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Abstract 9 
 10 
Quantification of uncertainty in surface mass change signals derived from GPS measurements poses 11 
challenges, especially when dealing with large datasets with continental or global coverage. We present a 12 
new GPS station displacement dataset that reflect surface mass load signals and their uncertainties. We 13 
assess the structure and quantify the uncertainty of vertical land displacement derived from 3045 GPS 14 
stations distributed across the continental US. Monthly means of daily positions are available for 15 15 
years. We list the required corrections to isolate surface mass signals in GPS estimates and screen the data 16 
using GRACE(-FO) as external validation. Evaluation of GPS timeseries is a critical step, which 17 
identifies a) corrections that were missed; b) sites that contain non-elastic signals (e.g., close to aquifers); 18 
and c) sites affected by background modelling errors (e.g., errors in the glacial isostatic model). Finally, 19 
we quantify uncertainty of GPS vertical displacement estimates through stochastic modeling and 20 
quantification of spatially correlated errors. Our aim is to assign weights to GPS estimates of vertical 21 
displacements, which will be used in a joint solution with GRACE(-FO). We prescribe white, colored and 22 
spatially correlated noise. To quantify spatially correlated noise, we build on the common mode imaging 23 
approach adding a geophysical constraint (i.e., surface hydrology) to derive an error estimate for the 24 
surface mass signal. We study the uncertainty of the GPS displacement timeseries and find an average 25 
noise level between 2-3 mm when white noise, flicker noise, and RMS of residuals about a seasonality 26 
and trend fit are used to describe uncertainty. Prescribing random walk noise increases the error level 27 
such that half of the stations have noise > 4 mm, which is systematic with the noise level derived through 28 
modeling of spatial correlated noise.  The new dataset is suitable for use in a future joint solution with 29 
GRACE(-FO)-like observations. 30 
 31 
Keywords:  GPS uncertainty | elastic displacement | GRACE-FO | surface mass change 32 
 33 
1. Introduction 34 

