
Supplementary figures and methods

Map of six groups of African countries

Figure S1. Map of six African groups.

© GeoNames, Microsoft, TomTom

Country name	Group
Algeria Chad Egypt Eritrea Libya Mali Mauritania Morocco Niger Sudan Tunisia	Northern Africa
Benin Burkina Faso Cape verde Ivory Cote Gambia Ghana Guinea Guinea-Bissau Liberia Nigeria Sao Tome and Principe Senegal Sierra Leone Togo	Subsahelian Western Africa
Cameroon Central African Republic Democratic Republic of the Congo Gabon Republic of the Congo South Sudan	Central African countries
Burundi Comoros Djibouti Ethiopia Kenya Rwanda Seychelles Somalia Uganda United Republic of Tanzania	Horn of Africa
Angola Botswana Madagascar Malawi Mauritius Mozambique Namibia Zambia Zimbabwe	Southern countries

Table S1. List of African countries per group.

Table S2. Data sources	for the onthrong	ania fassil CO.	omissions inclu	idad in this study
Table 52. Data sources	s for the anthropo	genic rossii CO2	chilissions men	iucu in this study.

Method	Product type / file name	Species	Overall period covered	References
BU	GCP/CDIAC	CO ₂ fossil country totals with detailed emissions separating different subsectors	1990-2019	-GCP (Le Quéré et al., 2018; Friedlingstein et al., 2019)
				-CDIAC https://cdiac.ess- dive.lbl.gov/
BU	PRIMAP-hist	CO ₂ CH ₄ and N ₂ O fossil country totals (excluding LULUCF) with detailed emissions separating different subsectors	1990-2019	-PRIMAP https://www.pik- potsdam.de/paris-reality- check/primap-hist/

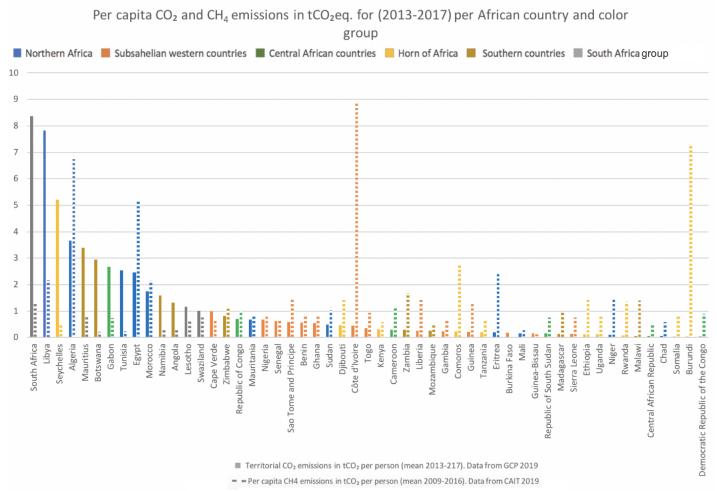


Figure S2. Bar plots of detailed African emissions for the mean values of the recent five years for fossil CO_2 and anthropogenic CH_4 in t CO_2e per capita, and by group color for 2009-2016.

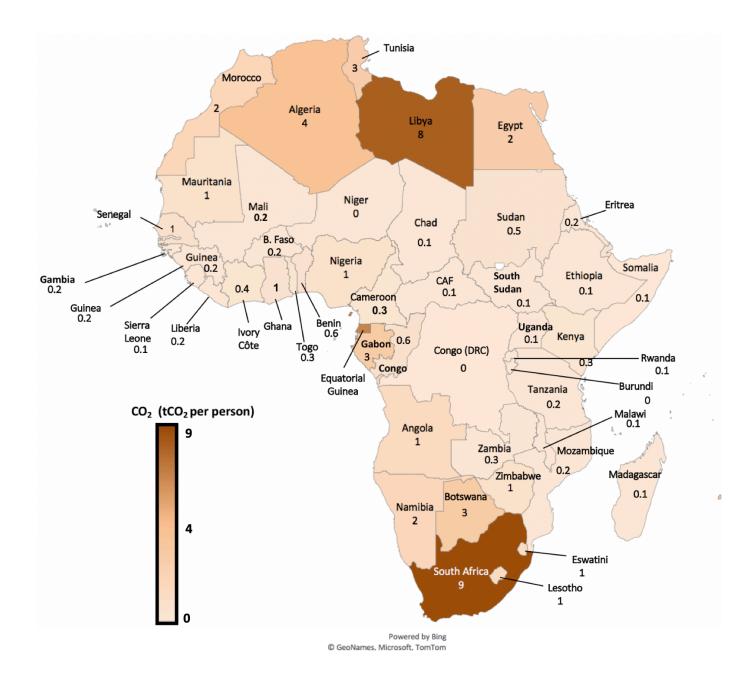


Figure S3. Map of African decennial 2009-2018 GCP CO₂ fossil fuel emissions per capita in tCO₂ per person - CDIAC.

Methodological supplementary M1. Steps for computing the GINI index of African country emissions.

The GINI index is a metric assessing the level of dispersion and therefore the level of inequalities among the values of a given dataset. To show the inequalities of per capita emissions among the African countries, we computed the continent GINI index for each of the last three decades using the Pareto principle for the following fluxes : fossil CO_2 per capita emissions, CH_4 fossil + agriculture per capita emissions, CH_4 from agriculture per capita emissions. We computed the GINI using the Paretto method also named 20/80 or ABC method, using an excel file for the several countries' data manipulation. We obtained the GINI index (γ) thanks to the formula :

$$Y = \frac{\left[\left(\sum_{1}^{n} y_{i} \times x\right) - 5000\right]}{5000}$$

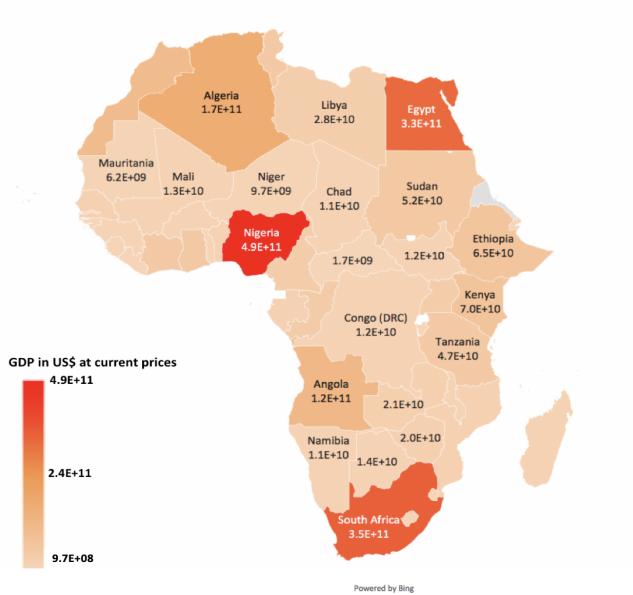
When γ is bigger than 0.6, it means that the area delimited by the curve of the cumulated criterion and the graph diagonal represents more than 60% of the surface of half of the graph, and that the dispersion of the dataset is high. This method was built in the 19th century based on Vilfredo Paretto's observations regarding the inequalities of repartition of the volume of housing taxes among the taxpayers (he realized that 80% of this tax was paid by 20% of the taxpayer.) The different steps that we followed to compute the GINI are detailed below:

