An integrated and homogenized global surface solar radiation dataset and its reconstruction based on an artificial intelligence approach

Boyang Jiao1,, Yucheng Su2, Qingxiang Li*1,, Veronica Manara3, Martin Wild4

1School of Atmospheric Sciences, Sun Yat-sen University, and Key Laboratory of Tropical Atmosphere–Ocean System, Ministry of Education, Zhuhai 519082, China
2Meteorological Bureau of Zhuhai, Zhuhai 519082, China
3Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 10, 20133, Milano, Italy
4Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
*Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai 519082, China

Correspondence to: Qingxiang Li (liqingx5@mail.sysu.edu.cn)
Abstract

Surface solar radiation (SSR) is an essential factor in the flow of surface energy, enabling accurate capturing of long-term climate change and understanding the energy balance of Earth’s atmosphere system. However, the long-term trend estimation of SSR is subjected to significant uncertainties due to the temporal inhomogeneity and the uneven spatial distribution of the in-situ observations. This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) stational SSR dataset (SSRIH\textsubscript{stational}) by integrating all available SSR observations, including the existing homogenized SSR results. The series are then interpolated in order to obtain a 5°×5° resolution gridded dataset (SSRIH\textsubscript{grid}). On this basis, we further reconstruct a long-term (1955-2018) global land (except for Antarctica) SSR anomalies dataset with a 5°×2.5° resolution (SSRIH\textsubscript{20CR}) by training improved partial convolutional neural network deep learning methods based on the reanalysis 20CRv3. Based on this, we analysed the global land (except for Antarctica) /regional scale SSR trends and spatiotemporal variations: the reconstruction results reflect the distribution of SSR anomalies and have high reliability in filling and reconstructing the missing values. At the global land (except for Antarctica) scale, the decreasing trend of the SSRIH\textsubscript{20CR} (-1.276±0.205 W/m2 per decade) is slightly smaller than the trend of the SSRIH\textsubscript{grid} (-1.776±0.230 W/m2 per decade) from 1955 to 1991. The trend of SSRIH\textsubscript{20CR} (0.697±0.359 W/m2 per decade) from 1991 to 2018 is also marginally lower than that of the SSRIH\textsubscript{grid} (0.851±0.410 W/m2 per decade). At the regional scale, the difference between the SSRIH\textsubscript{20CR} and SSRIH\textsubscript{grid} is more significant in years and areas with insufficient coverage. Asia, Africa, Europe and North America cause the global dimming of the SSRIH\textsubscript{20CR}, while Europe and North America drive the global brightening of the SSRIH\textsubscript{20CR}. Spatial sampling inadequacies have largely contributed to a bias in the long-term variation of global/regional SSR. This paper’s homogenized gridded dataset and the Artificial Intelligence reconstruction gridded dataset (Jiao and Li, 2023) are all available at https://doi.org/10.6084/m9.figshare.21625079.v1.
1 Introduction

Energy flows at the Earth's surface play an essential role in climate change and human activity and link to physical processes such as global warming, glacier retreating, hydrological cycle, and carbon budget (Hoskins and Valdes, 1990; Peixoto et al., 1992; Trenberth and Fasullo, 2013; Wild, 2012). As a critical factor characterizing surface energy flows, Surface Solar Radiation (SSR) largely determines the climatic conditions and ecological environment in which we live. Therefore, a more accurate and comprehensive analysis of the SSR fluxes will help better understand the Earth's atmospheric system. In-situ observations provide the most accurate baseline data for measuring SSR. They allowed for the first time the detection of decadal changes in SSR known as “dimming and brightening” (Wild et al., 2005), especially considering that they cover a longer period concerning another type of data like for example satellite data (Pfeifroth et al., 2018) even if observational data often have uneven distribution and missing data with respect to the satellite data, especially in areas with complex orography (Manara et al., 2020).

The sources of in-situ SSR observations are mainly collected from the Global Energy Balance Archive (GEBA) (Wild et al., 2017) and the World Radiation Data Centre (WRDC) (Tsvetkov et al., 1995). Furthermore, other SSR station series are obtained from the high quality Baseline Surface Radiation Network (BSRN) (Driemel et al., 2018) and the data centres of individual national hydrometeorological services. However, two issues still need to be addressed: 1) the inhomogeneity of station data resulting from station relocations and instrumentation changes severely impacts the climate change assessment. For the regions with a relatively high density of stations, like Europe (Manara et al., 2019; Manara et al., 2016; Sanchez-Lorenzo et al., 2013a; Sanchez-Lorenzo et al., 2015; Sanchez-Lorenzo et al., 2013b), Japan (Ma et al., 2022) and China (Ju et al., 2006; Wang, 2014; Wang et al., 2015; Wang and Wild, 2016; Yang et al., 2018b; You et al., 2013), much previous work has redefined the degree and timing of “dimming and brightening” by addressing the inhomogeneity of the SSR data series. For example, in Spain, the average annual homogenized SSR series has a significant increasing trend (+ 3.9 W/m² per decade) during the 1985–2010 period (Sanchez-Lorenzo et al., 2013a). The period of dimming observed in Italy’s homogenized SSR series is not apparent in the 1960s and early 1970s when the raw series (inhomogenized) are taken into account (Manara et al., 2016). The direct measurements of SSR show a level trend from 1961 to 2014 over Japan, while their homogenization series display a decreasing trend (0.8-1.6 W/m² per decade) (Ma et al., 2022). In China, homogenization largely eliminated the dramatic
non-climatic rise of the early 1990s and also reduced the increasing trend from 1990 to 2016 (Yang et al., 2018b). However, most of the research was still limited to regional scales. 2) The issue of limited spatial sampling of long observational stations and their uneven distribution especially over areas with complex orography. Considerable efforts have been devoted to filling in/interpolating the missing values in climate datasets ("spatial analysis") (Collins, 1996; Erxleben et al., 2002; Scudiero et al., 2016). The traditional spatial interpolation methods commonly used include Inverse Distance Weighted (Fisher et al., 1993; Shepard, 1968), Kriging (Kriging, 1951), Thin-Plate Splines (Bookstein, 1989) et cetera. Since the 1980s, physical parametric interpolation (Feng and Wang, 2021; Tang et al., 2019) and Bayesian fusion schemes (Aguiar et al., 2015) based on multi-source observational data were widely used, when the emergence of highly accurate and relatively precise satellite data. However, the resulting fusion datasets cover a too short period to investigate their decadal and multi-decadal variations and to study the underlying causes. The rise of deep learning and big data techniques has brought about an explosion of artificial intelligence (AI). Machine learning is increasingly being used in spatial interpolation, such as the spatial reconstruction of surface temperature datasets (Huang et al., 2022; Kadow et al., 2020; Cao et al., 2022), the spatial and temporal reconstruction of turbulence resolution (Fukami et al., 2021), etc. Furthermore, it shows high accuracy and low uncertainty in reproducing and predicting SSR (Leirvik and Yuan, 2021; Tang et al., 2016; Yang et al., 2018a; Yuan et al., 2021). However, long-term homogenized SSR datasets with global terrestrial coverage have yet to be developed, resulting in significant uncertainties in assessing global SSR variation (Jiao et al., 2022).

