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Abstract 15 

Surface solar radiation (SSR) is an essential factor in the flow of surface energy, enabling accurate 16 

capturing of long-term climate change and understanding the energy balance of Earth's atmosphere 17 

system. However, the long-term trend estimation of SSR is subjected to significant uncertainties due to 18 

the temporal inhomogeneity and the uneven spatial distribution of the in-situ observations. This paper 19 

develops an observational integrated and homogenized global-terrestrial (except for Antarctica)) 20 

stational SSR dataset (SSRIHstation) by integrating all available SSR observations, including the existing 21 

homogenized SSR results. The series is then interpolated in order to obtain a 5°×5° resolution gridded 22 

dataset (SSRIHgrid). On this basis, we further reconstruct a long-term (1955-2018) global land (except for 23 

Antarctica) SSR anomalies dataset with a 5°×2.5° resolution (SSRIH20CR) by training improved partial 24 

convolutional neural network deep learning methods based on the reanalysis 20CRv3. Based on this, we 25 

analysed the global land (except for Antarctica) /regional scale SSR trends and spatiotemporal variations: 26 

the reconstruction results reflect the distribution of SSR anomalies and have high reliability in filling and 27 

reconstructing the missing values. At the global land (except for Antarctica) scale, the decreasing trend 28 

of the SSRIH20CR (-1.276±0.205 W/m2 per decade) is slightly smaller than the trend of the SSRIHgrid (-29 

1.776±0.230 W/m2 per decade) from 1955 to 1991. The trend of SSRIH20CR (0.697±0.359 W/m2 per 30 

decade) from 1991 to 2018 is also marginally lower than that of the SSRIHgrid (0.851±0.410 W/m2 per 31 

decade). At the regional scale, the difference between the SSRIH20CR and SSRIHgrid is more significant 32 

in years and areas with insufficient coverage. Asia, Africa, Europe and North America cause the global 33 

dimming of the SSRIH20CR, while Europe and North America drive the global brightening of the 34 

SSRIH20CR. Spatial sampling inadequacies have largely contributed to a bias in the long-term variation 35 

of global /regional SSR. This paper's homogenized gridded dataset and the Artificial Intelligence 36 

reconstruction gridded dataset (Jiao and Li, 2023) are all available at 37 

https://doi.org/10.6084/m9.figshare.21625079.v1.  38 

  39 
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1 Introduction 40 

Energy flows at the Earth's surface play an essential role in climate change and human activity and link 41 

to physical processes such as global warming, glacier retreating, hydrological cycle, and carbon budget 42 

(Hoskins and Valdes, 1990; Peixoto et al., 1992; Trenberth and Fasullo, 2013; Wild, 2012). As a critical 43 

factor characterizing surface energy flows, Surface Solar Radiation (SSR) largely determines the climatic 44 

conditions and ecological environment in which we live. Therefore, a more accurate and comprehensive 45 

analysis of the SSR fluxes will help better understand the Earth's atmospheric system. In-situ 46 

observations provide the most accurate baseline data for measuring SSR. They allowed for the first time 47 

the detection of decadal changes in SSR known as “dimming and brightening” (Wild et al., 2005), 48 

especially considering that they cover a longer period concerning another type of data like for example 49 

satellite data (Pfeifroth et al., 2018). Even observational data often have uneven distribution and missing 50 

data with respect to the satellite data, especially in areas with complex orography (Manara et al., 2020). 51 

The sources of in-situ SSR observations are mainly collected from the Global Energy Balance Archive 52 

(GEBA) (Wild et al., 2017) and the World Radiation Data Centre (WRDC) (Tsvetkov et al., 1995). 53 

Furthermore, other SSR station series are obtained from the high quality Baseline Surface Radiation 54 

Network (BSRN) (Driemel et al., 2018) and the data centres of individual national hydrometeorological 55 

services. However, two issues still need to be addressed: 1) the inhomogeneity of station data resulting 56 

from station relocations and instrumentation changes severely impacts the climate change assessment. 57 

For the regions with a relatively high density of stations, like Europe (Manara et al., 2019; Manara et al., 58 

2016; Sanchez-Lorenzo et al., 2013a; Sanchez-Lorenzo et al., 2015; Sanchez-Lorenzo et al., 2013b), 59 

Japan (Ma et al., 2022) and China (Ju et al., 2006; Wang, 2014; Wang et al., 2015; Wang and Wild, 2016; 60 

Yang et al., 2018b; You et al., 2013), much previous work has redefined the degree and timing of 61 

“dimming and brightening” by addressing the inhomogeneity of the SSR data series. For example, in 62 

Spain, the average annual homogenized SSR series has a significant increasing trend (+ 3.9 W/m2 per 63 

decade) during the 1985–2010 period (Sanchez-Lorenzo et al., 2013a). The period of dimming observed 64 

in Italy’s homogenized SSR series is not apparent in the 1960s and early 1970s when the raw series 65 

(inhomogenized) are taken into account (Manara et al., 2016). The direct measurements of SSR show a 66 

level trend from 1961 to 2014 over Japan, while their homogenization series display a decreasing trend 67 