 35 
For more than two decades, the Gravity Recovery and Climate Experiment (GRACE) space gravity 36 
mission and its nearly identical successor mission, GRACE-Follow on (GRACE-FO), have provided 37 
mass change estimates through tracking the time-variable part of the Earth’s gravity field (Landerer et al., 38 
2020). Mass change products are typically given on a monthly basis and have been used to study a variety 39 
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of critical climate-related factors (Tapley et al., 2019), such as sea level rise (Frederikse et al., 2020); ice 47 
mass change (Velicogna et al., 2020); prolonged drought periods (Thomas et al., 2014) and regional flood 48 
potentials (Reager et al., 2014). The measurement geometry of GRACE(-FO) limits the study of 49 
geophysical processes to spatial scales of ~300 km and larger, for monthly timespans. Recent community 50 
reports (Pail et al., 2015, Wiese et al., 2022) have highlighted the utility and need of mass change 51 
observations at improved spatial resolutions to address a number of science and applications objectives.  52 
Examples include closure of the terrestrial water budget for small to medium sized river basins, and 53 
separation of surface mass balance from ice dynamic processes at the scale of individual outlet glacier 54 
systems.   55 
The spatial resolution of gravity maps derived from satellite measurements is limited by sampling at 56 
altitude. Fusion with external geodetic data sources, however, can improve spatial resolution over what 57 
can be achieved only with satellite gravimetry. GPS position timeseries have been used widely to study 58 
the elastic response of Earth’s surface to mass loading (e.g., Argus et al., 2017; Fu and Freymueller, 59 
2012) and can provide information at short wavelengths (~100km) (Argus et al., 2021).  Solid Earth 60 
responds elastically to changes in the surface load of water, snow, ice, and atmosphere. When the Earth’s 61 
surface is loaded with mass (e.g., snow and water) it subsides; and when mass loads are removed the 62 
surface rises. Thus, the Earth’s response follows the water cycles such that: precipitation and snow 63 
accumulation cause subsidence of the surface and snow melt, evaporation and water run off allow the 64 
Earth’s surface to bounce back (uplift). Focus is typically placed on the radial direction (vertical), due to 65 
the rapid decrease of vertical displacement with the distance from a surface load (Argus et al., 2017), 66 
which leads to high fidelity estimates in the space domain. Note that across certain geological formations 67 
such as aquifers, subduction zones and regions with volcanic activity surface loading is mixed with other 68 
solid Earth/geophysical processes making it difficult to isolate the elastic component. Therefore, GPS 69 
sites located at the vicinity of such formations are omitted. 70 
GPS displacements between two epochs have many different signals embedded in them; i.e., those related 71 
to non-tidal atmospheric and oceanic loading, solid Earth phenomena such as tectonics, glacial isostatic 72 
adjustment, and others related to surface mass changes.  With the proper treatment (see Sec.2) GPS 73 
stations can capture local surface mass changes. We are interested in isolating the signals that reflect the 74 
Earth’s elastic response to mass variations, thus we apply a set of corrections to GPS vertical 75 
displacement estimates, and then we screen the data for outliers or potential errors. The data screening 76 
process checks for consistency between GPS and GRACE(-FO) vertical displacement estimates (similar 77 
analysis has been performed by Yin et al., 2020; Blewitt et al., 2001; van Dam et al., 2001; Becker and 78 
Bevis, 2004; Davis, 2004; Tregoning et al., 2009; Tsai, 2011 and Chew et al., 2014) and identifies outliers 79 
that statistical tests fail to pick up (He et al., 2018).  80 
The last step is to estimate uncertainty in the screened dataset. Since our purpose is to isolate surface mass 81 
load signals, we define error as any vertical displacement signal that does not reflect an elastic surface 82 
mass load. The reported uncertainty reflects the sum of all error sources to the measurement and is the 83 
final product of this study. Error correlation (temporal and spatial) and the deficiency of stochastic noise 84 
models to describe the error realistically are the main challenges in this uncertainty quantification task.   85 
Error sources include errors driven by satellite antenna phase centre offsets (Haines et al., 2004; 86 
Santamaria-Gomez et al., 2012); atmospheric pressure models (Kumar et al., 2020); non-tidal ocean 87 
loading (Jiang et al., 2013); satellite orbits (Ray et al., 2008; Amiri-Simkooei ,2013); earth orientation 88 
parameters (Rodriguez-Solano et al., 2014); and tectonic trends and post-seismic relaxation after 89 
earthquake activity (Ji and Herring, 2013; Crowell et al., 2016).  90 
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The GPS position-time seriess have common mode displacements [Tian and Shen 2016], including both a 93 
common mode error strongly varying each day and a common mode signal associated with seasonal water 94 
fluctuations. Wdowinski et al. (1997) first defined common mode error to be a series of rigid-body 95 
translations that reflect an error in the position of all geodetic sites in an area relative to an absolute 96 
reference frame; by removing the mean position (or stack) of all sites in an area, scientists recover more 97 
accurate estimates of relative position contained in the data.  Dong et al. (2006) and Serpelloni et al. 98 
(2013) defined common mode error in a more sophisticated manner using principal or independent 99 
component analysis such that they remove spatially correlated, temporally incoherent error. Independent 100 
is different than principal component analysis in that it finds the maximum independence of the 101 
components instead of minimum correlation (Milliner et al., 2019; Liu et al., 2015). Common mode 102 
displacements includes both error (such as that associated with error in satellite orbits) and signal (such as 103 
the seasonal oscillation of elastic vertical displacement in elastic response to seasonal fluctuations in mass 104 
between the hemispheres) (Sun et al. 2016). 105 
Considering the increased number of GPS stations and the limitations posed by the existing 106 
methodologies, Kreemer and Blewitt (2021) used a robust methodology to estimate the common spatial 107 
components of GPS residuals (i.e., the remaining signals of a timeseries after subtraction of a trajectory 108 
model). A trajectory model is a model consisting of an offset, a rate, and a sinusoid with a period of 1 109 
year (Bevis and Brown, 2014). The so-called common mode component (CMC) imaging technique was 110 
originally introduced by Tian and Shen (2016) and quantifies the spatial correlation of the residuals 111 
(position or vertical displacement timeseries anomaly with respect to a trajectory model) of unequal-112 
length timeseries using information from neighbor stations. It is important to note that CMC reflects both 113 
spatially correlated noise and spatially correlated signals, including elastic displacements, that a trajectory 114 
model fails to describe. 115 
Spectral analysis of the residuals (with respect to a trajectory model, see Eq.2) is an alternative way to 116 
estimate the noise level of vertical displacement series for each GPS station. The spectrum of the 117 
residuals can be approximated by white or colored noise (flicker, random walk, power law approximation, 118 
generalized gauss markov etc.), or by a combination of white and colored noise (Williams et al., 2004; 119 
Bos et al., 2008; Klos et al., 2014). A summary of the different noise models and their power distribution 120 
can be found in He et al. (2018). Several standard GPS timeseries analysis packages are available to 121 
perform such an analysis, e.g., the Create and Analyze Timeseries (CATS) (Williams, 2008) and Hector 122 
(Bos et al. 2013). Various studies in the past suggested that the residuals are better described by a 123 
combination of white and flicker noise (see e.g., Klos et al., 2014; Argus et al., 2017), with the latter 124 
contributing the most (Argus and Peltier, 2010). Recently, Argus et al. (2022), showed that the longer the 125 
timeseries the more the spectrum of GPS residuals converges with the noise model of random walk.  126 
 127 
Here, we outline a comprehensive framework for processing large datasets (continental and/or global) of 128 
GPS timeseries, to derive estimates that only reflect surface mass signals, for use in a joint inversion with 129 
GRACE(-FO) measurements. Originally, we layout the corrections required to capture local surface mass 130 
changes (Section 2.1). Our interest is to make the process as automated as possible, thus we set a number 131 
of evaluation metrics to detect outliers among all candidate (for the joint inversion) sites. Stations flagged 132 
as outliers are further evaluated for extra corrections (e.g., offsets; poor site maintenance etc.). Finally, we 133 
assign weights to each GPS vertical displacement record. We test the most popular methodologies to 134 
quantify the error, considering time-correlation, spatial-correlation and/or white noise (Section 3). Note 135 
that for spatially correlated noise the commonly used PCA/ICA is not as applicable to our use case, 136 
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because our dataset extends over very large spatial areas (continental). CMC imaging (Kreemer and 148 
Blewitt; 2021) fits our needs better. We build on the existing CMC algorithm to remove hydrology 149 
signals from the error estimate by deriving surface loading signals from a hydrology model and removing 150 
them from the GPS vertical displacements (see Section 3 for more details). The final product is a new 151 
dataset with GPS vertical displacement estimates that reflect elastic mass variations and their 152 
uncertainties. 153 
 154 
2. GPS data processing and screening 155 