Therefore, developing a more homogeneous and comprehensive global long-term SSR climatic dataset that provides a better benchmark for observational constraints on the global surface energy balance/budget remains a valuable and challenging task. This paper first homogenizes and grids the most extensive collection of available global SSR station observations. Then, the missing grid boxes/years are spatially interpolated using a convolutional neural network (CNN) approach to obtain a globally covered land surface SSR anomalies dataset. Finally, the reconstructed datasets are initially analysed and evaluated. Thus, the paper is divided into seven main sections. The data resources are introduced in Section 2. Section 3 presents the data homogenization, and the CNN model reconstruction methods. The data homogenization and verification are shown in Section 4. Section 5 gives the AI reconstruction results. Section 6 is the availability of the datasets. Conclusions are provided at the end of the paper.
2 Data

Nine SSR datasets are collected to derive the global SSR variable. In particular, six datasets contain data from observational stations (Section 2.1): two global ground-based measurement datasets (GEBA, WRDC) and four homogenized products at regional and country levels (Europe, China, Japan and Italy). Three of the adopted datasets are reanalysis data (Section 2.2.1): ERA5, 20th Century Reanalysis version 3 (20CRv3) reanalysis data and the Coupled Model Intercomparison Project Phase 6 (CMIP6) historical simulation output (125). Specifically, the ERA5 data are used to fill the data over oceans and Antarctica (Section 3.2.1), 20CRv3 data and CMIP6 simulations are used for the AI model training (Section 5.1) and reconstruction. All have been listed in Table 1.

2.1 In situ observational Data

2.1.1 Global datasets

There are two main sources of raw SSR data (see Table 1): the ETH Zurich GEBA with monthly data from 2,445 globally distributed stations, starting from 1922 until 2020, and the WRDC dataset with monthly globally distributed data from 1136 stations since 1964. The first one is available for download at https://geba.ethz.ch (Last access: 2022.7. 2). The second one published the first SSR radiation balance data in 1965 and then its publication has been issued four times a year since 1993 and is available for download at http://wrdc.mgo.rssi.ru/ (Last access: July 2021).

2.1.2 National (regional) homogenized station datasets

1) Chinese homogenized SSR dataset

The China Meteorological Radiation Fundamental Elements Monthly Value Data Set has been downloaded at http://www.nmic.cn. The homogenized SSR dataset in China is released by the National Meteorological Information Centre (NMIC), China Meteorological Administration (CMA) (Yang, 2016). The data are available for the period between Jan 1950 to Dec 2014, and the follow-up data are extended with raw observations from NMIC. They used the sunshine duration (SSD) data from nearby stations to construct an arguably better reference to identify inhomogeneities in the SSR data. Then, a combined metadata and the maximum penalty t-test (PMT) method was used to detect the change points. Finally, they were adjusted by a quantile matching (QM) algorithm (Wang and Feng, 2013). The final homogenized SSR station dataset was converted to gridded data using the first difference method (FDM...
2) Japanese homogenized SSR dataset

Ma et al. (Ma et al., 2022) released a Japanese SSR homogenized dataset in 2022 spanning the period between 1870 and 2015. First, they homogenized SSD based on PMF (penalized maximal F test) and QM algorithms. They then used the homogenized SSD from the previous step as a reference series, combined with metadata and PMT, to detect change points. Finally, they adjusted the change points by the QM algorithm. For more details on data descriptions, the adopted methodology and downloading data refer to https://data.tpdc.ac.cn/en/data/45d73756-3f5a-4d27-82a4-952e268c20e8/, Last Access: March 2022.

3) European homogenized SSR data

A homogenized dataset of European SSR stations was developed by Sanchez-Lorenzo et al. (Sanchez-Lorenzo et al., 2015) and is currently available as a full public download at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023321. They selected the 56 longest Central European SSR series available in GEBA dataset with data for the period comprised between 1922 and 2012. They adjusted them to ensure temporal homogeneity homogenizing the data with the Standard Normal Homogeneity Test (Alexandersson, 1986) and the Craddock test (Craddock, 1979).

4) Italian homogenized SSR dataset

The Italian homogenized SSR datasets are those published by (Manara et al., 2019; Manara et al., 2016). As candidate stations to use as reference series, they selected the ten series located in the same area of the series to be tested and that series correlate well with the test one. In particular, they tested the change points with the Craddock test (Manara. et al., 2017) and when a break is identified by more than one reference series the preceding portion of the series is corrected, leaving the most recent portion unchanged. In this way, the SSR stations were homogenized, and then the missing values were interpolated.