(0.8-1.6 W/m2 per decade) (Ma et al., 2022). In China, homogenization largely eliminated the dramatic 68 
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non-climatic rise of the early 1990s and also reduced the increasing trend from 1990 to 2016 (Yang et 69 

al., 2018b). However, most of the research was still limited to regional scales. 2) The issue of limited 70 

spatial sampling of long observational stations and their uneven distribution especially over areas with 71 

complex orography. Considerable efforts have been devoted to filling in /interpolating the missing values 72 

in climate datasets ("spatial analysis") (Collins, 1996; Erxleben et al., 2002; Scudiero et al., 2016). The 73 

traditional spatial interpolation methods commonly used include Inverse Distance Weighted (Fisher et 74 

al., 1993; Shepard, 1968), Kriging (Krige, 1951), Thin-Plate Splines (Bookstein, 1989) et cetera. Since 75 

the 1980s, physical parametric interpolation (Feng and Wang, 2021; Tang et al., 2019) and Bayesian 76 

fusion schemes (Aguiar et al., 2015) based on multi-source observational data were widely used, when 77 

the emergence of highly accurate and relatively precise satellite data. However, the resulting fusion 78 

datasets cover a too short period to investigate their decadal and multi-decadal variations and to study 79 

the underlying causes. The spatial, temporal, and spectral coverage of a single satellite is limited, and 80 

multiple satellite data are therefore often used in tandem with each other; however, such a 81 

discontinuity in time and space can introduce inhomogeneity into a dataset (Evan et al., 2007; Feng 82 

and Wang, 2021; Shao et al., 2022). Reanalysis products are an important complement containing 83 

long-term SSR data, therefore have been widely used in climate studies (Huang et al., 2018; Jiao et 84 

al., 2022; Urraca et al., 2018; Zhou et al., 2018a; Zhou et al., 2017) due to the dynamically consistent 85 

and spatiotemporally complete atmospheric fields with high resolution and open access to data. 86 

However, existing studies have shown that reanalysis products generally overestimate multi-year 87 

mean SSR values compared to observations over land (He et al., 2021). With the continuous 88 

development of climate system simulations, model data from the Coupled Model International 89 

Program (CMIP) have become an important resource for conducting climate change research (Gates 90 

et al., 1999; Zhou et al., 2019). Previous studies have shown that the models used in CMIP6 91 

overestimate the global mean SSR (He et al., 2023; Jiao et al., 2022; Wild, 2020). The rise of deep 92 

learning and big data techniques has brought about an explosion of artificial intelligence (AI). Machine 93 

learning is increasingly being used in spatial interpolation, such as the spatial reconstruction of surface 94 

temperature datasets (Huang et al., 2022; Kadow et al., 2020; Cao et al., 2022), the spatial and temporal 95 

reconstruction of turbulence resolution (Fukami et al., 2021), etc. Furthermore, it shows high accuracy 96 

and low uncertainty in reproducing and predicting SSR (Leirvik and Yuan, 2021; Tang et al., 2016; Yang 97 

et al., 2018a; Yuan et al., 2021). However, long-term homogenized SSR datasets with global terrestrial 98 
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coverage have yet to be developed, resulting in significant uncertainties in assessing global SSR variation 99 

(Jiao et al., 2022). 100 

Therefore, developing a more homogeneous and comprehensive global long-term SSR climatic dataset 101 

that provides a better benchmark for observational constraints on the global surface energy balance 102 

/budget remains a valuable and challenging task. This paper first homogenizes and grids the most 103 

extensive collection of available global SSR station observations. Then, the missing grid boxes /years 104 

are spatially interpolated using a convolutional neural network (CNN) approach to obtain a globally 105 

covered land surface SSR anomalies dataset. Finally, the reconstructed datasets are initially analysed and 106 

evaluated. Thus, the paper is divided into seven main sections. The data resources are introduced in 107 

Section 2. Section 3 presents the data homogenization, and the CNN model reconstruction methods. The 108 

data homogenization and verification are shown in Section 4. Section 5 gives the AI reconstruction results. 109 

Section 6 is the availability of the datasets. Conclusions are provided at the end of the paper.  110 

2 Data 111 

Nine SSR datasets are collected to derive the global SSR variable. In particular, six datasets contain data 112 

from observational stations (Section 2.1): two global ground-based measurement datasets (GEBA, 113 

WRDC) and four homogenized products at regional and country levels (Europe, China, Japan and Italy). 114 

Three of the adopted datasets are reanalysis data (Section 2.2.1): Fifth generation European Centre for 115 

Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), 20th Century Reanalysis version 3 116 

(20CRv3) reanalysis data and the Coupled Model Intercomparison Project Phase 6 (CMIP6) historical 117 

simulation output (125). Specifically, the ERA5 data are used to fill the data over oceans and Antarctica 118 

(Section 3.2.1), 20CRv3 data and CMIP6 simulations are used for the AI model training (Section 5.1) 119 

and reconstruction. All have been listed in Table 1. 120 

2.1 In situ observational Data 121 

2.1.1 Global datasets 122 

There are two main sources of raw SSR data (see Table 1): the ETH Zurich GEBA with monthly data 123 

from 2,445 globally distributed stations, starting from 1922 until 2020, and the WRDC dataset with 124 

monthly globally distributed data from 1136 stations since 1964. The first one is available for download 125 
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at https://geba.ethz.ch (Last access: 2022.7. 2). The second one published the first SSR radiation balance 126 

data in 1965 and then its publication has been issued four times a year since 1993 and is available for 127 

download at http://wrdc.mgo.rssi.ru/ (Last access: July 2021). 128 

2.1.2 National (regional) homogenized station datasets 129 

1) Chinese homogenized SSR dataset 130 

The China Meteorological Radiation Fundamental Elements Monthly Value Data Set has been 131 

downloaded at http://www.nmic.cn. The homogenized SSR dataset in China is released by the National 132 

Meteorological Information Centre (NMIC), China Meteorological Administration (CMA) (Yang, 2016). 133 

The data are available for the period between Jan 1950 to Dec 2014, and the follow-up data are extended 134 

with raw observations from NMIC. They used the sunshine duration (SSD) data from nearby stations to 135 

construct an arguably better reference to identify inhomogeneities in the SSR data. Then, a combined 136 

metadata and the maximum penalty t-test (PMT) method was used to detect the change points. Finally, 137 

they were adjusted by a quantile matching (QM) algorithm (Wang and Feng, 2013). The final 138 

homogenized SSR station dataset was converted to gridded data using the first difference method (FDM 139 

(Peterson et al., 1998)) and is available for download at http://www.nmic.cn. Last Access: September 140 

2022. 141 

2) Japanese homogenized SSR dataset 142 

Ma et al. (Ma et al., 2022) released a Japanese SSR homogenized dataset in 2022 spanning the period 143 

between 1870 and 2015. First, they homogenized SSD based on PMF (penalized maximal F test) and 144 