1) computation of the territorial emissions per capita in every African country,

2)ranking in a decreasing order (from the highest to the smallest one),

3) computation of the cumulative emissions,

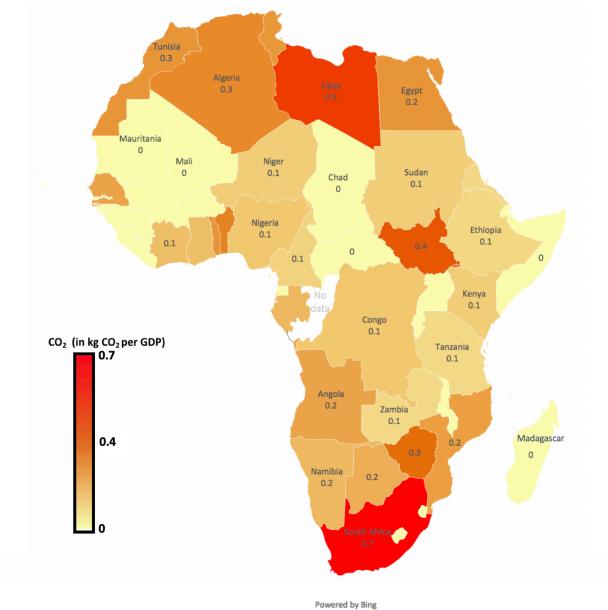
4)creation of a column with the cumulative emissions expressed as a percentage,


5)creation of a column with a rank (integer) for those ordered emissions from the biggest to the smallest,

6) conversion of this rank as a percentage in another column,

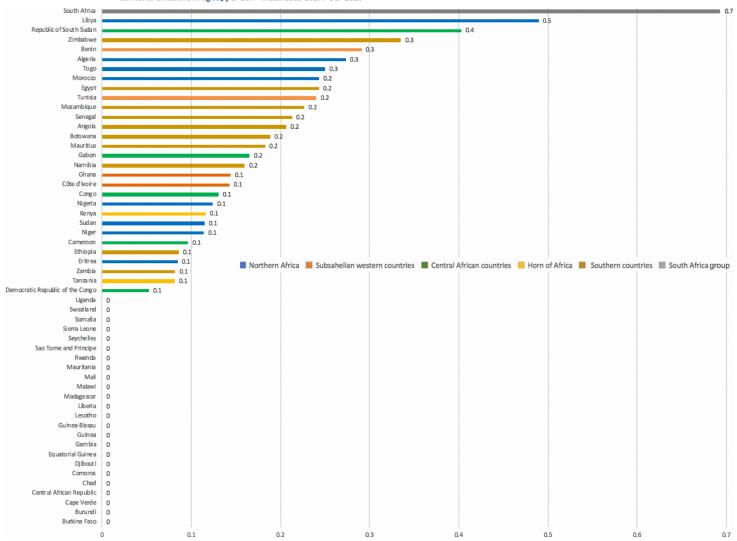
7)distinction of the emissions representing less than 25% of emissions, less than 50%, and less than 75% of emissions.

8) computation of the GINI index (γ) thanks to the Paretto's formula:


$$\gamma = \frac{\left[\left(\sum_{i}^{n} y_{i} \times x\right) - 5000\right]}{5000}$$

African GDP in US\$ at current prices for the year 2015 - World Bank national accounts data/OECD.

© GeoNames, Microsoft, TomTom


Figure S4. Bar plots and associated map of GDP, dataset taken from World Bank national accounts data/OECD (2020).

© GeoNames, Microsoft, TomTom

Figure S5. Map of territorial mean 2013-2017 emissions and its associated bar plots in kg CO₂ of GDP, dataset taken from GCP 2019 (CDIAC).

Territorial emissions in kgCO₂ per GDP - mean 2013-2017. GCP 2020

Territorial emissions in kgCO₂ per GDP - mean 2013-2017. GCP 2020

Figure S5 bis. Map of territorial mean 2013-2017 emissions and its associated bar plots in kg CO₂ of GDP, dataset taken from GCP 2019 (CDIAC).

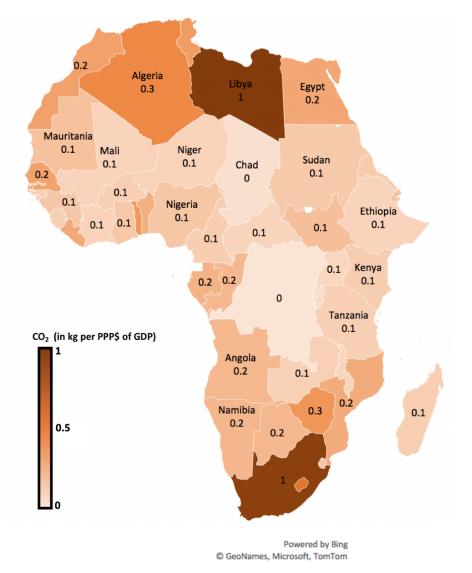
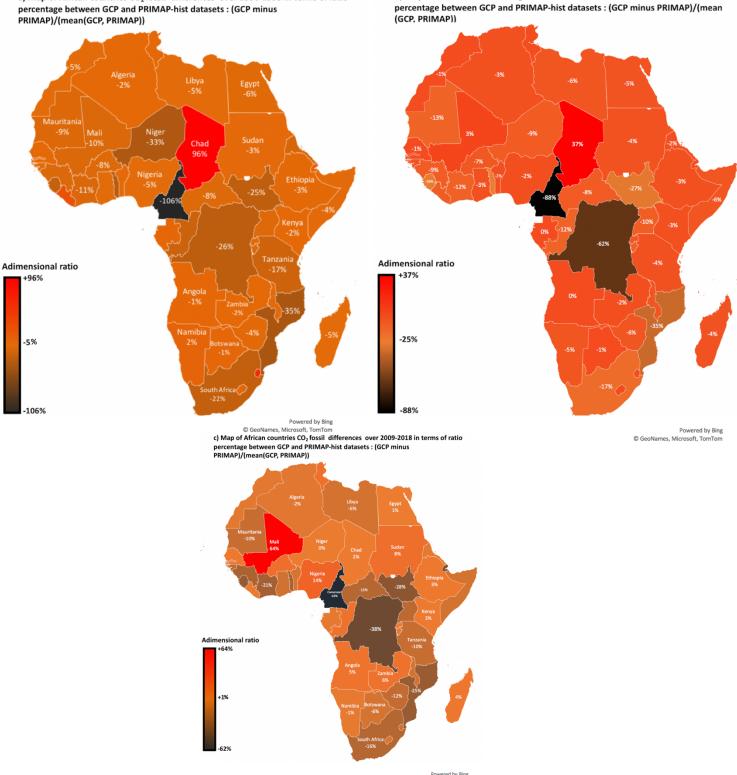



