (last updated in May 2019). The estimate of global continental freshwater discharge based on the dataset compares 346 

well with alternative estimates and ECMWF reanalysis, though there are some differences among the discharge into the 347 

individual ocean basins. The water volume is converted into the equivalent water depth by dividing the drainage area of the 348 

station. About one-third of the selected 168 river basins are included in this observational dataset, and the missing months 349 

without observation (e.g., after 2019) are set as NA values in the water balance calculation. Apart from this, most of the runoff 350 

datasets used in our study are from a global runoff reconstruction, named Global RUNoff ENSEMBLE (G-RUN ENSEMBLE), 351 

which provides a global runoff reanalysis of monthly runoff rates covering decades to the recent century at a resolution of 0.5° 352 

(Ghiggi et al., 2021). The observation-based G-RUN ENSEMBLE employs the random forest method to learn the runoff 353 

generation using the gridded meteorological observations (precipitation and temperature) with the calibration of the Global 354 

Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018). The most significant improvement of G-RUN 355 

ENSEMBLE compared to its previous version (GRUN, Ghiggi et al., 2019) is that it considers the forcing uncertainty by 356 

deriving a total of 23 subsets from multiple meteorological reanalysis and observations. Although one of the 23 G-RUN 357 

ENSEMBLE members forced by WATer and global CHange (WATCH) Forcing Data (WFD) only provides the global runoff 358 

data up to December 2001, we still keep it in our study for consistency. It would not influence the water balance estimations 359 

of ET-WB as all the missing months are taken as NA values during calculation. We note an implicit assumption in the 360 

generation of G-RUN ENSEMBLE is that the storage of river water loss can be minimal so the monthly river discharge of the 361 

river mouth equals the average catchment runoff depth. Given that the G-RUN ENSEMBLE is only calibrated from small 362 

catchments with areas ranging from 10 to 2,500 km2, this assumption might not be strictly valid for large river basins, although 363 

it has shown comparable performance with several global runoff simulations and reconstructions like the Global Drought and 364 

Flood Catalog (GDFC) (He et al., 2020) and ERA5. Moreover, the human activities, including human water use and reservoir 365 

management, lack a physical-based representation in the random forest machine learning method (but implicitly considered 366 

during the model training), and the apparent outliers caused by human activities (e.g., an abrupt decrease of river discharge 367 

after dam construction) have been removed. Therefore, we additionally compare the R datasets used in our study (mainly from 368 

G-RUN ENSEMBLE) with the streamflow records from the GRDC archive in 53 river basins worldwide since they are the 369 

only regions where the discharge observations are available with the spatial and temporal consistency of our study (Table S4). 370 

A satisfactory performance of the estimations in the levels of multi-mean and long-term trends is found, which are the focus 371 
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of our study and the relevant future applications (Fig. S1). We also used a synthesized global gridded runoff product that 372 

merges runoff estimates from different global hydrological models (GHM) constrained by hydrological observations using an 373 

optimal weighting method during 1980-2012 (namely Linear Optimal Runoff Aggregate, LORA), which works dynamically 374 

based on the comparisons with in-situ data when accounting for the variance among members (Hobeichi et al., 2019). The 375 

LORA product, with a consistent spatial resolution of 0.5°, is also used as the benchmarking dataset for G-RUN ENSEMBLE 376 

and achieved similar performance. A similar limitation is shared in these global gridded runoff reconstructions, i.e., the 377 

neglection of river routing, which may lead to an overestimation in the computed uncertainties over large basins. In addition, 378 

since the LORA is the merged result from eight GHMs with different physical structures and model parameterization schemes, 379 

the representation of the basins with significant anthropogenic activities should be taken with caution. For example, there is a 380 

low observed runoff of ~0 across the regions having high irrigation areas and/or artificial surfaces. As an important member 381 

of the LORA dataset, the WaterGAP Global Hydrology Model (WGHM), providing the global water resources dynamics from 382 

1901-2016 at a 0.5° resolution (Müller Schmied et al., 2021), is also selected in our study for the computation of ET-WB. The 383 

most recent version (2.2d) of the WaterGAP framework consists of five water use models, including irrigation, livestock, 384 

domestic, manufacturing, and thermal power sections, the linking model that computes net abstractions from groundwater and 385 

surface water, and the WaterGAP Global Hydrology Model (Müller Schmied et al., 2021). The discharge simulations are 386 

applied in the water balance calculation, which was forced by WFDEI precipitation during the study period and considered the 387 

human effects such as dam management. The river routing schemes follow Döll et al. (2014), where water is routed through 388 

the storages depending on the fraction of surface water bodies. The state-of-the-art global river discharge reanalysis, the Global 389 

Flood Awareness System (GloFAS), serves as a significant supplement to the R inputs in water balance. The GloFAS system 390 

simulates the global discharge by coupling runoff simulations from the specific model forced with the ERA5 reanalysis and a 391 

channel routing model. The GloFAS product aims to provide daily high-resolution (0.1°) gridded river discharge forecasts 392 

from 1979 to near real-time. Different versions of GloFAS reanalysis are used in our study, where the main differences are 393 

from the hydrological modeling scheme. For example, the GloFAS (version-2.1) applies a combination of the Hydrology Tiled 394 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model with the LISFLOOD hydrological and 395 

channel routing model (Harrigan et al., 2019). The surface and subsurface runoff from the HTESSEL are used as input for the 396 

LISFLOOD model (Hirpa et al., 2018). For the newer versions like 3.0 and 3.1, both the runoff generation and routing 397 

processes are based on the full configuration of the LISFLOOD model, the former of which is an offline version provided by 398 

Alfieri et al. (2020), and the latter is an operational online version that was released in early 2020 with some changes in web 399 

and data services. Despite this, we take both into consideration as they are the only datasets providing near-real-time discharge 400 

information. All the versions of GloFAS used in our study have been calibrated by more than 1,200 gauge stations worldwide, 401 

which greatly improves the performance than those without any calibrations (Alfieri et al., 2020). Some procedures are needed 402 

for discharge-type R datasets (i.e., WGHM and GloFAS-family products) to find the grid cell coinciding with the river mouth 403 

of the basin. For example, we find the certain grid with the maximum drainage area within the basin based on the static total 404 

upstream area file provided by GloFAS, which is defined as the catchment area for each river segment (i.e., the total area that 405 
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contributes to water to the river at the specific grid point). Then, the discharge forecast of that grid point should be divided by 406 

the corresponding drainage area to be converted into equivalent water depth. For the global land, the total freshwater flowing 407 

into the ocean is estimated as the sum of the discharge of all the coastal grid cells based on a mask at the corresponding 408 

resolution (e.g., 0.1° for GloFAS). As such, the differences in the spatial resolution (e.g., 0.5° for the WGHM and 0.1° for the 409 

