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Abstract. A key goal of the Paris Agreement (PA) is to reach net-zero Greenhouse Gasses (GHG) emissions by 2050 17 
globally, which requires mitigation efforts from all countries. Africa’s rapidly growing population and GDP makes 18 
this continent important for GHG emission trends. In this paper, we study the emissions of carbon dioxide (CO2), 19 
methane (CH4) and nitrous oxide (N2O) in Africa over three decades (1990-2018). We compare bottom-up (BU) 20 
approaches including UNFCCC national inventories, FAO, PRIMAP-hist, process-based ecosystem models for CO2 21 
fluxes in the Land Use, Land Use Change and Forestry (LULUCF) sector, and global atmospheric inversions. For 22 
inversions, we applied different methods to separate anthropogenic CH4 emissions. The BU inventories show that over 23 
the decade 2010-2018, less than ten countries represented more than 75% of African fossil CO2 emissions. With a 24 
mean of	1373 MtCO2 yr-1, total African fossil CO2 emissions over 2010-2018 represent only 4% of global fossil 25 
emissions. Yet, these emissions grew by +34% from 1990-1999 to 2000-2009 and by +31% over 2000-2009 to 2010-26 
2018, which represent more than a doubling in 30 years. This growth rate is more than twice faster than the global 27 
growth rate of fossil CO2 emissions. The anthropogenic emissions of CH4 grew by 5% from 1990-1999 to 2000-2009 28 
and by 14.8% from 2000-2009 to 2010-2018. The N2O emissions grew by 19.5% from 1990-1999 to 2000-2009; and 29 
by 20.8% from 2000-2009 to 2010-2018. When using the mean of estimates from UNFCCC reports (including the 30 
land use sector), with corrections from outliers, Africa was a mean source of greenhouse gasses of 2622	$%&'($() 	MtCO2e 31 
yr-1 from all BU estimates (sub- and superscript indicating min-max range uncertainties), and of +2637%,'%-&,(  MtCO2e 32 
yr-1 from top-down (TD) methods, during their overlap period from 2001 to 2017. Although the mean values are 33 
consistent, the range of) TD estimates is larger than the one of BU estimates, indicating that sparse atmospheric 34 
observations and transport model errors do not allow us to use inversions to reduce the uncertainty of BU estimates. 35 
A main source of uncertainty comes from CO2 fluxes in the land-use sector (LULUCF) for which the spread across 36 
inversions is larger than 50%, especially in Central Africa. Moreover, estimates from national UNFCCC 37 
communications differ widely depending on whether the large sinks in a few countries are corrected to more plausible 38 
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values using more recent national sources following the methodology of Grassi et al. (2022). The median of CH4 39 
emissions from inversions based on satellite retrievals and surface station networks are consistent with each other 40 
within 2% at continental scale. The inversion ensemble also provides consistent estimates of anthropogenic CH4 41 
emissions with BU inventories such as PRIMAP-hist. For N2O, inversions systematically show higher emissions than 42 
inventories, on average about 4.5 times more than PRIMAP-hist, either because natural N2O sources cannot be 43 
separated accurately from anthropogenic ones in inversions, or because BU estimates ignore indirect emissions and 44 
under-estimate emission factors. Future improvements can be expected thanks to a denser network for monitoring 45 
atmospheric concentrations. This study helps to introduce methods to enhance the scope of use of various published 46 
datasets and allows to compute budgets thanks to recombinations of those data products. Our results allow to 47 
understand uncertainty and trends of emissions and removals in a region of the world where few observations exist 48 
and most inventories are based on default IPCC guidelines values. The results can therefore serve as a support tool for 49 
the Global Stocktake (GST) of the Paris Agreement. The referenced datasets related to figures are available at: 50 
https://doi.org/10.5281/zenodo.7347077 (Mostefaoui et al., 2022). 51 
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  Introduction 52 

Large global reductions of greenhouse gasses (GHG) emissions are needed to avoid “dangerous 53 
anthropogenic interference with the climate system” (IPCC, 2021). The Paris Agreement (PA) aims at 54 
limiting global warming below 2°C and reaching “net-zero GHG emissions by 2050” (UNFCCC, 55 
2015). To improve the monitoring of emissions trends, the PA has an Enhanced Transparency 56 
Framework (ETF) by which countries will have to report their GHG emissions and removals under a 57 
standardized format starting in 2024 (Perugini et al., 2021; UNFCCC, 2021) through Biennial 58 
Transparency Reports (BTR), with the ambition to use up-to-date data and best available science to 59 
improve national inventories. This represents a challenge for many developing countries, where 60 
emissions inventories have been irregular. 61 
Recent analyses predict a fast increase of African emissions correlated with demographic growth. The 62 
African population is expected to double from 1.2 billion in 2019 to 2.5 billion at the 2050 horizon 63 
(UN, 2019). Using the TIAM-ECN Integrated Assessment Model (IAM) developed with data from the 64 
International Energy Agency (IEA), van der Zwaan et al., (2018) concluded that greenhouse gasses 65 
(GHG) emissions from Africa will become substantial at the global scale by 2050. In Shared Socio-66 
economic Pathways (SSP) projection scenarios, Africa and the Middle East are grouped together 67 
despite having very different geographies, per capita emissions and Gross Domestic Product (GDP) 68 
(IIASA, 2017). According to IAM projections, the minimum projected share of Africa in global 69 
emissions would be close to 10% by 2050 for a business-as-usual pathway. An “explosive growth in 70 
African combustion emissions”' (Liousse et al., 2014) could not be excluded from 2030 to 2050, if no 71 
drastic mitigation policies are implemented (IPCC, 2021). If a stringent emissions reduction pathway 72 
limiting global warming to +2 °C is adopted, Africa could contribute to around 20% of global emissions 73 
by 2050, becoming the second largest worldwide emitting region. Further, under stringent climate 74 
policy scenarios, CH4 and N2O emissions in Africa were projected to contribute 80% of the total 75 
emissions of these two gasses in 2050 (van der Zwaan et al., 2018). Therefore, Africa will become an 76 
important global emission contributor under any mitigation pathway with a demographical and 77 
industrial development increase. 78 
There are 56 African countries represented in the United Nations. National emissions reports to the 79 
United Nations Convention Framework on Climate Change (UNFCCC) are available for 53 countries, 80 
including all major African emitters. Africa as a whole ranks fifth worldwide in terms of territorial 81 
fossil fuels use with a total of 1449 MtCO2e, in-between the Russian Federation and Japan 82 
(Friedlingstein et al., 2020). The global share of Africa is ~ 4% of fossil CO2 (FCO2) emissions, ~ 16 83 



 

4 
 
 

 

% of CH4 emissions (Saunois et al., 2020) and ~ 25% of N2O emissions (Tian, 2020). South Africa is 84 
the biggest FCO2 emitter in the continent, and ranked twelve on the global scale, just after Brazil.  85 
Despite projections of strong growth of emissions and population in Africa, the continent is under-86 
studied and lacks up-to-date comprehensive assessments of GHG emissions and removals, given 87 
sporadic and often outdated reports by individual countries. The literature tends to be scarce about 88 
African countries, and their emissions have rarely been analyzed comprehensively using the results 89 
from both statistical inventories that are also referred to as bottom-up (BU) methods, and from top-90 
down (TD) atmospheric inversions. Country reports estimate GHG emissions through statistical 91 
inventories using estimates of national sectoral activity data multiplied by emissions factors, with three 92 
levels of refinements depending on countries, named Tier 1 for default emissions factors, Tier 2 for 93 
country-specific emissions factors / activity data and Tier 3 for more emissions factors / activity with 94 
tailored representation at the scale of process. Other BU inventories for assessing national emissions 95 
also exist: they are based on the same approach as country-reported inventories but use their own 96 
parameters for activity data and emissions factors coming from research groups, international statistical 97 
agencies, etc. Process-based ecosystem models developed by the research community are not used by 98 
countries. They are based on the representations of complex ecosystem processes and can also be 99 
viewed as a BU method. Besides, another approach is named “top-down” and refers to atmospheric 100 
inversions. Inversions consist in estimating causes (emissions and sinks) based on consequences 101 
(concentrations). The inverse modeling approach consists in adjusting a priori fluxes to the atmospheric 102 
transport in order to be as adjusted as possible with observation data by minimizing a cost function. 103 
This is a mathematically complex problem under constrained because every point of the globe is an 104 
unknown emission, and there is only a limited number of observations: “regularization” techniques are 105 
used to find a unique solution. The African ground-based atmospheric network used by inversions is 106 
very sparse. There are only three currently active surface flasks over this whole continent, located in 107 
Namibia (Gobabeb), in the Seychelles (Mahe Island), and in South Africa (Cape Point). The one in 108 
Algeria (Assekrem) was terminated on 26/08/2020, and the one in Kenya has been inactive since 109 
21/06/2011. The characteristics of the surface flasks in Africa, available on the NOAA website are 110 
summarized in Table S1. Inversion results are therefore uncertain due to this small number of 111 
atmospheric stations over the continent (Nickless et al., 2020).  112 
A previous analysis of African emissions was solely focused on FCO2 emissions during the decade 113 
2000-2009 (Canadell et al., 2009). A first budget for the period 1990-2009 was provided at the 114 
continental scale with the RECCAP1 project (Valentini et al., 2014). Ayompe et al. (2020) studied 115 
recent FCO2 emissions trends, using International Energy Agency (IEA) data. Other studies are region-116 
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specific or sector-specific, focusing exclusively on agriculture (Bombelli et al., 2009), on natural 117 
ecosystems in Sub-Saharan Africa (Kim et al., 2016) or in individual countries such as Kenya (Zhu et 118 
al., 2018). 119 
Paying attention not only to commonly identified big emitters like South Africa, but also to medium 120 
emitters and to emerging emitters is important, not only in terms of scientific assessment, but also for 121 
financial and climate policy purposes under the PA. The Monitoring, Reporting and Verification 122 
(MRV) provisions of the PA indeed require scientific and policy tools to verify the pledges made by 123 
all the signatory countries. Instruments for financial transfers for mitigation and adaptation like the 124 
Green Fund on Climate Change (GCF) and the REDD+ initiatives cover the African scope and will 125 
require scientific assessment of trends for impact evaluation and credibility purposes, and as an 126 
incentive for continued investments. As part of the Global Stock Take (GST) under article 14 of the 127 
PA aiming at assessing “collective progress”, all signatory parties will have to show their contributions 128 
to the global mitigation efforts. These efforts will be evaluated within a MRV system which includes 129 
the requirement for developing countries to submit their Biennial Update Reports (BUR) on a biennial 130 
basis starting in 2024. As no standard global reporting framework has been required to date, we 131 
anticipate that the data available for the first stocktake in 2023 will be very heterogeneous. As a 132 
continent gathering non-Annex I countries exclusively, the African case is featured by the scarcity of 133 
national official inventories which have been provided to date on a voluntary basis through National 134 
Communication (NC) and BUR. BU estimates of emissions established by independent scientific 135 
methods are also discussed in the present study. In this context, different and complementary 136 
observation-based methods assessing national GHG emissions and sinks are needed. 137 
The aim of this paper is to evaluate relative merits of different existing types of datasets for the 138 
assessment of African emissions and removals and their trends for CO2, CH4 and N2O during the last 139 
three decades. In this paper, we standardize the metrics and scope of application for different categories 140 
of GHG emissions to discuss budgets. We also validate and benchmark different independent datasets 141 
to evaluate the possibility to use them as a verifying tool for official country-reported data. In order to 142 
cover all GHG sectors, we also describe recombinations of different historical datasets for the last 30 143 
years that are necessary to fill the gap for some missing past sectoral emissions. This study offers a 144 
comparison of data products originally combined to compute a budget and an evaluation of their 145 
relative merits. The different data products discussed here include different BUapproaches, including  146 
official countries communications to the UNFCCC and estimations from the Food and Agriculture 147 
Organization (FAO), Carbon Dioxide Information Analysis Center (CDIAC),  global inventories for 148 
anthropogenic emissions (PRIMAP-hist which integrates combinations of various datasets including 149 
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FAO and Global Carbon Project (GCP)), and process-based models for land CO2 fluxes with 14 150 
Dynamic General Vegetation Models (DGVM) from the TRENDY version 9 ensemble (Table 1). We 151 
also analyze and combine TD products to discuss individual gas and to compute budgets: three 152 
atmospheric global inversions for CO2 land fluxes; 22 inversions for CH4 emissions (11 inversion 153 
models using surface station data and 11 satellite inversion models) and CH4 wildfire emissions from 154 
the Global Fires Emission Dataset (GFED) version 4. We used three inversion models for N2O fluxes 155 
(PyVAR model, TOMCAT-INVICAT model, and MIROC4-ACTM model (see Table 1). Inversions 156 
only solve for total fluxes or at best for groups of sectors, whereas BU estimates have a larger number 157 
of sectors. In Table 2, we present the correspondence between ‘sectors’ defined by the TD and BU 158 
methods. For all datasets, we chose an atmospheric convention with negative values representing 159 
removals from the atmosphere (i.e. land sink). We deliver an original comparison of BU estimates from 160 
national inventories, global inventories, and process-based models, with TD estimates from 161 
atmospheric inversions over Africa. The work is carried out for large countries or groups of small 162 
countries, as inversions do not have the capability to constrain fluxes over small areas given their coarse 163 
grid and sparse atmospheric data. Based on the benchmarking and relative merits evaluation of the 164 
various data products presented above, the scientific questions addressed in this study are: 1) How 165 
consistent are the mean values and trends of GHG emissions across BU estimates in Africa? 2) How 166 
consistent are the different inversion model results? 3) How do inversions compare with BU estimates? 167 
4) What is the net GHG balance of the African continent from different observation-based methods, 168 
including CO2 sinks and sources in the land-use sector? 5) What are the main sources of uncertainties?  169 
The manuscript is organized into two main sections. First, a material and methods section describes the 170 
regional breakdown and input data (section 1). We present our results for the whole Africa and for six 171 
groups of aggregated countries (section 2) with a specific analysis of CO2 emissions and sinks, divided 172 
between FCO2 (section 2.1), fluxes in the land use, land use change and forestry (LULUCF) sector 173 
(section 2.2), and emissions of non-CO2 greenhouse gasses (sections 2.3 and 2.4). Conclusions are 174 
drawn about uncertainties of African GHG net emissions and removals assessment. 175 