Figure S6. Map of African CO₂ emissions expressed in kg per PPP\$ of GDP in 2016 - CDIAC.

a) Map of African countries CO₂ fossil differences over 1990-1998 in terms of ratio

b) Map of African countries CO2 fossil differences over 1999-2008 in terms of ratio

Powered by Bing © GeoNames, Microsoft, TomTom

Figure S7. Three maps of African countries fossil CO2 emissions per decade : ratio percentage showing the discrepancies between GCP and PRIMAP-hist datasets over three decades (1990-2018).

11

Methodological Supplementary M2 - discussion about the rescaling for CO2 inversions

We operated a rescaling by subtracting back the prescribed fossil fuel fluxes to make sure that the inversions do not differ regarding prior fluxes for better comparability.

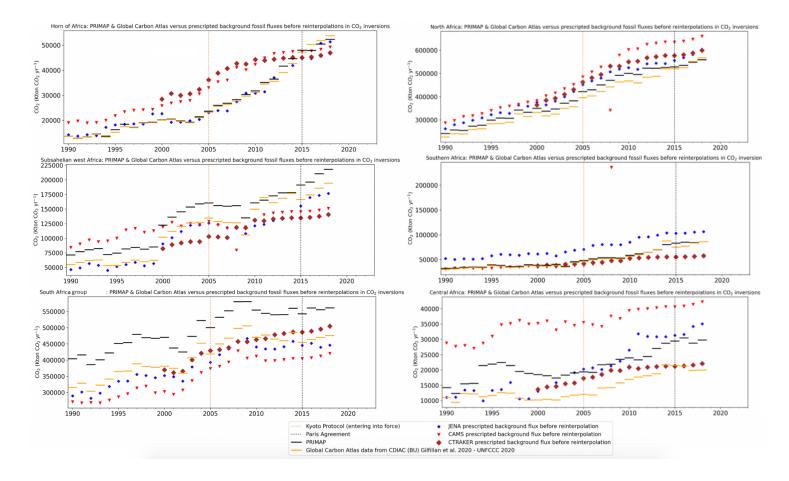
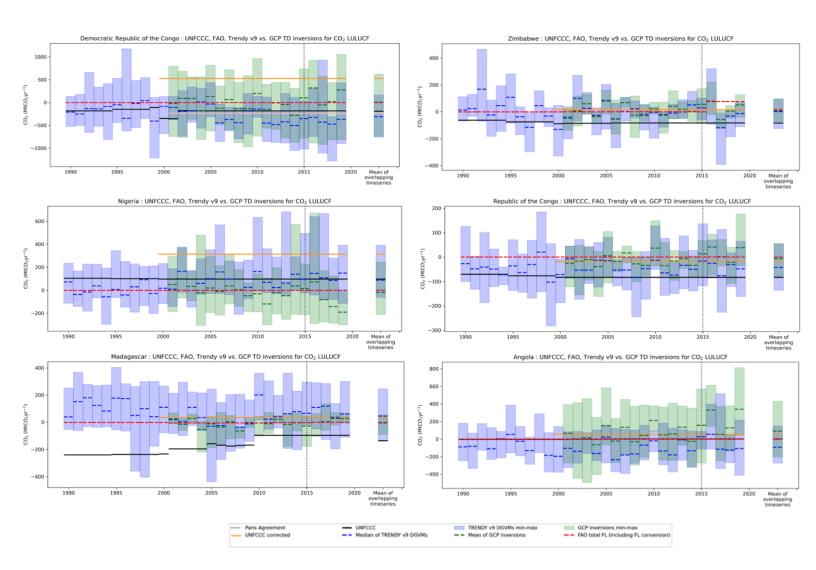


Figure S8. Comparison of PRIMAP-hist, GCP versus prescribed fossil fluxes for three CO2 inversion models at the regional scale.


Table S3. Lists of Least Developed Countries and Small Islands Developing States in Africa.

33 Least Developed Countries (LDCs)	6 Small Islands Developing States (SIDS)
Angola, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Comoros, D.R. Congo, Djibouti, Eritrea, Ethiopia, Gambia, Guinea, Guinea- Bissau, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Niger, Rwanda, São Tomé and Príncipe, Senegal, Sierra Leone, Somalia, South Sudan, Sudan, Tanzania, Togo, Uganda, Zambia.	Mauritius, Sao Tomé and Principe,

Table S4. List of corrected countries for CO₂ LULUCF (in MtCO₂) - corrections in line with Grassi (2022)