 156 
2.1 Isolating surface mass loading fingerprint from GPS vertical displacements  157 
We analyze positions of 3054 GPS sites as a function of time from 2006 to 2021 estimated by scientists at 158 
the Nevada Geodetic Laboratory (NGL) (Blewitt et al. 2018).  Technologists at Jet Propulsion Laboratory 159 
(JPL) first estimate satellite orbits, satellite clocks, and positions for a core set of roughly 50 sites on 160 
Earth's surface (Bertiger et al. 2020). NGL uses JPL’s clock and orbit products and performs point 161 
positioning to a total of about 18,500 GPS sites distributed across the world.  Following the International 162 
Earth Rotation Standards (IERS) (Petit and Luzum, 2012) NGL's positions are corrected for solid Earth, 163 
ocean, and pole tides.  NGL's positions in International Terrestrial Reference Frame 2014 (ITRF2014) 164 
(Altamimi et al. 2016) are more accurate than NGL's previous estimates of positions in ITRF2008.  NGL 165 
estimates GPS wet tropospheric delays each day using the ECMWF weather model (Simmons et al. 2007) 166 
and the VMF1 tropospheric mapping function (Boehm et al. 2006).  We input the NGL position 167 
timeseries, derive the displacement relative to a reference epoch and then follow Argus et al. (2010, 2017, 168 
2021) to isolate the part of GPS displacements reflecting solid Earth's elastic response: 169 
 170 
a. Construct timeseries of elastic displacement uninterrupted by offsets due to antenna substitutions or 171 
earthquakes that pass through a specific reference time (such as Jan 1, 2014) by eliminating data before 172 
and /or after an offset.  173 
 174 
b. Identify and omit GPS sites recording primarily i. poreoleastic response to change in groundwater, ii. 175 
strong volcanic fluctuations, and iii. postseimic transients following Argus et al. (2014, 2017, 2022).  In 176 
the west U.S., GPS sites responding to groundwater change have maximum height around April when 177 
water is maximum, subside in the long term faster than 1.8 mm/yr, exhibit strong transients, and/or are 178 
located in known aquifers (Argus et al. 2014).  Volcanic activity is readily identified by Interferometric 179 
Synthetic Aperture Radar (InSAR) and GPS observations of strong transients and anomalous sustained 180 
uplift or subsidence (Argus et al. 2014, Hammond et al. 2016). 181 
 182 
c. Remove non-tidal atmospheric (NTAL) and non-tidal oceanic (NTOL) mass loading by interpolating 183 
global grids of elastic displacements calculated by the German Center for Geoscience (GFZ) (Dill 184 
Dobslaw, 2013) following the method of Martens et al. (2020).  185 
 186 
d. Remove glacial isostatic adjustment as predicted by model ICE-6G_D (VM5a) (Peltier et al. 2015, 187 
2018; Argus et al. 2014). 188 
 189 
e.  Remove interseismic strain accumulation associated with locking of the Cascadia subduction zone 190 
using an upgrade of the model of Wang et al. (2018).  The model is superposition of 2/3 of the elastic and 191 
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1/3 of the viscoelastic model of Wang et al. (2018).  We communicated with Li Wang and his team at 201 
National Resources Canada, that the Wang et al. (2018) model does not fit the available GPS data; they 202 
have produced an interim model using our input that more nearly fits the GPS data. 203 
 204 
f.  Average the daily estimates of GPS vertical displacements into monthly means centered at the center of 205 
each month from January 2006 to June 2021. 206 
  207 
To compare GPS with GRACE(-FO) vertical displacement estimates we reference the series to the epoch 208 
with the most GPS site records, which is September 2012. This process results in an 11% loss of stations 209 
(i.e., no available measurement on 09/2012). Similar to Yin et al. (2020), detrended monthly estimates of 210 
each station that are larger than 3σ relative to the mean of the timeseries are considered outliers and 211 
removed from the dataset. Statistical outliers comprise ~0.5% of the records.  212 
2705 (or 88.8%) of GPS stations remain after the choice of reference epoch, the 3σ test and the removal 213 
of sites with non-elastic loading response. The distribution of sites is denser along the East and West 214 
coasts, and fairly sparse in the central-north US (Fig.1). Series of two arbitrary stations (HIVI and NJWT) 215 
located at the West and East coast respectively, are shown in Fig. 1. The response of the Earth on the 216 
extensive drought period in California between 2011.5-2015.5 is captured in the uplift trend mapped by 217 
HIVI station (Fig.1, top right panel; dashed blue line).  218 
 219 

 220 
Figure 1: Left panel) Map of study area. GPS stations are shown in yellow; Right panel) Vertical 221 
displacement timeseries of two random stations (red line). Solid blue line denotes the overall trend of the 222 
timeseries and dashed blue line the trend between (2011.5-2015.5). Note the significant uplift of the HIVI 223 
station located in southern California. 224 
 225 
2.2 External validation datasets - Time-variable gravity field 226 
 227 
We compare GPS observations of vertical displacement against GRACE(-FO) estimates of solid Earth's 228 
elastic vertical displacement from terrestrial water, snow, and ice.    229 
To compare to GRACE(-FO), we analyze JPL's three-degree mascon solution (Release 6, Watkins et al. 230 
2015, Wiese et al. 2016).  The effect of glacial isostatic adjustment is removed from GRACE(-FO) 231 
products using ICE-6G_D model estimates (Peltier et al., 2017). The geocentre motion (degree 1) 232 
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coefficient is using the technique of Sun et al. (2016) (Technical Note 13).  Values of C20 (Earth's 241 
oblateness) and C30 (for months after Aug 2016) are substituted with SLR data (Loomis et al., 2019). We 242 
calculate solid Earth's elastic response by using the loading Love number of the Preliminary Reference 243 
Earth Model (Wang et al.; 2012). 244 
Estimates of GPS positions in ITRF2014 (Altamimi et al. 2016) are relative to center of mass (CM) in the 245 
long term but relative to center of figure (CF) in the seasons (because ITRF2014 does not allow there to 246 
be seasonal oscillations of CM).  We therefore remove the long-term rate of CM relative to CF to 247 
transform the GRACE estimates in the long term from CF to CM (but do not remove seasonal oscillations 248 
of CM relative to CF so as to preserve the ITRF seasonal frame relative to CF). The annual signal of the 249 
geocenter (as realized by ITRF 2014) projected on the up component in north America on average 250 
explains 3% of the GPS vertical displacement signal and can explain up to 20% for certain sites.  251 
GRACE(-FO) vertical displacement monthly estimates are derived as follows (e.g., Davis et al., 2004): 252 
 253 

𝑈(𝜙, 𝜆) = 𝑎)*
ℎ!"