 176 
1 Methods, datasets and datasets usage 177 

 178 
This study covers the period from 1990 to 2018, and emissions and sinks of CO2, CH4 and N2O. We 179 
used 1990 as a base year since reporting to the UNFCCC mostly started in that year and is often used 180 
as a reference comparison year in national pledges of the PA. The last year of analysis is 2018, 181 
reflecting the availability of inversion data and avoiding further uncertainty due to poorly understood 182 
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emissions changes before and after the COVID19 crisis. This period allows the analysis of decadal 183 
features. It also has the advantage of being covered by several datasets, listed in Table 1. We considered 184 
different BU approaches, including official countries communications to the UNFCCC and estimations 185 
from the Food and Agriculture Organization (FAO), global inventories for anthropogenic emissions 186 
(PRIMAP-hist which integrates combinations of various datasets including FAO, GCP, EDGAR 187 
v4.3.2, Andrew 2018 cement data, BUR, Common Reporting Format (CRF), UNFCCC data,  and BP), 188 
and process-based models for land CO2 fluxes with 14 Dynamic General Vegetation Models (DGVM) 189 
from the TRENDY version 9 ensemble (Table 1). We used three atmospheric global inversions for CO2 190 
land fluxes; 22 inversions for CH4 emissions; and three inversions for N2O fluxes (Table 1). For 191 
preliminary data quality control, we checked the consistency of prior fluxes by plotting them separately 192 
(Fig. S1). Inversions only solve for total fluxes or at best for groups of sectors, whereas BU estimates 193 
have a larger number of sectors. In Table 2, we present the correspondence between ‘sectors’ defined 194 
by the TD and BU methods. For all datasets, we chose an atmospheric convention with negative values 195 
representing removals from the atmosphere (i.e. land sink). No specific standard guidelines currently 196 
exist for defining uncertainties of BU and TD data products. Given that some of our estimates are based 197 
on a small number of models / estimates, we cannot calculate the full distribution e.g. with a 95% 198 
confidence interval, but we rather reported ranges with min / max. Assuming that the unknown 199 
distributions would be Gaussian, like in Schulze et al. (2018), we could infer a 2-sigma (≈ 95%) 200 
confidence interval if we assume that min-max are equivalent to 3-sigma, but in view of the small 201 
numbers of estimates e.g. for N2O with only 3 inversions, we prefer to just give the min-max range. 202 
Moreover, for national inventories, as all African countries are non-Annex I, they do not deliver 203 
confidence intervals but Grassi et al. (2022) estimated for CO2 LULUCF fluxes uncertainties of 50 % 204 
for the average of non-Annex-1 countries. Here uncertainty estimates are understood as the spread 205 
among minimum and maximum values from one methodology. A main source of uncertainty in the 206 
comparison of country-reported data with other data products is the inclusion or not of natural fluxes 207 
additionally to anthropogenic emissions sectors. For the comparability of the different data products 208 
presented in this study, we discuss only the mean value over the period of overlapping data availability. 209 
Referenced datasets are available at https://doi.org/10.5281/zenodo.7347077 (Mostefaoui et al., 2022). 210 

 211 

 212 
 213 
 214 
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Table 1. List of BU and TD methods used. (For more details, see also Saunois et al. (2020) for CH4, Friedlingstein et 215 
al. (2020) for FCO2; UNFCCC country-reported data; Gütschow et al. (2021) for PRIMAP-hist).  216 
 217 

Dataset name          Method  CO2 
  

CH4  N2O 
  

    Spatial resolution 
 

     Time period covered  

      Inversions 
Global Carbon 

Budget ensemble 
(2020) (1) 

 

TD 
  × 

  

    from 1° × 1° to 
6° × 4° 

  

2000-2019 
  

Global Methane 
Budget ensemble (2) 

(2020) 
 

TD 
  

  

  
  × 

  

   from 1° × 1° to 
6° × 4° 

  

   2000-2017 (3) 
  

Global N2O Budget 
ensemble (4)  

(2020) 

TD 
  
  

                
 × ×    × 

 from 2.8° × 2.8° 
to 5.6° × 5.6° 

  

1998-2017 
  

DGVMs 
TRENDYv9 (5) BU 

  
      0.5° × 0.5°  

       (land surface)  
             or 1° × 1° 

1990-2019 
  
  

                                                                         Other BU inventories 
PRIMAP-hist 

(excluding 
LULUCF) 

BU 
  ×  ×        × 

country 1990-2019 
 

  
GCB (CDIAC) 

(excluding 
LULUCF) 

  

  
BU 

  

       

  ×     × 

  

      0.1° × 0.1°  
 

1990-2019 
 

UNFCCC BU 
  
  

×      
  country 1990-2015 

 

FAO 
(LULUCF CO2) 

BU 
  × 

   country 1990-2019 
 
 

GFEDv4 
(wildfires only) 

BU 
  

  ×    
  0.25° × 0.25° 1997–2016 

  

(1) See 3 inversions details in the supplementary Table S6. 
(2) See 22 inversions details in the supplementary Table S7. 
(3) Variations from 2003-2015, 2000-2015, 2010-2017: see detailed period coverage for each dataset in the 
supplementary Table S7. 
(4) See 3 inversion details in the supplementary Table S8. 
(5) See supplementary Table S5 for the14 products. 

  

 218 
 219 
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Table 2. Sectoral reconciliation between categories defined in TD and BU methods. 220 

Gas Sector label choice 
for BU and TD 

TD inversions BU inventories 

CO2 Net land flux Total Net Biome Productivity (NBP) 

after subtraction of prior prescribed 

Fossil CO2 

Energy + Industrial Processes and Product Use + 

Agriculture + Waste + Biomass burning 

  

CH4 Total anthropogenic 

emissions 

Fossil + Anthropogenic Biomass 

burning + Agriculture & Waste -

Wildfires 

  

Energy + Industrial Processes + Agriculture +Waste 

+ Biomass burning 

N2O Total Total All IPCC sectors 

  

1.1 Regional breakdown 221 

As some countries are small emitters and their area is too small to be resolved by inversions, and in some 222 
cases even by DGVMs, we grouped African countries into six regions shown in Fig. S2 and listed in Table 223 
S2. The grouping followed national borders and biomes similarity considering the Köppen-Geiger climate 224 
zones (Beck et al., 2018), magnitudes of fossil fuel emissions, and per capita emissions (Fig. S2, Fig. S3 225 
and Fig. S8). We also grouped a maximum of about ten countries per region. 226 
 227 
1.2 Inventories datasets 228 

PRIMAP-hist anthropogenic emissions assessment for CO2, CH4, and N2O 229 

The PRIMAP-hist version 2.2 BU dataset is derived from Gütschow et al., (2021) and combines UNFCCC 230 
reports with a gap-filling method to produce a time series of annual anthropogenic emissions for different 231 
IPCC sectors. PRIMAP-hist does not cover the LULUCF sector for CO2 due to the high uncertainties. 232 
PRIMAP-hist does not include emissions from shipping and international aviation, but includes cement as 233 
part of FCO2 emissions. We use data from the HISTCR scenario (data accessed from https://www.pik-234 
potsdam.de/paris-reality-check/primap-hist/ in April 2022) from country-prioritized dataset, which mainly 235 
uses UNFCCC (BUR and NC) data, unless such data are missing, in that case PRIMAP-hist uses 236 

extrapolated data from EDGAR (2021), FAO (2021) and BP Statistical Review of World Energy (2021). 237 

 238 
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Global Carbon Project (GCP) fossil CO2 emissions 239 
We used country-level FCO2 data published by the global CO2 budget by the Global Carbon Project (GCP) 240 
(Friedlingstein et al., 2020) separated per fuel type (gas, oil and coal) and including fossil fuel use in the 241 
combined industry, ground transportation and power sectors, natural gas flaring, cement production, and 242 
process-related emissions (e.g. fertilizers and chemicals). Data for African countries coming among others 243 
from the Carbon Dioxide Information Analysis Center (CDIAC) compiled until 2018 (Gilfillan & 244 
Marland, 2021), BP Statistical Review of World Energy (BP, 2020), and recent estimates of cement 245 
production and clinker-to-cement ratios (Andrew, 2020).  246 
 247 
UNFCCC inventories for CO2 in the LULUCF sector   248 
We used UNFCCC submissions for LULUCF CO2 fluxes from NC and BUR reports downloaded from 249 

the UNFCCC website (https://unfccc.int/) in March 2021, and further processed into .csv tables by Deng 250 

et al., (2021). Those estimates are based on different accounting methods following the IPCC Guidelines 251 
(IPCC, 2006; IPCC, 2019). Country-reported data quality control, quality assurance and verification 252 
process follow 2006 IPCC guidelines detailed in Chapter 6 QA/QC procedures of this document. African 253 
countries, being Non-Annex I countries, do not report emissions every year. Figure 1 shows the number 254 
of BUR and NC provided each year per African region. The years 1990, 1994, 1995, 2000 and 2005 are 255 
featured with several updates, while most of the other years have few updates. About every two years, all 256 
regions have at least one update. Note that flexibility for BUR is given to Least Developed Countries 257 
(LDCs), that include 33 out of 56 African countries, and to Small Islands Developing States (SIDS), that 258 
include six African countries (Table S4). 259 
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 260 
Figure 1. Number of UNFCCC reports for LULUCF CO2 fluxes in National Communications and Biennial 261 
Update Reports, per group of countries defined in Table S2. 262 