QM algorithms. They then used the homogenized SSD from the previous step as a reference series, 145 

combined with metadata and PMT, to detect change points. Finally, they adjusted the change points by 146 

the QM algorithm. For more details on data descriptions, the adopted methodology and downloading 147 

data refer to https://data.tpdc.ac.cn/en/data/45d73756-3f5a-4d27-82a4-952e268c20e8/, Last Access: 148 

March 2022. 149 

3) European homogenized SSR data 150 

A homogenized dataset of European SSR stations was developed by Sanchez-Lorenzo et al. (Sanchez-151 

Lorenzo et al., 2015) and is currently available as a full public download at 152 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023321. They selected the 56 longest 153 

Central European SSR series available in GEBA dataset with data for the period comprised between 154 

https://geba.ethz.ch/
http://wrdc.mgo.rssi.ru/
http://www.nmic.cn./
http://www.nmic.cn/
https://data.tpdc.ac.cn/en/data/45d73756-3f5a-4d27-82a4-952e268c20e8/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023321
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1922 and 2012. They adjusted them to ensure temporal homogeneity homogenizing the data with the 155 

Standard Normal Homogeneity Test (Alexandersson, 1986) and the Craddock test (Craddock, 1979). 156 

4) Italian homogenized SSR dataset 157 

The Italian homogenized SSR datasets are those published by (Manara et al., 2019; Manara et al., 158 

2016). As candidate stations to use as reference series, they selected the ten series located in the same 159 

area of the series to be tested and that series correlate well with the test one. In particular, they tested the 160 

change points with the Craddock test (Manara. et al., 2017) and when a break is identified by more than 161 

one reference series the preceding portion of the series is corrected, leaving the most recent portion 162 

unchanged. In this way, the SSR stations were homogenized, and then the missing values were 163 

interpolated.  164 

2.2 Other datasets 165 

2.2.1 Reanalysis 166 

ERA5 can be used to fill in SSR data from the oceans and Antarctica and carry out the global 167 

reconstruction, taking into account its high spatial resolution and reliable performance of SSR (Jiao et 168 

al., 2022; Liang et al., 2022). After the reconstruction, we removed the data for the ocean reanalysis and 169 

maintain the data only in the land area (except for Antarctica). In addition, two SSR data products 170 

(20CRv3, CMIP6) are used to train AI models. These are: 171 

1) ERA5 (space-filling data): ERA5 is the fifth generation of the European Centre for Medium-Range 172 

Forecasting reanalysis product, which currently publishes data from 1950 to the present (Hersbach et al., 173 

2020). In addition, ERA5 has an hourly output and an uncertainty estimate from the ensemble. The data 174 

is based on the Integrated Forecasting Model Cy41r2 run in 2016, which contains a 4D-Var assimilation 175 

scheme. In ERA5, SSR is obtained from a Rapid Radiation Transfer Model (RRTM) (Mlawer et al., 176 

1997). The present study utilizes monthly SSR data for the period 1955-2018 from ERA5 with a 177 

resolution of 0.25 ° ×0.25 °  (last accessed in July 2022). It can be downloaded at 178 

https://cds.climate.copernicus.eu 179 

2) 20CRv3 (data for AI model training): The 20CR Project is an effort led by NOAA's Physical 180 

Sciences Laboratory and CIRES at the University of Colorado, supported by the Department of Energy, 181 

to produce reanalysis datasets spanning the entire 20th century and much of the 19th century (Slivinski 182 

et al., 2019). 20CR provides a comprehensive global atmospheric circulation data set from 1850 to 2015. 183 

https://cds.climate.copernicus.eu/
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Its chief motivation is to provide an observational validation dataset, with quantified uncertainties, for 184 

assessing climate model simulations of the 20th century. 20CR uses an ensemble filter data assimilation 185 

method which directly estimates the most likely state of the global atmosphere every three hours and 186 

estimates the uncertainty in that analysis. The most recent version of this reanalysis, 20CRv3, provides 187 

8-times daily estimates of global tropospheric variability across 75 km grids, spanning 1836 to 2015 188 

(with an experimental extension from 1806 to 1835). The present study uses monthly SSR data of 189 

20CRv3 (NOAA /CIRES /DOE 20CR, 80 members) from 1955-2015. We selected all 80 members of 190 

the 20CR as input (1 for evaluation and to test reconstruction, the other 79 for training the CNN model). 191 

The SSR of 20CRv3 has a spatial resolution of 0.7°×0.7° (Last accessed: May 2022). The download is 192 

available at https://portal.nersc.gov/archive/home/projects/incite11/. 193 

2.2.2 CMIP6 models output 194 

3) CMIP6 models output (data for AI model training): the Coupled Model Intercomparison Project, 195 

driven by the World Climate Research Program, is now in its 6th phase. Specifically, CMIP6 is 196 

considered as the current state of the art way of producing future climate simulations, including predicting 197 

future SSR based on different climate scenarios (Zhou et al., 2018b). It provides an important resource 198 

for studying current and future climate change (Eyring et al., 2016). The historical simulations of CMIP6 199 

are designed to reproduce observed climate and climate change, constrained by radiative forcing. Its 200 

historical simulation spans between 1850 and 2014. In this study, we selected 125 members out of a total 201 

of 507 members from several CMIP6 large ensemble models (with more than 10 realizations/runs) with 202 

high correlation coefficients with observations as input to train and validate the CNN model (1 for 203 

evaluation and to test reconstruction, the other 124 for training the CNN model). We selected the monthly 204 

downward shortwave radiation from 1955 to 2014 (see Table S1 in the Supplemental Material (SM)). 205 

Last access July 2022. Download at: https://esgf-node.llnl.gov/search/cmip6. 206 

https://esgf-node.llnl.gov/search/cmip6
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3 Methods 207 