1 + 𝑘!"/!,$

𝑃!$(𝑠𝑖𝑛𝜆) × [𝐶!$𝑐𝑜𝑠𝑚𝜙 + 𝑆!$𝑠𝑖𝑛𝑚𝜙] 
 
(1) 

 254 
Where, 𝑈 is the estimate of vertical displacement,	𝑎 denotes the Earth’s radius, 𝜙, 𝜆 denote the latitude 255 
and longitude, respectively; 𝑃!$	are the associated Legendre polynomials, 𝑘!" and ℎ!" are the elastic 256 
gravity and vertical load Love numbers (Wang et al., 2012), respectively, and 𝐶 and 𝑆 are the spherical 257 
harmonic coefficients derived from GRACE(-FO) monthly solutions with respect to degree 𝑙 and order 258 
𝑚. JPL releases gridded mascon fields, to derive spherical harmonics (𝐶 and 𝑆 in Eq. 1). We transform 259 
fields of equivalent water height to normalized harmonic coefficients using the inverse of Eq. 9 in Wahr 260 
et al. (1998).  Like GPS, we subtract the GRACE(-FO) vertical displacement field of September 2012 261 
from each monthly field to establish a common reference basis. GRACE(-FO) fields are estimated at a 262 
0.5-degree spatial resolution (𝜙, 𝜆 in Eq.1). Thus, we extract GRACE(-FO) estimates at the station level 263 
by interpolating bilinearly the vertical displacement from the nearest 0.5-degree grid point neighbors to 264 
the station’s location. 265 
 266 
2.3 Screening metrics 267 
 268 
GPS vertical displacement estimates are evaluated against the ones derived from GRACE(-FO), to assist 269 
in identifying outliers or further corrections that may be needed. We employ a number of different metrics 270 
to evaluate the agreement between the two datasets, and to determine whether to include it in the joint 271 
solution or not. Similar to Yin et al. (2020) we quantify correlation and variance reduction between GPS 272 
and GRACE(-FO) vertical displacements. The structure of surface mass periodic signals (e.g., annual 273 
cycles, trends) as picked up by the two measurement techniques, also entails critical information 274 
regarding mismodelled offsets, and is evaluated as well.  275 
This process flags sites that need correction and corroborates joint inversion’s hypothesis (Argus et al., 276 
2021), that a basic level of agreement is needed for the GPS data to be used to infer surface mass change. 277 
 278 
Correlation 279 
 280 
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First, we specify the level of agreement between the datasets by estimating the Pearson correlation 283 
coefficient between GPS and GRACE(-FO) timeseries.  On average correlation is 62%, but stations 284 
located on the West coast exhibit an agreement higher than 80%, which in most cases is driven by the 285 
larger annual signal amplitude there. A more detailed look into the correlation metric is performed to 286 
evaluate the agreement of GPS/GRACE(-FO) in retrieving the seasonal cycle amplitude in different 287 
watersheds.  We fit and remove a trajectory model 𝑦(𝑡): 288 
 289 

𝑦(𝑡) = 𝑎 + 𝑏𝑡 + 𝐴𝑠𝑖𝑛(2𝜋𝑡) + 𝐵𝑐𝑜𝑠(2𝜋𝑡), (2) 
 290 
with 𝑎 being the intercept; 𝑏 being the trend and 𝐴 and 𝐵	being the amplitudes of the sine and cosine 291 
components of a periodic function. In a future release of the dataset, we will evaluate the presence of 292 
draconitic periods in the time-series and add them in the trajectory model if justified. With the timespan 293 
of the current timeseries being up to 15 years, we cannot resolve for the draconitics (i.e., the first 294 
draconitic period (351.6 days) and the annual cycle (365.25 days) are very close and require a long time-295 
series to be deciphered). For a more thorough discussion we refer the interested reader to Amiri-Simkooei 296 
et al. (2017) and Klos et al. (2023).  297 
 298 
We classify stations in watersheds and plot the GPS-GRACE(-FO) correlation coefficient (R) of each 299 
station in different watershed against the amplitude of annual signals (Fig. 2b).  To quantify the 300 
relationship between magnitude of the annual cycle and correlation between the two datasets we fit a 301 
linear function between the magnitude of the annual signals and the GPS-GRACE(-FO) vertical 302 
displacement correlations for each watershed, separately. A steep slope (𝒂) of the fit (𝒂>0.5) indicates an 303 
agreement between the two datasets, which depends on the magnitude of the annual cycle. This 304 
relationship breaks when stations of a basin exhibit smaller annual cycles.  We discuss an interesting case 305 
in Supplements, where stations located in the Great Lakes region (part of the St. Lawrence watershed) 306 
demonstrate a negative trend 𝒂 = −1.26. The disagreement is even more pronounced while assessing the 307 
second metric (i.e., trends). Both metrics, when taken together, helped us identify the source problem (i.e., 308 
unlogged offset that affected nearly 25% of the stations located in the St. Lawrence watershed) and take 309 
corrective actions (see Supplements for more details). Note that for Figs. 2 and 3 the corrected data were 310 
used. 311 
 312 

