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Dear Topical Editor Francesco N. Tubiello,  

Dear Referees and Editorial Board of ESSD,  

 

As requested, we are submitting final answer to the referees’ comments.  

 

We provided a track-change version of the manuscript as well. We will not refer here to grammar or 

language corrections, but they will appear in the marked-up manuscript. 

 

Line numbers here refer to the marked-up version of the manuscript. 

 

 

 Interactive comment on: 

“Greenhouse gasses emissions and their trends over the last three decades across 

Africa” 

by M. Mostefaoui et al. 

 

 

REPLY TO CHRIS JONES  

 

We warmly thank Chris Jones for his very thoughtful and precious Referee comments and for the fact 

that the Referee acknowledges the manuscript content. 

Below, in black color, we provide answers to the comments posted by Chris Jones (in blue). 

 

“I have a few minor comments which may help the presentation, but recommend publication once 

these are addressed.” 

Thank you, we ensured that all the comments were addressed. 

“My main comment is that due to its length, I think there may be a cleaner way to summarize and 

finish the paper. When I got to Fig.10 (and also Fig. 11) I thought “this is a nice synthesis plot” (i.e. it 

feels like a really good place to finish and summarize everything you’ve found), but then the paper 

goes back into more details and uncertainties – I was then left not knowing whether to believe figures 

10 and 11 any more… It would be nice maybe to have the discussion of uncertainties first, and then 

finish with a clear synthesis figure like 10/11 which shows your final best estimates.” 

We agree that the paper should be shortened after Fig. 10 and Fig.11 (numbered as such in the previous 

version of the manuscript) and we ensured that those figures are now concluding figures as requested: 

they are now named Fig. 12 (line 977) and Fig. 13 (line 1022) of the revised version. We ensured that 
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the discussion about uncertainties is before these figures see section 3.1, section 3.2 and section 3.3 

(lines 851 to 902).  

Minor comments 

- “You note that land use CO2 emissions have the greatest uncertainty. It is worth noting that this is 

true globally and in fact land-use CO2 are the most uncertain of all GHGs (at least when expressed as 

CO2e) according to IPCC” 

Thank, we underlined that point lines 874 to 875.   

- “For N2O, you note the difference between bottom-up and top-down estimates. I’m curious how 

this compares with the global situation – is this similarly affected by the potential contribution of 

natural sources? Or is this just a problem for Africa (and if so why?).” 

According to Deng et al. (2022), the global situation from inversions for main emitters is similarly 

affected by the potential contribution of natural sources as well, which is difficult to estimate / separate. 

We copied below Fig. 11 from Deng et al. (2022) showing that even when removing ‘intact / non-

managed lands’ from inversions, in many countries, especially tropical countries, the inversions give 

a systematically much higher anthropogenic emission of N2O than inventories, suggesting that there 

are either missing anthropogenic sources or some ‘natural’ sources (e.g. conservation areas) in 

managed lands being underestimated by inventories.  

 

Figure 11 from Deng et al. (2022). 
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We highlighted this point in the revised manuscript lines 896 to 902:  

“According to Deng et al. (2022), the global situation from inversions for main emitters is similarly 

affected by the potential contribution of natural sources as well, which is difficult to estimate and 

separate. Figure 11 from Deng et al. (2022) shows that even when removing “intact / non-managed 

lands” from inversions, in many countries, especially tropical countries, the inversions give a 

systematically much higher anthropogenic level of N2O than inventories, suggesting that there are 

either missing anthropogenic sources or some “natural” sources (e.g. conservation areas) in 

managed lands being underestimated by inventories.” 

- “Given the importance of this uncertainty – could the paper recommend which estimate to use? Do 

you believe the top-down or bottom-up ones are better? At the moment it just leaves the reader to see 

two very different possible answers….” 

Thanks for this important and complex point. Answers to this point were already indirectly included 

in the discussion about uncertainties in sections 3.1, 3.2 and 3.3 (lines 851 to 902), but we also added 

a more detailed paragraph about this specific point on section 3.6 (lines 953 to 974) as following:  

“We initially did not make any assumption regarding which approach is “better” between TD and 

BU method, as it actually depends on the considered gas, sector and spatial scale. Comparability 

between TD and BU results is not completely obvious either, as they do not represent the same 

processes (example of LULUCF CO2 for DGVM as explained in paragraph 3.1). For N2O specifically, 

we highlighted in paragraph 3.3 the large uncertainty of the TD estimates, underlining the importance 

to separate natural N2O emissions from total estimates in order to deliver appropriate anthropogenic 

assessments thanks to the inversions.   
 