 263 
Non-Annex I African countries can use older versions of the IPCC guidelines (IPCC, 2006; IPCC, 2019a). 264 
This induces uncertainties from changes in accounting methods between versions, with recent guidelines 265 
having more detailed sectors and sources. There is no data for Libya, Equatorial Guinea, Malawi and Sierra 266 
Leone during the whole period. UNFCCC data are missing in some years for Rwanda, Sao Tome & Principe, 267 
Senegal, South Sudan, Angola. There is no data during 1990-1998 for Liberia.  268 
We noticed that NC and BUR lack details regarding the methods used, the sources for activity data and 269 
emissions factors, and most of them are in French language. BUR in .pdf format include a non-standardized 270 
table for emissions. The reader is sometimes referred to the “national coordinator for climate change 271 
service” with no link to any database or contact person.  272 
Because the PA targets human-induced emissions, countries use the proxy of “Managed lands” for the 273 
LULUCF sector, as defined by the IPCC guidelines (https://www.ipcc-274 
nggip.iges.or.jp/public/2006gl/vol4.html; last accessed in August 2022). Managed lands are areas where 275 
LULUCF CO2 fluxes are assigned to some anthropogenic activities. Several African NC and BUR do not 276 
contain information on their managed lands areas. We thus looked at REDD+ national reports 277 
(https://redd.unfccc.int/submissions.html?topic=6; last accessed in August 2022) to get this information 278 
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(Fig. S3 and Table S9). LULUCF CO2 fluxes on managed lands result from either direct anthropogenic 279 
effect such as land use change and forestry, or indirect effects (such as change in CO2 and climate) on land 280 
remaining in the same land use, e.g. forest remaining forest (Grassi et al., 2022). The vast majority of African 281 
countries use a Tier 1 IPCC accounting method which does not distinguish between these different effects. 282 
Tier 1 methods use a classification with only three out of six possible types of land: “forest land”, “cropland” 283 
and “grassland”, and do not give spatially explicit land use data. Tier 2 methods include fluxes from six 284 
land use types: forest, cropland and grassland, wetlands, urban and other land-use, for the case of land 285 
remaining under the same land use type, and for the case of conversions between land use types. In Africa, 286 
only South Africa and Zambia used Tier 2 methods for some LULUCF CO2 subsectors.  287 
 288 

      Processing of the UNFCCC LULUCF CO2 data and outliers correction 289 
We processed the UNFCCC LULUCF CO2 data for outlier corrections (Table S5). For Guinea-Bissau, and 290 
Tanzania, we identified inconsistent values from successive communications with substantially differing 291 
numbers. For Guinea, Madagascar, Zimbabwe, Congo, Mali, the Central African Republic (CAF), Angola 292 
and Mauritius we identified changes of more than one order of magnitude between two consecutive reports 293 
and likely implausibly large carbon sinks considering their national forest area. The computations of per 294 
area emissions and removals showed discrepancies, which points out the need for further examination and 295 
inspection of more recent reports in NDC and REDD+ reports (Table S5). Our corrections explained in the 296 
supplementary section are consistent with those proposed by Grassi et al. (2022) who diagnosed 297 
‘biophysically impossible’ sequestration rates with a threshold value larger than 10 tCO2/ha yr-1 over an 298 
area greater than 1 Mha. For Namibia, Nigeria and the Democratic Republic of the Congo (DRC), it was 299 
challenging to select a best estimate between recent and past reports. For those countries, corrections using 300 
more recent data than BUR/NC have high uncertainties, as noted by Grassi et al. (2022). This includes the 301 
absence of any sink for DRC for instance, contrary to sinks consistently reported over time and large forested 302 
area in this country’s previous reports to the UNFCCC. We therefore systematically looked at corrected 303 
values for both case scenarios (with and without Namibia, Nigeria and DRC data corrections). In total, we 304 
corrected 13 outliers as shown in Table S5, consistently with Grassi et al. (2022). 305 
 306 
Food and Agriculture Organization of the United Nations (FAO) LULUCF CO2 fluxes 307 

We used data from LULUCF CO2 fluxes over 1990-2019 from the FAO Global Forests Resource 308 
Assessments (FAO FRA; data License: CC BY-NC-SA 3.0 IGO, extracted from: https://fra-data.fao.org; 309 
date of Access: May 2022). According to the 2005 FAO categories and definitions, forest is land covering 310 
at least 0.5 hectares and having vegetation taller than 5 meters with a canopy cover higher than 10%. Other 311 
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wooded lands refer to land that are not classified as “forest” but that are wider than 0.5 ha, have a canopy 312 
cover of 5%-10% or combine trees, shrubs and bushes with cover higher than 10%. The FAO data for forests 313 
comprise carbon stock changes from both aboveground and belowground living biomass pools. They are 314 
independent from country-reported UNFCCC emissions and removals. The FAO estimates are based on 315 
activity data, areas of forest land and CO2 emissions and removals factors. The FAO data reports: 1) net 316 
emissions and removals from “forest land remaining forest land” and from “land converted to forest” 317 
grouped together, and 2) emissions from "net forest conversion", i.e. deforestation. In contrast, the UNFCCC 318 
accounting uses a 20-years window for CO2 fluxes from land use change, while land-use change fluxes from 319 
land-converted-to-forest are reported separately from those of ‘forest remaining forest’.  320 
 321 
1.3 Dynamic Global Vegetation Models (DGVM) datasets 322 

 323 
 We used Net Biome Productivity (NBP) from 14 Dynamic Global Vegetation Models (DGVM) from the 324 

TRENDY v9 ensemble covering the period 1990-2019. The different models described in Friedlingstein et 325 
al. (2019) are: CABLE, CLASS, CLM5, DLEM, ISAM, JSBACH, JULES, LPJ, LPX, OCN, ORCHIDEE-326 
CNP, ORCHIDEE-SDGVM, and SURFEX (Table S6). DGVM are forced by historical reconstructions of 327 
land cover change, atmospheric CO2 concentration and climate since 1901. Detailed cropland management 328 
practices are generally ignored, except for the harvest of crop biomass. Forest harvest is prescribed from 329 
historical statistics in 11 models (Table A1, of Friedlingstein et al., (2020)). The models simulate carbon 330 
stock changes in biomass, litter and soil pools. From the difference between simulations with and without 331 
historical land cover change, a flux called ‘land use emissions’ can be obtained from DGVM. This flux 332 
includes the indirect effects of climate and CO2 on lands affected by land use change, and a foregone sink 333 
called “loss or gain of atmospheric sink capacity”, which is absent from the methods used by UNFCCC and 334 
FAO. Pongratz et al. (2014) delivered the following definition of loss of sink capacity as “the CO2 fluxes in 335 
response to environmental changes on managed land as compared to potential natural vegetation. 336 
Historically, the potential natural vegetation would have provided a foregone sink as compared to human 337 
land use.” Thus, land use change fluxes from DGVM were not compared with other estimates. Note that 338 
DGVM do not explicitly separate managed and unmanaged land. Thus, we used all forest lands to calculate 339 
their mean CO2 fluxes. 340 

1.4 Atmospheric inversions datasets  341 

CO2 inversions   342 
 343 
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We used the net land CO2 fluxes excluding fossil fuel emissions (hereafter, net ecosystem exchange) from 344 
three global inversions of the Global Carbon Project that cover a long period (see Table A4 of Friedlingstein 345 
et al., 2020), including : CarbonTrackerEurope (CTRACKER-EU-v2019; van der Laan-Luijkx et al., 2017), 346 
the Copernicus Atmosphere Monitoring Service (CAMSV18-2-2019; Chevallier et al., 2005), and one 347 
variant of Jena CarboScope (JENA, sEXTocNEET_v2020; Rödenbeck et al., 2005). The GCP inversion 348 
protocol recommends to use as a fixed prior the same gridded dataset of FCO2 emissions (GCP-GridFED). 349 
However, some modelers used different interpolations of this dataset, and one group used a different gridded 350 
dataset (Ciais et al., 2021). We applied a correction to the estimated total CO2 flux by subtracting a common 351 
FCO2 flux from each inversion (Figure S1 and Methodological Supplementary 1). The resulting land 352 
atmosphere CO2 fluxes, or net ecosystem exchange, cannot be directly compared with inventories aiming 353 
to assess C stock changes, given the existence of land-atmosphere CO2 fluxes caused by lateral processes. 354 
This issue was discussed by Ciais et al. (2021) and a practical correction of inversions was proposed by 355 
Deng et al. (2022) based on new datasets for CO2 fluxes induced by lateral processes involving river 356 
transport, crop and wood product trade. We applied here the same correction to all CO2 inversions. 357 

CH4 inversions  358 

We used the CH4 emissions from global inversions over 2000-2017 from the Global Methane Budget 359 
(Saunois et al., 2020) (Table 1). This ensemble includes 11 models using GOSAT satellite CH4 total-column 360 
observations covering 2010-2017, and 11 models assimilating surface stations data (SURF) since 2000 361 
(Table S5). Surface inversions are constrained by very few stations for Africa, while the GOSAT satellite 362 
data has a better coverage. One could thus expect GOSAT inversions to give more robust results. Inversions 363 
deliver an estimate of surface net CH4 emissions, although some of them solve for fluxes in groups of 364 
sectors, called ‘super-sectors’. We have not used in situ for dataset validation per se, only the GOSAT data 365 
were evaluated against Total Carbon Column Observing Network (TCCON) independent ground based total 366 
column-averaged abundance of CH4 (XCH4). In the inversion dataset, net CH4 surface emissions were 367 
interpolated into a 0.8° × 0.8° resolution, regridded from coarser resolution fluxes and separated into ‘super-368 
sectors’ either using prior emission maps or posterior estimates for those inversions solving fluxes per 369 
supersector, following Saunois et al. (2020). More specifically, these five super-sectors are: 1) Fossil Fuel, 370 
2) Agriculture and Waste, 3) Wetlands, 4) Biomass and Biofuel Burning (BBUR), and 5) Other natural 371 
emissions. We separated CH4 anthropogenic emissions from inversions using Method 1 and Method 2 372 
proposed by Deng et al. (2021). Method 1 relies on the separation calculated by each inversion except for 373 
the BBUR supersector from which wildfire emissions were subtracted based on the Global Fires Emission 374 
Dataset (GFED) version 4 (van der Werf et al., 2017). Method 2 removes from total emissions the median 375 
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of natural emissions from inversions (Deng et al. 2022). The two methods gave similar results and only 376 
Method 1 was used in the results section. 377 
 378 

     N2O inversions  379 
We used three N2O atmospheric inversions from the global N2O budget synthesis (Tian, 2020) and from 380 
Deng et al. (2022) (Tables S1 and S7) : PyVAR CAMS (Thomson et al., 2014), MATCM_JMASTEC 381 
(Rodgers, 2000), (Patra et al., 2018), and TOMCAT (Wilson et al., 2014; Monks et al., 2017). We used the 382 
total N2O flux from inversions including natural emissions, given that natural emissions estimates are highly 383 
uncertain for Africa. Inversion results are therefore not directly comparable with the PRIMAP-hist inventory 384 
which only contains anthropogenic emissions.  385 

 386 
1.5 Metrics to compare gasses and ancillary data and data usage 387 
 388 
We express emissions of non-CO2 gasses in megatons of carbon dioxide equivalent (MtCO2e) using the 389 
Global Warming Potential over a 100-year time horizon (GWP100) values from the fourth IPCC 390 
Assessment Reports (IPCC AR4, WGI Chapter 2, 2007), consistent with PRIMAP-hist and historical 391 
country-reported data. We used AR4 GWP100 because many African countries have been following the 392 
2006 IPCC guidelines referring to AR4 GWP100 2019 refinement to IPCC guidelines, which do not 393 
recommend any specific metrics, therefore we are following IPCC guidelines used by countries. The 394 
multiplicative coefficients to use to change AR4 to AR6 GWP100 values are:  1.19 for fossil CH4, 1.09 for 395 
non-fossil CH4, and 0.92 for N2O. We used population data from the United Nations population (World 396 
Population Prospects 2019, 2022), for computing per capita FCO2 emissions and their disparities, based on 397 
Gini indices (Dortman et al., 1979) for measuring statistical dispersions among a given population 398 

(methodological supplementary M2). We also used African GDP data (World Bank, 2017).  399 
 400 

2 Results and discussion 401 
      2.1 Fossil CO2 emissions  402 

2.1.1 Continental, regional and country changes 403 
 404 
 405 
 406 
 407 
 408 
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Figure 2. (a) African fossil fuel CO2 emissions per fuel type and for cement per region over 1990-1999, 2000-2009 427 
and 2010-2018. (b) Contribution of each fuel type to the change of African emissions. (c) Same for different regions 428 
regrouping several countries. Data from GCP (2019).  429 

a) FCO2 total anthropogenic emissions mean                       b) Differences expressions in percentage between FCO2 total                                 430 
gg1999-2008 in Mt yr-1 (GCP).                                                                          anthropogenic mean emissions 2009-2018 and mean 1999-2008  431 