3.1 Data Quality Control (QC) and homogenization 208 

The SSR data homogenization method is only applied to the two inhomogenized in-situ observations 209 

datasets (GEBA and WRDC). The Quality Control (QC) and homogenization flowchart (Figure 1) is 210 

divided into three steps: 1. QC; 2. Homogenization; 3. Integration and consolidation. 211 

3.1.1 QC 212 

The QC of SSR data includes the following steps: 213 

1) Simple integration: integration of the GEBA (2445) and WRDC (1136) datasets removing stations 214 

with no data and leaving 2681 stations. 215 

2) Removing duplicate stations: a. Stations with similar latitude and longitude. We consider two 216 

stations with totally identical latitude and longitude to be the same station; b. Stations less than 10km 217 

apart. We averaged the duplicate stations in this a and b case; c. Special duplicate stations: Stitching 218 

together data of the duplicate stations based on metadata from CMA. 219 

3) Remove stations or years /months for which a climatic analysis cannot be established: we remove 220 

stations with records of less than ten years and values more than three times (3σ criterion (Olanow and 221 

Koller, 1998) the standard deviation of the SSR anomalies. 222 

4) Candidate stations (487) with a record length greater than 15 years in the period 1971-2000 are 223 

selected. We added stations (715) with more than 10 years of SSR records to increase the number of 224 

available stations for a better homogenization of the candidate stations (Figure 2). 225 

3.1.2 Station series homogenization 226 

This paper uses the RHtestV4 software package to test and adjust the SSR station data for homogeneity 227 

(http://etccdi.pacificclimate.org/software.shtml) (Wang and Feng, 2013). The package is based on the 228 

empirical penalty functions PMF (Wang, 2008b) and PMT (Wang, 2008a; Wang et al., 2007) for the 229 

homogenization test. It takes into account the lag-1 autocorrelation of the time series. It embeds a multiple 230 

linear regression algorithm to significantly reduce the problem of an unbalanced distribution of pseudo-231 

identification rates and test efficacy. Also, RHtestV4 uses the QM algorithm (Vincent et al., 2012; Wang 232 

et al., 2010) and Mean-Adjustments to adjust the identified change points. 233 

The specific steps are as follows: 234 

http://etccdi.pacificclimate.org/software.shtml
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1) Building the reference series 235 

a. We processed the data from all stations series (715) into the annual first differences (FD) series 236 

𝑒𝑖(Eq. (1)) (Peterson et al., 1998).  237 

b. We calculated the correlation of the annual FD series between the series from the potential reference 238 

pool and the candidate stations.  239 

c. We calculated the distance between the potential reference pool stations and candidate stations. 240 

d. We selected potential stations according to the correlation coefficient (CC >= 0.6) between the series 241 

from potential reference pool and candidate stations. And the potential stations also satisfy the limits in 242 

distances (<= 500km) between the potential pool stations and candidate stations. 243 

e. We obtain the reference FD series (𝑅𝑒)based on the m potential reference series (Pe𝑖) and the CCs 244 

(𝑐𝑖) between the potential reference series (Pe𝑖) and candidate stations series (Eq. (2)). 245 

f. The synthesized reference FD series (𝑅𝑒) (Eq. (2)), plus the average of all potential reference series 246 

(𝑅̄), yields the final annual reference series (𝑅) (Eq. (3)). 247 

𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖+1 

i=1, 2, …, n-1 
(1) 

𝑅𝑒 =
∑ 𝑃𝑒𝑖 ∗ 𝑐𝑖

2𝑚
𝑖=1

∑ 𝑐𝑖
2𝑚

𝑖=1

 (2) 

𝑅 = 𝑅𝑒 + 𝑅 (3) 

𝑒𝑖  Annual FD series, 248 

𝑥𝑖   Raw observational station SSR in the year i, 249 

𝑅𝑒  Final reference series, 250 

𝑃𝑒𝑖  Potential reference series, 251 

𝑐𝑖  CC between the potential reference series and the candidate stations series. 252 

2) Testing and adjusting the candidate series 253 

The homogenization test algorithm used in this paper is the PMT. This method is a reference series-254 

dependent test for a normalized candidate series. It assumes that the linear trend of the time series is zero 255 

and uses the degree of mean deviation at different points in the series to find change points. Furthermore, 256 

it eliminates the effect of different sample lengths on the test results. At the same time, the method 257 

introduces an empirical penalty factor, which effectively improves detection. We used the PMT to test 258 

the homogeneity of the candidate series based on the reference series established in 1). We then adjusted 259 
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the statistically significant(p>0.05) changepoints obtained using the mean adjustment method (p>0.05). 260 

We homogenize the monthly series for 66 stations (see Figure S1 in the SM). 261 

3.1.3 Integration and consolidation 262 

As can be seen from Figure 1, the candidate stations (487) are relatively sparse. To better adapt deep 263 

learning methods for the dataset reconstruction later, we adjusted, added and integrated station series 264 

based on the results of homogenized data from other scholars: 1) We added stations with more than 10a 265 

overall (1955-2018) records but no more than 15a during the 1971-2000 period, and removed those 266 

stations that were clearly inhomogeneous (25) and some years of the station (3); 2) We subsequently 267 

integrate monthly SSR series for 116 stations based on the results of homogenization by other scholars 268 

(China (56), Japan (8), Europe (2) and Italy (50)). After the above steps, we end up with a homogenized 269 

dataset containing 944 stations (Figure 3). The details of the processing and classification are shown in 270 

Table S2 (see in the SM). 271 

3.2 CNN model reconstruction methods 272 

The CNN deep learning model network architecture uses a U-shaped structure similar to the U-net 273 