We showed in the results of this paper that inversions in general tend to have larger uncertainties than 

inventories, and large differences in terms of min / max and at annual scale even among similar 

typologies of the methods. But at a decadal scale, they deliver reliable overall trends (with good match 

among the median values of various estimates on the overlapping time period) especially at the spatial 

scale of groups of countries and of a continent. Under such conditions, TD estimates help identify or 

confirm outliers / large uncertainties in inventories that may occur especially for Non-annex I 

countries like Africa.  

 

Inversions therefore can’t be a substitute but rather a complement to check trends consistency of 

inventories and help to identify and correct main outliers. That’s why we chose BU estimates to deliver 

a final budget over Africa (with CO2 LULUCF corrections) as synthesis figures (see Fig.12 and Fig.13 

in the next paragraph). Possibilities to reduce the gap BU and TD estimates are the following: 1) For 
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inversions: to have a coarser network of surface stations and coarser spatial resolution. 2) For 

DGVM: see paragraph 3.1. 3) For national UNFCCC inventories: to have regularly updated activity 

data and use country-specific emissions data and include indirect emissions, which is not the case to 

date for African countries, and use expert judgment for correcting outliers as done by Grassi et al. 

(2022) and in this study for CO2 LULUCF emissions.” 

 

-  “Table 1: why do you list all 3 N2O inversions as different lines here, but for CO2 you just have 

“GCB ensemble” (which is itself multiple models)?” 

We suppressed the listing of all 3 N2O inversions and referred them to the N2O budget paper in Table 

1 (see below lines 217-217) as visible in the marked-up revised version of the manuscript. The list of 

detailed products is available in the supplement document on Table S7 (below line 206). 

- “Line 291 – Pongratz is a good reference here for the issues of “loss of sink capacity”. 

https://esd.copernicus.org/articles/5/177/2014/esd-5-177-2014.pdf” 

Thanks, we added the reference to this paper by Pongratz et al. (2014) and we included the quotation 

of her definition of “loss sink capacity” as following on lines 337 to 340:   

“Pongratz et al. (2014) delivered the following definition of “loss of sink capacity as the CO2 fluxes 

in response to environmental changes on managed land as compared to potential natural vegetation. 

Historically, the potential natural vegetation would have provided a foregone sink as compared to 

human land use.” 

We also added the reference to this author in the bibliography (lines 1337-1339): 

“Pongratz, J., Reick, C. H., Houghton, R. A., & House, J. I.: Terminology as a key uncertainty in net 

land use and land cover change carbon flux estimates. Earth System Dynamics, 5(1), 177-195. 

https://doi.org/10.5194/esd-5-177-2014, 2014.” 

- “Line 339 – why do you use GWP100 numbers from AR4 (16 years old?) – can you update these 

to AR6?” 

We used AR4 because many African countries have been following 2006 IPCC guidelines referring 

to AR4 GWP100 2019 refinement to IPCC guidelines which do not recommend any specific metrics, 

therefore we are following IPCC guidelines used by countries. We have further explained this point 

lines 394-398, and for information we have also added the coefficients to use to change AR4 to AR6 

GWP100 values in the revised manuscript:  
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“We used AR4 GWP100 because many African countries have been following the 2006 IPCC 

guidelines referring to AR4 GWP100 2019 refinement to IPCC guidelines, which do not recommend 

any specific metrics, therefore we are following IPCC guidelines used by countries. The multiplicative 

coefficients to use to change AR4 to AR6 GWP100 values are:  1.19 for fossil CH4, 1.09 for non-fossil 

CH4, and 0.92 for N2O.” 

After our synthesis figure, Fig.13 (line 1022), we also added the following information (lines 1025-

1033): 

“For information, in the supplement section Fig. S13 and Fig. S14 illustrate the differences in MtCO2e 

and in % for CH4, N2O and for the total net GHG budget that would result from the use of AR6 GWP-

100 compared to AR4 GWP-100 currently in used by UNFCCC non-Annex I countries, for the six 

African regions considered on Fig.13 as well as for Africa total. The net difference on the total African 

budget for the use of GWP-100 AR6 instead of AR4 is: +4.6%, which means a relatively small 

increasing impact on the net budget, with a prevailing effect of the slight increase of CH4 GWP-100 

in the AR6 as compared to AR4, over the strong decrease of N2O GWP-100. The two African regions 

that are the most impacted in terms of net budget are: Southern Countries (+7.2%) and the Horn of 

Africa (+6.3%). The least impacted region in terms of overall net budget with an updated AR6 GWP-

100 for CH4 and N2Ois South Africa (+1.7%).”    