2.2 Other datasets

2.2.1 Reanalysis

ERAS5 can be used to fill in SSR data from the oceans and Antarctica and carry out the global reconstruction, taking into account its high spatial resolution and reliable performance of SSR (Jiao et
al., 2022; Liang et al., 2022). After the reconstruction, we removed the data for the ocean reanalysis and maintain the data only in the land area (except for Antarctica). In addition, two SSR data products (20CRv3, CMIP6) are used to train AI models. These are:

1) ERA5 (space-filling data): ERA5 is the fifth generation of the European Centre for Medium-Range Forecasting reanalysis product, which currently publishes data from 1950 to the present (Hersbach et al., 2020). In addition, ERA5 has an hourly output and an uncertainty estimate from the ensemble. The data is based on the Integrated Forecasting Model Cy41r2 run in 2016, which contains a 4D-Var assimilation scheme. In ERA5, SSR is obtained from a Rapid Radiation Transfer Model (RRTM) (Mlawer et al., 1997). The present study utilizes monthly SSR data for the period 1955-2018 from ERA5 with a resolution of 0.25° × 0.25° (last accessed in July 2022). It can be downloaded at https://cds.climate.copernicus.eu

2) 20CRv3 (data for AI model training): The 20CR Project is an effort led by NOAA’s Physical Sciences Laboratory and CIRES at the University of Colorado, supported by the Department of Energy, to produce reanalysis datasets spanning the entire 20th century and much of the 19th century (Slivinski et al., 2019). 20CR provides a comprehensive global atmospheric circulation data set from 1850 to 2015. Its chief motivation is to provide an observational validation dataset, with quantified uncertainties, for assessing climate model simulations of the 20th century. 20CR uses an ensemble filter data assimilation method which directly estimates the most likely state of the global atmosphere every three hours and estimates the uncertainty in that analysis. The most recent version of this reanalysis, 20CRv3, provides 8-times daily estimates of global tropospheric variability across 75 km grids, spanning 1836 to 2015 (with an experimental extension from 1806 to 1835). The present study uses monthly SSR data of 20CRv3 (NOAA/CIRES/DOE 20CR, 80 members) from 1955-2015. The SSR of 20CRv3 has a spatial resolution of 0.7°×0.7° (Last accessed: May 2022). The download is available at https://portal.nersc.gov/archive/home/projects/incite11/.

2.2.2 CMIP6 models output

3) CMIP6 models output (data for AI model training): the Coupled Model Intercomparison Project, driven by the World Climate Research Program, is now in its 6th phase. Compared to previous model comparison projects, the CMIP6 project has a much better experimental design and more model development centres involved, as well as providing a much more significant amount of data. It provides
an excellent resource for studying current and future climate change (Eyring et al., 2016). The historical
simulations of CMIP6 are designed to reproduce observed climate and climate change, constrained by
radiative forcing. Its historical simulation spans between 1850 and 2014. In this study, we selected 125
members from historical simulations of a large sample (a total of 507 members). These 125 members
match better with the in-situ observations than the other (507-125) members. We selected the monthly
downward shortwave radiation from 1955 to 2014 (see Table S1 in the Supplemental Material (SM)).

3 Methods

3.1 Data Quality Control (QC) and homogenization

The SSR data homogenization method is only applied to the two inhomogenized in-situ observations
datasets (Geba and WRDC). The Quality Control (QC) and homogenization flowchart (Figure 1) is
divided into three steps: 1. QC; 2. Homogenization; 3. Integration and consolidation.

3.1.1 QC

The QC of SSR data includes the following steps:

1) Simple integration: integration of the Geba (2445) and WRDC (1136) datasets removing stations
 with no data and leaving 2681 stations.

2) Removing duplicate stations: a. Stations with similar latitude and longitude. We consider two
 stations with totally identical latitude and longitude to be the same station; b. Stations less than 10km
 apart. We averaged the duplicate stations in this a and b case; c. Special duplicate stations: Stitching
 together data of the duplicate stations based on metadata from CMA.

3) Remove stations or years/months for which a climatic analysis cannot be established: we remove
 stations with records of less than ten years and values more than five times the standard deviation of the
 SSR anomalies.

4) Candidate stations (487) with a record length greater than 15 years in the period 1971-2000 are
 selected. We added stations (715) with more than 10 years of SSR records to increase the number of
 available stations for a better homogenization of the candidate stations (Figure 2).
3.1.2 Station series homogenization

This paper uses the RHtestV4 software package to test and adjust the SSR station data for homogeneity (http://etccdi.pacificclimate.org/software.shtml) (Wang and Feng, 2013). The package is based on the empirical penalty functions PMF (Wang, 2008b) and PMT (Wang, 2008a; Wang et al., 2007) for the homogenization test. It takes into account the lag-1 autocorrelation of the time series. It embeds a multiple linear regression algorithm to significantly reduce the problem of an unbalanced distribution of pseudo-identification rates and test efficacy. Also, RHtestV4 uses the QM algorithm (Vincent et al., 2012; Wang et al., 2010) and Mean-Adjustments to adjust the identified change points.

The specific steps are as follows:

1) Building the reference series
 a. We processed the data from all stations series (715) into the annual first differences (FD) series \(e_i \) (Eq. (1)) (Peterson et al., 1998).
 b. We calculated the correlation of the annual FD series between the series from the potential reference pool and the candidate stations.
 c. We calculated the distance between the potential reference pool stations and candidate stations.
 d. We selected potential stations according to the correlation coefficient (CC >= 0.6) between the series from potential reference pool and candidate stations. And the potential stations also satisfy the limits in distances (<= 500km) between the potential pool stations and candidate stations.
 e. We obtain the reference FD series \(Re \) based on the m potential reference series \(Pe_i \) and the CCs \(c_i \) between the potential reference series \(Pe_i \) and candidate stations series (Eq. (2)).
 f. The synthesized reference FD series \(Re \) (Eq. (2)), plus the average of all potential reference series \(R \) (Eq. (3)).

\[
e_i = x_i - x_{i+1} \tag{1}
\]

\[
Re = \frac{\sum_{i=1}^{m} Pe_i \cdot c_i^2}{\sum_{i=1}^{m} c_i^2} \tag{2}
\]

\[
R = Re + R \tag{3}
\]

\(e_i \) Annual FD series,
\(x_i \) Raw observational station SSR in the year i,
\(Re \) Final reference series,
Potential reference series, P_{E_i}, the CC between the potential reference series and the candidate stations series, c_i.