GloFAS) can contribute to some discrepancies in the final estimates of R. Finally, it is worth mentioning that we manually set 410 

the R-value as zero for the 13 endorheic basins without runoff flowing into the ocean, except for Volga, Ural, and Kura River 411 

basins that flow into the Caspian Sea (Fig. 1 and Table S2). 412 

3.3 Terrestrial water storage 413 

Seven global terrestrial water storage datasets are used to derive ΔS and input the water balance equation. Six of these TWS 414 

datasets are GRACE solutions and one is from the WGHM. The GRACE mission has been the preferable tool to assess the 415 

large-scale variations in terrestrial water storage at a near-monthly scale from 2002 to 2017, with the GRACE Follow-On 416 

successor satellite launched in 2018 (Tapley et al., 2004; Kornfeld et al., 2019). There are generally two classes of methods to 417 

retrieve TWS anomaly signals from GRACE measurements, the spherical harmonic (SH) and the mass concentration blocks 418 

(mascon) methods. The SH method is a standard for the first decade of the GRACE era, which is processed by parameterizing 419 

the global time-varying gravity field using SH coefficients (Wahr et al., 1998). However, such a method should undergo a 420 

series of post-processing of the truncation of degree/order in SH coefficients, spatial smoothing, de-correlation filtering, and 421 

replacement of low-degree coefficients, etc. Various background models, such as glacial isostatic adjustment and de-aliasing, 422 

should also be considered. Therefore, different methods have been developed to restore the signal leakage and bias introduced 423 

during the post-processing. These methods include additive and multiplicative approaches, model-based scaling factors, data-424 

driven methods, and constrained and unconstrained forward modeling methods (Long et al., 2015; Chen et al., 2019; 425 

Vishwakarma et al., 2017). However, the mascon method has provided another user-friendly option for the community in 426 

recent years, which functions by parameterizing the Earth’s gravity field with the regional mass concentration functions. This 427 

kind of method does not need substantial post-processing techniques for signal restoration and can attenuate the noise during 428 

the gravity inversion process through regularization of the solution (Save et al., 2016; Xiong et al., 2022a). So the increasing 429 

attention in the non-geophysical community has been attracted by the mascon solution over the years (Abhishek et al., 2021). 430 

However, it is noticed that different GRACE ground system institutions can perform the post-processing for the fundamental 431 

level-1 GRACE data using different strategies, for example, the varying algorithms to the effect of glacial isostatic adjustment 432 

and the regularization or stabilization of the regional mass concentration functions may affect the hydrological analysis at 433 

smaller scales (<~3°) (Scanlon et al., 2018; Watkins et al., 2015; Vishwakarma, 2020). In this case, we collected the latest 434 

Release Version 06 level-2 SH solutions from different official GRACE processing agencies, including the University of Texas 435 

Center for Space Research (CSR), NASA's Jet Propulsion Laboratory (JPL), and GeoforschungsZentrum Potsdam (GFZ), as 436 

well as three level-3 mascon solutions from CSR, JPL, and NASA’s Goddard Space Flight Center (GSFC) during the period 437 

April 2002-December 2021, which is the longest time span that GRACE (and GRACE Follow-On) can achieve at the present 438 
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stage. The signal leakage and bias in three SH solutions are corrected using the forward modeling method, with the above-439 

mentioned standard processing procedures performed (Swenson and Wahr, 2006). The mascon JPL solution that employs a 440 

Coastal Resolution Improvement (CRI) filter that reduces signal leakage errors across coastlines has undergone the adjustment 441 

from official scaling factors based on the CLM land surface model (LSM) (Wiese et al., 2016). As previously mentioned at 442 

the beginning of the Data section, the inconsistent spatial resolution of different mascon solutions will not impact the ET-WB 443 

calculations as we only perform the water balance budget at the basin (and global) scale (Save et al., 2016; Loomis et al., 2019). 444 

The 33 missing months due to the data gap between two generations of GRACE missions and instrumental issues have been 445 

statistically interpolated using a recently proposed method based on the Singular Spectrum Analysis method (Yi and Sneeuw, 446 

2021). This method can infer missing data from long-term and oscillatory changes extracted from available observations and 447 

does not rely on any external forcing, thus avoiding the uncertainty introduced by other datasets (e.g., precipitation).  448 

Apart from the GRACE solutions, the simulations from the WGHM model are also used to avoid the strong correlation 449 

among GRACE solutions and provide a potential alternative viewpoint. The WGHM simulations of TWS include most of the 450 

key components in the land system, including canopy, snow and ice, soil moisture, groundwater, and surface water bodies 451 

(e.g., river, lake, wetlands, and reservoirs). However, the glacier water storage is not simulated in WGHM, which might induce 452 

some errors in high-latitude cold regions (Müller Schmied et al., 2021). The major human interventions such as dam 453 

management and human water use are also considered, which have been reported to impact the regional terrestrial water storage 454 

balance greatly (Rodell et al., 2009). This is the main advantage of the selected WGHM over other widely used GHMs/LSMs, 455 

such as GLDAS VIC and Noah models. GRACE solutions generally provide the anomalies of TWS relative to a long-term 456 

mean, but the WGHM simulates the actual value of TWS. However, this will not affect our derivation for the ΔS and the 457 

subsequent ET-WB estimations. 458 

3.4 Evaporation 459 

Benchmarking ET-WB against other global ET products is crucial to evaluate its performance. With the principle of ‘different 460 

types of datasets have their unique values’ in mind, four different categories of auxiliary ET products have been chosen for 461 

comparison with ET-WB at multiple time and space scales. These include the MODIS Global Evapotranspiration Project 462 

(MOD16A2), the FLUXCOM ensemble dataset, the Global Land Evaporation Amsterdam Model (GLEAM), and the 463 

simulations from WGHM. The MOD16A2 product estimates the terrestrial ET as the sum of evaporation from soil and canopy 464 

layer and the transpiration from plant leaves and stems (Mu et al., 2011). This satellite-based dataset is estimated under the 465 

framework of the Penman-Monteith equation with the effective surface resistance to the evaporation from the land surface and 466 

transpiration from plant canopy, which is estimated based on the MODIS remotely sensed data including surface albedo, land 467 

cover classification, and vegetation information. The MOD16A2 dataset was originally produced at a spatial resolution of 1km 468 

and a temporal resolution of 8-day from 2000-2014. However, we used the re-processed monthly 0.5° product provided by the 469 