As mentioned in this paragraph, we plotted the differences between AR4 and AR6 in the 

supplementary Fig. S13 (see above lines 420-422) and Fig. S14 (above lines 432-434). 

 

REPLY TO THE ANONYMOUS REFEREE #1  

 

We thank Referee #1 for the valuable comments in the interactive discussion of our ESSD preprint 

review article and for acknowledging the “crucial” interest of this study. Below, in black color, we 

provide answers to the comments posted by this Referee (in blue). 

“The paper provides an analysis of greenhouse gas (GHG) emissions and trends in Africa over the past 

three decades, focusing on evaluating different datasets and their potential for verifying official 

country-reported data. The study examines emissions of carbon dioxide (CO2), methane (CH4), and 

nitrous oxide (N2O) using both bottom-up approaches (such as national inventories and ecosystem 

models) and top-down methods (including atmospheric inversions). 

The findings contribute to understanding emission trends and uncertainties in Africa, which is crucial 

for climate policy and the goals of the Paris Agreement. Overall, the topic is interesting. 

However, I have some concerns as follows: 
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1. In addition to providing the datasets (https://doi.org/10.5281/zenodo.7347077), this paper needs 

to include datasets usage (quality control method, datasets limitation, etc.)” 

Thanks, we already included quality control method and datasets limitation especially in section 1 

Methods and datasets (lines 179 to 401), that we recalled: “1. Methods, and datasets and datasets 

usage” (line 179) and that we completed as following: 

 

● For BU methods : 

- For PRIMAP-hist and Global Carbon Project fossil CO2 emissions, we already detailed the 

datasets usage lines 231 to 248, respectively similar to Gütschow et al. (2021) and Friedlingstein et al. 

(2020). 

- For UNFCCC inventories for CO2 in the LULUCF sector, we already mentioned lines 250 to 

289 that: 

 “We used UNFCCC submissions for LULUCF CO2 fluxes from NC and BUR reports downloaded 

from the UNFCCC website (https://unfccc.int/) in March 2021, and further processed into .csv tables 

by Deng et al., (2021). Those estimates are based on different accounting methods following the IPCC 

Guidelines (IPCC, 2006; IPCC, 2019). Country-reported data quality control, quality assurance and 

verification process follow 2006 IPCC guidelines detailed in chapter 6 QA/QC procedures of this 

document. African countries, being Non-Annex I countries, do not report emissions every year. Figure 

1 shows the number of BUR and NC provided each year per African region. The years 1990, 1994, 

1995, 2000 and 2005 are featured with several updates, while most of the other years have few 

updates. About every two years, all regions have at least one update. Note that flexibility for BUR is 

given to Least Developed Countries (LDCs), that include 33 out of 56 African countries, and to Small 

Islands Developing States (SIDS), that include six African countries (Table S4). 

Non-Annex I African countries can use older versions of the IPCC guidelines (IPCC, 2006; IPCC, 

2019a). This induces uncertainties from changes in accounting methods between versions, with recent 

guidelines having more detailed sectors and sources. There is no data for Libya, Equatorial Guinea, 

Malawi and Sierra Leone during the whole period. UNFCCC data are missing in some years for 

Rwanda, Sao Tome & Principe, Senegal, South Sudan, Angola. There is no data during 1990-1998 

for Liberia.  

We noticed that NC and BUR lack details regarding the methods used, the sources for activity data 

and emissions factors, and most of them are in French language. BUR in .pdf format include a non-

standardized table for emissions. The reader is sometimes referred to the “national coordinator for 

climate change service” with no link to any database or contact person.  

Because the PA targets human-induced emissions, countries use the proxy of “Managed lands” for 

the LULUCF sector, as defined by the IPCC guidelines (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/vol4.html; last accessed in August 2022). Managed lands are areas 
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where LULUCF CO2 fluxes are assigned to some anthropogenic activities. Several African NC and 

BUR do not contain information on their managed lands areas. We thus looked at REDD+ national 

reports (https://redd.unfccc.int/submissions.html?topic=6; last accessed in August 2022) to get this 

information (Fig. S3 and Table S9). LULUCF CO2 fluxes on managed lands result from either direct 

anthropogenic effect such as land use change and forestry, or indirect effects (such as change in CO2 

and climate) on land remaining in the same land use, e.g. forest remaining forest (Grassi et al., 2022). 

The vast majority of African countries use a Tier 1 IPCC accounting method which does not 

distinguish between these different effects. Tier 1 methods use a classification with only three out of 

six possible types of land: “forest land”, “cropland” and “grassland”, and do not give spatially 

explicit land use data. Tier 2 methods include fluxes from six land use types: forest, cropland and 

grassland, wetlands, urban and other land-use, for the case of land remaining under the same land 

use type, and for the case of conversions between land use types. In Africa, only South Africa and 

Zambia used Tier 2 methods for some LULUCF CO2 subsectors.” 