 313 
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 318 
 319 

Figure 2: a) GPS sites clusters at watersheds in the US. Each watershed has a different color; b) 320 
Magnitude of annual GPS vertical displacement cycles derived with respect to GPS-GRACE(-FO) 321 
correlation; c) Linear fit between magnitude of the annual GPS vertical displacement cycles and GPS-322 
GRACE(-FO) correlation.  323 

 324 
Trends  325 
 326 
In order to study the agreement between GPS/GRACE(-FO) in more detail, we split the timeseries of each 327 
station into non-overlapping intervals of 36 months, and fit Eq.2 for each station during each time-328 
window. Different time-lengths of the GPS series may lead to misinterpretation of the geophysical 329 
content. For example, a station that has records only for the first 13 months out of the total of 36 months 330 
window may reflect different fit constituents compared to a neighbor station with full records, if the 331 
actual behavior of Earth’s response changes during the 36-months window. Although in our dataset this 332 Deleted: data set333 
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case is rare, we proceed with deriving the rate (slope) and the annual cycles only for stations that have 334 
records for at least 28 out of the 36 months. We did not interpolate the series during the GRACE(-FO) 335 
gap; thus, the last time-window reflects trends estimated using only GRACE-FO and GPS timeseries 336 
between June 2018-2021. As expected, GPS rates feature higher spatial variability than GRACE(-FO). 337 
However, both techniques capture large-scale quasi-periodic variations every 3 years (Fig. 3), an 338 
agreement that is noteworthy. The effect of this metric to detect outliers is pronounced when the two 339 
techniques show flipped trends.  340 
 341 
Regions with pronounced trend disagreement:  342 

• St. Lawrence watershed (stations located in the Great Lakes region at the State of Michigan): The 343 
trend during 2015-2018 was flipped between GPS and GRACE(-FO) in 62 stations (St. Lawrence 344 
watershed has a total of 243 stations available between 2015-2018). We discovered a missed 345 
offset in the series occurring in April 2016, and corrected for it, which led to an improved 346 
agreement in the trend (see Supplements). 347 

• Cascadia region (northwest coast): The disagreement is evident in maps spanning 2009-2012, 348 
2015-2018 and 2018-2021.5. GPS sites record a large surface uplift, which over the course of 15 349 
years sums to 60 mm in sites located in Vancouver Island. GRACE(-FO) does not capture any 350 
such behavior. We attribute this disagreement partly on 1) glacial isostatic adjustment modeling 351 
error which manifests oppositely on two techniques. ICE6G_D predicts too much subsidence, 352 
thus when we correct GPS, we find too much uplift and when we correct GRACE(-FO) we find 353 
too much water gain which predicts too much subsidence; and partly on 2) the interseismic strain 354 
accumulation correction applied in the GPS dataset over this area (Argus et al., 2021). The sites 355 
have been flagged and are not going to be used in the joint inversion. 356 

• San Andreas Fault (Southern California): Sites located in a vicinity of the Parkfield segment of 357 
the fault (Carrizon plain), exhibit consistent disagreement in the trend. More investigation is 358 
required to understand the mechanism that the fault presents on GPS/GRACE(-FO) vertical 359 
displacement estimates. The disagreement is also seen in Argus et al. (2022, Fig. S12). The sites 360 
have been flagged and are not going to be used in the joint inversion. 361 

 362 
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 364 
Figure 3: Rates of vertical displacements derived by GPS and GRACE. The rates are calculated every 36-365 
months (3 years) between 2006-2021. 366 

 367 
 368 



 

 11 

Variance Reduction 369 
 370 
Similarity in both amplitude and phase between two quantities is quantified via the variance attenuation 371 
factor (Gaspar and Wunsch, 1989; Fukumori et al., 2015):  372 
 373 

𝑣𝑎𝑟%&' = *1 −
𝑣𝑎𝑟(𝐺𝑃𝑆 − 𝐺𝑅𝐴𝐶𝐸(−𝐹𝑂))

𝑣𝑎𝑟(𝐺𝑃𝑆) / × 100	
 
(3) 

 374 
The higher the agreement in phase and amplitude between GPS and GRACE(-FO), the closer the metric 375 
gets to 100%. 𝑣𝑎𝑟%&' may also be negative when the differences in amplitude and/or phase are large. 376 
Overall, GPS and GRACE(-FO) are consistent when 𝑣𝑎𝑟%&' exceeds 50%. The areas of main 377 
disagreement are near coasts, especially along the Atlantic Ocean. This inconsistency can be partly 378 
explained by modeling errors of the non-tidal oceanic and atmospheric loading model (e.g., Klos et al., 379 
2021; van Dam et al., 2007). Additionally, agreement is poor for sites located in the vicinity of the 380 
Parkfield segment (specific regions across the fault perform poorly), which is consistent with the 381 
disagreement shown in Fig. 3.  382 
 383 

 384 

Figure 4: Variance reduction between GPS and GRACE(-FO) vertical displacements 385 