Numerical Terradynamic Simulation Group (NTSG) at the University of Montana 470 

(http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/). The FLUXCOM “remote-sensing” database (“RS” setup) employs 471 
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nine machine learning algorithms to integrate ~20,000 flux observations across the globe with the satellite-based predictors 472 

from the MODIS mission (Jung et al., 2019). Therefore, it is considered an observation-driven product of three energy balance 473 

variables, namely, net radiation, latent energy, and sensible heat. Nonetheless, the product is subject to uncertainty in the choice 474 

of prediction models and is also limited in spatial/temporal resolution (0.0833°/8-daily) and time coverage (2001-2015) of the 475 

satellite inputs. Similarly, we used the re-processed monthly version of the product with a resolution of 0.5° by spatial and 476 

temporal aggregation, which is the median value of the ensemble members per grid cell and month. A key difference between 477 

the FLUXCOM and other ET datasets is that the former focuses only on the vegetated region because of the lack of eddy tower 478 

observations in these regions, meaning the ET values in unvegetated (barren, permanent snow or ice, water) area was omitted. 479 

We convert the latent energy data to ET by dividing it with the latent heat of vaporization, a constant value of 2.45 MJ/kg (or 480 

multiplying 0.408 kg/MJ) or 28.35 W/m2. We note the FLUXCOM database also develops the “RS+METEO” setup that uses 481 

daily meteorological data and mean seasonal cycles of satellite data with three machine-learning approaches. Since the 482 

differences between these two setups over global basins are still unclear, and beyond the scope of our study, only the “RS” 483 

setup is chosen for comparison and demonstration with ET-WB. It needs to be mentioned that we did not use the in-situ 484 

measurements from the regional FLUXNET eddy covariance towers because of the uneven and sparse distribution from a 485 

global perspective, which is not consistent with the spatial scale of ET-WB. In addition, the GLEAM model estimates the 486 

terrestrial ET separately, which comprises the individual components of transpiration, interception loss, bare soil evaporation, 487 

snow sublimation, and open-water evaporation (Martens et al., 2017). It firstly estimates the potential ET using the Priestley-488 

Taylor equation based on satellite observations of surface net radiation and near-surface air temperature, then converts the 489 

potential ET to actual ET using the evaporative stress factor, which is estimated from the remote sensing vegetation microwave 490 

vegetation optical depth and predicted root-zone soil moisture from a water balance model. The GLEAM is more inclined to 491 

a ‘reanalysis’ dataset as it does not use the satellite observations directly (like MOD16A2) but indirectly includes the satellite 492 

observations to estimate ET. Similar to the FLUXCOM dataset, the GLEAM product also has two sub-versions, ‘a’ and ‘b’, 493 

with the main difference in the time span (1981-2021 for ‘a’ and 2003-2021 for ‘b’) due to different inputs considered. We 494 

choose version 3.6a to compare with ET-WB. Finally, the hydrological simulations of ET from WGHM are also included for 495 

data consistency, which was previously used to contribute to the runoff, terrestrial water storage, and precipitation (WFDEI 496 

forcing) estimations. Moreover, an alternative source (GHM) of ET can also strengthen the justification upon the comparison 497 

with derived ET-WB.  498 
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4 Results 499 

4.1 Global evaluation of ET-WB 500 

4.1.1 Monthly assessment 501 

Comparison and analyses of ET-WB and auxiliary ET datasets are carried out at various temporal scales to examine the 502 

reliability of ET-WB comprehensively. The long-term average seasonal cycle of ET during the period 2002-2021 is detected 503 

over global land (Fig. 3a). A clear unimodal distribution is observed with the highest ET in July (median value: 65.61 504 

mm/month (mm/m)) and the lowest result in January (median value: 36.11 mm/m) based on ET-WB, with the spread range of 505 

roughly ±10 mm/m from different subsets of the ensemble. Furthermore, the seasonal cycle of other ET products is generally 506 

within the range of ET-WB ensemble with similar intra-annual characteristics. All of the GLEAM, MODIS, and WGHM data 507 

illustrate an overestimation of ET from March to June and an underestimation between September and November compared 508 

with the median values of ET-WB, but they are completely within the range of the ET-WB ensemble. Nevertheless, the 509 

FLUXCOM product tends to have higher ET than ET-WB due to the fact that FLUXCOM only considers the ET in the 510 

vegetated regions, and the unvegetated areas, such as those in the deserts of Sahara and Qinghai-Tibetan Plateau are masked 511 

(Jung et al., 2019). This would subsequently influence our comparisons in basins with a certain proportion of unvegetated area 512 

and the global land.  513 

The seasonal pattern of ET-WB is highly consistent with that of precipitation in both amplitude and periodicity, which 514 

generally increase from the beginning to the middle of a year, followed by a gradual decrease. This contemporaneous relation 515 

between ET and P without time lag is also revealed by Rodell et al. (2015). However, the spread range in P is wider than ET-516 

WB, meaning it is an important contributor to the uncertainty of the ET-WB, especially in water-limited months like February, 517 

April, and November (Fig. 3b). In addition, we also found that the seasonal cycle of ΔS presents a reverse distribution than 518 

other water components (e.g., P and R), in which ΔS decreases from positive to negative in the first half of the year (January 519 

to June) and then slowly rebound until the end of the year. In other words, the land system is losing water from April to October 520 

and gaining water until April of next year, implying a significant time lag between terrestrial water storage and P on a global 521 

scale (Fig. 3c). The narrow spread range of ΔS is attributed to the high agreement between the six GRACE solutions used, not 522 

showing the real uncertainty of TWSA (ΔS) estimates. Counterintuitively, P lags R by two months, possibly related to the 523 

snowpack immobilization and the strength of summer convective rainfall in high-latitude regions (Rodell et al., 2015). 524 

Additionally, R demonstrates an interesting distribution with a constrained change range in all months with a few 525 

overestimations. It should be stemming from the reduced uncertainty in the choice of R datasets because we used the 23 (out 526 

of 29) G-RUN ENSEMBLE subsets that were generated using the same model but forced by different forcing, together with 527 

the interventions from other datasets (e.g., GloFAS reanalysis) (Fig. 3d).  528 

 Multiple statistical metrics are used to quantify the relative performance of the ET-WB product, which are calculated 529 

using the ensemble median ET and other global ET datasets. Global examinations of the relative bias (RB) based on different 530 

auxiliary datasets on the monthly scale indicate an overall agreement with ET-WB, with most (74%, 63%, 57%, and 77% for 531 
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GLEAM, FLUXCOM, MODIS, and WGHM, respectively) river basins having RB between -20% and 20% (Fig. 4). For the 532 

global land, the RB reaches 1.22%, -17.31%, -3.68%, and 2.96% for above four products, correspondingly, but with strong 533 

spatial heterogeneity among basins. Specifically, widespread overestimation of ET-WB than other datasets are reported in East 534 