Country	Year of most recent outlier report	Outlier value and source	Year corrected data	Corrected data and source	Mean corrected value over 2000-2020	Mean difference over 2000– 2020	Comments on the chosen correcting method.
CAF	2010	-1766 (NC2)	2016	-229 (NDC)	-229	1537	NDC 2016 because more recent than NC2 (2015), and sink in most recent NDC 2021 biophysically impossible.
Guinea- Bissau	2001	-11288 (NC1)	2010	-1 (NC2)	-1	-11287	NC1 value reports an unrealistically high sink.
Tanzania	1994	810 (NC2)	2022	77 (NDC 2022 ¹)	77	566	NDC is more recent and underlines a more realistic order of magnitude.
Guinea	2000	-444 (NC2)	2021	34 (NDC 2021)	34	478	NDC 2021 chosen because more recent than NC2 (2018), and the sink in NC2 is biophysically impossible (-444 MtCO2.yr ¹ over only 5 Mha of forest). However, a remaining problem with the corrected value from nc2 is that no forest sink at all is reported.
Namibia	2000	11 (NC3)	2019	-117 (NIR 2019 ²)	-106	-117	NIR 2019 chosen because more recent than NC3 (2015) and more complete than NDC 2021 which is more recent.
Mali	2010	-245 (NC3)	Mean 2000 and 2010	-221 (mean of NC2 and NC3)	-155	66	Mean of NC2 and NC3 as more complete than REDD+. The sink in NC3 is high and here considered implausible, but it is however consistently reported in various official UNFCCC documents.
Democratic Republic of the Congo	2015	-235 (NC3)	2021	529 (NDC 2021)	529	761	NDC 2021 chosen because more recent than the NC3 (2015) and broadly consistent with REDD+ (2018). But a weakness of this correction source is that it does not report any carbon sink from forest.
Madagascar	2010	-97 (NC3)	2017	34 (REDD+ 2018)	34	131	REDD+ (2018) chosen because more recent than NC3 (2017), but it covers only deforestation. NC3 reports a biophysically impossible sink over only 9 Mha of forest.
Nigeria	2014	98 (NC2)	2017	315 (BUR2)	287	189	BUR2 (2021) chosen because more recent than NC2 (2014) and more detailed than NDC 2021 which report different numbers.
Zimbabwe	2006	-83 NC3 (2017)	2021	16 (BUR1)	11	95	BUR1 (2021) as more recent than the NC3 (2017) and more complete than NDC 2021.
Congo	Since 2000	-83 (NC2)	2009	-18 (NC2)	-18	65	NDC2021 chosen because more recent than the NC2 (2009).
Angola	2012	0.7 (NC1)	2021	55 (NC2)	55	54	NC2 (2021) chosen because more recent that NC1 (2012).
Mauritius	2013	-490 (NC3)	2016	0 (NIR 2021)	0	490	NIR 2021 more recent than NC3 (with unrealistically high value).

¹Using Tanzania GHGs Inventory Report and MRV System (2018). ²NIR = National Inventory Report (NIR).

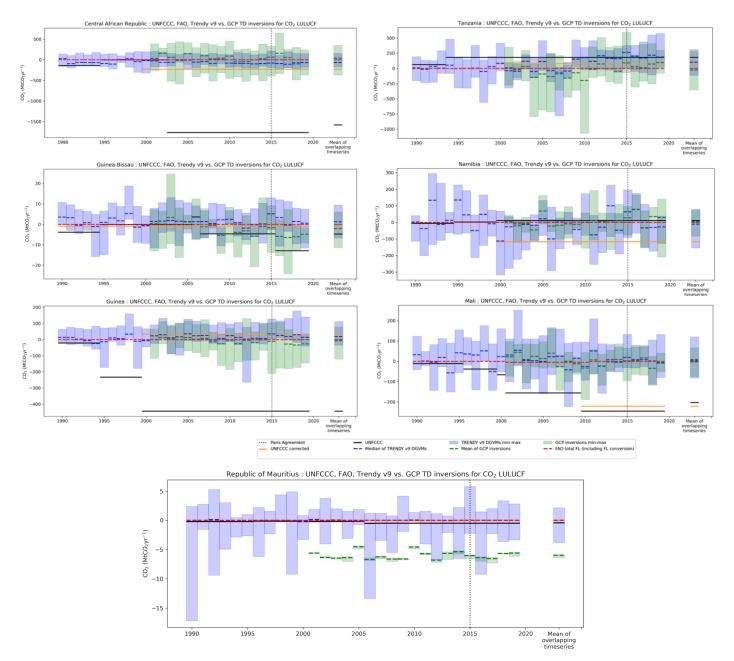


Figure S9. Country details for LULUCF CO₂ emissions and sinks from UNFCCC corrected (strictly consistent with Grassi et al. 2022) for 13 African countries that we identified as outliers vs. UNFCCC uncorrected data, TRENDY v9, DGVMs and GCP (2020) inversions. Unit is in MtCO₂. Black lines denote the PRIMAP-hist estimates for total anthropogenic emissions including all IPCC sectors. Shaded green areas represent the minimum and maximum ranges from GCP inversions. Shaded blue areas represent the minimum and maximum ranges for TRENDY v9 DGVMs. Green dashes denote the median of GCP inversions, blue dashes denote the median of TRENDY v9 DGVMs, green dashes the median of GCP inversions. The positive values represent a source while the negative values refer to a sink.

Method	Product type / file name	Species	Overall period covered	References
BU	TRENDY v9 (2019) 14 DGVMs : CABLE, CLASS, CLMS, DLEM, ISAM, JSBACH, JULES, LPJ, LPX, OCN, ORCHIDEE- CNP, ORCHIDEE, SDGVM, SURFEX	Land-related Carbon emissions (Net Biome Productivity)	1900-2019	Met Office UK/ Le Quéré et al. (2018) www.icos-cp.eu/GCP
BU	UNFCCC	LULUCF Net CO ₂ emissions / removals	1990-2015	UNFCCC https://unfcec.int/non- annex-I-NCs
TD	GCB 2019	Total CO ₂ inverse flux (Net Biome Productivity)	2000-2018	Friedlingstein et al. (2020)
	Carbon Tracker Europe (CTE)		2000-2018	van der Laan-Luijke et al. (2017)
	CAMS (in-situ)		2000-2018	Chevallier et al. (2005) Rödenbeck (2005)
	Jena CarboScopeReg (in situ)		2006-2010	Kountouris et al. (2018)

Table S5. Data sources for the land CO₂ emissions in this analysis.

Method/observations	Product type / number of inversions	Overall period covered	References		
TD (surface stations)	Carbon Tracker-Europe CH, CTE_SURF (FMI)/ 1	2000-2017	Tsuruta et al. (2017)		
TD (GOSAT NIES L2 v2.72)	Carbon Tracker-Europe CH, CTE_GOSAT (FMI)/ 1	2000-2017	Tsuruta et al. (2017)		
TD (surface stations)	GELCA_SURF (NIES)/ 1	2000-2015	Ishizawa et al. (2016)		
TD (surface stations)	LMDZ_PYVAR (LSCE)/ 2	2010-2016	Yin et al. (2020)		
TD (GOSAT 7.2 Leicester v2)	LMDZ_PYVAR (LSCE)/ 4	2010-2016	Yin et al. (2020)		
TD (GOSAT 7.2 Leicester v2)	LMDZ_PYVAR (LSCE)/ 2	2010-2017	Zheng et al. (2018)		
TD (surface stations)	MIROC4- ACTM (JAMSTEC)/ 1	2010-2016	Patra et al. (2016)		
TD (surface stations)	NICAM-TM (NIES)/ 1	2000-2017	Niwal et al. (2017)		
TD (surface stations)	NIES-TM-FLEXPART-VAR (NETFVAR), (NIES)/ 1	2010-2017	Maksyutov et al. (2020); Wang et al. (2019)		
TD (GOSAT NIES L2 v2.72)	NIES-TM-FLEXPART-VAR (NETFVAR), (NIES)/ 1	2010-2017	Maksyutov et al. (2020); Wang et al. (2019)		
TD (surface stations)	TM5-CAMS (TNO)/1	2000-2017	Segers and Houweling (2018). Bergamaschi et al. (2013, 2018)		
TD (GOSAT/CCI v2.3.8 and surface observations)	TM5-CAMS (TNO)/1	2010-2017	Segers and Houweling (2018). Bergamaschi et al. (2013, 2018)		
TD (surface stations)	TM5-4DVAR (EC_JRC)/2	2000-2017	Bergamaschi et al. (2013, 2018)		
TD (GOSAT/CCI v2.3.8 and surface observations)	TM5-4DVAR(EC_JRC)/2	2010-2017	Bergamaschi et al. (2013, 2018)		
TD (surface stations)	TOMCAT (University of Leeds)/	2003-2015	McNorton (2018)		