(Ronneberger et al., 2015). The advantage of using this model is: 1) both high and low-frequency 274 

information of the picture can be retained, and when reconstructing the SSR data, not only the grid point 275 

information close to the missing measurement point will be considered, but also information from more 276 

distant locations (which may be remotely correlated with that missing measurement point); 2) This makes 277 

the model convergence faster and more economical in terms of computational resources. The upper part 278 

of the U-shaped structure, which has no down samples or a low number of down samples, represents the 279 

high-frequency information of the graph. These sections contain much of the detail in the graph and the 280 

relationships between similar grid points are conveyed by this section. The lower half of the U-shaped 281 

structure is down-sampled more often and represents the lower frequency information of the graph. The 282 

global radiation of a wide range of undulations is transmitted by it, and then the information at the various 283 

levels of the U-shaped structure is connected and transmitted through the skip connection, allowing the 284 

whole network to remember all the information of the picture very well. The model uses nearest 285 

neighbour upsampling in the decoding phase, the skip links will concatenate two feature maps and two 286 

masks as the feature and mask inputs for the next part of the convolution layer. The input to the last part 287 
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of the convolution layer will contain the original input image concatenated with the holes and the original 288 

mask, allowing the model to replicate the gap-free pixels. The complex and variable nature of the sea-289 

land boundary then has a significant impact on the reconstruction, when we reconstruct the global land 290 

SSR data. Therefore, we use partial convolution at the image boundaries with a suitable image padding, 291 

ensuring that the padding content at the image boundaries is not affected by values outside the image. 292 

The deep learning models' convolutional layers and loss functions have been described in the SM. 293 

We further reconstruct a long-term (1955-2018) global SSR anomalies dataset (SSRIH20CR) by using 294 

improved partial CNN deep learning methods based on a “perfect” dataset. CNN consists of three parts. 295 

A convolutional layer to reduce the number of weights by extracting local features, a pooling layer to 296 

reduce peacekeeping and prevent overfitting, and a fully connected layer to output the desired result. In 297 

this paper, a modified CNN network is used to model the reconstruction of the SSR data, with the 298 

convolutional layer replaced by a partial convolution method and mask update. This method is the latest 299 

in image restoration effects and can restore irregular holes, an advantage over other image restoration 300 

methods that can only restore rectangular holes. Therefore, this paper uses the modified CNN model  301 

(Kadow et al., 2020) to recover the missing part of the global terrestrial SSR (except Antarctica). The 302 

specific reconstruction steps and processes are as in Figure 4. 303 

3.2.1 Data pre-processing 304 

The homogenized station data is converted to grid box anomalies using the Climate Anomalies Method 305 

(CAM) (Jones et al., 2001). CAM is a commonly used method for converting station anomaly data to 306 

gridded data. We divide all global areas into a 5° × 5° grid, after which we calculate the SSR anomalies 307 

(relative to 1923-2020) within the grid box by averaging the anomalies of all stations (at least 1 station 308 

in it). If there are more than one site exists in the same grid box, the record length of this grid box is the 309 

total length of all sites in that grid box. Finally, we removed the values that were more than three times 310 

the standard deviation of the SSR anomaly time series after gridding. SSRs are all processed as daily 311 

average anomalies, i.e., monthly anomalies divided by 30 (each month is approximated as 30 days). We 312 

multiplied all the values by 30 again when the reconstruction is complete. The global land (except for 313 

Antarctica) distribution and coverage of SSRs after gridding are shown in Figure 5 a, b. 314 

As seen in Figure 5a, the SSR is spatially sparsely distributed across South America and Africa. As 315 

shown in Figure 5b, SSR coverage increased yearly from 1950 until the mid-1970s, when it slowly 316 
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decreased. In 2013, the coverage rate decreased sharply due to untimely data submission. Considering 317 

the SSR coverage above, we only kept the years (1955-2018) with data coverage of more than 8% of 318 

global land (except for Antarctica) areas. 319 

Comparisons show that the ERA5 has high spatial resolution and relatively reliable performance in 320 

the temporal variations and long-term trends (Liang et al., 2022; Jiao et al., 2022). To obtain a higher 321 

data coverage and ensure that the AI model runs well, we used the ERA5 to fill the SSR of homogenized 322 

global gridded SSR in the Antarctic and ocean areas. However, if we use the SSR of ERA5 to directly 323 

fill the SSR of homogenized global gridded SSR (SSRIHgrid) in the Antarctic and on the ocean areas, 324 

then the relatively weaker ocean SSR variations (variabilities, decadal changes, trends, etc.) from ERA5 325 

will inevitably introduce certain systematic biases in land SSR reconstruction due to the SSRs have the 326 

lower coverage on the land. Therefore, we designed an algorithm to avoid excessive diffusion of SSR 327 

system bias in terrestrial areas: we first calculated the ratios 𝛾𝑖(i=1, 2, 3, ...., n) between the SSR from 328 

ERA5 and from SSRIHgrid on the land in all n years. For a single grid box, the 𝛾𝑖 have small changes 329 

and are regarded as a constant 𝛾𝑚𝑒𝑑𝑖𝑎𝑛 (Eq (4)), and the 𝛾𝑚𝑒𝑑𝑖𝑎𝑛vary by latitude and longitude both on 330 

the marine and the land areas. We then extrapolated the 𝛾𝑚𝑒𝑑𝑖𝑎𝑛  for all the grid boxes along the land 331 

and sea boundaries. If there is no observation there, then the adjacent ocean ERA5 SSR is used to take 332 

its place after it is adjusted according to the differences between the SSR variations (represented by the 333 

linear trends) for the different underlying surfaces (Eq (5).  334 

𝛾𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑀𝑒𝑑𝑖𝑎𝑛(
𝑂𝐵𝑆𝑖_𝑙𝑎𝑛𝑑
𝐸𝑅𝐴5𝑖_𝑙𝑎𝑛𝑑

), (4) 

𝑂𝐵𝑆𝑖_𝑂&𝐿(𝑙𝑎𝑛𝑑) = 𝐸𝑅𝐴5𝑖_𝑂&𝐿(𝑂𝑐𝑒𝑎𝑛) ∗ 𝛾𝑚𝑒𝑑𝑖𝑎𝑛 ∗
𝑇𝑂
𝑇𝐿
, 

𝑖 = 1,2,3. . . . . . , 𝑛 

(5) 