Europe, West Russia, South and East Asia, and West Australia, with the maximum RB of nearly 300% in the Ashburton River 535 

basin (ID: 138) of Australia based on the MODIS ET dataset. On the contrary, the consistent underestimation of ET-WB 536 

compared with other products is also seen in West Europe, East Russia, and Southeastern basins of Australia, where RB is 537 

mostly small. However, divergent patterns of different ET datasets in parts of South and North America, Africa, and Central 538 

Asia highlight inherent uncertainty in each product and that it is impossible to have a single best-performing ET dataset for 539 

the whole globe. However, the RB values of ET-WB are within the range of ±20%, meaning the ET-WB is comparable to 540 

these ET products and, therefore, can serve as an independent benchmarking product (Figs. 4a, 4c, 4e, and 4g). Alternative 541 

metrics like CC and NSE provide additional insights. Relatively better performance of ET-WB is apparent in the humid basins 542 

of high-latitude Eurasia, North America, and South China according to the comparably higher CC (>0.8) and NSE (>0.4) than 543 

other regions like South America and Africa (Figs. S2 and S3). This might be due to better simulation accuracy of, for example, 544 

reanalysis and GHMs, in humid zones than in arid regions. Though the reported NSE value may not appeal as satisfactory in 545 

an absolute sense, it only represents the median ET-WB. Distinctive choice of ET subset over different regions may lead to 546 

improved results, albeit without informing the full spread of the uncertainties. Additionally, RMSE results further convey 547 

higher errors of ET-WB in smaller regions than in larger ones (Fig. S4) because of the reduced retrieval errors of GRACE 548 

solutions as the basin size increases (Scanlon et al., 2018). The notable exception is the Amazon River basin (ID:1), which 549 

shows inconsistency between ET-WB and different ancillary products (e.g., GLEAM and MODIS). It is similar to a recent 550 

regional study (Baker et al., 2021), although a strong agreement between water balance ET and shortwave radiation was 551 

observed. For all the 168 basins, the scatter plots illustrate a reasonable agreement between ET-WB and multiple ET datasets 552 

(Figs. 4b, 4d, 4f, 4h). Despite the very small RB (from 0.09% of WGHM to -7.96% of MODIS), the skewed estimates are 553 

discovered in high-ET periods and regions, while most points having small ET values are perfectly located around the 1:1 line. 554 

Another discrepancy between ET-WB and other datasets is the existence of negative values of the former primarily in high-555 

ET regions/periods, which is very likely resulting from the non-closure error among various water balance datasets (Pan et al., 556 

2017; Rodell et al., 2011; Lehman et al., 2022) along with their respective shortcomings (e.g., non-consideration of river 557 

routing in G-RUN Ensemble runoff data) and should be delved into in future studies.  558 

 559 

 560 
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 561 
Figure 3: Monthly average values of the ET-WB and multiple auxiliary ET products as well as other water components over global 562 
land during the period 2002-2021. The shading shows the spread range among different datasets, with the central solid line meaning 563 
the ensemble median value. 564 
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Figure 4: Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, 566 
h: WGHM) on a monthly scale during the period 2002-2021. The left column represents the global distribution of RB, and the right 567 
column represents the corresponding scatter plots. The color of the scatter points indicates the kernel density. 568 

4.1.2 Annual assessment 569 

Inter-annual variability of ET and related water balance components are also examined over global land (Fig. 5). There are 570 

generally three episodes shown in the ET-WB dataset. These include a gradual increase from 2003 to 2010 and a subsequent 571 

decrease during 2010-2015, followed by a sharper reduction in the remaining years (Fig. 5a). A large inter-ensemble range, 572 

which aggravates during the recent time periods, due to the propagation of errors in monthly estimations of water balance ET 573 

is found. Other ET datasets, despite the different time spans, still present a similar variability to ET-WB with the 574 

overestimations in MODIS and FLUXCOM. As discussed above, the significant differences from FLUXCOM can be 575 

attributed to the specific data generation method. Furthermore, the annual variations of ET are typically explained by the 576 

changes in P, which experienced an increasing trend during 2003-2010, followed by an abrupt decrease between 2010 and 577 

2015 (Fig. 5b). However, the increase of P during 2015-2021 does not directly translate to the enhancement of ET based on 578 

ET-WB results, though the GLEAM shows a more ‘reasonable’ increase under the assumption of the limited influence of the 579 

human interventions on the global ET on an annual scale. This inconsistent phenomenon is because of the significant increase 580 

of R values since 2015 (particularly in 2020 and 2021), which are mainly driven by GloFAS reanalysis data as the 23 G-RUN 581 

ENSEMBLE subsets are not available from 2020 (Fig. 5d). Therefore, the overestimation of R in GloFAS data can explain the 582 

abrupt change in ET-WB over recent years, implying that caution should be taken when interpolating the ET-WB results after 583 

2019 due to the availability of the limited dataset. This is not only because of the controlling role of specific water components 584 

in ET-WB (e.g., a wide range of P similar to ET) but also the limited data availability due to delayed updates (e.g., G-RUN 585 

ENSEMBLE). Moreover, ΔS does not play a crucial role on an annual scale because of the relatively small amplitude and the 586 

confident estimations of GRACE signals in such a large area (Fig. 5c). 587 

 Statistical metrics are re-assessed on an annual scale to evaluate the differing performance of ET-WB across temporal 588 

scales. A similar spatial pattern is revealed according to the RB results but slightly degrades over most basins, which is 589 

seemingly caused by error accumulation from water components and the relatively short time span for calculation (e.g., 19 590 

years) (Fig. 6). For the global land, the RB reaches -0.05%, -18.07%, -4.61%, and 1.73% for the GLEAM, FLUXCOM, 591 

MODIS, and WGHM, respectively. Alternate metrics such as CC and NSE also indicate deteriorating accuracy of ET-WB 592 

after converting from monthly to the annual time scale for the single basin, while RMSE is improved if we use the same unit 593 

(Figs. S5-S7). However, the scatter plots of annual ET in a total of 168 basins between ET-WB and auxiliary datasets show 594 

significant improvements to that on the monthly scale due to the offsets of negative ET values within a year and more benign 595 

fluctuations of annual ET than the monthly series. For example, the fitted slope of the regression between ET-WB and other 596 

datasets is 0.92 (GLEAM), 1.03 (FLUXCOM), 0.93 (MODIS), and 1.01 (WGHM), respectively, with higher CC and NSE 597 

compared with their monthly counterparts.  598 
 599 
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 600 