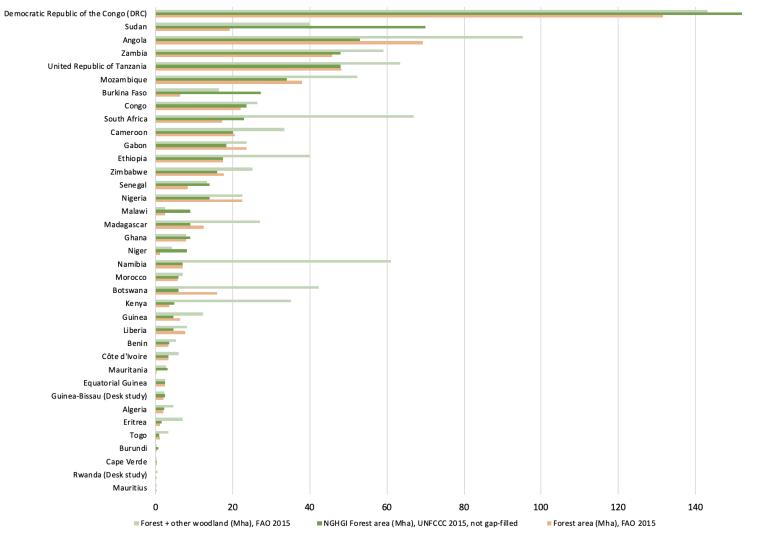

Table S6. Data sources for total CH4 emissions in this analysis.

Table S7. Data sources for total N ₂ O inverse flux over Africa (in situ).

Method	Product type / file name	Period covered	References
TD	PyVAR	1998-2017	Thompson et al. (2014), Tian et al. (2020)
TD	TOMCAT- INVICAT	1998-2015	Wilson et al. (2014), Tian et al. (2020)
TD	MIROC4- ACTM (JAMSTEC)	1998-2016	Patra et al. (2018), Tian et al. (2020)

Country	Forest area in Mha. Data: FAO (2015)	Inventories forest area in Mha. Data: UNFCCC/REDD+	Forest land area + other woodland area in Mha. Data : FAO (2015)
Mauritius	0.04	0.00	0.05
Rwanda	0.27	0.00	0.53
Cape Verde	0.04	0.04	0.08
Burundi	0.28	0.71	0.28
Togo	1.22	1.00	3.33
Eritrea	1.07	1.59	7.03
Algeria	1.96	2.14	4.53
Guinea-Bissau	2.02	2.46	2.19
Eq. Guinea	2.49	2.50	2.49
Mauritania	0.34	3.00	2.74
Côte d'Ivoire	3.40	3.40	5.96
Benin	3.39	3.59	5.34
Liberia	7.77	4.52	8.07
Guinea	6.39	4.60	12.24
Kenya	3.52	4.75	35.14
Botswana	15.85	5.83	42.34
Morocco	5.68	6.00	6.97
Namibia	6.99	7.00	61.07
Niger	1.14	8.00	4.28
Ghana	7.88	8.97	7.88
Madagascar	12.50	9.00	26.96
Malawi	2.45	9.00	2.45
Nigeria	22.44	14.00	22.44
Senegal	8.27	14.00	13.42
Zimbabwe	17.67	16.00	25.13
Ethiopia	17.43	17.43	39.83
Gabon	23.59	18.27	23.59
Cameroon	20.62	20.00	33.34
South Africa	17.23	23.00	66.91
Congo	22.02	23.52	26.39
Burkina Faso Mozambique	6.47 37.94	27.30 34.00	16.45 52.36
Tanzania	48.09	48.00	63.38
Zambia	45.76	48.00	58.97
Angola	69.38	53.00	95.31
Sudan	19.21	70.00	39.96
Dem. Rep. Congo	131.66	152.00	143.17

Table S8. Area of managed land reported in NC/BUR/REDD+ versus FAO forest land (2015) and FAO forest land + other woodlands (2015) for Africa.

Comparison of UNFCCC vs. FAO forest land area and FAO forest + other wood land (year 2015) in MhA

Figure S10. Bar plots comparing areas of managed land reported in NC/BUR/REDD+ versus FAO forest land (2015) in Mha and FAO forest land + other woodlands areas (2015) for African countries. (Source : Forest Resource Assessment, FAO). See also Table S7 for detailed values.

160

Region	Rank median PRIMAP	Rank medianRank medianRank wetlandsGOSATsurfacemedian GMBinversionsinversions		Rank wildfires	Rank wetlands median GMB	
North Africa	1	1	1	5	3	5
Subsahelian West Africa	2	3	2	4	5	4
Horn of Africa	3	2	3	3	4	3
Southern Africa	4	5	5	2	1	2
Central Africa	5	4	4	1	2	1
South Africa Group	6	6	6	6	6	6

Table S9. Synthesis of TD and BU mean CH₄ emissions and removals in MtCO₂e.yr⁻¹ for the overlapping time series (2010-2017) for whole Africa and for the six groups using Method 1 (Foss+ AGRIW + BBUR - wildfires).

Region	PRIMAP	Median GOSAT inv.	Max GOSAT inv.	Min GOSAT inv.	Median surface inv.	Max surface inv.	Min surface inv.	Max wetlands GCB	Median wetlands GCB	Min wetlands GCB	Wildfires
Africa Total	1231	1117	1390	903	1094	1330	853	946	827	481	110
North Africa	293	270	330	174	302	396	245	146	69	34	11
Subsahelian West Africa	272	186	329	174	249	396	245	161	77	48	8
Horn of Africa	252	242	551	206	237	302	183	171	86	47	9
Southern Africa	212	114	173	99	114	146	91	214	102	65	41
Central Africa	123	130	170	106	123	142	88	615	428	195	40
South Africa Group	78	91	168	75	88	124	65	21	13	2	1

Table S10. Anomalies in ranking for TD and BU mean values on the overlapping time periods (2010-2017) for whole Africa, and for six African groups using Method 1 for anthropogenic CH₄ (FOSS + AGRIW + BBUR - wildfires).