                                                                                              divided by average value for both decades (GCP).  432 

 433 
 434 
 435 
     436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
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 c) CH4 total anthropogenic emissions mean                                                         d) Differences between CH4 total anthropogenic      458 
     1999-2008 in MtCO2e yr-1 (PRIMAP-hist).                                                           mean emissions 2009-2018 and mean 1999-2008      459 

        in MtCO2e yr-1 (PRIMAP-hist). 460 

            461 
 462 
 463 
 464 
e) N2O total anthropogenic emissions mean                                                     f) Differences between N2O total anthropogenic      465 
    1999-2008 in MtCO2e yr-1 (PRIMAP-hist).                                                       mean emissions 2009-2018 and mean 1999-2008      466 
                                                                                                                                   in MtCO2e yr-1 (PRIMAP-hist). 467 

       468 
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Figure 3 (a). Maps of average fossil fuel CO2 emissions for African countries during 1999-2008 in MtCO2e yr-1 and 469 
(b) change from 1999-2008 to 2009-2018 using data from GCP in MtCO2e yr-1 (Friedlingstein et al., 2019); (c-d) 470 
same but with anthropogenic CH4 emissions from PRIMAP-hist in MtCO2e yr-1; (e-f) same for anthropogenic N2O 471 
emissions from PRIMAP-hist in MtCO2e yr-1. 472 

 473 

PRIMAP-hist and GCP  474 

First, we compared GCP and PRIMAP-hist fossil CO2 emissions. We found that most of the relative differences 475 
between these two datasets at country level considerably decreased with time, except for Mali. Those 476 
differences are less than 5% for most of the main African emitters during the last decade, except for South 477 
Africa where the difference is a bit larger than 10% (see maps in Fig. S8). The largest relative difference 478 
between the two datasets comes from Mali in the decade 2009-2018, with FCO2 emissions of 3 MtCO2 yr-1 in 479 
GCP, compared to 1 MtCO2 yr-1 in PRIMAP-hist. Given the relatively small differences, we chose to use only 480 
GCP for trends between decades, but when computing net budgets for the three main GHG, we show 481 
differences between the use of those two estimates.                                                                                                           482 

The changes of African FCO2 emissions per fuel type and for cement using the GCP data are shown in Fig. 2 483 
(a). In Fig.2 (b), we show absolute values and relative contributions to the total change in each decade. During 484 
2010-2018, total African FCO2 emissions from oil (497 MtCO2 yr-1) and coal (439 MtCO2 yr-1) were roughly 485 
similar. While global FCO2 emissions increased by +13 % over this period (Friedlingstein et al., 2019), African 486 
FCO2 almost doubled in 2018 compared to 1990 levels, a relative increase comparable with that of China over 487 
the same period. From 1990-1999 to 2000-2009, the mean emissions increased by 33.9% from 741 MtCO2 yr-488 
1 to 996 MtCO2 yr-1. All FCO2 sectors contributed to this decadal increase. The contribution from coal (+9.4 489 
%) was slightly larger but comparable to that from oil (+9 %) and gas (+8 %). From 2000-2009 to 2010-2018, 490 
emissions further increased by 31% from 996 MtCO2 yr-1 to 1295 MtCO2 yr-1. The oil and the gas fuels 491 
contributed the most to this increase with +16 % for oil, and +8 % for gas. Coal emissions increased by only 492 
+4.1 % and coal went from being the first source of African FCO2 emissions over 2000-2009 to the second one 493 
over 2010-2018. 494 

As for regional contributions to emissions changes between 1990-1999 and 2000-2009 shown in Fig. 2 (b) the 495 
main contribution to the total increase came from the region of South Africa where emissions increased from 496 
302 MtCO2 yr-1 to 367 MtCO2 yr-1 (+21.1 %, coal being the largest contributor). The second largest contribution 497 
to the increase is from North Africa where oil was the largest contributor (emissions increased from 151 MtCO2 498 
yr-1 to 191 MtCO2 yr-1; +15 %), and gas (+18%). The least increasing region was Central Africa. North Africa 499 
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experienced the largest increase from 1990-1999 to 2000-2009, and from 2000-2009 to 2010-2018 with 500 
successive increases of +38 % and +39 %, largely dominated by oil and gas (Fig. 4 (b)). As a result, during the 501 
period 2010-2018, Northern African countries were the dominant emitters with 545 MtCO2 yr-1. The group of 502 
South Africa (including Lesotho and Botswana) was the second biggest emitter region over 2010-2018, mainly 503 
due to coal emissions from the Republic of South Africa. The two least contributing African regions were the 504 
Horn of Africa and Central Africa. 505 

At the country level, Figure 3a-b shows mean FCO2 emissions and relative changes over the last two decades. 506 
The main emitters do not have the biggest relative changes. The four main emitters over 2000-2009 were South 507 
Africa (416 MtCO2 yr-1), Egypt (153 MtCO2 yr-1), Algeria (96 MtCO2 yr-1) and Nigeria (89 MtCO2 yr-1). Those 508 
four countries altogether represented 67% of the continental total emissions over 2000-2009 (987 MtCO2 yr-1). 509 
The largest relative increases from 2000-2009 to 2010-2018 are from Congo (+108 %), Mozambique (+103 %) 510 
and Mali (91%), compared to relative increases in the main emitters, the Republic of South Africa (+21 %), 511 
Egypt (+36%) and Algeria (+36%). 512 
 513 
        2.1.2 Variations of per capita and per GDP fossil fuel CO2 emissions 514 
 515 
Per capita emissions   516 

Using ancillary data on population (Fig. S3and Fig. S4) we computed the mean African per capita emissions 517 
of 1 tCO2/cap yr-1 for 2009-2018, which is 5 times larger than during 1990-1998 (0.2 tC/cap yr-1), and yet 5 518 
times smaller than the global average (5 tCO2/cap yr-1). From 1999-2008 to 2009-2018, African per capita 519 
emissions increased by 30 %. African per capita FCO2 emissions during 2009-2018 were 17 times less than in 520 
the USA (17 tCO2/cap yr-1), 7 times less than in China (7 tCO2/cap yr-1), 7 times less than in EU27+UK (7 521 
tCO2/cap yr-1), and 2 time less than India (2 tCO2/cap yr-1). At the country level, the biggest per capita emissions 522 
over 2009-2018 were from the Republic of South Africa with 9 tCO2/cap yr-1, which ranks 14th worldwide, 523 
above China and just below Poland. The second biggest per capita emissions were from Libya (8 tCO2/cap yr-524 
1). The smallest ones were from the DRC (0.1 tCO2/cap yr-1). For the first period 1990-1998, per capita 525 
emissions of African region ranked in this order: South Africa group (4 tCO2/cap yr-1) > Northern Africa (2 526 
tCO2/cap yr-1) > Central African countries (1 tCO2/cap yr-1) > Southern countries (0.8 tCO2/cap yr-1) > Horn of 527 
Africa (0.5 tCO2/cap yr-1) > Sub-Sahelian Western Africa (0.3 tCO2/cap yr-1). For the second period 2009-2018, 528 
they ranked in this order: South Africa group (4 tCO2/cap yr-1) > Northern Africa (2 tCO2/cap yr-1) > Southern 529 
countries (1 tCO2/cap yr-1) and Horn of Africa (1 tCO2/cap yr-1) > Central Africa countries (1 tCO2/cap yr-1) > 530 
Sub-Sahelian Western Africa (0.4 tCO2/cap yr-1). At country scale during the first period of 1990-1998, the 531 
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four African largest per capita emissions ranked in this order: Libya (9 tCO2/cap yr-1 > the Republic of South 532 
Africa (9 tCO2/cap yr-1) > Gabon (5 tCO2/cap yr-1) > Algeria (3 tCO2/cap yr-1). The four African countries with 533 
the smallest per capita emissions ranked as following: Burundi (0.04 tCO2/cap yr-1) < Uganda, Ethiopia and 534 
Mali (0.1 tCO2/cap yr-1).  535 

We also computed the GINI index for African per capita FCO2 emissions for each of the last three decades, 536 
using data from (Friedlingstein et al., 2020) (see Methodological Supplementary M2). These GINI values were 537 
0.7 for 1990-1998, 0.7 for 1999-2008, and 0.7 for 2009-2018, thus very stable over the last 30 years and close 538 
to 1, indicating high inequities among countries. 539 

Emissions per GDP  540 

Per exchange rate vs. per Purchasing Power Parities (PPP) GDP 541 
According to the International Monetary Fund (IMF), the Gross Domestic Product (GDP) delivers an estimate 542 
“of the monetary value of goods and services produced in a country over a chosen period.” GDP data from the 543 
World Bank (2015) is available for 30 African countries only (Fig. S5). The four countries with the biggest per 544 
$US exchange rate GDP (Fig. S6) are: Nigeria ($490 B) > South Africa ($350B) > Egypt ($330B) and Algeria 545 
($330B) > Angola ($120B). The four countries with the smallest GDP in 2015 are: Gambia ($1.4B) and 546 
Seychelles ($1.4B) > Guinea-Bissau ($1B) > Comoros ($970 M). Emissions per $US GDP are shown in Fig. 547 
S6 The Purchasing Power Parities (PPP) calculated by the International Comparison Program (ICP) of the 548 
World Bank is a refined measure of what a given national currency can acquire in terms of goods or services 549 
in another country, removing the impact of currency exchange rates.  Emissions per PPP$ GDP are shown in 550 
Fig. S7.   551 
The mean of African emissions per unit PPP$ GDP in 2016 was 0.6 kgCO2/PPP$ yr-1, which is more than twice 552 
the global value, 3 times the mean value of the USA (0.2 kgCO2/PPP$ yr-1), and Europe (0.2 kgCO2/PPP$ yr-553 
1). This points to a more carbon intensive economic growth in Africa than in developed countries, which may 554 
be an important barrier for future mitigation strategies as the GDP of Africa has grown by 112% in the last 30 555 
years, and is projected to increase in the future by 3% per year (World Bank, 2022). At regional level, the 556 
largest values were: South Africa (0.4 kgCO2/PPP$ yr-1) > North Africa, Southern Countries and Sahelian 557 
Western Africa (0.2 kgCO2/PPP$ yr-1) > Central Africa and the Horn of Africa (0.1 kgCO2/PPP$ of GDP). At 558 
country scale, the largest emitters per unit of GDP were Libya (0.7 kgCO2/PPP$ yr-1) and South Africa (0.7 559 
kgCO2/PPP$ yr-1) > Lesotho (0.4 kgCO2/PPP$ yr-1) > Algeria (0.3 kgCO2/PPP$ yr-1) (Fig. S7.) The smallest 560 
emitters were: DRC (0.03 kgCO2/PPP$ yr-1) < Chad (0.04 kgCO2/PPP$ yr-1) < Burundi (0.06 kgCO2/PPP$ yr-561 
1) < Uganda (0.07 kgCO2/PPP$ yr-1). 562 



 

23 
 
 

 

We also used GDP per unit exchange rate from the International Energy Agency (IEA, 2019). The mean African 563 
emissions per unit of GDPexch.rate was 0.5 kgCO2 $/$ yr-1, larger than elsewhere, except in Asia (0.6 kgCO2/ 564 
GDPexch.rate yr-1. As shown in Fig. S6, over 2013-2017 the six biggest emitters were South Africa (0.7 kgCO2/ 565 
GDPexch.rate yr-1) > Libya (0.5 kgCO2/ GDPexch.rate yr-1) > South Sudan (0.4 kgCO2/ GDPexch.rate yr-1) > Zimbabwe, 566 
Benin and Algeria (0.3 kgCO2/ GDPexch.rate yr-1). The correlation coefficient between  GDPexch.rate and FCO2 567 
emissions per GDPexch.rate was 0.3, suggesting that the countries with a high GDP do not always emit more CO2 568 
per unit GDP. For instance, South Africa ranked first with 0.7 kgCO2/ GDPexch.rate yr-1 and second for GDP (350 569 
$Billion); Nigeria ranked first for GDP (490 $Billion), but 21st for emissions per GDP (0.1 kgCO2/ GDPexch.rate 570 
yr-1). This may be related to the fact that countries with a high GDP are also more likely to create growth 571 
through sustainable activities. 572 
 573 
 2.2 LULUCF CO2 fluxes 574 