 601 
Figure 5: Annual time series of ET-WB and multiple auxiliary ET products as well as other water components over global land 602 
during the period 2003-2021. The ET in 2002 is excluded from the calculation because of the missing values from January to April 603 
2002. The shading shows the spread range among different datasets, with the central solid line meaning the ensemble median value. 604 
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Figure 6: Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, 606 
h: WGHM) on the annual scale during the period 2002-2021. The left column represents the global distribution of RB, and the right 607 
column represents the corresponding scatter plots. The color of the scatter points indicates the kernel density. 608 

 609 

4.2 Spatiotemporal variation of ET-WB 610 

Spatiotemporal variability of ET from the ET-WB and other auxiliary ET products are assessed for comparison. The long-term 611 

mean of annual ET based on the ET-WB illustrates a clear spatial pattern, with relatively higher ET in humid zones of South 612 

America, Eastern North America, central South Africa, and South Asia, while the lower ET in arid regions of Western United 613 

States, North and South of Africa, Central Asia, and Australia (Fig. 7a). Specifically, the Kapuas River basin (ID: 131) in 614 

Indonesia has the highest ET-WB flux of 1565 mm/yr due to the hot and humid climate regionally (Hidayat et al., 2017). The 615 

endorheic Tarim River basin (ID: 14) in northwest China has the lowest annual ET of 127 mm/yr among 168 study basins 616 

because of the prevailing extremely dry climatic conditions. The homogeneous spatial patterns between ET-WB and GLEAM, 617 

FLUXCOM, and MODIS products can further validate the reliability of ET-WB (Fig. S8). In addition, WGHM reports a 618 

slightly different distribution from the other three datasets and ET-WB, which can result from modeling uncertainty due to 619 

simplified model parameterization and the un-calibrated ET simulations (Müller Schmied et al., 2021). Specifically, we 620 

observe the consistent overestimations of ET-WB than other datasets in East Europe, West Russia, South and East Asia, and 621 

West Australia, especially in the wet areas like the Yangtze (ID: 13) and Mekong (ID: 31) River basins. On the contrary, 622 

relative underestimations are observed in West Europe, East Russia, and Southeastern basins of Australia (Fig. 7). The 623 

divergent patterns between ET-WB and different datasets are seen in large-scale regions of South and North America, Africa, 624 

and Central Asia. Nevertheless, the regional differences are mostly within the range of ±100 mm/yr, which is a relatively small 625 

range for basins with higher ET values, unlike the dry basins with relatively small ET (Figs. 7c-7f). The spatial distributions 626 

of differences between ET-WB and other datasets are similar to the RB results (Fig. 4), which manifests from the homologous 627 

calculation formula (Eq. 5). For the global land, the long-term mean annual ET estimates from ET-WB are concentrated within 628 

the range of 500-600 mm/yr among ensemble members, with the median estimates of 549 mm/yr (Fig. 7b). This number is 629 

comparable to the result from GLEAM (543 mm/yr), MODIS (569 mm/yr), and WGHM (534 mm/yr). The relatively higher 630 

value of global ET from FLUXCOM (663 mm/yr) is attributable to the exclusion of the unvegetated area in the global 631 

averaging, while it has shown good agreement with several global products (e.g., GLEAM) in the vegetated area (Jung et al., 632 

2019).  633 

 The annual trends of ET from various datasets during 2003-2014 are assessed. The calculation period is selected to 634 

be consistent with the temporal span of different products, which can cause some biases in determining trends due to the 635 

relatively short computation period (i.e., 12 years). The ensemble median results of the ET-WB ensemble reveal a spatial 636 

distribution with the increasing ET detected in South America (around the Amazon River basin), Europe, East Russia, South 637 

and East Asia, South and North Africa, and Australia. Over these regions, the Burdekin River basin (ID: 94) in Australia has 638 

the most rapid growth rate of 31.4 mm/yr2, which is about 100 times the slowest increasing slope (0.3 mm/yr2) in the Alazeya 639 
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River basin (ID: 165) of Russia (Fig. 8a). Significant depletion of ET is observed in the central North America and Africa 640 

continents as well as West Russia with the lowest trend of -22.8 mm/yr2 in the Moose River basin (ID: 107) of Canada. We 641 

also noticed similar spatial patterns based on other auxiliary ET datasets (Fig. S9), however, with the differences in the 642 

magnitudes of trends. Such differences are reasonable because the trend estimations contain uncertainty in a short 12-year long 643 

period, let alone the errors inherent to various products. Therefore, we see an interesting spatial distribution of the differences 644 

between ET-WB and other datasets (Figs. 8c-8f), where the regional differences in trends are similar to the actual trend 645 

summarized by the corresponding dataset (Fig. S9). In particular, ET-WB is prone to overestimate the trends for regions with 646 

increasing ET, and the overestimations are larger if the trends are larger (based on other ET datasets), and vice versa. In a 647 

nutshell, unlike TWS/P-based evaluation (Held and Soden 2006; Xiong et al., 2022b), the ‘dry gets drier and wet gets wetter’ 648 

paradigm can be typically inferred from ET-WB on a basin scale, which generally exaggerates the prevailing 649 

increasing/decreasing ET tendencies in the basins (Yang et al., 2019). On a global scale, the median value of trend estimates 650 

from ET-WB ensemble members is 1 mm/yr2, very close to the results from GLEAM (0.8 mm/yr2) and WGHM (0.8 mm/yr2). 651 

However, both FLUXCOM and MODIS report small negative values of -0.3 and -0.1 mm/yr2, respectively, which still fall 652 

within the spread range of the ET-WB ensemble estimations (Fig. 8b). 653 

 654 



27 
 

 655 
Figure 7: Global distribution of (a) the long-term mean in annual ET-WB and (c-f) its difference with multiple auxiliary ET products 656 
during 2003-2021. The long-term mean is calculated as the sum of the long-term averages of ET in each month. Subplot (b) shows 657 
the histogram and the probability density distribution of the ET-WB ensemble results over global land. The horizontal bars denote 658 
the standard deviation of results from four auxiliary ET products. 659 

 660 
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 661 

Figure 8: Same as Figure 7, but for the annual trends. The ET in 2002 and after 2014 are excluded from the calculation because of 662 
the missing values of GRACE data in 2002 and the missing values of MODIS product after 2014. The trend is calculated by using 663 
Sen’s slope method. Subplot (b) shows the histogram and the probability density distribution of the ET-WB ensemble results over 664 
global land. The horizontal bars in sub-figure (b) denote the standard deviation of results from four auxiliary ET products. 665 