Table S11. Synthesis of wetlands (GCB) mean CH₄ emissions and removals in MtCO₂e.yr⁻¹ for the overlapping time series (2010-2017) for the whole Africa and six African groups.

Region	Max wetlands GCB	Median wetlands GCB	Min wetlands GCB
Africa	946	827	481
North Africa	146	69	34
Subsahelian West Africa	161	77	48
Horn of Africa	171	86	47
Southern Africa	214	102	65
Central Africa	615	428	195
South Africa group	21	13	2

Region	PRIMAP-hist	Median global inversions
Africa total	360	1647 (1502 to 1760)
North Africa	106	330 (274 to 419)
Subsahelian West Africa	68	271 (68 to 330)
Horn of Africa	46	240 (217 to 265)
Southern Africa	62	263 (214 to 310)
Central Africa	182	461 (424 to 517)
South Africa group	24	68 (51 to 81)

Table S12. Comparison between N₂O PRIMAP-hist mean values and the median of inversions on the overlapping period (2010-2017) for Africa and the six African groups in $MtCO_{2}e.yr^{-1}$

Table S13. Synthesis for the three main GHGs net African budget: comparative net emissions and removals computation by TD methods for Africa as a whole and for six sub-groups of African countries over the overlapping period (2001-2017), in MtCO2e. Use of Method 1 for CH4 (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and including the range for GCP CO2 LULUCF.

Region	TD Method 1 and GCP for FCO ₂			TD Method 1 and PRIMAP for FCO ₂				
	CH ₄ median GOSAT inversions + median N ₂ O inversions	CH₄ median SURF inversions + median N ₂ O inversions	CH₄ median SURF inversions + PRIMAP N ₂ O	CH4 median GOSAT inversions + PRIMAP N2O	CH ₄ median GOSAT inversions + median N ₂ O inversions	CH4 median SURF inversions + median N2O inversions	CH₄ median SURF inversions + PRIMAP N ₂ O	CH₄ median GOSAT inversions + PRIMAP N ₂ O
Africa total	3889 ⁷²⁵⁷ 1296	3866 ⁷¹⁹⁷ 1246	2579^{5797}_{104}	2602_{154}^{5857}	3983 ⁷⁶²¹ 1390	3960^{7291}_{1340}	2673^{5890}_{198}	2696^{5950}_{248}
North Africa	1014^{1438}_{553}	1046^{1504}_{624}	822^{1190}_{456}	$790{}^{1124}_{385}$	1022^{1446}_{591}	1054^{1511}_{632}	830^{1232}_{464}	798^{1132}_{393}
Central Africa	758^{2064}_{-758}	751^{2036}_{-776}	344_{-1145}^{1573}	351^{1602}_{-1128}	766_{-750}^{2072}	759^{2043}_{-768}	352^{1582}_{-1138}	359^{1610}_{-1120}
Subsahelian West Africa	546 ¹²⁸² -95	609^{1349}_{-24}	406^{1086}_{-24}	343^{1019}_{95}	542^{1278}_{-98}	605^{1345}_{-27}	403^{1083}_{-27}	340^{1016}_{98}
Southern Africa	616^{1726}_{-175}	616^{1699}_{-186}	415^{1451}_{-338}	415^{1478}_{-331}	618^{1728}_{-340}	618^{1701}_{-348}	416^{1452}_{-337}	416^{1479}_{-329}
South Africa group	458^{710}_{103}	455 ₉₃ ⁷⁴⁷	411^{689}_{116}	414^{734}_{126}	537 ⁸⁷¹ 184	534 ⁹²⁷	490 ⁷⁶⁹ 196	493 ⁸¹³ 206
Horn of Africa	399^{1215}_{-274}	394^{966}_{-297}	201^{748}_{-467}	206997	401^{1216}_{-273}	395^{967}_{-296}	202^{749}_{-467}	207 ⁹⁹⁸ -444

Table S14. Synthesis for the three main GHGs net African budget: comparative net emissions and removals computation by TD methods for Africa as a whole and for six sub-groups of African countries over the overlapping period (2001-2017), in MtCO₂e. Use of Method 1 for CH₄ (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and excluding the range for GCP CO₂ LULUCF (possible outliers).

Region	TD Method 1 and GCP FCO ₂			TD Method 1 and PRIMAP FCO ₂				
	CH4 median GOSAT inversions + median N2O inversions	CH4 median SURF inversions + median N2O inversions	CH4 median SURF inversions + PRIMAP N2O	CH4 median GOSAT inversions + PRIMAP N2O	CH4 median GOSAT inversions + median N2O inversions	CH4 median SURF inversions + median N2O inversions	CH4 median SURF inversions + PRIMAP N2O	CH4 median GOSAT inversions + PRIMAP N2O
Africa total	3889 ⁴²⁷⁶ 3530	3866^{4216}_{3480}	2579 ²⁸¹⁵ 2338	2602 ²⁸⁷⁵ 2388	3983^{4639}_{3624}	3960 ⁴³⁰⁹ 3574	2673 ²⁹⁰⁹ 2432	2696 ²⁹⁶⁹ 2482
North Africa	1014^{1164}_{862}	$1046^{1230}_{933.1}$	822 ⁹¹⁶ 765	$790{}^{850}_{694}$	1022^{1171}_{870}	1054^{1237}_{941}	830 ⁹⁵⁸ 773	798_{702}^{858}
Central Africa	758^{853}_{697}	751^{826}_{679}	344_{309}^{363}	351^{391}_{327}	766^{862}_{705}	759^{833}_{687}	352^{371}_{317}	359 ³⁹⁹ 335
Subsahelian West Africa	546^{748}_{331}	609^{815}_{402}	406_{402}^{553}	343^{486}_{331}	542 ⁷⁴⁵ 328	605^{812}_{399}	403 ⁵⁵⁰ 399	340 ⁴⁸³ ₃₂₈
Southern Africa	616^{722}_{552}	616_{544}^{695}	415 ⁴⁴⁷ ₃₉₂	415^{474}_{400}	618^{724}_{390}	618^{697}_{382}	416^{448}_{393}	416^{475}_{401}
South Africa group	458^{467}_{374}	455^{504}_{364}	411^{446}_{388}	414^{491}_{398}	537^{628}_{453}	534_{443}^{584}	490^{526}_{467}	493 ⁵⁷⁰ 477
Horn of Africa	399 ⁷³³ 340	394^{484}_{317}	201^{266}_{147}	206 ⁵¹⁵ ₁₇₉	400^{734}_{341}	395 ⁴⁸⁵ 318	202_{148}^{267}	207^{516}_{171}

Table S15. Mean net total Africa and regional groups from mean TD (excluding the range for CO₂ LULUCF due to outliers) and mean best fitted BU Methods excluding outliers. (For TD approaches, N₂O inversions were excluded and replaced by PRIMAP estimates. For DGVMs the range for GCP CO₂ LULUCF was not considered due to probable outliers. UNFCCC outliers are also excluded.) Net emissions and removals are expressed in MtCO₂e.yr⁻¹ over the overlapping period (2001-2017).