We also added: 

 “Country-reported data quality control, quality assurance and verification process follow 2006 IPCC 

guidelines detailed in chapter 6 QA/QC procedures of this document.” (lines 254 to 255). 

- For LULUCF CO2, we already included elements of quality control method lines 292 to 307:  

“We processed the UNFCCC LULUCF CO2 data for outlier corrections (Table S5). For Guinea-Bissau, 

and Tanzania, we identified inconsistent values from successive communications with substantially 

differing numbers. For Guinea, Madagascar, Zimbabwe, Congo, Mali, the Central African Republic 

(CAF), Angola and Mauritius we identified changes of more than one order of magnitude between two 

consecutive reports and likely implausibly large carbon sinks considering their national forest area. 

The computations of per area emissions and removals showed discrepancies, which points out the 

need for further examination and inspection of more recent reports in NDC and REDD+ reports 

(Table S5). Our corrections explained in the supplementary section are consistent with those proposed 

by Grassi et al. (2022) who diagnosed ‘biophysically impossible’ sequestration rates with a threshold 

value larger than 10 tCO2/ha yr-1 over an area greater than 1 Mha. For Namibia, Nigeria and the 

Democratic Republic of the Congo (DRC), it was challenging to select a best estimate between recent 

and past reports. For those countries, corrections using more recent data than BUR/NC have high 

uncertainties, as noted by Grassi et al. (2022). This includes the absence of any sink for DRC for 

instance, contrary to sinks consistently reported over time and large forested area in this country’s 

previous reports to the UNFCCC. We therefore systematically looked at corrected values for both 

case scenarios (with and without Namibia, Nigeria and DRC data corrections). In total, we corrected 

13 outliers as shown in Table S5, consistently with Grassi et al. (2022).” 

- For Food and Agriculture Organization of the United Nations (FAO) LULUCF CO2 fluxes, 

see lines 309 to 322: 
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“We used data from LULUCF CO2 fluxes over 1990-2019 from the FAO Global Forests Resource 

Assessments (FAO FRA; data License: CC BY-NC-SA 3.0 IGO, extracted from: https://fra-

data.fao.org; date of Access: May 2022). According to the 2005 FAO categories and definitions, forest 

is land covering at least 0.5 hectares and having vegetation taller than 5 meters with a canopy cover 

higher than 10%. Other wooded lands refer to land that are not classified as “forest” but that are 

wider than 0.5 ha, have a canopy cover of 5%-10% or combine trees, shrubs and bushes with cover 

higher than 10%. The FAO data for forests comprise carbon stock changes from both aboveground 

and belowground living biomass pools. They are independent from country-reported UNFCCC 

emissions and removals. The FAO estimates are based on activity data, areas of forest land and CO2 

emissions and removals factors. The FAO data reports: 1) net emissions and removals from “forest 

land remaining forest land” and from “land converted to forest” grouped together, and 2) emissions 

from "net forest conversion", i.e. deforestation. In contrast, the UNFCCC accounting uses a 20-years 

window for CO2 fluxes from land use change, while land-use change fluxes from land-converted-to-

forest are reported separately from those of ‘forest remaining forest’.” 

-        For Dynamic Global Vegetation Models (DGVM) datasets, see lines 324 to 342:  

“We used data from LULUCF CO2 fluxes over 1990-2019 from the FAO Global Forests Resource 

Assessments (FAO FRA; data License: CC BY-NC-SA 3.0 IGO, extracted from: https://fra-

data.fao.org; date of Access: May 2022). According to the 2005 FAO categories and definitions, forest 

is land covering at least 0.5 hectares and having vegetation taller than 5 meters with a canopy cover 

higher than 10%. Other wooded lands refer to land that are not classified as “forest” but that are 

wider than 0.5 ha, have a canopy cover of 5%-10% or combine trees, shrubs and bushes with cover 

higher than 10%. The FAO data for forests comprise carbon stock changes from both aboveground 

and belowground living biomass pools. They are independent from country-reported UNFCCC 

emissions and removals. The FAO estimates are based on activity data, areas of forest land and CO2 

emissions and removals factors. The FAO data reports: 1) net emissions and removals from “forest 

land remaining forest land” and from “land converted to forest” grouped together, and 2) emissions 

from "net forest conversion", i.e. deforestation. In contrast, the UNFCCC accounting uses a 20-years 

window for CO2 fluxes from land use change, while land-use change fluxes from land-converted-to-

forest are reported separately from those of ‘forest remaining forest’.” 