 386 
We also compared the annual amplitudes of GPS and GRACE(-FO) vertical displacements (cosine and 387 
sine components in Eq. 2). This analysis was not informative for the presence of outliers or errors in the 388 
current data sample studied.  389 
 390 
Overall, the screening process not only assisted in outlier detection, but it also allowed for a deeper look 391 
into the structure of vertical displacement periodic signals. We identified the need for antenna offset 392 
corrections (in sites located in the Great Lakes region); removed sites affected by glacial isostatic 393 
adjustment and interseismic modeling errors; and sites located at the Parkfield segment of San Andreas 394 
Fault. 395 
 396 
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3. Uncertainty Quantification 397 
 398 
With the updated dataset we are now ready to proceed with the uncertainty quantification of the GPS 399 
vertical displacement timeseries. We apply different error characterization schemes consisting of a root 400 
sum square of a random error, white noise error, power law noise error (flicker noise and random walk) 401 
and spatially coherent error.  402 
 403 
3.1 Methods 404 
 405 
Root Mean Square Error  406 
 407 
Residuals 𝑟 of a series with respect to a trajectory model (Eq. 2) are often used as a first approximation of 408 
noise in vertical displacement series (e.g., Bos et al., 2013; Michel et al., 2021). Practically, 𝑟 shows how 409 
well a trajectory model can describe the original timeseries. Therefore, the root mean square (rms) of 𝑟 410 
can give a first approximation of the noise floor of each station.  411 
 412 
Spectral Analysis, White, Flicker and Random Walk Noise 413 
 414 
Power distribution of residuals and its agreement with noise models, is another popular way to quantify 415 
uncertainty of GPS timeseries (e.g., Klos et al., 2019; Argus et al., 2022). Typically, GPS series are 416 
evaluated for white, flicker and random walk noise, or combination of them. Hector software (Bos et al., 417 
2013) is used to estimate full noise covariance information by means of a maximum likelihood estimator. 418 
The covariance matrix 𝐶 from a combination of white and power law (i.e., flicker and random walk) noise 419 
is given as:  420 
 421 

𝐶 = 𝑎 × 𝑰 + 	𝑏 × 𝑱 Eq. 4 

 422 
Where 𝑎	is the amplitude of white noise, 𝑰 is the identity matrix of size N (number of samples/epochs in 423 
the series), 𝑏 is the amplitude and 𝑱 the covariance matrix of power law noise. 𝑱 matrix is a full 424 
covariance matrix that describes the time-correlated error (as the data record length increases, the 425 
displacement uncertainty changes (Bos et al., 2008 Eqs. 8-11)). The optimal selection of the noise models 426 
is done via two optimality criteria, namely the Akaike Information Criterion (Akaike, 1974) and the 427 
Bayesian Criterion (Schwarz, 1978). 428 
 429 
In this study, we consider three cases: 430 
a) White Noise (WN) 431 
b) Combination of WN and Flicker Noise (WN+FN) 432 
c) Combination of WN, FN and Random Walk Noise (WN+FN+RW) 433 
We take the root-sum-squares of the noise magnitudes as our noise floor. For example, for the case of 434 
WN+FN noise, noise is derived as 𝜎 = ±U𝜎()

* + 𝜎+)* . Our data are sampled on a monthly basis, thus 435 
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𝜎+) needs to be scaled appropriately, i.e., 𝜎+) = 𝜎,-(
.
.*
)/

!
", where, 𝜎,- is the uncertainty of power-law 439 

(PL) and 𝑘 the spectral index, outputted from Hector (more information on power-law noise estimation 440 
can be found in Bos et al., 2008, and Williams, 2003).  441 
 442 
Common Mode Noise 443 
 444 
The Common Mode Component (CMC) is derived following the processing scheme suggested by 445 
Kreemer and Blewitt (2021), which can be summarized as: 446 
 447 

1) Input GPS displacement timeseries (referenced to Sep 2012) for 𝑗 stations (𝑙0) 448 
2) Derive each station’s residuals by removing the trajectory part of the series (𝑙0(𝑡) − 𝑦0(𝑡)) 449 
3) Quantify the correlation coefficient 𝑟123 using robust statistics. 𝑟123 is defined as:  450 

𝑟123 =
𝑀𝐴𝐷*(𝑢) − 𝑀𝐴𝐷*(𝑣)
𝑀𝐴𝐷*(𝑢) + 𝑀𝐴𝐷*(𝑣)

 Eq. 5 

 451 
The median absolute deviation (𝑀𝐴𝐷) is the absolute deviation around the median. For example, for a 452 
residual series res(t) 𝑀𝐴𝐷 = |𝑟𝑒𝑠(𝑡) − 𝑚𝑒𝑑𝑖𝑎𝑛]𝑟𝑒𝑠(𝑡)^. 𝑢 and 𝑣 are derived as: 453 

𝑢 =
𝑝 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑝)

√2𝑀𝐴𝐷(𝑝)
+
𝑞 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑞)

√2𝑀𝐴𝐷(𝑞)
 Eq. 6 

𝑣 =
𝑝 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑝)

√2𝑀𝐴𝐷(𝑝)
−
𝑞 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑞)

√2𝑀𝐴𝐷(𝑞)
 Eq. 7 

 454 
with 𝑝 and 𝑞 being the residual series of the reference station and the neighbor station, respectively. 455 
For each station there are 𝑗 − 1 correlation coefficients 𝑟123. In order to decide the cut-off distance 456 
that a neighbor station will be considered in the analysis we plot 𝑟123 coefficient against its distance 457 
from the reference station (Fig. 5). Based on results from all stations we decide to set a cut-off at 1500 458 
km, slightly higher than the 1350 km suggested by Kreemer and Blewitt (2021). The 1500 km cut-off 459 
allows us to separate stations between East and West coast, as spatially coherent signals at stations 460 
located across the continent are negligible. 461 