 666 

4.3 Uncertainty in ET-WB 667 

Quantification and attribution of uncertainty in the ET-WB ensemble play important roles in the justification and potential 668 

usages of the proposed dataset. Based on the methods described in Section 2.3, we present the global distribution of the RMS 669 

values of uncertainty in ET-WB and related water components as well as the auxiliary ET products (Fig. 9). We observe a 670 

clear spatial pattern of the uncertainty, which generally increases along with the reduction in basin size. Several large-size 671 

basins, such as Ob (ID: 5), Yenisey (ID: 7), and Lena (ID: 9) River basins, possess a lower uncertainty (<20 mm/m) compared 672 

to those medium-size basins like Mekong (ID: 31) and Ganges (ID: 22) River basins where uncertainties in ET-WB are between 673 
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40 and 80 mm/m. However, the small-size basins suffer from substantial uncertainties in ET-WB, even exceeding 100 mm/m 674 

in some regions of mainland Australia and Europe (Fig. 9). The worst phenomenon happens in the Essequibo River basin (ID: 675 

156), with the RMS of the uncertainty of 267 mm/m primarily arising from the high uncertainties in GRACE data (Fig. 9a). A 676 

seemingly more optimistic situation is observed from the uncertainty of four auxiliary ET products, where the low-latitude 677 

humid zones apparently suffer from higher uncertainty than the high-latitude regions, though they are essentially smaller than 678 

30 mm/m with the maximum of 65 mm/m in the Ogooue River basin (ID: 68) of Gabon (Fig. 9c). It is not surprising because 679 

the uncertainty in ET-WB is propagated from three water components including P, ΔS, and R, but that in the auxiliary ET 680 

products in our study is calculated as the standard deviation among four datasets. Despite this, the performance of ET-WB 681 

over large basins is still comparable to these ET datasets, whose uncertainties share similar spatial distribution with P to a 682 

certain degree. As an important input for GHM and some other ET products (e.g., “RS+METEO” setup of FLUXCOM), P can 683 

determine the actual performance of the auxiliary ET products. It can even determine the uncertainty in R datasets which 684 

subsequently contributes to the uncertainty of G-RUN ENSEMBLE; the main data for our water balance forcing (Figs. 9d and 685 

9f). However, the “reduction-with-increasing-size” pattern of uncertainty in ET-WB seems more relevant to the uncertainty in 686 

ΔS datasets, which is from six different GRACE solutions and a set of simulations from WGHM. It has been widely reported 687 

that the retrieval bias of GRACE missions is higher in smaller regions due to the coarse spatial resolution and the pronounced 688 

signal leakage effects (Scanlon et al., 2018) (Fig. 9e). This is contended to be the main reason for the similar distribution and 689 

amplitudes of uncertainty in ΔS and ET-WB for smaller basins, while the uncertainty in ET-WB over larger basins is mainly 690 

controlled by other factors like P. However, over a global scale, the uncertainty of ET-WB that roughly fluctuates below 15 691 

mm/m (RMS: 9.7 mm/m) is controlled by that of P (RMS: 8.3 mm/m), the uncertainty in ΔS is relatively small because of the 692 

very large area (Fig. 9b). The sharp increase in uncertainty of R from the year 2020 is caused by the unavailability of 23 G-693 

RUN ENSEMBLE datasets. Similarly, the abrupt decrease of uncertainty in auxiliary ET products after 2015 is due to the 694 

limited time coverage of FLUXCOM and MODIS products, with an RMS of 5.3 mm/m over the whole period. They are not 695 

involved in the calculation of uncertainty based on the inter-member deviation since the year 2016. This different behavior 696 

underscores the potential users to pay attention to the number of datasets used to produce ET-WB. In addition, ET-WB will 697 

be updated as the new/updated versions of these constituent datasets are released to constrain such uncertainties. 698 

 To further investigate the influential factors to the uncertainty in multiple variables, the relationship between the 699 

uncertainty and basin size, climate conditions (represented as the long-term mean AI), and human interventions (represented 700 

as the irrigation rate, which is defined as the equipped irrigation area versus the basin area) are detected (Fig. 10). As we 701 

described above, the obvious relationship between uncertainty in ΔS and basin size governs the increasing uncertainty of ET-702 

WB along with the enhancement of basin area, while the uncertainty in auxiliary ET products generally keep at a lower level 703 

of uncertainty similar to P and R (Fig. 10a). Although other variables like P and R do not show any pattern associated to the 704 

basin area, they present favorable dependence upon the aridity of the basin, where they are inclined to have higher uncertainty 705 

in more humid regions with higher AI (Fig. 10b). No clear pattern between ET uncertainty and irrigation area can be apparently 706 

deduced, whereas it is worth mentioning that the significant irrigation equipped for groundwater resources can lead to 707 
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significant short-term and long-term variations of, for example, ΔS and R, which is the case in some basins in North China 708 

(e.g., Haihe River basin, ID: 67) and North India (e.g., Indus River basin, ID: 27) (Fig. 10c). The human-induced inordinate 709 

fluctuations can influence the water balance and subsequently the quality of ET-WB by impacting the accuracy of the specific 710 

forcing variable (e.g., impact R through reservoir management). Finally, the uncertainty in ET-WB can be further intensified 711 

for the small wet basins with significant human disturbance, so caution should be particularly taken when drawing scientific 712 

conclusions using ET-WB in those regions. 713 

 714 

Figure 9: RMS of uncertainty in the ET-WB and different water components over global basins. Subplot (b) shows the time series 715 
of uncertainty in different variables over global land. The NA values in sub-plot (f) R are because the runoff is manually set as zero 716 
in these regions. Please refer to the Data section for details. 717 
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 718 

Figure 10: Relationship between RMS of uncertainty in the ET-WB, auxiliary ET products, different water balance components, 719 
and (a) size, (b) aridity index, and (c) irrigation rate of the basins. Increasing basin ID (1 through 168) corresponds to the decreasing 720 
basin area where basin ID of 1 is the largest basin, i.e., the Amazon River basin. Please also refer to Table S2 for salient features of 721 
the river basins. 722 
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5 Discussions 723 

5.1 Comparisons with previous regional studies 724 

Although a global compilation of water balance estimations of ET is still lacking, previous regional studies have demonstrated 725 

the applicability of the water balance ET at different basins of the world. Comparisons with such regional studies are beneficial 726 

to the benchmark of ET-WB. Rodell et al. (2004) initially proposed the plan to retrieve ET on basin scales based on the water 727 

balance model and early GRACE data and applied it in the Mississippi River basin (ID: 4) from July 2002-November 2003. 728 

By comparing with model predictions of ET, the RMS differences between water balance ET and GLDAS, GRDS, and 729 

ECMWF-based ET were found to be 0.83, 0.67, and 0.65 mm/day (equivalent to 24.9, 20.1, and 19.5 mm/m), respectively 730 

(Rodell et al., 2004), which are comparable to our RMSE results on the monthly scale, i.e., 19.46 (GLEAM), 18.41 731 