2) Testing and adjusting the candidate series

The homogenization test algorithm used in this paper is the PMT. This method is a reference series-dependent test for a normalized candidate series. It assumes that the linear trend of the time series is zero and uses the degree of mean deviation at different points in the series to find change points. Furthermore, it eliminates the effect of different sample lengths on the test results. At the same time, the method introduces an empirical penalty factor, which effectively improves detection. We used the PMT to test the homogeneity of the candidate series based on the reference series established in 1). We then adjusted the statistically significant (p>0.05) changepoints obtained using the mean adjustment method (p>0.05).

We homogenize the monthly series for 66 stations (see Figure S1 in the SM).

3.1.3 Integration and consolidation

As can be seen from Figure 1, the candidate stations (487) are relatively sparse. To better adapt deep learning methods for the dataset reconstruction later, we adjusted, added, and integrated station series based on the results of homogenized data from other scholars: 1) We added stations with more than 10a overall (1955-2018) records but no more than 15a during the 1971-2000 period, and removed those stations that were clearly inhomogeneous (25) and some years of the station (3); 2) We subsequently integrate monthly SSR series for 116 stations based on the results of homogenization by other scholars (China (56), Japan (8), Europe (2) and Italy (50)). After the above steps, we end up with a homogenized dataset containing 944 stations (Figure 3). The details of the processing and classification are shown in Table S2 (see in the SM).

3.2 CNN model reconstruction methods

The CNN deep learning model network architecture uses a U-shaped structure similar to the U-net (Ronneberger et al., 2015). The advantage of using this model is: 1) both high and low-frequency information of the picture can be retained, and when reconstructing the SSR data, not only the grid point information close to the missing measurement point will be considered, but also information from more distant locations (which may be remotely correlated with that missing measurement point); 2) This makes the model convergence faster and more economical in terms of computational resources. The upper part of the U-shaped structure, which has no down samples or a low number of down samples, represents the
high-frequency information of the graph. These sections contain much of the detail in the graph and the 265 relationships between similar grid points are conveyed by this section. The lower half of the U-shaped structure is down-sampled more often and represents the lower frequency information of the graph. The global radiation of a wide range of undulations is transmitted by it, and then the information at the various levels of the U-shaped structure is connected and transmitted through the skip connection, allowing the whole network to remember all the information of the picture very well. The model uses nearest neighbour upsampling in the decoding phase, the skip links will concatenate two feature maps and two masks as the feature and mask inputs for the next part of the convolution layer. The input to the last part of the convolution layer will contain the original input image concatenated with the holes and the original mask, allowing the model to replicate the non-hole pixels. The complex and variable nature of the sea-land boundary then has a significant impact on the reconstruction, when we reconstruct the global land SSR data. Therefore, we use partial convolution at the image boundaries with a suitable image padding, ensuring that the padding content at the image boundaries is not affected by values outside the image. The deep learning models’ convolutional layers and loss functions have been described in SM.

We further reconstruct a long-term (1955-2018) global SSR anomalies dataset (SSRIH20CR) by using improved partial CNN deep learning methods based on a “perfect” dataset. CNN consists of three parts. A convolutional layer to reduce the number of weights by extracting local features, a pooling layer to reduce overfitting, and a fully connected layer to output the desired result. In this paper, a modified CNN network is used to model the reconstruction of the SSR data, with the convolutional layer replaced by a partial convolution method and mask update. This method is the latest in image restoration effects and can restore irregular holes, an advantage over other image restoration methods that can only restore rectangular holes. Therefore, this paper uses the modified CNN model (Kadow et al., 2020) to recover the missing part of the global terrestrial SSR (except Antarctica). The specific reconstruction steps and processes are as in Figure 4.

3.2.1 Data pre-processing

The homogenized station data is converted to grid box anomalies using the Climate Anomalies Method (CAM) (Jones et al., 2001). CAM is a commonly used method for converting station anomaly data to gridded data. We divide all global areas into a $5^\circ \times 5^\circ$ grid, after which we calculate the SSR anomalies (relative to 1923-2020) within the grid box by averaging the anomalies of all stations (at least 1 station...
in it). If there are more than one site exists in the same grid box, the record length of this grid box is the total length of all sites in that grid box. Finally, we removed the values that were more than five times the standard deviation of the SSR anomaly time series after gridding. SSRs are all processed as daily average anomalies, i.e., monthly anomalies divided by 30 (each month is approximated as 30 days). We multiplied all the values by 30 again when the reconstruction is complete.

Finally, we removed the values that were more than five times the standard deviation of the SSR anomaly time series after gridding. SSRs are all processed as daily average anomalies, i.e., monthly anomalies divided by 30 (each month is approximated as 30 days). We multiplied all the values by 30 again when the reconstruction is complete. The global land (except for Antarctica) distribution and coverage of SSRs after gridding are shown in Figure 5 a, b.

As seen in Figure 5a, the SSR is spatially sparsely distributed across South America and Africa. As shown in Figure 5b, SSR coverage increased yearly from 1950 until the mid-1970s, when it slowly decreased. In 2013, the coverage rate decreased sharply due to untimely data submission. Considering the SSR coverage above, we only kept the years (1955-2018) with data coverage of more than 8% of global land (except for Antarctica) areas.