4) Derive the median slope estimator (𝑐𝑐𝑠) using Theil-Sen median trend. 𝑐𝑐𝑠 is the median trend of the 462 
𝑟123 coefficients of a station against their distance with the reference station.  463 

5) Derive the zero-distance intercept 𝑐𝑐𝑖0 	for each station as median(𝑟123 − 𝑐𝑐𝑠 ∗ 𝑑), with 𝑑 being the 464 
distance between the station of reference and the neighbor station (maximum 𝑑 = 1500 km). 465 
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6) Construct CMC: Calculate the cumulative (𝑐0) and percentile (𝑝0) weights for each station and then 467 
find the weighted median that corresponds to 𝑝0  = 50%. This weighted median represents the CMC of 468 
the station (Fig. 6).  469 

 470 
Figure 5:  𝑟123 coefficient of four random stations with the rest of the station sample, plotted against the 471 
distance of the reference station with the rest of the stations. Each cross resembles the 𝑟123  of the 472 
reference station with a station located at distance 𝑑. 473 
 474 
CMC is limited in providing a realistic error approximation, in that the technique cannot isolate spatially 475 
correlated noise from signal (e.g., hydrology signals not described by the trajectory model are present in 476 
the residuals fed into CMC). Under the realistic assumption that a component of the high frequency signal 477 
contained in CMC reflects real hydrological processes, we remove the contribution of surface hydrology 478 
using Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) vertical displacement 479 
estimates. GLDAS does not model deep groundwater and open surface water, so these signals remain in 480 
the residual (Scanlon et al., 2018). Vertical displacement estimates driven by surface hydrology are 481 
derived similar to GRACE(-FO) (Section 2.2). We use Noah v2.1 monthly estimates of soil moisture 482 
storage given at 0.25-degree grids (Beaudoing and Rodell, 2016), convert the fields from terrestrial water 483 
storage (kg/m2) to units of equivalent water height, derive the spherical harmonic coefficients of the 484 
equivalent water height mass load using Wahr et al. (1998), and predict the elastic response of the Earth 485 
(Eq. 1).  Afterwards, we remove the reference epoch (09/2012) similar to GPS and estimate the vertical 486 
displacement at the locations of the GPS sites by interpolating the estimates of the closest neighbors to the 487 
station’s location.  Note, that because our interest is to prepare the data for a combined solution with 488 
GRACE(-FO) we interpolate the timeseries at the times of GRACE(-FO) monthly series availability. The 489 
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interested reader is referred to the supplement, where we show the vertical displacement estimated by 491 
GPS, GRACE(-FO) and GLDAS (Figure S2) for randomly selected stations. Finally, we derive residuals 492 
relative to the trajectory model (Eq. 2). GLDAS (surface hydrology) residuals should ideally reflect high 493 
frequency hydrological processes and are therefore removed from GPS residuals. Overall, CMC of 494 
surface hydrology residuals exhibits a fairly small magnitude (~0.5 mm). We remove the contribution of 495 
surface hydrology within the CMC algorithm by first subtracting GLDAS vertical displacement estimates 496 
from GPS, and next inputting the residuals of this difference into the algorithm. The output of this process 497 
(CMCHF) slightly decreases the magnitude of CMC and expresses a more realistic representation of 498 
spatially correlated noise.  499 
 500 
3.2 Results 501 
 502 
Vertical displacement uncertainty of each station is estimated by means of all the different approaches 503 
discussed in Section 3. Mean (μ), median and standard deviation (std) values are shown in Table 1. On 504 
average, an assumption of white noise shows slightly reduced uncertainty compared to the other 505 
techniques, followed by RMSE. When flicker noise is considered in addition to white noise (WN+FN) the 506 
average uncertainty increases by nearly 0.8 mm compared to the white noise only. We note that the 507 
contribution of white noise in the case of WN+FN is negligible for ninety seven percent of the stations 508 
(that is flicker noise describes the noise exclusively). Noise level from combination of all three noise 509 
models (WN+FN+RW) is less than 4 mm on average. In this case too, white noise is negligible, and noise 510 
is described exclusively from flicker noise for 1550 stations, and from random walk for 600 stations. The 511 
rest of the data sample reflects a contribution from both noise models. We additionally analyzed the 512 
amplitude of the noise of each noise model (𝜎,-) with respect to the length of the input series. Results did 513 
not identify any clear relationship between 𝜎,- and the length of each station’s timeseries.  CMC noise 514 
floor is 3.6 mm on average with a relatively large standard deviation (±1.6 mm) which suggests that 515 
spatially correlated noise has higher variability than time-correlated noise (± 1.6 mm as opposed to ~±1 516 
mm). When surface hydrology is removed (CMCHF) the noise floor drops by a fraction of a mm on 517 
average compared to CMC.  518 
 519 
Table 1: Different uncertainty quantification cases 520 

 
mean (μ) 

(mm) 
median (mm) ± std (mm) 