𝛾median: The median value of the ratios of OBS and ERA5 land SSR series, 335 

𝑂𝐵𝑆𝑖_𝑙𝑎𝑛𝑑: Land SSR for the year i from SSRIHgrid in a single grid, 336 

𝐸𝑅𝐴5𝑖_𝑙𝑎𝑛𝑑: Land SSR for the year i from ERA5in a single grid, 337 

𝑂𝐵𝑆𝑖_𝑂&𝐿(𝑙𝑎𝑛𝑑): LandSSRalong the sea-land boundary(land) for the year i from SSRIHgrid, 338 

𝐸𝑅𝐴5𝑖_𝑂&𝐿(𝑂𝑐𝑒𝑎𝑛): Ocean SSR along the sea-land boundaryfor the year i from ERA5, 339 

𝑇𝑂: Trend of ERA5 SSR on ocean areasin all n years, 340 

𝑇𝑙: Trend of ERA5 SSR on areas in all n years. 341 
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3.2.2 AI Model reconstruction 342 

We use a server (configured with processor Intel (R) Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz, 343 

RAM 32G, 64-bit OS, GPU model 516.94, NVIDIA GeForce 1080T version, Python 3.9.12 64-bit, 344 

CUDA 10.1) for AI models training. The specific training steps are as follows:  345 

1) A total of 768 missing value masks (monthly masks between 1955 and 2018) were prepared for 346 

training and validation using ‘1’ for existing and ‘0’ for missing values;  347 

2) The 20CRv3 /CMIP6 training set (monthly values between 1955 and 2015 /2014) and missing value 348 

masks are fed into the 20CR-AI /CMIP6-AI model for training;  349 

3) We perform 1,500,000 training sessions with an interval of 10,000 sessions for the training output 350 

model.  351 

Afterwards, the two AI models are validated against the root mean squared error (RMSE) /CCs of the 352 

reconstructed SSRs (SSR20CR/SSRCMIP6). The validation set SSRs, and the optimal number of training 353 

cycles is 1,100,000 (see Figure S2, Figure S3 and Figure S4 in the SM). The initial hyper-parameters of 354 

the model are set as follows; learning rate of 2e-4 and learning finetune of 5e-5. First, we set the batch 355 

size to 16 in the first 500000 iterations and fine-tuned it to 18 in the last 10000000 iterations, for a total 356 

of 1500000 iterations, to suppress the overfitting phenomenon generated during the training process, and 357 

validate the model every 10000 times and early stopping if the validation shows a decreasing trend, the 358 

final number of training times used is 1100000. Second, L2 regularization is also added to regulate the 359 

loss function (see Eq. (9) in the SM). 360 

The training result models generated by the different AI models are obtained separately for the 361 

different training sets. The model is first used to reconstruct a reanalysis validation set with the same 362 

missing value mask as the original observation dataset. This is followed by a validation of the 363 

reconstruction against the original reanalysis dataset (calculation of CC and RMSE) to understand the 364 

discrepancies in the model reconstruction. 365 

4 Data homogenization and verification 366 

We homogenized the original monthly stations /gridded SSR time series (SSRIHstation /SSRIHgrid) using 367 

the method in section 3.1.2. We selected six continental regions, excluding Antarctica and the Arctic, 368 

from the eight continents of the world defined by Xu et al. (Xu et al., 2018) (Asia, Africa, South America, 369 
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Europe, North America, Australia, Antarctica and the Arctic). The decreasing trend of the SSRIHgrid is 370 

consistent with the original gridded SSR series (SSRIgrid) during 1955-1991 while the increasing trend 371 

during 1991-2018 is weaker. At the regional scale, the SSRIHgrid has a generally similar variation to the 372 

SSRIgrid, and the SSRIHgrid usually more representative of climate change than SSRIgrid at individual 373 

stations. 374 

Figure S5 (see in the SM) illustrates the long-term variations of global (Figure S5 (a) in the SM) and 375 

continental land SSR (Figure S5 (b) in the SM) from the SSRIgrid and SSRIHgrid (except for Antarctica) 376 

during 1955-2018. The most prominent change revolves around the adjustment around 1992: the SSR 377 

anomalies were systematically adjusted upward from 1987 to 1992, while the SSR anomalies were 378 

systematically adjusted downward from 1993 onwards. Thus, there is a significant decreasing trend for 379 

both global land SSRIgrid (-1.995±0.251 W/m2 per decade) and global land SSRIHgrid (-1.776±0.230 380 

W/m2 per decade) (except for Antarctica) from 1955 to 1991. While the increasing trend of the global 381 

land SSRIHgrid from 1991 to 2018 is 0.851±0.410 W/m2 per decade, slightly smaller than the increasing 382 

trend of the SSRIgrid (0.999±0.504 W/m2 per decade). It is worth noting that 1992 happened to be the 383 

second year of the eruption of Mount Pinatubo, and the homogenized SSR data integrated in this paper 384 

may be affected by this event. But overall, the homogenization also has limited effects on the global SSR 385 

variations from Figure S5 (see in the SM), which is consistent with the influence of data homogenization 386 

on a wide range of surface air temperatures (Brohan et al., 2006; Xu et al., 2013). 387 

At the regional scale, the differences between the SSRIHgrid and SSRIgrid are more pronounced in Asia 388 

and Europe (see Figure S5(b)in the SM). Asia’s homogenized SSR show that the regional average SSR 389 

has been declining significantly over the period 1958-90; this dimming trend mostly diminished over the 390 

period 1991-2005 and was replaced by a brightening trend in the recent decade. The SSRIHgrid in Asia is 391 

higher than the SSRIgrid from 1985 to 1990 and lower than the SSRIgrid from 2012 to 2015. The SSRIHgrid 392 

shows a more moderate short-term increase in Europe from 1960 to 1980. Note also that the Australian 393 

raw data prior to 1988 were artificially detrended because at the time the Australia Weather Service was 394 

afraid that the instruments would drift. Therefore, they detrended them and unfortunately did not store 395 

the raw data, and the SSR evolution in Australia is artificial with no trend (Wild et al., 2005). In addition, 396 

the SSRIstation and SSRIHstation comparisons for all 66 stations are shown in Figure S1 (see in the SM). 397 
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5 AI reconstruction and comparison 398 