(FLUXCOM), 24.29 (MODIS), and 23.04 (WGHM) mm/m. Given the significance of the water balance method in ungauged 732 

regions, several studies have tested its performance in the data-sparse Tibetan Plateau (Xue et al., 2013; Li et al., 2014; Li et 733 

al., 2019). For example, Xue et al. (2013) compared four ET products, including GLDSA, JRA, MODIS, and Zhang_ET 734 

(Zhang et al., 2010), against the water balance ET in the upper Yellow (ID: 24) and the Yangtze (ID: 13) River basins, revealing 735 

the overestimations of GLEAM and MODIS relative to the water balance ET. These comparisons are similar to the RB 736 

examinations in our study based on ET-WB. As the largest river basin of India that accounts for 26% of the country’s landmass, 737 

the Ganges River basin (ID: 22) shows a mean monthly average ET of 63.2 mm/m (Syed et al., 2014), which is comparable to 738 

60.9 mm/m calculated in our study despite the different study periods. A case study in the Volta River basin (ID: 46) of Africa 739 

reported the annual fluctuations of water balance ET ranging from 700 to 800 mm/yr during the period 2004-2011 (Andam-740 

Akorful et al., 2015), relatively lower than the long-term mean ET-WB of 830 mm/yr. The relative accuracy of water balance 741 

ET in the exorheic river basins of China has also been previously evaluated. For example, Zhong et al. (2020) employed the 742 

water balance equation to estimate regional ET and compared them with the GLEAM and GLDAS products, concluding the 743 

uncertainty of monthly ET of 14.7 mm/m in the Yellow River basin (ID: 24) and 35.9 mm/m in the Pearl River basin (ID: 48), 744 

nearly half of the estimates in our study, i.e., 27.0 and 71.7 mm/m in these basins, respectively, primarily due to different 745 

datasets and methods used. We note these regional studies generally used observed and typically single-source water 746 

components data like P and R, which can be the reason for the differences with our results based on multi-source data-based 747 

calculations. Moreover, the difference in study region boundaries, data processing algorithms, calculation scheme of the 748 

terrestrial water storage change, and time period may reflect the disparities in the estimates (Rodell et al., 2004). 749 

 A few global analyses can also provide an important reference for the ET-WB developed in our study. Specifically, 750 

Zeng et al. (2012) collected in-situ runoff, precipitation, and GRACE data to estimate ET over 59 major river basins during 751 

2003-2009, highlighting the fact that ΔS cannot be neglected in the water balance computations. This finding implies the 752 

importance of including GRACE TWSA (ΔS) in the water balance closure at basin scales. Ramillien et al. (2006) applied the 753 

GRACE samplings, GPCC precipitation, and modeled runoff to estimate ET time series over 16 drainage basins of the world, 754 

in which the extreme errors (1.8 mm/day, 50% relative error) as expected by the accuracy of model runoff in the Amazon (ID: 755 
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1) River basin, is emphasized to influence the regional ET estimations. This well corresponds to the high uncertainty estimates 756 

of P, R, and therefore ET-WB in both long-term mean and annual trend levels of our study. Similar to the examinations of 757 

long-term mean and annual trends in our study, a previous global evaluation of water balance ET estimates against nine ET 758 

products over 35 basins points out that water balance ET can reasonably estimate the annual means (especially in dry zones 759 

with relatively lower uncertainty) but substantially underestimated the inter-annual variability in terms of annual trends and 760 

mean annual standard deviation (Liu et al., 2016). Furthermore, the comprehensive uncertainty analysis for ET products from 761 

four LSMs in NLDAS, two remote-sensing-based products including MODIS and AVHRR, and water balance estimations 762 

show the highest uncertainty in the latter (20-30 mm/m) over the different climatic regions (from humid to arid) in South 763 

Central United States (Long et al., 2014). The finding confirms the pattern of obviously higher uncertainty in ET-WB than 764 

auxiliary ET products in several arid basins in Western United States in our study. A recently published global ET product 765 

based on the three-temperature model used the water balance ET in 34 catchments worldwide as a benchmarking product, 766 

revealing the RB mostly ranging from -25 to 25% on the annual scale, with the underestimation of water balance ET in high 767 

latitudes (Yu et al., 2022). The comparisons are quite relevant to the results of ET-WB, which also underestimates ET in East 768 

Russia and Northern North America by comparing with, for example, GLEAM and MODIS products. Overall, the results of 769 

our proposed ET-WB datasets are consistent with previous regional and global studies, more importantly, cover the most recent 770 

time periods, and provide observational constraints to the global and regional ET leveraging huge datasets of water balance 771 

components. 772 

5.2 Implications, limitations, and future outlook 773 

The production of ET-WB ensemble datasets can benefit the future hydrological community in various ways. First of all, the 774 

ET-WB can provide valuable information for the regional ET variations, greatly enriching the existing ET datasets consisting 775 

of the remote-sensing-based (e.g., MODIS), LSM-predicted (e.g., GLDAS), GHM-predicted (e.g., WGHM), observation-776 

driven (e.g., FLUXCOM), in-situ-based (e.g., eddy tower observations) and other diagnostic datasets (e.g., GLEAM) as well 777 

as the synthetic datasets. Given the non-ignorable differences among the existing ET datasets and an independent mass 778 

conservation-based ET-WB, it can not only help to benchmark other datasets/models of ET but will also contribute to the 779 

validation and calibration of hydrological models across scales. This is particularly useful for poorly gauged regions like the 780 

Qinghai-Tibetan Plateau, African river basins, and high-latitudes cold regions, where the installation and maintenance of the 781 

field observation network are quite challenging (Li et al., 2019). In addition, the ET-WB product will provide additional 782 

information for evaluating water balance closure on the basin and global scales (Lehmann et al., 2022). The ET-WB dataset 783 

that generates ET based on the terrestrial water balance is also dedicated to evaluating other water balance components like R 784 

by combining them with the available hydrological records (e.g., P) regionally or globally (Syed et al., 2010; Chandanpurkar 785 

et al., 2017). Finally, the ET-WB product is conducive to detecting human footprints in the regional water cycle. For example, 786 

Pan et al. (2017) combined the water balance estimations of actual ET and the modeling results without consideration of human 787 

activities to estimate human-induced ET in a highly developed region of China (Haihe River basin), implying a 12% increase 788 
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of ET due to human activities such as irrigation. Strong influences of anthropogenic changes to the region ET were also 789 

reported in the Colorado River basin of western United States (Castle et al., 2016). Overall, the developed ET-WB has the 790 

potential to support multi-discipline applications in hydrology and climate fields. 791 