Comparisons show that the ERA5 has high spatial resolution and relatively reliable performance in the temporal variations and long-term trends (Liang et al., 2022; Jiao et al., 2022). To obtain a higher data coverage and ensure that the AI model runs well, we used the ERA5 to fill the SSR of homogenized global gridded SSR in the Antarctic and ocean areas. However, if we use the SSR of ERA5 to directly fill the SSR of homogenized global gridded SSR (SSRIH\textsubscript{grid}) in the Antarctic and on the ocean areas, then the relatively weaker ocean SSR variations (variabilities, decadal changes, trends, etc.) from ERA5 will inevitably introduce certain systematic biases in land SSR reconstruction due to the SSRs have the lower coverage on the land. Therefore, we designed an algorithm to avoid excessive diffusion of SSR system bias in terrestrial areas: we first calculated the ratios \(\gamma_i \) (\(i=1, 2, 3, ..., n \)) between the SSR from ERA5 and from SSRIH\textsubscript{grid} on the land in all \(n \) years. For a single grid box, the \(\gamma_i \) have small changes and are regarded as a constant \(\gamma_{\text{median}} \) (Eq (4)), and the \(\gamma_{\text{median}} \) vary by latitude and longitude both on the marine and the land areas. We then extrapolated the \(\gamma_{\text{median}} \) for all the grid boxes along the land and sea boundaries. If there is no observation there, then the adjacent ocean ERA5 SSR is used to take its place after it is adjusted according to the differences between the SSR variations (represented by the linear trends) for the different underlying surfaces (Eq (5)).

\[
\gamma_{\text{median}} = \text{Median} \left(\frac{OBS_{i,\text{land}}}{ERA5_{i,\text{land}}} \right), \tag{4}
\]

\[
OBS_{i,\text{obs,land}} = ERA5_{i,\text{obs,land}}(\text{Ocean}) \times \gamma_{\text{median}} \times \frac{T_O}{T_L}, \tag{5}
\]
\(i = 1, 2, 3, \ldots, n \)

\(y_{\text{median}} \): The median value of the ratios of OBS and ERA5 land SSR series,

\(OBS_{i, \text{land}} \): Land SSR for the year \(i \) from SSRIH\(_{\text{land}}\) in a single grid,

\(ERA5_{i, \text{land}} \): Land SSR for the year \(i \) from ERA5 in a single grid,

\(OBS_{i, \text{O&L}(\text{land})} \): Land SSR along the sea-land boundary (land) for the year \(i \) from SSRIH\(_{\text{land}}\),

\(ERA5_{i, \text{O&L}(\text{Ocean})} \): Ocean SSR along the sea-land boundary for the year \(i \) from ERA5,

\(T_O \): Trend of ERA5 SSR on ocean areas in all \(n \) years,

\(T_L \): Trend of ERA5 SSR on areas in all \(n \) years.

3.2.2 AI Model reconstruction

We use a server (configured with processor Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz, RAM 32G, 64-bit OS, GPU model 516.94, NVIDIA GeForce 1080Ti version, Python 3.9.12 64-bit, CUDA 10.1) for AI models training. The specific training steps are as follows:

1) A total of 768 missing value masks (monthly masks between 1955 and 2018) were prepared for training and validation using ‘1’ for existing and ‘0’ for missing values;

2) The 20CRv3/CMIP6 training set (monthly values between 1955 and 2015/2014) and missing value masks are fed into the 20CR-AI /CMIP6-AI model for training;

3) We perform 1,500,000 training sessions with an interval of 10,000 sessions for the training output model.

Afterwards, the two AI models are validated against the root mean squared error (RMSE)/CCs of the reconstructed SSRs (SSR\(_{20CR}/\text{SSR}_{\text{CMIP6}}\)). The validation set SSRs, and the optimal number of training cycles is 1,100,000 (see Figure S2, Figure S3 and Figure S4 in the SM). The initial hyper-parameters of the model are set as follows; learning rate of 2e-4, batch size of 16 and learning finetune of 5e-5.

The training result models generated by the different AI models are obtained separately for the different training sets. The model is first used to reconstruct a reanalysis validation set with the same missing value mask as the original observation dataset. This is followed by a validation of the reconstruction against the original reanalysis dataset (calculation of CC and RMSE) to understand the discrepancies in the model reconstruction.
4 Data homogenization and verification

We homogenized the original monthly stations/gridded SSR time series (SSRIH$_{\text{station}}$/SSRIH$_{\text{grid}}$) using the method in section 3.1.2. We selected six continental regions, excluding Antarctica and the Arctic, from the eight continents of the world defined by Xu et al. (Xu et al., 2018) (Asia, Africa, South America, Europe, North America, Australia, Antarctica and the Arctic). The decreasing trend of the SSRIH$_{\text{grid}}$ is consistent with the original gridded SSR series (SSRI$_{\text{grid}}$) during 1955-1991 while the increasing trend during 1991-2018 is weaker. At the regional scale, the SSRIH$_{\text{grid}}$ has a generally similar variation to the SSRI$_{\text{grid}}$, and the SSRIH$_{\text{grid}}$ is usually more representative of climate change than SSRI$_{\text{grid}}$ at individual stations.

Figure S5 (see in the SM) illustrates the long-term variations of global (Figure S5 (a) in the SM) and continental land SSR (Figure S5 (b) in the SM) from the SSRI$_{\text{grid}}$ and SSRIH$_{\text{grid}}$ (except for Antarctica) during 1955-2018. The most prominent change revolves around the adjustment around 1992: the SSR anomalies were systematically adjusted upward from 1987 to 1992, while the SSR anomalies were systematically adjusted downward from 1993 onwards. Thus, there is a significant decreasing trend for both global land SSRI$_{\text{grid}}$ (-1.995±0.251 W/m2 per decade) and global land SSRIH$_{\text{grid}}$ (-1.776±0.230 W/m2 per decade) (except for Antarctica) from 1955 to 1991. While the increasing trend of the global land SSRIH$_{\text{grid}}$ from 1991 to 2018 is 0.851±0.410 W/m2 per decade, slightly smaller than the increasing trend of the SSRI$_{\text{grid}}$ (0.999±0.504 W/m2 per decade). It is worth noting that 1992 happened to be the second year of the eruption of Mount Pinatubo, and the homogenized SSR data integrated in this paper may be affected by this event. But overall, the homogenization also has limited effects on the global SSR variations from Figure S5 (see in the SM), which is consistent with the influence of data homogenization on a wide range of surface air temperatures (Brohan et al., 2006; Xu et al., 2013).