Region	Mean of TD methods excluding N ₂ O inversions replaced with N ₂ O PRIMAP and excluding the range for GCP CO ₂ LULUCF (with probable outliers)	Ranking with TD methods	Mean net of best fitted BU methods (excluding uncorrected UNFCCC data)	Ranking with BU methods
North Africa	806 ⁸⁸³ ₇₃₀ (GCP FCO ₂) 814 ⁹⁰⁸ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 810 ⁸⁹³	1	$713_{647}^{807} (GCP FCO_2) 720_{649}^{816} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 717_{645}^{812}$	1
South Africa group	$\begin{array}{r} 412_{393}^{468} (\text{GCP FCO}_2) \\ 491_{472}^{547} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ \mathbf{452_{492}^{508}} \end{array}$	2	$534_{443}^{613} (\text{GCP FCO}_2) \\ 613_{522}^{692} \text{ PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2): \\ \mathbf{574_{493}^{653}} \\ \mathbf{574_{493}$	3
Horn of Africa	$203_{158}^{390} (GCP FCO_2) 204_{159}^{391} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 204_{159}^{391} $	6	432_{296}^{524} (GCP FCO ₂) 433_{297}^{525} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 433_{297}^{525}	4
Subsahelian West Africa	$\begin{array}{r} 375\ {}^{520}_{367}(\text{GCP FCO}_2)\\ 371\ {}^{516}_{363}\ (\text{PRIMAP FCO}_2)\\ \text{Mean GCP \& PRIMAP (FCO}_2):\\ 373^{518}_{365}\end{array}$	4	612_{539}^{776} (GCP FCO ₂) 609_{535}^{772} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 610_{537}^{774}	2
Southern Africa	$\begin{array}{c} 415\ {}^{460}_{396}(\text{GCP FCO}_2)\\ 416\ {}^{462}_{397}\ (\text{PRIMAP FCO}_2)\\ \text{Mean GCP \& PRIMAP (FCO}_2):\\ 416\ {}^{467}_{397}\end{array}$	3	$228_{178}^{529}(\text{GCP FCO}_2)$ $355_{179}^{531}(\text{PRIMAP FCO}_2)$ Mean GCP & PRIMAP (FCO_2): 292_{178}^{530}	5
Central Africa	$\begin{array}{r} 348 \ {}^{377}_{318} (\text{GCP FCO}_2) \\ 356 \ {}^{385}_{326} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2) \\ 352 \ {}^{381}_{322} \end{array}$	5	$-70_{-210}^{168}(\text{GCP FCO}_2) -62_{-202}^{176}(\text{PRIMAP FCO}_2) Mean GCP & PRIMAP (FCO_2): -66_{-206}^{172}$	6
Africa total	2591 ²⁸⁴⁵ ₂₃₆₃ (GCP FCO ₂) 2684 ²⁹³⁹ ₂₄₅₇ (PRIMAP FCO ₂) Mean GCP &PRIMAP (FCO ₂): 2638²⁸⁹² ₂₄₁₀		$\begin{array}{c} 2576_{2140}^{3228} \ (\text{GCP FCO}_2) \\ 2669_{2233}^{3251} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 2623_{2186}^{3240} \end{array}$	

Table S16. Mean net total Africa and regional groups from best fitted mean TD and mean BU Methods excluding outliers. For TD approaches, N₂O inversions were excluded and replaced by PRIMAP estimates. For DGVMs, the range for GCP CO₂ LULUCF was considered. UNFCCC outliers are also excluded. Net emissions and removals are expressed in MtCO₂.yr⁻¹ over the overlapping period (2001-2017).

Region	Mean net of TD methods (including range for CO ₂ LULUCF from GCP inversions with outliers but excluding N ₂ O inversions (N ₂ O PRIMAP)	Ranking with TD methods	Mean net of best fitted BU methods (excluding uncorrected UNFCCC data)	Ranking with BU methods
North Africa	$806 \frac{1157}{129} (GCP FCO_2) \\814 \frac{1182}{428} (PRIMAP FCO_2) \\Mean GCP & PRIMAP: \\810 \frac{1170}{279}$	1	$713_{649}^{807} (GCP FCO_2) 720_{649}^{816} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 717_{645}^{812}$	1
South Africa group	$\begin{array}{c} 412^{712}_{121} (\text{GCP FCO}_2) \\ 491^{791}_{201} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP:} \\ \mathbf{452^{751}_{161}} \end{array}$	2	$534_{443}^{613} (\text{GCP FCO}_2) \\ 613_{522}^{692} \text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2): \\ 574_{483}^{653} \\ \end{array}$	3
Horn of Africa	$203 \frac{^{872}}{^{456}} (GCP FCO_2) 204 \frac{^{873}}{^{455}} (PRIMAP FCO_2) Mean GCP & PRIMAP: 204 \frac{^{873}}{^{456}}$	6	432_{296}^{524} (GCP FCO ₂) 433_{297}^{525} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 433_{296}^{525}	4
Subsahelian West Africa	$\begin{array}{r} 375 {}^{1053}_{36} (\text{GCP FCO}_2) \\ 371 {}^{1050}_{36} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP:} \\ 373 {}^{1051}_{356} \end{array}$	4	612_{539}^{776} (GCP FCO ₂) 609_{535}^{772} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 610_{537}^{774}	2
Southern Africa	$\begin{array}{r} 415 {}^{1464}_{-335}(\text{GCP FCO}_2) \\ 416^{1466}_{-333} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP:} \\ 416^{1465}_{-334} \end{array}$	3	$228_{179}^{529}(\text{GCP FCO}_2)$ $355_{179}^{531}(\text{PRIMAP FCO}_2)$ Mean GCP & PRIMAP (FCO}_2): 292_{178}^{530}	5
Central Africa	348 ¹⁵⁸⁸ ₋₁₁₃₇ (GCP FCO ₂) 356 ¹⁵⁹⁶ ₋₁₁₂₉ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 352 ¹⁵⁹² ₋₁₁₃₃	5	$-70_{-210}^{168}(\text{GCP FCO}_2) -62_{-202}^{176}(\text{PRIMAP FCO}_2) Mean GCP & PRIMAP (FCO}_2): -66_{-206}^{172}$	6
Africa total	2583 ³⁰³⁷ ₂₂₅₁ (GCP FCO ₂) 2654 ³⁰⁸⁹ ₂₃₂₂ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 2638⁵⁸⁷³ 2638⁵⁸⁷³		$\begin{array}{c} 2576_{2140}^{3228} (\text{GCP FCO}_2) \\ 2669_{2233}^{3251} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 2623_{2186}^{3240} \end{array}$	