RMSE 2.8 2.7 0.8 
WN 2.4 2.2 0.8 

WN+FN 3.2 3.1 0.7 
WN+FN+RW 3.8 3.5 1.1 

CMC 3.6 3.2 1.6 
CMCHF 3.5 3.1 1.6 

 521 
RMSE and WN exhibit a smooth transition among the regions, which indicates the presence of spatially 522 
coherent regime signal mostly driven by hydrology (Fig. 6). The combination of WN+FN is mostly 523 
dominated by FN and the uncertainty exhibits local (in space) coherence. The uncertainty is larger when 524 
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random walk is included in the combination (WN+FN+RW). A recent study from Argus et al. (2022) on 526 
groundwater flux in Central Valley (California) suggests that noise on GPS-derived uplift motion can be 527 
well described by a combination of flicker noise and random walk, due to the ability of these noise 528 
models to reflect low frequency noise. When a simulated contribution of the surface hydrological 529 
component is removed from the series, CMCHF reflects a more realistic picture of the noise. Arguably the 530 
level of change compared to CMC is sub-millimeter. Signal contributions from un-modelled groundwater 531 
variations are potentially still present, but groundwater changes are typically slower in time.  532 
 533 
 534 
We obtain the relative likelihood of each uncertainty quantification method by estimating the probability 535 
density function (PDF) (Fig. 7).  White noise has a flat power spectrum, having the same amplitude 536 
across frequencies. Estimating a best fit for a flat spectrum doesn’t allow for capturing the long tail skew 537 
of the residuals (low frequency), which are biased towards their mean. Thus, the amplitude of white noise 538 
is smaller compared to the rest of the techniques (Table 1). Flicker and random walk noise models add to 539 
the long tail of the power distribution, that is they allow more low frequency noise, which explains the 540 
higher amplitude of the uncertainty when these two noise types are considered. 541 
RMSE and WN show a 50% probability of a station having an uncertainty (σ) between 1.5-2 mm and less 542 
than 10% of a station exceeding σ=4 mm. The noise level fells within [2 4] mm for ~93% of the stations 543 
when we consider combination of WN+FN. PDF of RMSE, WN and WN+FN resemble a normal 544 
distribution, with the mean being shifted for each case. When random walk is also considered 545 
(WN+FN+RW) 64% of the stations exhibit noise within [2 4] mm. In this case, the distribution is more 546 
spread resembling a gamma-like distribution, with a peak being at 3 mm (18%). CMC and CMCHF PDF 547 
also follow a gamma-shape, and the probability of the uncertainty ranging between [2 4] mm is nearly 548 
60% for CMC and 65% when surface hydrology is removed.  549 
 550 
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 551 
Figure 6: Noise amplitudes of GPS timeseries estimated using different techniques. 552 

 553 
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 556 
Figure 7: Probability density function of vertical displacement estimates uncertainty 557 

 558 
4. Discussion and Conclusions 559 

 560 
GPS-derived vertical displacements are very useful for supplementing GRACE(-FO) gravity products to 561 
infer mass change signals at spatial scales smaller than what can typically be achieved with current 562 
satellite gravimetry alone (i.e., < 300km). This work provides a general workflow to isolate elastic surface 563 
mass signals from GPS vertical displacement, by developing processing standards; additionally, it 564 
suggests uncertainty quantification schemes to quantify error on GPS vertical displacement estimates. The 565 
ultimate goal is to prepare GPS estimates for merging with satellite-gravimetry observations. First, we 566 
provide a list of corrections needed for isolating surface mass following recommendations outlined in 567 
Argus et al. (2017; 2022). Additionally, a detailed investigation of trends, correlation, and variance 568 
reduction highlights the need for better background modeling (glacial isostatic adjustment and 569 
interseismic strain), as the two observation techniques respond differently in the presence of such errors. 570 
At this point the recommendation is to remove sites located in the vicinity of regions where background 571 
models are known to perform poorly, before any joint inversion. Except detecting outlier stations, 572 
screening metrics point to extra corrections that need to be applied in certain sites (e.g., missed antenna 573 
offsets).  574 
Several uncertainty quantification schemes have been tested to prescribe weights on GPS vertical 575 
displacement estimates that are needed for a joint inversion with GRACE(-FO) data. The average noise 576 
level indicated by RMSE is 2.8 mm. White noise average is 2.5 mm. The errors increase when lower 577 
frequencies are included in the noise estimation. When we account for flicker noise, one third of the sites 578 
exhibits noise levels of up to 3 mm.  The average noise increases significantly in presence of random 579 
walk, as more power of the lower frequencies gets into the estimations, and the distribution of noise is 580 
more dispersed. In this case, half of the stations are prescribed with > 4 mm uncertainty. Argus et al. 581 
(2022), finds that random walk is the most realistic representation of noise based on postfit residuals. We 582 
notice that the spectrum of CMC provides similar uncertainties to random walk, which implies that 583 
despite the different characterization procedure, CMC is able to provide equally realistic noise estimates 584 
of GPS timeseries. We attempted to minimize lingering hydrology signals embedded in CMC, through 585 
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reducing the GPS vertical displacement observations with displacements from the GLDAS hydrology 586 
model. The average noise floor dropped slightly (~0.5 mm drop in sigma). Future work will provide 587 
further information of GPS station errors when the weight of each GPS site is also considered based on its 588 
impact on the performance in a formal data combination of GPS-GRACE(-FO). The suggested 589 
framework can be easily adjusted to account for global datasets. The new dataset provides GPS vertical 590 
displacements of elastic mass variations in North America and their associated uncertainties. 591 
 592 
Data Availability: The data product described in the manuscript is available in zenodo (doi: 593 
https://zenodo.org/record/8184285). GPS timeseries are provided by the Global Station List from the 594 
Nevada Geodetic Laboratory (http://geodesy.unr.edu/; Blewitt et al., 2018). Non atmospheric and oceanic 595 
tidal aliasing product (AOD1B RL06) is provided by GFZ’s Information System and Data Center 596 
(ftp://isdc.gfz-potsdam.de/grace/Level-1B/GFZ/AOD/RL06, Dobslaw et al., 2017). GRACE and 597 
GRACE-FO Level 2 products are available from podaac (https://doi.org/10.5067/GFL20-MJ060).  598 
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