At the regional scale, the differences between the SSRIH$_{\text{grid}}$ and SSRI$_{\text{grid}}$ are more pronounced in Asia and Europe (see Figure S5(b) in the SM). Asia’s homogenized SSR show that the regional average SSR has been declining significantly over the period 1958-90; this dimming trend mostly diminished over the period 1991-2005 and was replaced by a brightening trend in the recent decade. The SSRIH$_{\text{grid}}$ in Asia is higher than the SSRI$_{\text{grid}}$ from 1985 to 1990 and lower than the SSRI$_{\text{grid}}$ from 2012 to 2015. The SSRIH$_{\text{grid}}$ shows a more moderate short-term increase in Europe from 1960 to 1980. Note also that the Australian raw data prior to 1988 were artificially detrended because at the time the Australia Weather Service was
afraid that the instruments would drift. Therefore, they detrended them and unfortunately did not store the raw data, and the SSR evolution in Australia is artificial with no trend (Wild et al., 2005). In addition, the SSRI_{station} and SSRIH_{station} comparisons for all 66 stations are shown in Figure S1 (see in the SM).

5 AI reconstruction and comparison

5.1 Training of the AI model

We produce two (20CRv3 /CMIP6) separate training and validation sets: we select the 1th member data of the reanalysis data and the model data, respectively, as the validation set, and the remaining 79 (124) ensemble members as the training sets, where each ensemble member included 732 (720) months of SSR data. Each validation set included 732 (720) samples, while the training sets contained 57828 (89280) ensemble members. All the above data, including the in-situ observations, are then resampled to monthly anomalies of 5° × 2.5°.

We reconstruct the SSR of 20CRv3/CMIP6 with missing values based on 20CRv3 /CMIP6 datasets using the method in section 3.2 and obtain two reconstructions, SSR_{20CR} and SSR_{CMIP6}, respectively. The SSR of 20CRv3/CMIP6 with missing values uses the SSRIH_{grid} mask between 1955 and 2015/2014. We compare the global land (except for Antarctica)/regional annual anomalies variation of SSR_{20CR}/SSR_{CMIP6}.

The results show that SSR_{20CR} is significantly more consistent with the validation set than SSR_{CMIP6}.

Figure 6(a) shows that the RMSE/CC of the SSR_{20CR} (0.25 W/m²/0.97 W/m²) are smaller/larger than those of SSR_{CMIP6} (0.52 W/m²/0.93 W/m²) with the original 20CR/CMIP6 dataset. The 20CR-AI model has a better reconstruction ability for SSR at the global land (except for Antarctica) scale. The RMSEs of the SSR_{20CR} (SSR_{CMIP6}) are 1.46 (2.41) W/m², 1.11 (1.83) W/m², 2.22 (2.60) W/m² and 1.29 (2.24) W/m² in North America, Europe, Asia, and Northern Hemisphere, whereas these values are 1.12 (1.77) W/m², 0.62 (1.60) W/m², 1.88 (1.84) W/m² and 0.77 (1.68) W/m² in South America, Africa, Australia, and Southern Hemisphere concerning the original 20CR/CMIP6 dataset, respectively. In other words, the RMSEs of the SSR_{20CR} are smaller than those of SSR_{CMIP6} for the original 20CR/CMIP6 dataset except for Australia. In addition, the CCs of the SSR_{20CR} (SSR_{CMIP6}) are 0.96 (0.83) W/m², 0.96 (0.89) W/m², 0.89 (0.67) W/m², 0.93 (0.97) W/m², 0.94 (0.93) W/m², 0.94 (0.92) W/m², 0.94 (0.88) W/m² and 0.90 (0.82) W/m² in North America, Europe, Asia, Northern Hemisphere, South America, Africa, Australia, and Southern Hemisphere with respect to the original 20CR /CMIP6
dataset, respectively. That is, the CCs of the SSR$_{20CR}$ are larger than those of SSR$_{CMIP6}$ to the original 20CR /CMIP6 dataset except for Europe.

Based on the above comparison, the higher uncertainty for CMIP6 model output possibly biases the CMIP6-AI method. Thus, the accuracy of the SSR$_{20CR}$ is higher than that of the SSR$_{CMIP6}$ at both global land (except for Antarctica) and regional scales. Therefore, we choose the reconstruction results of the 20CR-AI model as the final AI reconstruction dataset, and subsequent analysis in the following sections is only based on this dataset.

5.2 Comparison of the spatial and temporal variation characteristics

We investigate the long-term trends and spatial and temporal variation of the SSRIH$_{20CR}$, compare the differences between the SSRIH$_{20CR}$ and SSRIH$_{grid}$, and suggest: the area and magnitude of the high and low centres of the SSRIH$_{20CR}$ are the same as those of the SSRIH$_{grid}$; the results of the global land (except for Antarctica) reconstruction are consistent with "dimming and brightening"; the global dimming is primarily dominated by decreasing trends in Asia, Europe Africa and North America, whereas Europe and North America are contributors to the increasing trends.

Figure 7 shows the spatial distribution of the SSRIH$_{grid}$ and SSRIH$_{20CR}$ for the three months (July 1960, July 1980, and July 2000). Figure S6 (see in the SM) displays the spatial distribution of annual SSRIH$_{grid}$ and SSRIH$_{20CR}$ from 1955 to 2018. Figure 7 also shows the area and the magnitude of the high and low centres in the SSRIH$_{20CR}$ are the same as in the SSRIH$_{grid}$. The SSRIH$_{20CR}$ is mainly positive anomalies in Africa and the Eurasian continent in July 1960, especially in India and the Middle East. Afterwards, India showed a continuous and steady decline in SSR. This confirms the well-known phenomenon of global dimming over India (Wild et al., 2009; Soni et al., 2016; Soni et al., 2012; Padma Kumari et al., 2007; Kambezidis et al., 2012). In Australia, the SSRIH$_{20CR}$ is dominated by negative anomalies in July 1980 and positive anomalies in July 1960 and July 2000. In Greenland, the SSRIH$_{20CR}$ shows a large positive anomaly during three months. In northern Russia, there is a high value in July 2000. The reconstruction can better reflect the anomaly distribution of observation information, and the grid boxes with the missing values are infilled and reconstructed, which has high reliability.