 However, the ET-WB also suffers from a few limitations mainly related to the uncertainty, selection, and assumptions 792 

of datasets involved in water balance computations. As shown in comparison with other ET datasets and the uncertainty 793 

analysis, propagated uncertainty from different variables like ΔS and P can greatly influence the quality of ET estimations. For 794 

example, the relatively higher uncertainty of GRACE signals in smaller basins increases after the derivation of ΔS subsequently 795 

alters the estimations of ET. Biases in P over humid zones can also play an important role in the performance of regional ET. 796 

In terms of R, since only one of the 29 subsets is from the in-situ discharge and mostly are provided by the observation-driven 797 

machine learning G-RUN ENSEMBLE dataset with varying forcings, the ET estimations for the basins without in-situ 798 

observations might be biased. Further, the G-RUN ENSEMBLE, as a gridded runoff rate product purely forced by 799 

meteorological data, does not physically account for human activities (e.g., dam management) into consideration. Such 800 

simplicities might overestimate or underestimate the actual runoff for the basins with significant human intervention, with the 801 

underlying assumption that the water loss in river channels can be neglected to convert runoff into river streamflow on a 802 

monthly scale. Another potential source of uncertainty may arise from the redundant and circulatory use of specific variables 803 

(e.g., in-situ runoff data used in our calculations are also used for partially calibrating the GHM and LORA datasets) in the 804 

generation of ET-WB. Overall, the inherent uncertainties in multiple water cycle components (P, ΔS, and R) can propagate to 805 

the ET-WB product. Finally, due mainly to the availability of most input data, ET-WB covers a specific period (2002-2021) 806 

at a relatively coarse timescale (monthly). Higher frequency and longer duration are our future objectives when more data can 807 

be accessed. 808 

To overcome the multisource uncertainties, several suggestions for future use and improvements are provided as 809 

follows: (1) appropriate consideration of human disturbances such as water diversion in water balance estimates of ET should 810 

be highlighted in specific regions (e.g., the South-to-North Water Diversion Project across South and North China); (2) 811 

considering the significant role of the forcing data in determining the accuracy of ET-WB, careful justification of different 812 

inputs (e.g., P) that have better performance for the regions of interest should be performed in combination of regional in-situ 813 

observations; (3) future efforts should incorporate in-situ ET observations from regional eddy covariance towers with 814 

calibration, assimilation, and correction procedures to improve further the accuracy of ET-WB (Billah et al., 2015); (4) 815 

integrated ET products that consider a hybrid approach to integrate strengths of different categories of data, including ET-WB 816 

and satellite products, are worthy of being proposed to further constrain the uncertainties in regional ET (Long et al., 2014). 817 
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6 Data availability 818 

All the datasets used in our study are publically available online and have been introduced in the Data section. The ET-WB 819 

dataset is also publicly available in various formats (NetCDF, Mat, and Shapefile) (Xiong et al., 2023) and can be freely 820 

downloaded on the Zenodo platform (doi: 10.5281/zenodo. 8339655). 821 

7 Conclusions 822 

In the current study, a global monthly ET product (named ET-WB) over 168 river basins that account for ~60% of the Earth’s 823 

land area except for Greenland and Antarctic ice sheets and global land during May 2002-December 2021, is developed based 824 

on the water balance equation employing 23 precipitation, 29 runoff, and 7 ΔS datasets from satellite products, in-situ 825 

measurements, reanalysis, and hydrological simulations. The performance of ET-WB has been evaluated against four auxiliary 826 

global ET datasets comprising the GLEAM, FLUXCOM, MODIS, and WGHM at various time scales based on different 827 

statistical metrics (i.e., CC, NSE, RMSE, and RB). The long-term mean and annual trend of ET-WB and above ET products 828 

are also assessed. Uncertainty of ET-WB is quantified by propagating the errors in different water components, and its 829 

relationships with basin size, climate aridity, and human irrigation are also investigated.  830 

 The seasonal cycles of the ET-WB ensemble, mainly dominated by precipitation, generally agree with multiple ET 831 

global products despite the overestimations/underestimations in specific months compared with the median ET-WB results. 832 

Inter-annual variability of global land ET-WB presents a gradual increase from 2003 to 2010 and a subsequent decrease during 833 

2010-2015, followed by a sharper reduction in the remaining years due to the varying P, similar to other ET products. However, 834 

the increase of P during 2015-2021 does not translate to the enhancement of ET because of the overestimated GloFAS 835 

reanalysis and the limited data availability (e.g., G-RUN ENSEMBLE) in the period. Multiple statistical metrics show 836 

reasonably good accuracy of ET-WB, with most river basins having RB between -20% and 20% on a monthly scale. The 837 

performance improves on an annual scale but with strong spatial heterogeneity among different basins.  838 

 The long-term mean annual ET estimates from ET-WB are concentrated within the range of 500-600 mm/yr among 839 

ensemble members with the median estimates of 549 mm/yr for global land, comparable to the result from GLEAM (543 840 

mm/yr), MODIS (569 mm/yr), and WGHM (534 mm/yr). The relatively higher value from FLUXCOM (663 mm/yr) can be 841 

attributed to the non-consideration of the unvegetated area. Regarding annual trends, the ‘dry gets drier and wet gets wetter’ 842 

paradigm can be inferred from ET-WB, which generally exaggerates the prevailing increasing/decreasing ET in basins. On a 843 

global scale, the median value of trend estimates from ET-WB ensemble members is 1 mm/yr2, close to the results from 844 

GLEAM (0.8 mm/yr2) and WGHM (0.8 mm/yr2). However, both FLUXCOM and MODIS report small negative values of -845 

0.3 and -0.1 mm/yr2, respectively, still within the ET-WB ensemble spread range. 846 

The uncertainty of ET-WB that roughly fluctuates below 15 mm/m (RMS: 9.7 mm/m) is primarily controlled by that 847 

of P (RMS: 8.3 mm/m), which is relatively higher than the auxiliary ET products (RMS: 5.3 mm/m) over global land. The 848 

inversely proportional relationship between uncertainty in ΔS and basin size governs the increasing uncertainty of ET-WB 849 
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along with the enhancement of basin area. Other variables like P and R present relative dependence upon the basin’s aridity, 850 

where they are inclined to have higher uncertainty in more humid regions with higher AI. Moreover, the significant irrigation 851 

equipped for groundwater resources can lead to significant short-term, and long-term variations of, for example, ΔS and R, 852 

which is the case of some basins in North China (e.g., Haihe River basin (ID: 67)) and North India (e.g., Indus River basin (ID: 853 

27)). The uncertainty in ET-WB can be further intensified for the small wet basins with significant human disturbance, so 854 

caution should be taken when drawing the scientific conclusions using ET-WB over those regions. 855 
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