Outlier corrections 575 
    (a)                                                                                                                                    (b)  576 

 577 
 578 
 579 

 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
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 (c)                                 589 

 590 
 591 
 592 
Figure 4. Map of national LULUCF CO2 fluxes for 2001-2018 in MtCO2 yr-1. (a) Before outliers’ removals.  593 
(b) After outliers’ removal according to Grassi et al. (2022). (c) After outlier removals (DRC, Namibia and 594 
Nigeria) from this study. Positive values represent a net C loss by ecosystems.  595 
 596 
In this section, we analyze CO2 fluxes from the LULUCF sector, based on UNFCCC data (section 1.1) 597 
which include forest lands, grasslands, croplands, and  all possible conversions between them (IPCC, 598 
2003; 2006). As shown in section 1.2 and Table S4, we found that some countries' reports are outliers 599 
with biophysically implausible CO2 sinks and/or sudden unexplained very large changes between 600 
successive reports. Due to scarce data over 1990-1998 we focus on the period 2001-2018. In the 601 
following paragraph, we discuss four approaches to include UNFCCC data: 602 
a) Uncorrected data, b) corrections following Grassi et al. (2022) for all countries, c) corrections 603 
following Grassi et al. (2022) except DRC, Namibia and Nigeria, d) Corrections following Grassi et al. 604 
(2022) except for DRC. 605 
Figure 4 (a) shows UNFCCC data without correcting for outliers, based on BUR and NC data accessed 606 
in May 2022. The majority of countries are sinks, or small sources, except Tanzania and Nigeria being 607 
large sources. Very large (implausible) sinks are seen in Guinea and CAF. The continent is a CO2 sink 608 
of -3309 MtCO2 yr-1 during the period 2001-2018. 609 
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Figure 4 (b) shows the corrected fluxes according to Grassi et al. (2022) who excluded implausible large 610 
sink rates and used NDC and REDD+ reports instead of NC data for DRC, Congo, CAF, Guinea, 611 
Madagascar and the most recent BUR, NC and inventory data for Namibia, Angola, Zimbabwe and 612 
Nigeria (see their Table 7). Africa as a whole is a CO2 source of 265 MtCO2 yr-1. At regional scale, the 613 
mean CO2 sources distributes as follows on four regions: Sub-Sahelian West Africa (235 MtCO2 yr-1) > 614 
Horn of Africa (153 MtCO2 yr-1) > Central Africa (144 MtCO2 yr-1) > Southern Africa (14 MtCO2 yr-1). 615 
The two sink regions are North Africa (-259 MtCO2 yr-1) and South Africa (-23 MtCO2 yr-1). At country 616 
scale, after the corrections of Grassi et al. (2022), the four countries with the larger sinks are: CAF (-229 617 
MtCO2 yr-1) > Mali (-155 MtCO2 yr-1) > Namibia (-106 MtCO2 yr-1) > Cameroon (-77 MtCO2 yr-1). The 618 
four countries with largest sources are DRC (529 MtCO2 yr-1) > Nigeria (287 MtCO2 yr-1) > Tanzania 619 
(77 MtCO2 yr-1) > Ethiopia (56 MtCO2 yr-1). A main issue with the correction from Grassi is that it reports 620 
no sink in DRC which has an important forest coverage representing 68% of the country area (FAO, 621 
2015) and for which a sink was consistently reported in previous NCs. 622 
Figure 4 (c) shows LULUCF CO2 in African countries that are consistent with Grassi et al. (2022) except 623 
for three countries: Namibia (we used 2000 NC3 instead of NIR2019), Nigeria (we used 2014 NC2 624 
instead of 2017 BUR2) and DRC (we used 2015 NC3 instead of 2021 NDC). In that approach Africa 625 
becomes a net CO2 sink of -589 Mt yr-1 over 2001-2018. At regional scale, the region of Central Africa 626 
(-620 MtCO2) remains the main sink. But the values and ranking of the top sources rank as: Horn of 627 
Africa (153 MtCO2) > Southern Africa (141 MtCO2) > Sub-Sahelian West Africa (19MtCO2). At country 628 
scale with this correction choice, the top sinks are: DRC (-235 MtCO2) > CAF (-229 MtCO2) > Mali (-629 
155 MtCO2); and the three top sources: Nigeria (98 MtCO2) > Tanzania (77 MtCO2) > Ethiopia (56 630 
MtCO2). 631 
In the fourth approach where we use the corrections of Grassi et al. (2022) except for DRC where we 632 
kept the latest national communication instead of the most recent NDC, the continent is a net sink of -633 
504 MtCO2 yr-1 over 2001-2018. At regional scale, Central Africa is a large CO2 sink, and the ranking 634 
of sink regions is: Central African group (-620 MtCO2 yr-1) > North Africa (-259 MtCO2 yr-1) > South 635 
Africa (-23 MtCO2 yr-1). The ranking of the source regions stays unchanged. At the country scale, the 636 
main sink is DRC (-235 MtCO2 yr-1). In the paper, we will mainly use data corrected following Grassi et 637 
al. (2022), but we want to raise a caution flag that adopting their correction for DRC had an enormous 638 
effect on the CO2 budget of the continent, which becomes a source. Using the original latest national 639 
communication of DRC instead of the NDC used by Grassi et al., and our own corrections for Namibia 640 
and Nigeria instead of those of Grassi et al. increased the continental CO2 uptake.  641 
 642 
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          Comparison of UNFCCC managed land area and FAO forest and other wooded lands areas 643 
Figure S10 shows a comparison of land areas reported in NC, BUR and REDD+ reports 644 
(https://redd.unfccc.int/submissions.html?mode=browse-bycountry) with FAO forest land areas (2015) 645 
and FAO forest land + other woodlands areas for the year 2015 (see Table S9). Consistent with Grassi 646 
et al.  (2022), all forest lands in Africa are considered as managed. We found that FAO forest lands areas 647 
are closer to UNFCCC estimates than the sum of FAO forest and other woodlands area, except for DRC, 648 
Sudan, Senegal, Niger and Mauritania (Table S9). Forest areas in UNFCCC data using IPCC default 649 
method do not exactly match FAO data estimates of forest area.  650 
 651 
LULUCF CO2 fluxes from UNFCCC versus DGVM and inversions 652 
A comparison between LULUCF CO2 fluxes from UNFCCC, FAO, DGVMs and inversions is shown 653 
in Fig. 5 at the scale of the continent and for the six regions. The period of overlapping time series is 654 
2001-2018. For the continent, DGVMs give a mean sink of -232 MtCO2 yr-1 with a huge range from -655 
1977 MtCO2 yr-1 to 2095 MtCO2 yr-1. The years with the biggest sinks for DGVM (from the median of 656 
all models) are 2006 and 2018, and the years with the smallest sinks are 2005 and 2016 which seem 657 
related to widespread drought years across Africa. A key result shown by this figure is that the DGVMs 658 
and inversions show a huge spread, making them of little value to ‘verify’ inventories for LULUCF 659 
CO2 fluxes in Africa. Yet, we observed that the median of all DGVM points to a sink for Africa, unlike 660 
the UNFCCC data with the correction from Grassi et al. (2022).  661 

 662 



 

27 
 
 

 

 663 
Figure 5. LULUCF CO2 emissions and sinks: comparison between UNFCCC national greenhouse gas 664 
inventories, TRENDYv9 DGVMs and inversions, for total Africa and for each of the six African sub regions; 665 
as well as country details for the three lain outliers. The unit is in MtCO2 yr-1 Shaded green areas represent the 666 
minimum and maximum ranges from inversions. Shaded blue represents the minimum and maximum ranges 667 
for TRENDYv9 DGVMs. Green dashes denote the mean of inversions, blue dashes denote the median of 668 
TRENDYv9 DGVMs, green dashes the median of inversions. Positive values represent a source while the 669 
negative values refer to a sink. 670 

 671 
For three large countries, corrected UNFCCC values from Grassi et al. show a bigger discrepancy with other 672 
BU and TD methods than uncorrected ones (Fig. S9). In Namibia the corrected value gives a larger sink 673 
compared to other methods, while the uncorrected value is comparable. In DRC the corrected value which 674 
was a source seems a high overestimate compared to other methods, while the uncorrected UNFCCC value 675 
is close to median values from inversions, and to FAO. In Nigeria, the corrected value seems to be a high 676 
overestimation of a net source compared to other methods pointing to either a smaller source (FAO, 677 
inversions) or even a sink (DGVM).  678 

 679 
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The data in Figure 5 show that most methods agree on a small net sink for African LULUCF CO2 fluxes, 680 
except for corrections following Grassi et al (2022). But disagreements exist among different methods. 681 

Inversions give a smaller net sink (mean345367) of -14	:$	$;&	$	)''  MtCO2 yr-1 than DGVMs (-232	:%),&	$<)-  MtCO2 682 
yr-1).  The median value of inversions is nevertheless within the range of DGVMs. At the scale of Africa, 683 

the inversions mean sink is ∼12 times smaller than the median from DGVMs. The min-max range of 684 

inversions (5216 MtCO2 yr-1) is larger than the range of the DGVMs by 17%. DGVM and inversions show 685 
a positive temporal correlation coefficient (r = 0.7) for annual trends (linear fit to time series). 686 
UNFCCC values with the fourth approach point out to a net sink (-503 MtCO2 yr-1), similar to the third 687 
one. Corrected values as in Grassi et al. (2022) give a net source estimate of 265 MtCO2 yr-1. FAO net 688 
emissions and removals represent a small net source (18 MtCO2 yr-1). Differences between FAO and 689 
UNFCCC, as explained in Grassi et al. (2022), could be due to the fact that FAO estimates of CO2 fluxes 690 
for forest remaining forest can be set to zero in absence of any national stock change inventory (Table 3). 691 
 692 
Table 3. Mean net LULUCF CO2 (emissions and removals) over the overlapping period of the different 693 
datasets (2001-2018), in MtCO2 yr-1. 694 

 695 
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At a regional scale, we note some agreement between different BU approaches. First, for the South Africa 696 
region, the mean of DGVM medians during the overlapping period 2001-2018 (-5 MtCO2 yr-1) and the 697 
FAO estimate (-1 MtCO2 yr-1) are comparable and not too far from Grassi et al., 2022 (-23 MtCO2 yr-1). 698 
Second, for North Africa, the DGVM median (-13 MtCO2 yr-1) and the FAO mean estimate over the same 699 
period (-9 MtCO2 yr-1) are comparable. Finally, in Sub-Sahelian West Africa, the DGVM (236 MtCO2 yr-700 
1) and UNFCCC corrected following Grassi et al., 2022 (245 MtCO2 yr-1) are also close to each other. 701 
 702 
Northern Africa is the group where DGVM and inversions point to the closest values both in terms of sign 703 
(sink) and magnitudes with respectively small sinks of −13:$))(') 	MtCO2 yr-1 and −34:(;($;< MtCO2 yr-1. 704 
Looking at DGVM and inversions in the region of South Africa, we found that both DGVM and inversions 705 
point to a sink (respectively −5:('&(%$  MtCO2 yr-1 and −147	:;%&)' 	MtCO2 yr-1), however with a different 706 
magnitude. The region showing the highest discrepancies between inversions and DGVM values is Central 707 
Africa with a source in inversions (152:%(<(%('$ MtCO2 yr-1) and a sink for DGVM (−490:%<-%;'% 	MtCO2 yr-1). 708 

The Sub-Sahelian West Africa also shows discrepancies in both sign and magnitude with  245:;))<< 	MtCO2 709 

yr-1 for DGVM and −53	:;,);&% MtCO2 yr-1 for inversions. The same is true for Southern Africa with 710 