Figure 8 illustrates global land (except for Antarctica) annual anomalies variation and long-term trend of the SSRIH$_{20CR}$ for the period of 1955-2018, 1955-1991 and 1991-2018. Also, we compare the differences between the SSRIH$_{20CR}$ and SSRIH$_{grid}$. The minimum value of the SSRIH$_{20CR}$ occurred in
1991 (-2.411 W/m²). The decreasing trend of the SSRIH_{20CR} from 1955 to 1991 (-1.276±0.205 W/m² per decade) is slightly lower than that of the SSRIH_{grid} (-1.776±0.230 W/m² per decade). After that, the SSRIH_{20CR} turns to an increasing trend of 0.697 ± 0.359 W/m² per decade from 1991 to 2018. This suggests that the difference between SSRIH_{20CR} and SSRIH_{grid} may be caused by the results observed in limited data coverage (such as in Africa and North America) (Figure 9). After homogenization and reconstruction, the trend (-1.276 W/m² per decade) from 1955 to 1991 corresponds to an overall reduction of -4.6 W/m² over the dimming period, while that (0.697 W/m² per decade) from 1991 to 2018 correspond to an overall increase of 2.0 W/m² over the brightening period. This is in amazing agreement with the -4 W/m² for the dimming period and the 2 W/m² for the brightening period based on an overall surface energy budget assessment (Wild, 2012) see their Figure 1). Also, similar conclusions (incomplete coverage of observational data lead to an underestimation of global warming trends) have been confirmed in global warming research (Gulev et al., 2021; Li et al., 2021).

Figure 9 demonstrates the long-term annual anomaly variations of the SSRIH_{20CR} in different regions and its results compared to the SSRIH_{grid}. The SSRIH_{20CR} shows a similar annual anomaly variation to the global land (except for Antarctica) average trend in North America and Asia, reaches a minimum in the late 1970s or early 1990s, and follows a moderate reversal. In Europe, the SSRIH_{20CR} shows a decrease (-2.180 ± 1.866 W/m² per decade) between 1963 and 1978 before turning to brightening (1.081 ± 0.312 W/m² per decade). In South America and Australia (Southern Hemisphere), the SSRIH_{20CR} shows no significant variation. In Africa, the SSRIH_{20CR} has a dimming trend (-1.506 ± 0.496 W/m² per decade) from the 1950s to the 1990s, after which it remains levelled off (0.340 ± 0.998 W/m² per decade). The SSRIH_{20CR} shows a decreasing trend (-1.457 ± 0.246 W/m² per decade) until the 1990s in the Northern Hemisphere and a brightening (0.887 ± 0.415 W/m² per decade) afterwards. The annual average anomaly variations in regions and globally show that Asia, Africa, Europe and North America are the four contributors to the global dimming, while Europe and North America are two major contributors to the “brightening”. This is in general agreement with the results obtained by previous machine learning (Yuan et al., 2021). In addition, the discrepancy between the SSRIH_{20CR} and SSRIH_{grid} is more significant in low-coverage areas (right) than in high-coverage regions (left). It is particularly pronounced before 1980 and in South America. This suggests that the limited surface observations are not representative of the continental variation in SSR.
To sum up, the AI reconstruction of this paper helps to decrease the uncertainties in SSR variations in both spatial scales. Further, it shows that there may be a sampling error in the variations of the global land (except for Antarctica) and regional SSR before reconstruction, leading to a systematic deviation in the long-term trend of global land (except for Antarctica) or regional SSR.

6 Data availability

Both the SSRIH$_{grid}$ (the homogenized monthly gridded SSR data over 1923-2020) and the SSRIH$_{20CR}$ (the monthly 20CR-AI model reconstructed SSR data for 1955-2018) are currently publicly available on the figshare website under DOI at https://doi.org/10.6084/m9.figshare.21625079.v1 (Jiao and Li, 2023). These datasets are also available at http://www.gwpu.net for free.

7 Conclusion

In this study, we integrate global station observations based on the raw observational SSRs from GEBA and WRDC, combined with existing homogenized SSR datasets from other scholars. Also, we homogenize the globally distributed station data using the RHtestV4 software package. An improved CNN deep learning algorithm is subsequently used to reconstruct the SSR anomalies. Thus, a reconstructed SSR anomaly dataset, SSRIH$_{20CR}$, is obtained based on training sets (20CRv3), for the years 1955-2018, with a resolution of 5°×2.5°. The main results are as follows:

1) The first integrated and homogenized global SSR monthly dataset is developed, which contains 944 stations in total and covers the longest periods (from the 1920s to recent years). A 5°×5° grid boxes version of the monthly SSR anomalies dataset is derived.

2) This paper develops 5°×2.5° full-coverage monthly land (except for Antarctica) SSR anomalies reconstructed datasets based on the above observations, using the 20CRv3 to train the AI model. Comparative validations /evaluations show that the SSRIH$_{20CR}$ provides a reliable benchmark for global SSR variations.

3) On average, the global annual SSR variations based on the SSRIH$_{grid}$ are not significantly different, except that the increasing (brightening) trend after 1991 is a little smaller for the latter. The short-term brightening SSR in Europe from the 1970s- to the 1980s disappear at the regional scale. At the same time, the brightening SSR after the 1990s in Asia slowed or postponed.
Author contributions

Boyang Jiao: Software, Data curation, Writing - Original draft preparation, Visualization, Investigation.

Yucheng Su: Software, Data curation.

Qingxiang Li: Methodology, Supervision, Conceptualization, Validation, Writing - Review and Editing.

Veronica Manara: Providing the homogenized Italian dataset, Writing - Review and Editing.

Martin Wild: Writing - Review and Editing.