5.1 Training of the AI model 399 

We produce two (20CRv3 /CMIP6) separate training and validation sets: we select the 1th member 400 

data of the reanalysis data and the model data, respectively, as the validation set, and the remaining 79 401 

(124) ensemble members as the training sets, where each ensemble member included 732 (720) months 402 

of SSR data. Each validation set included 732 (720) samples, while the training sets contained 57828 403 

(89280) ensemble members. All the above data, including the in-situ observations, are then resampled to 404 

monthly anomalies of 5° × 2.5°. 405 

We reconstruct the SSR of 20CRv3 /CMIP6 with missing values based on 20CRv3 /CMIP6 datasets 406 

using the method in section 3.2 and obtain two reconstructions, SSR20CR and SSRCMIP6, respectively. The 407 

SSR of 20CRv3/CMIP6 with missing values uses the SSRIHgrid mask between 1955 and 2015 /2014. We 408 

compare the global land (except for Antarctica) /regional annual anomalies variation of SSR20CR 409 

/SSRCMIP6. The results show that SSR20CR is significantly more consistent with the validation set than 410 

SSRCMIP6. 411 

Figure 6(a) shows that the RMSE/CC of the SSR20CR (0.247 W/m2 /0.970 W/m2) are smaller /larger 412 

than those of SSRCMIP6 (0.518 W/m2 /0.937 W/m2) with the original 20CR /CMIP6 dataset. The 20CR-413 

AI model has a better reconstruction ability for SSR at the global land (except for Antarctica) scale. The 414 

RMSEs of the SSR20CR (SSRCMIP6) are 1.460 (2.413) W/m2, 1.109 (1.829) W/m2, 2.219 (2.596) W/m2 415 

and 1.286 (2.235) W/m2 in North America, Europe, Asia, and Northern Hemisphere, whereas these 416 

values are 1.116 (1.766) W/m2, 0.622 (1.602) W/m2, 1.877 (1.839) W/m2 and 0.772 (1.679) W/m2 in 417 

South America, Africa, Australia, and Southern Hemisphere concerning the original 20CR /CMIP6 418 

dataset, respectively. In other words, the RMSEs of the SSR20CR are smaller than those of SSRCMIP6for 419 

the original 20CR /CMIP6 dataset except for Australia. In addition, the CCs of the SSR20CR (SSRCMIP6) 420 

are 0.958 (0.830) W/m2, 0.958 (0.987) W/m2, 0.886 (0.669) W/m2, 0.930 (0.965) W/m2, 0.938 (0.930) 421 

W/m2, 0.943 (0.916) W/m2, 0.936 (0.875) W/m2 and 0.903 (0.822) W/m2 in North America, Europe, 422 

Asia, Northern Hemisphere, South America, Africa, Australia, and Southern Hemisphere with respect 423 

to the original 20CR /CMIP6 dataset, respectively. That is, the CCs of the SSR20CR are larger than those 424 

of SSRCMIP6to the original 20CR /CMIP6 dataset except for Europe.  425 
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Based on the above comparison, the higher uncertainty for CMIP6 model output possibly biases the 426 

CMIP6-AI method. Thus, the accuracy of the SSR20CR is higher than that of the SSRCMIP6 at both global 427 

land (except for Antarctica) and regional scales. Therefore, we choose the reconstruction results of the 428 

20CR-AI model as the final AI reconstruction dataset, and subsequent analysis in the following sections 429 

is only based on this dataset. 430 

5.2 Comparison of the spatial and temporal variation characteristics 431 

We investigate the long-term trends and spatial and temporal variation of the SSRIH20CR, compare the 432 

differences between the SSRIH20CR and SSRIHgrid, and suggest: the area and magnitude of the high and 433 

low centres of the SSRIH20CR are the same as those of the SSRIHgrid; the results of the global land (except 434 

for Antarctica) reconstruction are consistent with "dimming and brightening"; the global dimming is 435 

primarily dominated by decreasing trends in Asia, Europe Africa and North America, whereas Europe 436 

and North America are contributors to the increasing trends. 437 

Figure 7 shows the spatial distribution of the SSRIHgrid and SSRIH20CR for the three months (July 1960, 438 

July 1980, and July 2000). Figure S6 (see in the SM) displays the spatial distribution of annual SSRIHgrid 439 

and SSRIH20CR from 1955 to 2018. Figure 7 also shows the area and the magnitude of the high and low 440 

centres in the SSRIH20CR are the same as in the SSRIHgrid. The SSRIH20CR is mainly positive anomalies 441 

in Africa and the Eurasian continent in July 1960, especially in India and the Middle East. Afterwards，442 

India showed a continuous and steady decline in SSR. This confirms the well-known phenomenon of 443 

global dimming over India (Wild et al., 2009; Soni et al., 2016; Soni et al., 2012; Padma Kumari et al., 444 

2007; Kambezidis et al., 2012). In Australia, the SSRIH20CR is dominated by negative anomalies in July 445 

1980 and positive anomalies in July 1960 and July 2000. In Greenland, the SSRIH20CR shows a large 446 

positive anomaly during three months. In northern Russia, there is a high value in July 2000. The 447 

reconstruction can better reflect the anomaly distribution of observation information, and the grid boxes 448 

with the missing values are infilled and reconstructed, which has high reliability.  449 

Figure 8 illustrates global land (except for Antarctica) annual anomalies variation and long-term trend 450 

of the SSRIH20CR for the period of 1955-2018, 1955-1991 and 1991-2018. Table S3 in the SM 451 

demonstrates the trends of global SSR change evaluation for various data sources on different scales. 452 

Also, we compare the differences between the SSRIH20CR and SSRIHgrid. The minimum value of the 453 