Table S17. Mean net total of best fitted mean TD and mean BU methods excluding N₂O inversions (replaced by PRIMAP estimates), using Method 1 for CH4 (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and including the range for GCP CO₂ LULUCF, for Africa total and for regional groups, with associated ranking.

Region	Mean of best fitted TD and BU methods using both GCP and PRIMAP FCO2 (excluding UNFCCC outliers and N ₂ O inversions, but including range for CO ₂ LULUCF from GCP inversions)	Ranking with TD methods
North Africa	761 ₄₆₀	1
South Africa group	513^{702}_{161}	2
Horn of Africa	318 ⁶⁹⁹ 80	5
Subsahelian West Africa	492 ⁹¹³ 286	3
Southern Africa	354 ₂₇₈	4
Central Africa	143_{-670}^{882}	6
Africa total	2630 ⁴⁵⁵⁷ 1974	

Region	Mean TD from inversions only (including range for CO ₂ LULUCF from GCP inversions	Ranking with BU methods
	and N ₂ O inversions)	
North Africa	$\frac{1030_{589}^{1471}(\text{GCP FCO}_2)}{1038_{512}^{1479}(\text{PRIMAP FCO}_2)}$ Mean GCP & PRIMAP (FCO ₂): 1034_{600}^{1475}	1
South Africa group	$457_{98}^{729} (GCP FCO_2) 536_{178}^{899} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 496_{138}^{814}$	5
Horn of Africa	$\begin{array}{r} 397 \ _{-286}^{1090} \ (\text{GCP FCO}_2) \\ 398 \ _{-285}^{1091} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 397 \ _{-285}^{1091} \end{array}$	6
Subsahelian West Africa	577 $^{1315}_{-60}$ (GCP FCO ₂) 574 $^{1312}_{-63}$ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 576 $^{1313}_{-61}$	4
Southern Africa	$616 {}^{1713}_{-181} (\text{GCP FCO}_2)$ $618 {}^{1714}_{-344} (\text{PRIMAP FCO}_2)$ Mean GCP & PRIMAP (FCO ₂): $617 {}^{1713}_{-262}$	3
Central Africa	$755_{-767}^{2050} (GCP FCO_2) 763_{-759}^{2058} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 759_{-763}^{2054}$	2
Africa total	3787_{1274}^{7226} (GCP FCO ₂) 3971_{1365}^{7456} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 3879_{1320}^{7341}	

Table S18. Mean net total Africa and regional groups from TD inversions only including N₂O inversions (and the range for CO₂ LULUCF from GCP inversions). For BU methods, UNFCCC outliers are excluded.

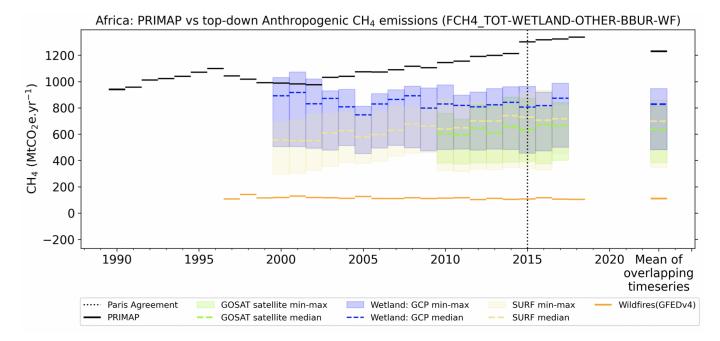


Figure S11. Comparison of the total anthropogenic CH₄ emissions from PRIMAP-hist and 22 top-down global ensembles using Method 2 for total Africa, including wildfire emissions. Anthropogenic CH₄ emissions from TD methods were computed by withdrawing the sum of available data regarding natural emissions from the total flux (wetlands, "other natural" emissions, biomass burning, and wildfires (GFEDv4)). Black lines denote the PRIMAP-hist estimates for total anthropogenic emissions including all IPCC sectors. Shaded green areas represent the minimum and maximum ranges from satellite concentration observations (GOSAT) inversions. Shaded blue areas represent the minimum and maximum ranges for wetlands. Shaded yellow areas represent the minimum and maximum ranges for surface stations (SURF). Green dashes denote the median of 11 global GOSAT satellites, blue dashes denote the median of wetlands, yellow dashes the median of inversions using surface stations (SURF). The orange lines represent wildfire emissions. Following the atmospheric convention, positive numbers represent an emission to the atmosphere.

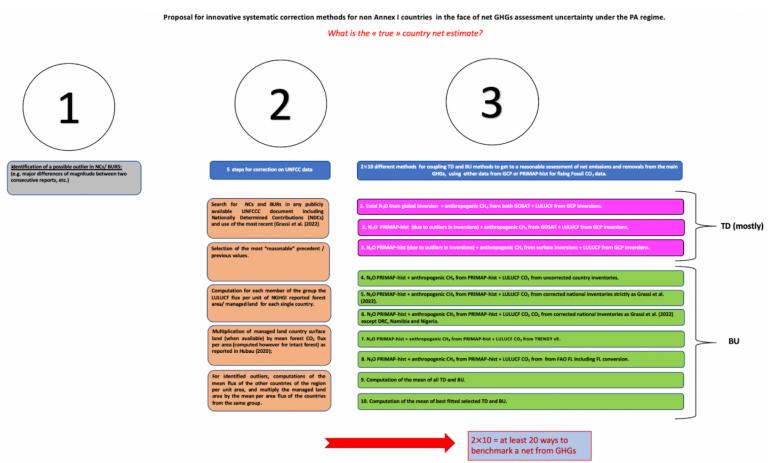


Figure S12. Synthesis of the different methodological steps used in this paper for assessing net African GHG trends.