Competing interests

At least one of the (co-)authors is a member of the editorial board of Earth System Science Data.

Disclaimer

Publisher's note: Copernicus Publications remains neutral about jurisdictional claims in published maps and institutional affiliations.

Financial support

This study is supported by the Natural Science Foundation of China (Grant: 41975105) and the National Key R&D Program of China (Grant: 2018YFC1507705; 2017YFC1502301). The Global Energy Balance Archive (GEBA) is co-funded by the Federal Office of Meteorology and Climatology MeteoSwiss within the framework of GCOS Switzerland. Global dimming and brightening research at ETH Zurich are supported by the Swiss National Science Foundation (Grant No. 200020 188601).

Veronica Manara was supported by the “Ministero dell'Università e della Ricerca” of Italy [grant FSE – REACT EU, DM 10/08/2021 n. 1062].
Reference

Jiao, B. and Li, Q.: Global Integrated and Homogenized Solar surface Radiation Datasets,
22

Yang, S.: Chinese Monthly homogenized surface solar radiation datasets (V 1.0), 2016.

Captions of tables and Figures

Table 1: List of information on the various types of data used in this paper.

Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration (third step).

Figure 2: Spatial distribution of candidate stations (“*”) and added stations (“+”). The different colour bars represent the length of the station record in months (Units: Month).

Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours represent the length of station records in months.

Figure 4: Flowchart of AI reconstruction.

Figure 5: (a) Spatial distribution of 5°x5° grid boxes (SSRIHgrid) obtained interpolating the homogenized global land (except for Antarctica) SSR series. The different colours represent the length (the sum of all records) of the station record. Units: Year. (b) Grid box coverage for the homogenized global land (except for Antarctica) SSR (SSRIHgrid) except for Antarctica.

Figure 6: Reconstruction capabilities of the AI model.

Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is July 1960, July 1980, and July 2000, respectively.

Figure 8: Global land (except for Antarctica) time series of the annual anomaly variations SSR (relative to 1971-2000) before/after reconstruction.

Figure 9: Same as Figure 8, but for regional annual anomaly variations.
Table 1: List of information on the various types of data used in this paper

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Resolution</th>
<th>Time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ-Raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEBA (Station)</td>
<td>Monthly</td>
<td>1922-2020</td>
<td>(Wild et al., 2017)</td>
</tr>
<tr>
<td>WRDC (Station)</td>
<td>Monthly</td>
<td>1964-2017</td>
<td>(Tsvetkov et al., 1995)</td>
</tr>
<tr>
<td>In-situ-Homo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China (Station)</td>
<td>Monthly</td>
<td>1950-2016</td>
<td>(Yang et al., 2018b)</td>
</tr>
<tr>
<td>Japan (Station)</td>
<td>Monthly</td>
<td>1870-2015</td>
<td>(Ma et al., 2022)</td>
</tr>
<tr>
<td>Europe (Station)</td>
<td>Monthly</td>
<td>1922-2012</td>
<td>(Sanchez-Lorenzo et al., 2015)</td>
</tr>
<tr>
<td>Italy (Station)</td>
<td>Monthly</td>
<td>1959-2016</td>
<td>(Manara et al., 2016; Manara et al., 2019)</td>
</tr>
<tr>
<td>Reanalysis/Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERA5 (Grid)</td>
<td>Monthly/0.25° × 0.25°</td>
<td>1950-2020</td>
<td>(Hersbach et al., 2020)</td>
</tr>
<tr>
<td>20CRv3 (Grid)</td>
<td>Monthly/0.7° × 1°</td>
<td>1940-2015</td>
<td>(Slivinski et al., 2019)</td>
</tr>
<tr>
<td>CMIP6 (Grid)</td>
<td>Monthly/-</td>
<td>1940-2014</td>
<td>(Eyring et al., 2016)</td>
</tr>
</tbody>
</table>
Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration (third step).
Figure 2: Spatial distribution of candidate stations (‘*’) and added stations (‘+’). The different colour bars represent the length of the station record in months (Units: Month).
Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours represent the length of station records in months.
Figure 4: Flowchart of AI reconstruction.
Figure 5: (a) Spatial distribution of 5°×5° grid boxes (SSRIH grid) obtained interpolating the homogenized global land (except for Antarctica) SSR series. The different colours represent the length (the sum of all records) of the station record, Units: Year. (b) Grid box coverage for the homogenized global land (except for Antarctica) SSR (SSRIH grid) except for Antarctica.
Figure 6: Reconstruction capabilities of the AI model. (a) Global land (except for Antarctica) means time-series analysis and AI model reconstruction evaluation. The red line is the SSR of the reconstruction based on the 20CR-AI / CMIP6-AI model (SSR$_{20CR}$/SSR$_{CMIP6}$). The grey line is the masked datasets with missing values of the SSR$_{HIH}$. The solid black line is the 20CR and CMIP6 validation set (the SSR from the 1st member of 20CRv3/CMIP6). (b) Comparisons of the SSR$_{20CR}$ (columns 1, 3) /SSR$_{CMIP6}$ (columns 2, 4) with the SSR from the 20CR and CMIP6 validation set. Colour bars represent counts with the same values for both. Figures also show the SSR$_{20CR}$/SSR$_{CMIP6}$ correlation coefficient (CC), root mean squared error (RMSE) and fitting equation compared to the original dataset in different regions.
Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is July 1960, July 1980, and July 2000, respectively.
Figure 8: Global land (except for Antarctica) annual SSR anomaly variations (relative to 1971-2000) before/after reconstruction. The Black solid line represents the SSRH$_{grid}$ annual anomalies. The solid blue line represents the SSRH$_{20CR}$ annual anomalies. The histograms represent the decadal trends of the SSRH$_{grid}$ /SSRH$_{20CR}$ (unit: W/m2 per decade) and their 95% uncertainty range from 1955 to 1991, 1991-2018 and 1955-2018.
Figure 9: Same as Figure 8, but for regional annual anomaly variations. The green colour filling diagram represents the variation in grid box coverage (before reconstruction).