 

● For atmospheric inversions datasets and data usage: 

We added lines 194 to 195 for prior fluxes data quality control: “For preliminary data quality 

control, we checked the consistency of prior fluxes by plotting them separately (Fig. S1).”  

For inversion data limitation, see lines 195 to 213: “Inversions only solve for total fluxes or at best for 

groups of sectors, whereas BU estimates have a larger number of sectors. In Table 2, we present the 

correspondence between ‘sectors’ defined by the TD and BU methods. For all datasets, we chose an 
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atmospheric convention with negative values representing removals from the atmosphere (i.e. land 

sink). No specific standard guidelines currently exist for defining uncertainties of BU and TD data 

products. Given that some of our estimates are based on a small number of models / estimates, we 

cannot calculate the full distribution e.g. with a 95% confidence interval, but we rather reported 

ranges with min / max. Assuming that the unknown distributions would be Gaussian, like in Schulze 

et al. (2018), we could infer a 2-sigma (≈ 95%) confidence interval if we assume that min-max are 

equivalent to 3-sigma, but in view of the small numbers of estimates e.g. for N2O with only 3 inversions, 

we prefer to just give the min-max range. Moreover, for national inventories, as all African countries 

are non-Annex I, they do not deliver confidence intervals but Grassi et al. (2022) estimated for CO2 

LULUCF fluxes uncertainties of 50 % for the average of non-Annex-1 countries. Here uncertainty 

estimates are understood as the spread among minimum and maximum values from one methodology. 

A main source of uncertainty in the comparison of country-reported data with other data products is 

the inclusion or not of natural fluxes additionally to anthropogenic emissions sectors. For the 

comparability of the different data products presented in this study, we discuss only the mean value 

over the period of overlapping data availability. Referenced datasets are available at 

https://doi.org/10.5281/zenodo.7347077 (Mostefaoui et al., 2022).” 

 

● For quality control / data limitation on observations data used for calibration we added lines 

107 to 113: 

“The African ground-based atmospheric network used by inversions is very sparse. There are only 

three currently active surface flasks over this whole continent, located in Namibia (Gobabeb), in the 

Seychelles (Mahe Island), and in South Africa (Cape Point). The one in Algeria (Assekrem) was 

terminated on 26/08/2020, and the one in Kenya has been inactive since 21/06/2011. The 

characteristics of the surface flasks in Africa, available on the NOAA website are summarized in Table 

S1. Inversion results are therefore uncertain due to this small number of atmospheric stations over the 

continent (Nickless et al., 2020).” 

The detailed surface flasks characteristics with stations, parameters, first samples date, status for the 

three GHG, frequency, elevation and cooperating agencies are also listed on Table S1 that we added 

in the supplementary section (below lines 4-5). 

● For CO2 inversions see lines 344 to 359: 
 

“We used the net land CO2 fluxes excluding fossil fuel emissions (hereafter, net ecosystem exchange) 

from three global inversions of the Global Carbon Project that cover a long period (see Table A4 of 

Friedlingstein et al., 2020), including : CarbonTrackerEurope (CTRACKER-EU-v2019; van der 

Laan-Luijkx et al., 2017), the Copernicus Atmosphere Monitoring Service (CAMSV18-2-2019; 

Chevallier et al., 2005), and one variant of Jena CarboScope (JENA, sEXTocNEET_v2020; 

Rödenbeck et al., 2005). The GCP inversion protocol recommends to use as a fixed prior the same 
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gridded dataset of FCO2 emissions (GCP-GridFED). However, some modelers used different 

interpolations of this dataset, and one group used a different gridded dataset (Ciais et al., 2021). We 

applied a correction to the estimated total CO2 flux by subtracting a common FCO2 flux from each 

inversion (Figure S1 and Methodological Supplementary 1). The resulting land atmosphere CO2 

fluxes, or net ecosystem exchange, cannot be directly compared with inventories aiming to assess C 

stock changes, given the existence of land-atmosphere CO2 fluxes caused by lateral processes. This 

issue was discussed by Ciais et al. (2021) and a practical correction of inversions was proposed by 

Deng et al. (2022) based on new datasets for CO2 fluxes induced by lateral processes involving river 

transport, crop and wood product trade. We applied here the same correction to all CO2 inversions” 

● For CH4 inversions, see lines 360 to 379: 

“We used the CH4 emissions from global inversions over 2000-2017 from the Global Methane Budget 