−81	:,&-	'$$ MtCO2 yr-1 for DGMVs and 182:-;&%%&' MtCO2 yr-1 for inversions, and the Horn of Africa 711 

with	108	:;();,- MtCO2 yr-1 for DGVM and −115	:,$)(', MtCO2 yr-1 for inversions. At the regional scale, the 712 
inversions systematically give smaller sinks than DGVMs in the regions of Central Africa, Sub-Sahelian 713 
West Africa and North Africa after 2010 (Fig. 5). 714 
 715 
We also computed the coefficient of correlation at the regional level between DGVM and inversions trends 716 
for each region. The highest correlation coefficients are in the South Africa region (r = 0.7), followed by 717 
Northern Africa (r = 0.6) and in Southern Africa (r = 0.5). The lowest correlation coefficients are for the 718 
group of Central African countries (r = 0.3), Sub-Sahelian Western countries (r = 0.2) and the Horn of 719 
Africa (r = 0.1).  720 

 721 
2.3 CH4 anthropogenic emissions  722 

Total and sectoral bottom up CH4 anthropogenic emissions and decadal changes 723 
 724 
 725 
 726 
 727 
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 (a) 728 

 729 
(b) 730 

 731 
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(c) 732 

 733 
Figure 6. (a) African mean anthropogenic CH4 emissions in MtCO2e yr-1 over three decades (1990-1998, 1999-2008, 734 
2010-2018). (b) Contribution of each sector to the change of African emissions between the last three decades. (c) 735 
Same for different regions regrouping several countries. Data from PRIMAP-hist (2021).  736 
 737 
Figure 6 shows anthropogenic CH4 emissions from PRIMAP-hist grouped into four super-sectors (see section 738 
1). A map of CH4 emissions and their trends per country is given in Fig. 3c-d. LULUCF CH4 emissions are not 739 
considered in PRIMAP-hist. African anthropogenic CH4 emissions sum up to 1154 MtCO2e yr-1 over the last 740 
three decades. They increased from 1064 MtCO2e yr-1 in 1990-2000 to 1116 MtCO2e yr-1 in 2001-2009, and 741 
further to 1282 MtCO2e yr-1 over 2010-2018 (Fig. 6.a.) Over the last three decades, the main African CH4 742 
emitting super-sectors shifted from Energy (49% over 1990-2000) to Agriculture, mainly due to a North 743 
African contribution. At the regional level, the main contributing region to total emissions shifted over the last 744 
30 years from Sub-Sahelian Western Africa (297 MtCO2e yr-1 for all sectors in 1990-2000) to North Africa 745 
(333 MtCO2e yr-1 for all sectors in 2010-2018).  746 
North African emissions increased from 290 MtCO2e yr-1 in 1990-2000 to 305 MtCO2eq yr-1 in 2001-2009, and 747 
further to 333 MtCO2e yr-1 in 2010-2018. Sub-Sahelian emissions decreased from 297 MtCO2e yr-1 in 1990-748 
2000 to 252 MtCO2e yr-1 in 2001-2009, and re-increased to 274 MtCO2e yr-1 in 2010-2018, a level smaller than 749 
in the first decade (Fig. 6b). The Horn of Africa emissions increased from 149 MtCO2e yr-1 over 1990-2000, to 750 
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197 MtCO2e yr-1 over 2001-2009, and further to 260 MtCO2e yr-1 over 2010-2018. The emissions from Southern 751 
Africa increased from 184 MtCO2e yr-1 in 1990-2000, to 180 MtCO2e yr-1 in 2001-2009, and further to 212 752 
MtCO2e yr-1 in 2010-2018. Emissions from the Central African region increased from 111 MtCO2e yr-1 in 1990-753 
2000, to 114 MtCO2e yr-1 in 2001-2009, and further to 125 MtCO2e yr-1 in 2010-2018. We also computed the 754 
GINI of African countries anthropogenic CH4 per capita emissions and obtained the following values: 0.6 in 755 
1990-1998, 0.5 in 1999-2008, 0.5 in 2009-2018, thus a trend of increasing ‘inequality’ between countries. As 756 
compared to per capita FCO2 emissions, more homogeneity is observed for CH4 per capita emissions. Similar 757 
to FCO2 emissions, the GINI values remained stable over the three decades, showing a similar level of 758 
inequalities over time.  759 

BU versus inversions for total and anthropogenic CH4 emissions    760 

 761 
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 762 
Figure 7. Comparison of total anthropogenic CH4 emissions in MtCO2e yr-1 from the PRIMAP-hist inventory 763 
(black) and global inversions. Shaded green and yellow areas represent the minimum and maximum range from 764 
GOSAT satellite and surface inversions, respectively. Shaded blue areas represent the minimum and maximum 765 
ranges of wetlands natural emissions from inversions. The orange lines represent wildfire emissions from GFED4. 766 
 767 
Figure 7 compares BU anthropogenic emissions from PRIMAP-hist for the period 2000-2018 with inversions’ 768 
anthropogenic emissions (see section 1). Wetlands natural emissions are shown in the figure only for 769 
information from the median and range of inversions. Over the overlapping time period, medians of both 770 
GOSAT and surface inversions are always smaller than PRIMAP-hist emissions, at continental and regional 771 
level, except for the Central African region. For the African continent, the mean and min-max of GOSAT 772 
inversions for anthropogenic CH4 emissions over 2000-2018 is 1117)<(%()< MtCO2e yr-1, very close to the mean 773 

of surface inversions of 1094&-(%((<	MtCO2e yr-1. A good agreement between GOSAT and surface inversions 774 
was also found in other high-emitting countries (Deng et al., 2021). In contrast, PRIMAP-hist gives a mean of 775 
CH4 anthropogenic emissions of 1231 MtCO2e yr-1 over the period 2010-2017. The mean wetlands flux from 776 
inversions over 2010-2017 is of 827;&%);'  MtCO2e yr-1. Methane emissions from wildfires over Africa for the 777 
same period are less important, with a mean of 110 MtCO2e yr-1.  778 
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Regional emissions from PRIMAP-hist ranked in decreasing order are: North Africa (293 MtCO2e yr-1) > Sub-779 
Sahelian west Africa (272 MtCO2e yr-1) > Horn of Africa (252 MtCO2e yr-1) > Southern Africa (212 MtCO2e 780 
yr-1) > Central Africa (123 MtCO2e yr-1) > South Africa (78 MtCO2e yr-1). For both GOSAT and surface 781 
inversions, the ranking of regions (Table S11) is almost the same for surface inversions and PRIMAP-hist, with 782 
the exception of Central Africa and Southern Africa. 783 
 784 
2.4 Results for N2O emissions  785 

N2O PRIMAP-hist versus atmospheric inversions (total flux) 786 

Total and sectoral N2O anthropogenic emissions (PRIMAP-hist) 787 
 788 
(a) 789 

 790 
  791 
 792 
 793 
 794 
 795 
 796 
 797 
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(b) 798 

 799 
(c) 800 

 801 
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Figure 8. (a) African anthropogenic N2O emissions in MtCO2e yr-1 over three decades: 1990-1998, 1999-2008 & 802 
2009-2019. Data from PRIMAP-hist (2021). (b) Contribution of each sector to the change of African N2O emissions 803 
between the last three decades. (c) Same for different regions regrouping several countries. Data from PRIMAP-804 
hist (2021).  805 

Figure 8 presents anthropogenic N2O emissions from PRIMAP-hist, for five sectors (for country values, see 806 
Fig. 4). Over the last three decades, the mean African emissions are 378 MtCO2e yr-1, three times less than CH4 807 
emissions. The mean decadal N2O emissions increased from 319 MtCO2e yr-1 in 1990-1999, to 382 MtCO2e yr-808 
1 in 2000-2009 (+20%), and further to 431 MtCO2e yr-1 in 2010-2018. Over the last three decades, the main 809 
emitting sector remained Agriculture. The N2O emissions increase also originates from Agriculture, with an 810 
increase from 283 MtCO2e yr-1 to 335 MtCO2e yr-1 between 1990-1999 and 2000-2009, that is, +16.3 % 811 
compared to of the total emission increase of +19.5%. The three other sectors show a smaller contribution to 812 
the emissions increase: Energy (+1.4%), Other (+1%) and Waste (+0.8%). IPPU shows no change. Similarly, 813 
between 2000-2009 and 2010-2019, the N2O emissions increase also came from the sector of Agriculture, with 814 
an increase from 335 MtCO2e yr-1 to 399 MtCO2e yr-1 between 1990-1999 and 2000-2009. 815 
The main contributing regions to the continental emissions are Northern Africa and the Horn of Africa (Fig. 816 
8a). Between 2000-2009 and 2010-2019, the North African contribution increased from 99 MtCO2e yr-1 to 125 817 
MtCO2e yr-1 (+27%). The main sectoral contribution is always Agriculture, which increased in that region from 818 
86 MtCO2e yr-1 to 107 MtCO2e yr-1 (+21%). Emissions from the second largest emitting region, the Horn of 819 
Africa, increased from 81.19 MtCO2e yr-1 in 2000-2009 to 111 MtCO2e yr-1 in 2010-2019 (+37%), mainly from 820 
Agriculture. In the third most emitting region, Sub-Sahelian Africa, emissions increased from 61 MtCO2e yr-1 821 
in 2000-2009 to 77 MtCO2e yr-1 in 2010-2019 (+27%), also from Agriculture. The least contributing region to 822 
the increase of the total N2O emissions from 2000-2009 to 2010-2019 is South Africa which had a very small 823 
decrease, mainly from IPPU (-6%) followed by Agriculture (-2%). On the contrary, there is a slight increase of 824 
N2O emissions for the group of South Africa for the Other (+1%), Energy (+1%) and Waste (+1%) sectors. 825 
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 826 

 827 
Figure 9. Total N2O emissions from PRIMAP-hist in MtCO2e yr-1 (black line) from three GCP atmospheric 828 
inversions for the entire African continent and for six African sub-regions. The green line is the median of the three 829 
inversions and the light green areas the maximum-minimum range. 830 

Figure 9 compares N2O emissions from PRIMAP-hist and inversions. For total Africa, the mean of inversions 831 
emissions over the overlapping time period 1998-2017 is 1647%-<$%,'<  MtCO2e yr-1, much larger than the 832 
PRIMAP-hist estimate of 360 MtCO2e yr-1. According to PRIMAP-hist, total African emissions increased by 833 
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28% between 1998 and 2017, while the trend of emissions from the inversions is 16 ± 8%. At regional scale, 834 

emissions from inversions ranked in decreasing order are: Central Africa (461;$;-%, MtCO2e yr-1 MtCO2e yr-1) > 835 

North Africa (330$,;;%)MtCO2e yr-1) > Sub-Sahelian West Africa (271'&((<MtCO2e yr-1) > Southern Africa 836 

(263$%;(%<MtCO2e yr-1 > Horn of Africa 240$%,$'-MtCO2e yr-1 > South Africa (68-%&%MtCO2e yr-1). According to 837 
PRIMAP-hist, the ranking is: North Africa (106 MtCO2e yr-1) > Sub-Sahelian West Africa (68 MtCO2e yr-1) > 838 
Southern Africa (62 MtCO2e yr-1) > Central Africa (54 MtCO2e yr-1) > the Horn of Africa (46 MtCO2e yr-1) > 839 
South Africa (24 MtCO2e yr-1) (See also Table S13). Emissions from PRIMAP-hist are smaller than inversions 840 
by a factor of 16. This is likely due to the fact that we did not attempt to separate natural from anthropogenic 841 
emissions in inversions. Other studies (Ciais et al., 2021; Petrescu et al., 2021 in Europe) showed that even 842 
after subtracting N2O natural estimates, inversions always point to higher estimates than BU methods.  843 
 844 
3 Discussion: uncertainties, comparison between BU and TD methods, and synthesis for the three main 845 
GHG 846 
 847 