(Saunois et al., 2020) (Table 1). This ensemble includes 11 models using GOSAT satellite CH4 total-

column observations covering 2010-2017, and 11 models assimilating surface stations data (SURF) 

since 2000 (Table S5). Surface inversions are constrained by very few stations for Africa, while the 

GOSAT satellite data has a better coverage. One could thus expect GOSAT inversions to give more 

robust results. Inversions deliver an estimate of surface net CH4 emissions, although some of them 

solve for fluxes in groups of sectors, called ‘super-sectors’. We have not used in situ for dataset 

validation per se, only the GOSAT data were evaluated against Total Carbon Column Observing 

Network (TCCON) independent ground based total column-averaged abundance of CH4 (XCH4). In 

the inversion dataset, net CH4 surface emissions were interpolated into a 0.8° × 0.8° resolution, 

regridded from coarser resolution fluxes and separated into ‘super-sectors’ either using prior 

emission maps or posterior estimates for those inversions solving fluxes per supersector, following 

Saunois et al. (2020). More specifically, these five super-sectors are: 1) Fossil Fuel, 2) Agriculture 

and Waste, 3) Wetlands, 4) Biomass and Biofuel Burning (BBUR), and 5) Other natural emissions. 

We separated CH4 anthropogenic emissions from inversions using Method 1 and Method 2 proposed 

by Deng et al. (2021). Method 1 relies on the separation calculated by each inversion except for the 

BBUR supersector from which wildfire emissions were subtracted based on the Global Fires Emission 

Dataset (GFED) version 4 (van der Werf et al., 2017). Method 2 removes from total emissions the 

median of natural emissions from inversions (Deng et al. 2022). The two methods gave similar results 

and only Method 1 was used in the results section.” 

For CH4, we added lines 367 to 369 to the previous version of the manuscript: “We have not used in 

situ for dataset validation per se, only the GOSAT data were evaluated against Total Carbon Column 

Observing Network (TCCON) independent ground based total column-averaged abundance of CH4 

(XCH4).”   

 

● For N2O inversions, see lines 381 to 387: 
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“We used three N2O atmospheric inversions from the global N2O budget synthesis (Tian, 2020) and 

from Deng et al. (2022) ( Tables S1, S7) : PyVAR CAMS (Thomson et al., 2014), MATCM_JMASTEC 

(Rodgers, 2000), (Patra et al., 2018), and TOMCAT (Wilson et al., 2014; Monks et al., 2017). We used 

the total N2O flux from inversions including natural emissions, given that natural emissions estimates 

are highly uncertain for Africa. Inversion results are therefore not directly comparable with the 

PRIMAP-hist inventory which only contains anthropogenic emissions.” 

 

● For metrics to compare gasses and ancillary data and data usage, see lines to 389 to 401: 

“We express emissions of non-CO2 gasses in megatons of carbon dioxide equivalent (MtCO2e) using 

the Global Warming Potential over a 100-year time horizon (GWP100) values from the fourth IPCC 

Assessment Reports (IPCC AR4, WGI Chapter 2, 2007), consistent with PRIMAP-hist and historical 

country-reported data. We used AR4 GWP100 because many African countries have been following 

the 2006 IPCC guidelines referring to AR4 GWP100 2019 refinement to IPCC guidelines, which do 

not recommend any specific metrics, therefore we are following IPCC guidelines used by countries. 

The multiplicative coefficients to use to change AR4 to AR6 GWP100 values are:  1.19 for fossil CH4, 

1.09 for non-fossil CH4, and 0.92 for N2O. We used population data from the United Nations 

population (World Population Prospects 2019, 2022), for computing per capita FCO2 emissions and 

their disparities, based on Gini indices (Dortman et al., 1979) for measuring statistical dispersions 

among a given population (methodological supplementary M2). We also used African GDP data 

(World Bank, 2017).” 

 

2. “The method for calculating trends needs to be described and the impact of different trend 

calculation methods on trend results needs to be discussed.” 

Thanks, the revised paper contains a more detailed description of the different computation methods 

on trends with further details.  

We computed the GINI for emissions per GDP that we detailed in methodological supplementary M2 

named “steps for computing the GINI index of African country emissions” page 8 of the supplement. 

(lines 73-101): 

“The GINI index is a metric assessing the level of dispersion and therefore the level of inequalities 

among the values of a given dataset. To show the inequalities of per capita emissions among the 

African countries, we computed the continent GINI index for each of the last three decades using the 

Pareto principle for the following fluxes: fossil CO2 per capita emissions, CH4 fossil + agriculture per 

capita emissions, CH4 from agriculture per capita emissions.  