3.1 Uncertainties specific to DGVMs / inversions for LULUCF CO2  848 

 849 
In Fig. 5, we showed important disagreements among models regarding LULUCF CO2 on whether Africa has 850 
been a small source over the last 20 years (as shown by inversions) or a net sink (as shown by DGVMs and 851 
UNFCCC except with the Grassi et al. correction). There is also more interannual variability in the DGVMs 852 
results, mainly from climate variability, which is absent from UNFCCC as inventories provide only decadal 853 
smoothed flux estimates. The larger sink in the DGVMs compared to the corrected UNFCCC estimates using 854 
the method of Grassi et al. (2022) may be due to the fact that non-Annex I UNFCCC estimates generally do 855 
not include dead biomass or harvested wood products. If forest biomass is estimated by a stock-change 856 
approach, therefore, changes in living biomass due to transfer to dead biomass and harvested wood products 857 
will be considered emitted in that year, while in the DGVMs it will decay more slowly over time. Another 858 
difference is the treatment of land use change emissions, based on historical global land use change maps for 859 
the DGVMs, which can significantly differ from national land use datasets. On the other hand, DGVMs do not 860 
represent forestry and may underestimate sinks in intensively managed young forests. DGVMs do not separate 861 
between unmanaged and managed lands, while UNFCCC inventories only account for managed land, yet 862 
including conservation areas and indigenous territories. Grassi et al. (2022) showed that the difference between 863 
the global UNFCCC sink (1100 MtCO2 yr-1) and the global land carbon sink (4767 MtCO2e yr-1) must be 864 
explained by the contribution of non-managed lands. But in the case of Africa, it was not possible to extract 865 
from UNFCCC reports the national areas of unmanaged land, and we had to also look at UNFCCC Technical 866 
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Assessment Reports (TAR) as well as REDD+ reports to extract information. Methods of assessment have not 867 
been fully standardized since 1990, and they differ depending on the countries analyzed, and on the emissions 868 
categories considered. In this context, when comparing UNFCCC estimates with data from DGVM and 869 
inversion models, different layers of aggregated uncertainties affect the analysis. (Deng et al., 2021; Petrescu 870 
et al., 2021; Grassi et al., 2018). The fact that LULUCF CO2 fluxes have the greatest uncertainties is true 871 
globally.      872 
      873 

3.2 Differences and sources of uncertainties between BU and TD CH4 emissions 874 
 875 
The methodology used for removing natural CH4 emissions from inversions is key for comparing with BU 876 
estimates of anthropogenic emissions only. In this paper, we used a separation based on the natural emissions 877 
solved by each inversion (section 2.3 method 1). Using an alternative method from Deng et al. (2022) based on 878 
natural emissions from the median of all inversions gives smaller anthropogenic emissions than PRIMAP-hist 879 
(Fig. S10).  880 
      881 

3.3 Differences and sources of uncertainties between BU and TD N2O emissions  882 
 883 

For N2O emissions, discrepancies between inventories and inversions are very high, especially for the group of 884 
Central African countries, where the vegetation covers an important land area with likely large natural N2O 885 
(Deng et al., 2022). We can suppose that more broadly for all African groups, the lack of accounting of natural 886 
emissions is the main reason why PRIMAP-hist estimates are much smaller than inversions. All African 887 
countries used Tier 1 emission factors and include only direct N2O emissions. The study by Deng et al. (2022) 888 
underlined that indirect anthropogenic emissions notably coming from “atmospheric nitrogen deposition and 889 
leaching from anthropogenic nitrogen additions to aquifers and inland water are usually not reported by non-890 
Annex I countries” and that this under-reported source of anthropogenic emissions tends to represent about 5% 891 
to 10% of anthropogenic N2O. According to Deng et al. (2022), the global situation from inversions for main 892 
emitters is similarly affected by the potential contribution of natural sources as well, which is difficult to 893 
estimate and separate. Figure 11 from Deng et al. (2022) shows that even when removing “intact / non-managed 894 
lands” from inversions, in many countries, especially tropical countries, the inversions give a systematically 895 
much higher anthropogenic level of N2O than inventories, suggesting that there are either missing 896 
anthropogenic sources or some “natural” sources (e.g. conservation areas) in managed lands being 897 
underestimated by inventories. 898 
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3.4 Synthesis of the steps for assessing net GHG trends over Africa   899 

 900 
Here, we propose a first step towards the elaboration of what could become a more systematic method for a 901 
scientific benchmark of non-Annex I national inventories: 1) correct outliers, 2) check the plausibility of 902 
estimates, 3) have an independent evaluation of inventory data by experts, 4) a comparison between UNFCCC 903 
data corrected thanks to expert judgment and other BU and TD methods, 5) computation of the mean of all 904 
BU and TD methods, 6) computation of “best fitted BU values” (meaning “best fitted BU values” excluding 905 
uncorrected UNFCCC data), and “TD values” (meaning “best fitted TD values”: without considering N2O 906 
inversions replaced with PRIMAP-hist values), 7) identification of ranking anomalies. 907 

 908 
3.5 Net GHG budget from inversions 909 

 910 
Figure 10. Synthesis for the three main GHG with net African budget computation by all TD methods for Africa 911 
as a whole and for six sub-groups of African countries across overlapping time series (2001-2017). Following the 912 
atmospheric convention, positive numbers represent an emission to the atmosphere and the negative values 913 
represent a sink. The CO2 emissions and sinks from LULUCF are represented in green, they are taken from GCP 914 
2020 dataset. Unit is MtCO2e yr-1.      915 
 916 
Figure 10 shows different combinations of inversion GHG budgets and individual gasses contributions.  917 
For total Africa, the mean net GHG budget from inversions where N2O inversions are replaced by PRIMAP-918 
hist is 2638%,'%-&,(  MtCO2e yr-1. Regional GHG budgets in decreasing order are: North Africa (810$,)%%,<       919 

MtCO2e yr-1) > South Africa group (452%'%,-%	MtCO2e yr-1) > Southern Africa (416:((;%;'-  MtCO2e yr-1) > Sub-920 

Sahelian West Africa (373('%<-%MtCO2e yr-1) > Central Africa (352:%%((%-)$ 	MtCO2e yr-1) > Horn of Africa 921 
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(204:;-'&,(  MtCO2e yr-1) (Table S17). The mean net of inversions including N2O inversions is substantially 922 

higher, 3879%($<,(;%	MtCO2e yr-1. Regional GHG budgets in decreasing order are: North Africa 923 

(1034'<<%;,-MtCO2e yr-1) > Central Africa (759:,'($<-; 	MtCO2e yr-1) > Southern Africa (616:$'$%,%(  MtCO2e yr-1) > 924 

Sub-Sahelian West Africa (576:'%%(%( MtCO2e yr-1) > South Africa group (496%(&&%; MtCO2e yr-1)  (Table S17).      925 
 926 
 3.6 Comparison between BU and TD methods 927 

 928 
 929 
Figure 11.  Synthesis for the three main GHG net African budget from TD and BU methods, using Method 1 for 930 
separating anthropogenic CH4 emissions from inversions (FOSS+AGRIW+BBUR) during 2001-2017. FCO2 data 931 
from GCP. N2O from global inversions and from PRIMAP-hist. For TD methods, anthropogenic CH4 from both 932 
GOSAT and surface inversions are used, and LULUCF from GCP inversions only. For BU methods, anthropogenic 933 
CH4 and N2O from PRIMAP are used, and with five different methods for assessing LULUCF CO2: from 934 
uncorrected UNFCCC data; from corrected UNFCCC data according Grassi et al. (2022); from corrected 935 
UNFCCC except Namibia, Nigeria and DRC; from TRENDY v9; from FAO FL including FL conversions. 936 
Following the atmospheric convention, positive numbers represent an emission to the atmosphere and the negative 937 
values represent a sink. All values are in MtCO2e.  938 
 939 
Figure 11 shows the GHG budgets from all combinations of BU and TD methods. The mean of all methods 940 
after filtering outliers (Grassi et al. (2022) UNFCCC corrections, using PRIMAP instead of inversions for N2O) 941 
is 2630%),;;--,  MtCO2e yr-1, which represents only 7.3 % of global FCO2 emissions. The mean of all estimates 942 

points out to a source in the six African regions ranked in decreasing order as: North Africa (761;'<)&&	MtCO2e 943 

yr-1 (513%'%,<$  MtCO2e yr-1) > Horn of Africa (318:&<')) 	MtCO2e yr-1) > Sub-Sahelian West Africa 944 

(492$&')%(		MtCO2e yr-1) > Southern Africa (354:,&))&  MtCO2e yr-1) > Central Africa  (143:',<&&$  MtCO2e yr-1). 945 
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We initially did not make any assumption regarding which approach is “better” between TD and BU method, 946 
as it actually depends on the considered gas, sector and spatial scale. Comparability between TD and BU results 947 
is not completely obvious either, as they do not represent the same processes (example of LULUCF CO2 for 948 
DGVM as explained in paragraph 3.1). For N2O specifically, we highlighted in paragraph 3.3 the large 949 
uncertainty of the TD estimates, underlining the importance to separate natural N2O emissions from total 950 
estimates in order to deliver appropriate anthropogenic assessments thanks to the inversions.   951 
 952 
We showed in the results of this paper that inversions in general tend to have larger uncertainties than 953 
inventories, and large differences in terms of min / max and at annual scale even among similar typologies of 954 
the methods. But at a decadal scale, they deliver reliable overall trends (with good match among the median 955 
values of various estimates on the overlapping time period) especially at the spatial scale of groups of countries 956 
and of a continent. Under such conditions, TD estimates help identify or confirm outliers / large uncertainties 957 
in inventories that may occur especially for Non-annex I countries like Africa.  958 
 959 
Inversions therefore can’t be a substitute but rather a complement to check trends consistency of inventories 960 
and help to identify and correct main outliers. That’s why we chose BU estimates to deliver a final budget over 961 
Africa (with CO2 LULUCF corrections) as synthesis figures (see Fig.12 and Fig.13 in the next paragraph). 962 
Possibilities to reduce the gap BU and TD estimates are the following: 1) For inversions: to have a coarser 963 
network of surface stations and coarser spatial resolution. 2) For DGVM: see paragraph 3.1. 3) For national 964 
UNFCCC inventories: to have regularly updated activity data and use country-specific emissions data and 965 
include indirect emissions, which is not the case to date for African countries, and use expert judgment for 966 
correcting outliers as done by Grassi et al. (2022) and in this study for CO2 LULUCF emissions.  967 
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3.7 Net GHG budget from BU estimates  968 

 969 
Figure 12. Synthesis for the three main GHG from inventories (after UNFCCC LULUCF CO2 corrections 970 
consistent with Grassi et al. (2022)) for the three main GHG with net African budget computation by BU inventories 971 
for Africa as a whole and for six sub-groups of African countries across three different decades (1990-1999, 2000-972 
2010, 2010-2018) using data and corrections from country inventories. Following the atmospheric convention, 973 
positive numbers represent an emission to the atmosphere and the negative values represent a sink. Black 974 
horizontal lines represent a net flux resulting from the addition of the three main GHG using PRIMAP-hist only, 975 
dashed black horizontal lines also represent the net flux resulting from the addition of the three main GHG but 976 
using the GCP dataset for FCO2. Dashed red lines represent the fluxes from GCP FCO2 available in the most recent 977 
GCP paper, to compare them with PRIMAP-hist results which are represented with the brown bar plots. The N2O 978 
and CH4 fluxes from PRIMAP-hist are respectively represented with yellow and blue bars. CO2 emissions and 979 
sinks from LULUCF are represented in green, they are taken from NC/BUR UNFCCC datasets with corrections 980 
applied. Unit is MtCO2e yr-1. 981 
 982 
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Figure 12 shows the budget for the three GHG from UNFCCC data with LULUCF data corrected using the 983 
second approach. There is a clear increase of African total GHG emissions during the last 3 decades. The 984 
differences between BU datasets are mainly due to different sectoral allocations. However, the trends are 985 
consistent and comparable, and differences among inventories tend to be less for the most recent decade. 986 
 987 
Table 5. Mean net total Africa and regional groups’ emissions and removals from BU methods using either GCP 988 
or PRIMAP-hist for FCO2 over 2001-2017 in MtCO2e.yr-1. 989 

       
 

 
 

Region 
 

                                                               Type of dataset 

 BU methods with GCP FCO2 BU methods with PRIMAP FCO2 

 GCP + 
uncorrecte

d 
UNFCCC 
LULUCF 

CO2 

GCP + 
correcte
d 
UNFCC
C 
LULUC
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Grassi et 
al. (2022) 

GCP + 
correcte
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UNFCC

C 
LULUC
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Grassi et 
al. (2022) 
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DRC, 
NAM, 
NIG 

 

GCP + 
median 
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v9 

LULUCF 
CO2 

(min/max) 