We computed the GINI using the Paretto method also named 20/80 or ABC method, using an excel file 

for the several countries' data manipulation. We obtained the GINI index (γ) thanks to the formula: 
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When γ is bigger than 0.6, it means that the area delimited by the curve of the cumulated criterion and 

the graph diagonal represents more than 60% of the surface of half of the graph, and that the 

dispersion of the dataset is high. This method was built in the 19th century based on Vilfredo Paretto’s 

observations regarding the inequalities of repartition of the volume of housing taxes among the 

taxpayers (he realized that 80% of this tax was paid by 20% of the taxpayer.) The different steps that 

we followed to compute the GINI are detailed below: 

1) computation of the territorial emissions per capita in every African country, 

2) ranking in a decreasing order (from the highest to the smallest one),                               

3) computation of the cumulative emissions, 

4) creation of a column with the cumulative emissions expressed as a percentage, 

5) creation of a column with a rank (integer) for those ordered emissions from the biggest to the 

smallest, 

6) conversion of this rank as a percentage in another column, 

7) distinction of the emissions representing less than 25% of emissions, less than 50%, and less 

than 75% of emissions. 

8) computation of the GINI index (γ) thanks to the Paretto’s formula given above. » 

For estimating linear trends and their significance, we used Python to compute the correlation 

coefficient for median values over overlapping time periods, that we described more in detail on page 

9 of the supplementary section named “Methodological supplementary M3. Computation of 

correlation coefficient.” (lines 104-113): 

« In mathematics, the linear correlation between two variables that we can call X and Y implies that 

two variables have a linear relationship between each other. If there is a linear relation between two 

variables, it can be represented by a straight line.  To compute this linear correlation coefficient, we 

use the Pearson formula that is the computation of the covariance among variables (cov(X,Y)) , divided 

by the product of their standard deviation (sX and sY). Thus, we can compute the linear correlation 

among two variables by using the following formula:  ρ(X,Y) = cov(X,Y)/(sX sY). The higher the absolute 

value of a linear correlation coefficient between two variables, the more the variables are linearly 

correlated.” 

For comparing TD and BU trends, we simply used the mean values on the overlapping timeseries as 

mentioned in section 1 related to methods and datasets in lines 210 to 212: “For the comparability of 

the different data products presented in this study, we discuss only the mean value over the period of 

overlapping data availability.” 

 

3. “As statistics play a crucial role in this study, it is important to provide further details, such as 

confidence intervals, to ensure its robustness.” 
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Thanks for your comment, we agree with Referee#1 that confidence intervals are critical. Given that 

some of our estimates are based on a small number of models / estimates, we cannot calculate the full 

distribution and a 95% confidence interval (CI) but we rather reported ranges with min / max. Assuming 

that the unknown distributions would be Gaussian, like in Schulze et al. (2018)  (see lines 199 to 213) 

we could infer a 2-sigma (≈ 95%) CI if we assumed that min-max are equivalent to 3-sigma, but in view 

of the small numbers of estimates e.g. for N2O with only 3 inversions, we prefer to just give the min-

max range.  Moreover, for NGHGI, this is trickier and as all African countries are non-Annex I, they 

unfortunately do not deliver confidence intervals but Grassi et al. (2022) estimated for CO2 LULUCF 

fluxes uncertainties of 50 % for the average of non-Annex-1 countries, which we mentioned in the text 

and used by default in the revised manuscript.  

We extended the discussion on uncertainties started in section 1 of this paper (methods, datasets and data 

usage), and we added the following paragraph about the underlying data uncertainty description in the 

method section lines 199-213: 

“No specific standard guidelines currently exist for defining uncertainties of BU and TD data 

products. Given that some of our estimates are based on a small number of models / estimates, we 

cannot calculate the full distribution e.g. with a 95% confidence interval, but we rather reported 

ranges with min / max. Assuming that the unknown distributions would be Gaussian, like in Schulze 

et al. (2018), we could infer a 2-sigma (≈ 95%) confidence interval if we assume that min-max are 

equivalent to 3-sigma, but in view of the small numbers of estimates e.g. for N2O with only 3 inversions, 

we prefer to just give the min-max range. Moreover, for national inventories, as all African countries 

are non-Annex I, they do not deliver confidence intervals but Grassi et al. (2022) estimated for CO2 

LULUCF fluxes uncertainties of 50 % for the average of non-Annex-1 countries. Here uncertainty 

estimates are understood as the spread among minimum and maximum values from one methodology. 

A main source of uncertainty in the comparison of country-reported data with other data products is 

the inclusion or not of natural fluxes additionally to anthropogenic emissions sectors. For the 

comparability of the different data products presented in this study, we discuss only the mean value 

over the period of overlapping data availability. Referenced datasets are available at 

https://doi.org/10.5281/zenodo.7347077 (Mostefaoui et al., 2022).” 

In the discussion paragraph 3.1 about uncertainties for DGVM and inversions for LULUCF CO2 (lines 

851-875), we also reminded how uncertainties were defined for each method while discussing 

“unknown-unknown’ types of uncertainties. 

 

4. “When employing in situ surface networks for dataset validation, are there specific factors, 

such as latitude, longitude, climate zones, etc., that exhibit correlations with the product's quality?” 

Thanks for the question. May we please ask to what line of the paper exactly does the anonymous referee 

#1 refer to? We have not used in situ for dataset validation per se, only the GOSAT data were evaluated 
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against TCCON independent ground based total column XCH4. See our answer to your question 1 lines 

367 to 369: “We have not used in situ for dataset validation per se, only the GOSAT data were evaluated 

against Total Carbon Column Observing Network (TCCON) independent ground based total column-

averaged abundance of CH4 (XCH4)”, and we also added lines 107 to 113: “The African ground-based 

atmospheric network used by inversions is very sparse. There are only three currently active surface 

flasks over this whole continent, located in Namibia (Gobabeb), in the Seychelles (Mahe Island), and in 

South Africa (Cape Point). The one in Algeria (Assekrem) was terminated on 26/08/2020, and the one in 

Kenya has been inactive since 21/06/2011. The characteristics of the surface flasks in Africa, available 

on the NOAA website are summarized in Table S1.” 

We summarized the characteristics of the surface flasks in Africa, with synthesized data from the 

NOAA website in the table below that we added in the supplementary section (Table S1). 

Station name, 
Country 

Parameter First sample 
date 

Status for the 
three GHG 

Frequency Elevation (in 
meters above 

mean sea level) 

Cooperating 
Agencies 

Assekrem, 
Algeria 

CO2 

CH4 

N2O 

12/09/1995 
12/09/1995 
12/09/1995 

Terminated 
since 

26/08/2020 

Discrete 
Monthly 

2710 Algerian National 
Office of 

Meteorology 

Gobabeb, 
Namibia 

CO2 

CH4 

N2O 

13/01/1997 
13/01/1997 
13/01/1997 

Ongoing Discrete 
Monthly 

456 Gobabeb Training 
and Research Center 

Mahe Island, 
Seychelles 

CO2 

CH4 

N2O 

15/01/1980 
12/05/1983 
13/06/1997 

Ongoing Discrete 
Monthly 

2 Seychelles Bureau 
of Standards 

Cape Point, South 
Africa 

CO2 

CH4 

N2O 

5/01/1980 
12/05/1983 
13/06/1997 

Ongoing Discrete 
Monthly 

230 South African 
Weather Service 

Mt. Kenya, 
Kenya 

CO2 

CH4 

N2O 

11/02/2010 
11/02/2010 
11/02/2010 

Inactive 
since 

21/06/2011 

Discrete 
Monthly 

3644 Kenya 
Meteorological 

Department 

 

5. “Lines 89-90. BU methods and TD methods need to be further explained.” 

We added more detailed explanations in the revised manuscript as reproduced below (lines 92 to 107): 

“Country reports estimate GHG emissions through statistical inventories using estimates of national 

sectoral activity data multiplied by emissions factors, with three levels of refinements depending on 
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countries, named Tier 1 for default emissions factors, Tier 2 for country-specific emissions factors / 

activity data and Tier 3 for more emissions factors / activity with tailored representation at the scale of 

process. Other BU inventories for assessing national emissions also exist: they are based on the same 

approach as country-reported inventories but use their own parameters for activity data and emissions 

factors coming from research groups, international statistical agencies, etc. Process-based ecosystem 

models developed by the research community are not used by countries. They are based on the 

representations of complex ecosystem processes and can also be viewed as a BU method. Besides, 

another approach is named “top-down” and refers to atmospheric inversions. Inversions consist in 

estimating causes (emissions and sinks) based on consequences (concentrations). The inverse modeling 

approach consists in adjusting a priori fluxes to the atmospheric transport in order to be as adjusted as 

possible with observation data by minimizing a cost function. This is a mathematically complex problem 

under constrained because every point of the globe is an unknown emission, and there is only a limited 

number of observations: “regularization” techniques are used to find a unique solution.” 

6. “Line 124 and Line 162. Redefinition for the abbreviation "bottom-up (BU)". You have already 

defined it in line 89. Please recheck the manuscript to ensure that the same error does not occur.” 

Thanks, we made sure that acronyms / abbreviations are only defined once in the revised 

manuscript. 