GCP + 
LULUC
F CO2 
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 990 
At the country level, a small number of countries showed an increasing difference between PRIMAP-hist and 991 
GCP estimates of fossil CO2 emissions over time, but they are small FCO2 emitters. The differences may also 992 
be partly explained by changes in accounting methods as mentioned in Gütschow et al. (2016). The biggest 993 
discrepancies are noticeable for Mali (64%), Cameroon (-62%), and the DRC (-38%), but those three countries 994 
are not major FCO2 emitters (Fig. 4.a-b).  995 
Table 5 shows the differences of net African budget from various BU methods using GCP or PRIMAP-hist for 996 
FCO2 over 2001-2017 that are also illustrated on Fig. 11.  997 



 

45 
 
 

 

BU LULUCF budget from UNFCCC corrected by Grassi (2022) 998 
Over 2001-2017 the net BU GHG budget is 2975 MtCO2e yr-1. Regionally the ranking in decreasing order is: 999 
Sub-Sahelian West Africa (718 MtCO2e yr-1) > North Africa (588 MtCO2e yr-1) > South Africa group (524 1000 
MtCO2e yr-1) > Horn of Africa (484 MtCO2e yr-1) > Southern Africa (346 MtCO2e yr-1) > Central Africa (316 1001 
MtCO2e yr-1).  1002 
BU LULUCF budget CO2 from FAO 1003 
The BU budget from FAO data is 2728 MtCO2e yr-1, 8% less than above. The ranking of regions in decreasing 1004 
order is: North Africa (838 MtCO2e yr-1) > South Africa group (546 MtCO2e yr-1) > Sub-Sahelian West Africa 1005 
(503 MtCO2e yr-1) > Southern Africa (345 MtCO2e yr-1) > Horn of Africa (325 MtCO2e yr-1) > Central Africa 1006 
(171 MtCO2e yr-1). 1007 
BU LULUCF budget from DGVMs   1008 
The net GHG budget for Africa is 2478,((;&<'MtCO2e yr-1, 9% less than with FAO. The ranking of regions in 1009 

decreasing order is: North Africa (835	-;)%$%' MtCO2e yr-1) > Sub-Sahelian West Africa (726	;((	%(&$MtCO2e yr-1) 1010 

> South Africa (542	%,)	&-)  MtCO2e yr-1) > Horn of Africa (438:%<)&<- 	MtCO2e yr-1) > Southern Africa 1011 

(251	:;-()-( MtCO2e yr-1 > Central Africa (−318	:&,)'((  MtCO2e yr-1). 1012 

 1013 
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Figure 13. 2001-2018 emissions in MtCO2e yr-1 for fossil CO2 (GCP and PRIMAP-hist), LULUCF CO2 (corrected 1014 
UNFCCC data consistent with Grassi et al. (2022), CH4 (PRIMAP-hist), N2O (PRIMAP-hist) for Africa, and for 1015 
six regions. 1016 

For information, in the supplement section Fig. S13 and Fig. S14 illustrate the differences in MtCO2e and in % 1017 
for CH4, N2O and for the total net GHG budget that would result from the use of AR6 GWP100 compared to 1018 
AR4 GWP100 currently in used by UNFCCC non-Annex I countries, for the six African regions considered on 1019 
Fig.13 as well as for Africa total. The net difference on the total African budget for the use of GWP100 AR6 1020 
instead of AR4 is: +4.6%, which means a relatively small increasing impact on the net budget, with a prevailing 1021 
effect of the slight increase of CH4 GWP100 in the AR6 as compared to AR4, over the strong decrease of N2O 1022 
GWP-100. The two African regions that are the most impacted in terms of net budget are: Southern Countries 1023 
(+7.2%) and the Horn of Africa (+6.3%). The least impacted region in terms of overall net budget with an 1024 
updated AR6 GWP-100 for CH4 and N2Ois South Africa (+1.7%).     1025 

  1026 

4 Summary, concluding remarks and perspectives  1027 
 1028 
Africa is a large continent gathering 56 countries, and some countries are major GHG emitters. Because of its 1029 
rapidly growing population and high industrial potential, Africa is a critical geography regarding climate 1030 
change mitigation and adaptation policy. Depending on the emissions pathways, Africa, which is already a big 1031 
emitting region, is expected to represent between at least a bit more than 10% of the global share by 2050, and 1032 
could become as high as 18% of global emissions by 2050 (van der Zwaan, 2018). 1033 
This paper delivers both a continental view and a detailed analysis of the three main GHG trends during the 1034 
last thirty years across this continent as a whole, across relevant groups of countries given the inversions’ 1035 
resolutions, and also considering country details. Thanks to the comparison of different methods and datasets, 1036 
the uncertainty about the net emissions and removals of GHG lowers. The interest of studying Africa is high 1037 
not only from a scientific point of view, but also from a climate-policy perspective, as under the UNFCCC 1038 
principle of “common but differentiated responsibility” about global warming, the credibility of the PA lies in 1039 
the effective participation and inclusiveness of all parties, including non-Annex I countries. Our effort of 1040 
comparing BU datasets and inversions and analyzing differences for African GHG emissions and removals 1041 
assessment by looking at trends since 1990 will also be useful for future updates on a regular basis within the 1042 
2023 GST perspective.  1043 
At the scale of Africa, there is a rapid increase of FCO2 emissions that roughly doubled since 1990. This increase 1044 
is dominated by coal emissions for the decade 1990-1998 compared to 1999-2008 (+9%), and by oil for the 1045 
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decade 1999-2008 compared to the decade 2008-2017 (+16%). As for CO2 LULUCF, we found that BU 1046 
estimates are featured with important annual fluctuations, as opposed to periodic national inventories 1047 
assessments, the reconciliation between the sectoral classification for anthropogenic estimates between TD and 1048 
BU has to be done “manually” and is not uniform to date, which doesn’t facilitate the comparability of those 1049 
different approaches. There are also differences among GCP inversions for CO2, due to the fact that choices of 1050 
model transport may differ among models, because prior fluxes can also differ between modeling teams, and 1051 
because the African GHG observation network is featured with few stations and relatively scarce data. The lack 1052 
of integration of CO2 lateral anthropogenic and river fluxes is also an issue to be taken into account when trying 1053 
to compare BU and TD methods (Ciais et al., 2022), and in the present study we did integrate those lateral 1054 
fluxes. Anthropogenic CH4 from PRIMAP-hist estimates indicate that out of the total African emissions 1055 
increase from 1064 MtCO2e yr-1 to 1116 MtCO2e yr-1 between 1990-2000 and 2001-2009 (+5%), only two 1056 
sectors contributed: Agriculture, in a dominant way (+8%) and Waste (+5%). Energy contributes to emissions 1057 
decrease (-8%) that is however too small to offset other sectors’ CH4 emissions that represent a net increase. 1058 
The main regional contributions come from North Africa and from the Agriculture sector (+12%). Over the 1059 
same period, the least contributing emitter is the group of South Africa (+12%), with only one decreasing 1060 
emissions sector: Agriculture (-1%). The mean 2001-2009 emissions increased by +15% over 2010-2018 with 1061 
contribution from all sectors except IPPU. This increase is dominated by Agriculture (+8%) and Waste (+ 6%). 1062 
For 2010-2018, the two main contributing regions for CH4 emissions are Northern Africa and Sub-Sahelian 1063 
Western Africa, Agriculture being the dominant emitting sector. From inversions, after withdrawing natural 1064 
emissions and wildfires using the GFED dataset from total CH4 emissions, median values are almost always 1065 
below PRIMAP-hist estimates. CH4 natural emissions have an important impact in Africa especially in the 1066 
Central African region as well as in the Southern countries. N2O TD estimates are always higher than the ones 1067 
from PRIMAP-hist, underlining the importance to separate natural N2O emissions from total estimates in order 1068 
to deliver appropriate anthropogenic assessments thanks to the inversions.  1069 
To compute a net budget for the three main GHG emissions and removals and for comparability we used the 1070 
MtCO2e yr-1 metric and the latest IPCC report recommended GWP. The choice of a constructed GWP metric, 1071 
however, creates additional associated uncertainties notably due to the selected time horizon. By computing 1072 
the mean of methods excluding uncorrected UNFCCC and N2O inversions data from twenty different ways for 1073 
assessing GHG emissions and removals in Africa, we found that the most recent net from the three main GHG 1074 
in Africa is a source of  2630%),;;--,  MtCO2e yr-1.  1075 
Our assessment of African GHG emissions trends over 30 years through different methods can enable 1076 
comparisons of ex post with ex ante pledges of the PA, whose baseline year is often 1990. However, given the 1077 
global geopolitics to date featured with the prevailing principle of national sovereignty, a scientific assessment 1078 
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of GHG can only work as a supporting tool (Janssens-Maenhout et al., 2020) and cannot be directly policy-1079 
prescriptive. We note a relatively good match among the various types of estimates in terms of overall trends, 1080 
especially at a regional level and on a decadal basis, but large differences in terms of min / max and at annual 1081 
scale even among similar typologies of the methods (TD or BU). The large discrepancies are a scientific limit 1082 
to the possibility of precise verification of the African country-reported emissions, but they are good enough 1083 
to indicate trends. To compute a net from the three main GHG, no purely “TD” method is available due to the 1084 
necessity to replace N2O inversions data with BU data. An original result of this study is that we proposed at a 1085 
small scale what may become a systematic formalized methodological protocol for independent verification of 1086 
a net estimate using country-reported data, to be possibly implemented at the UNFCCC secretariat scale in a 1087 
centralized way.  The African GHG increasing trend is not in line with the mitigation aims of the PA towards 1088 
net-zero globally. Research teams focusing on inversion methods (Nickless et al., 2020), underline that 1089 
uncertainties should not be above 15% in order to deliver a reasonable verification support capacity. A major 1090 
source of complexity for the evaluation of the respect of the Paris Agreement comes from the fact that national 1091 
pledges generally fall below the discrepancies between different scientific independent estimates. This calls for 1092 
investments not only in improvements of atmospheric measurement devices but also in the research efforts for 1093 
standardizing verification methods. At the policy level, the extrapolation of this study to the climate policy 1094 
field could also serve as a compelling argument for the creation of a global dedicated “Climate Inspection task 1095 
force” of the UNFCCC.   1096 

5 Data availability  1097 

The datasets from the three main greenhouse gasses used in this paper (CO2, CH4, N2O) from the various BU 1098 
inventories, TD inversions and DGVM over Africa will be made publicly available. This database is available 1099 
from Zenodo at: https://doi.org/10.5281/zenodo.7347077 (Mostefaoui et al., 2022). 1100 
This dataset contains 32 data files: 1101 
- CO2 inversions (annual flux for LULUCF CO2) 1102 

- African CO2 TD inversions GCB2020 1990-2019: annual CO2 flux from GCB inversion models 1103 
- African CO2 lateral flux 2001-2019: annual CO2 lateral flux including river transport, crop and wood 1104 
product trade. 1105 
- African CO2 TRENDYv9 1990-2019: annual CO2 flux from 14 DGVM 1106 
- FAO 1990-2019: annual emissions and removals from FAO dataset   1107 
- Inventory IPCC 1990-2019: annual flux from inventory data collected from UNFCCC national 1108 
inventories in the IPCC categories 1109 

- CH4 inversions 2000-2017 (annual flux) 1110 
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- African CH4 global inversion 2000-2017: CH4 flux over 2000-2017 from 11 surface inversion and 11 1111 
satellite inversion models from four sectors; fossil refers to emissions from the fossil sector; agriculture and 1112 
waste refers to emissions from both the agriculture and waste sector; biomass burning refers to emissions from 1113 
biomass burning 1114 

- GFEDv4 1997-2016: wildfire emissions from the Global Fires Emission Dataset (GFED) version 4  1115 
- N2O inversions 1998-2017 (annual flux) 1116 

- N2O PYVAR 1998-2017: total N2O emissions from PyVAR inversions;  1117 
- N2O TOMCAT-INVICAT 1998-2015: total N2O emissions from TOMCAT-INVICAT model;  1118 
- N2O MIROC4 - ACTM  1998-2016: total N2O emissions from MIROC4-ACTM model; 1119 

Data used in this study are also included in the Supplementary Information (for example, from FAO data) and 1120 
on public websites (CDIAC, PRIMAP-hist, World Bank data). Any other data that support the findings of this 1121 
study are available from the corresponding author upon request. 1122 
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