SSRIH20CR occurred in 1991 (-2.411 W/m2). The decreasing trend of the SSRIH20CR from 1955 to 1991 454 
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(-1.276±0.205 W/m2 per decade) is slightly lower than that of the SSRIHgrid (-1.776±0.230 W/m2 per 455 

decade). After that, the SSRIH20CR turns to an increasing trend of 0.697 ± 0.359 W/m2 per decade from 456 

1991 to 2018. This suggests that the difference between SSRIH20CR and SSRIHgrid may be caused by the 457 

results observed in limited data coverage (such as in Africa and North America) (Figure 9). After 458 

homogenization and reconstruction, the trend (-1.276 W/m2 per decade) from 1955 to 1991 corresponds 459 

to an overall reduction of -4.6 W/m2 over the dimming period, while that (0.697 W/m2per decade) from 460 

1991 to 2018 correspond to an overall increase of 2 W/m2 over the brightening period. This is in amazing 461 

agreement with the -4 W/m2 for the dimming period and the 2 W/m2 for the brightening period based on 462 

an overall surface energy budget assessment ((Wild, 2012) see their Figure 1). Also, similar conclusions 463 

(incomplete coverage of observational data lead to an underestimation of global warming trends) have 464 

been confirmed in global warming research (Gulev et al., 2021; Li et al., 2021).  465 

Figure 9 demonstrates the long-term annual anomaly variations of the SSRIH20CR in different regions 466 

and its results compared to the SSRIHgrid. Table S4 in the SM shows the evaluation in continental and 467 

hemispheric SSRIH20CR change trends on different scales. The SSRIH20CR shows a similar annual 468 

anomaly variation to the global land (except for Antarctica) average trend in North America and Asia, 469 

reaches a minimum in the late 1970s or early 1990s, and follows a moderate reversal. In Europe, the 470 

SSRIH20CR shows a decrease (-2.180 ± 1.866 W/m2 per decade) between 1963 and 1978 before turning 471 

to brightening (1.081 ± 0.312 W/m2 per decade). In South America and Australia (Southern Hemisphere), 472 

the SSRIH20CR shows no significant variation. In Africa, the SSRIH20CR has a dimming trend (-1.506 ± 473 

0.496 W/m2 per decade) from the 1950s to the 1990s, after which it remains levelled off (0.340 ± 0.998 474 

W/m2 per decade). The SSRIH20CR shows a decreasing trend (-1.457 ± 0.246 W/m2 per decade) until the 475 

1990s in the Northern Hemisphere and a brightening (0.887 ± 0.415 W/m2 per decade) afterwards. The 476 

annual average anomaly variations in regions and globally show that Asia, Africa, Europe and North 477 

America are the four contributors to the global dimming, while Europe and North America are two major 478 

contributors to the “brightening”. This is in general agreement with the results obtained by previous 479 

machine learning (Yuan et al., 2021). In addition, the discrepancy between the SSRIH20CR and SSRIHgrid 480 

is more significant in low-coverage areas (right) than in high-coverage regions (left). It is particularly 481 

pronounced before 1980 and in South America. This suggests that the limited surface observations are 482 

not representative of the continental variation in SSR. 483 
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To sum up, the AI reconstruction of this paper helps to decrease the uncertainties in SSR variations in 484 

both spatial scales. Further, it shows that there may be a sampling error in the variations of the global 485 

land (except for Antarctica) and regional SSR before reconstruction, leading to a systematic deviation in 486 

the long-term trend of global land (except for Antarctica) or regional SSR. 487 

6 Data availability 488 

Both the SSRIHgrid (the homogenized monthly gridded SSR data over 1923-2020) and the SSRIH20CR 489 

(the monthly 20CR-AI model reconstructed SSR data for 1955-2018) are currently publicly available on 490 

the figshare website under DOI at https://doi.org/10.6084/m9.figshare.21625079.v1 (Jiao and Li, 2023). 491 

These datasets are also available at http://www.gwpu.net for free. 492 

7 Conclusion 493 

In this study, we integrate global station observations based on the raw observational SSRs from GEBA 494 

and WRDC, combined with existing homogenized SSR datasets from other scholars. Also, we 495 

homogenize the globally distributed station data using the RHtestV4 software package. An improved 496 

CNN deep learning algorithm is subsequently used to reconstruct the SSR anomalies. Thus, a 497 

reconstructed SSR anomaly dataset, SSRIH20CR, is obtained based on training sets (20CRv3), for the 498 

years 1955-2018, with a resolution of 5°×2.5°. The main results are as follows: 499 

1) The first integrated and homogenized global SSR monthly dataset is developed, which contains 944 500 

stations in total and covers the longest periods (from the 1920s to recent years). A 5°×5° grid boxes 501 

version of the monthly SSR anomalies dataset is derived.  502 

2) This paper develops 5°×2.5° full-coverage monthly land (except for Antarctica) SSR anomalies 503 

reconstructed datasets based on the above observations, using the 20CRv3 to train the AI model. 504 

Comparative validations /evaluations show that the SSRIH20CR provides a reliable benchmark for global 505 

SSR variations. 506 

3) On average, the global annual SSR variations based on the SSRIHgrid are not significantly different, 507 

except that the increasing (brightening) trend after 1991 is a little smaller for the latter. The short-term 508 

brightening SSR in Europe from the 1970s- to the 1980s disappear at the regional scale. At the same time, 509 

the brightening SSR after the 1990s in Asia slowed or postponed. 510 

https://doi.org/10.6084/m9.figshare.21625079.v1
http://www.gwpu.net/
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Captions of tables and Figures 773 

Table 1: List of information on the various types of data used in this paper. 774 

 775 

Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration 776 

(third step). 777 

 778 

Figure 2: Spatial distribution of candidate stations (“*”) and added stations (“+”). The different colour 779 

bars represent the length of the station record in months (Units: Month). 780 

 781 

Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours 782 

represent the length of station records in months 783 

 784 

Figure 4: Flowchart of AI reconstruction. 785 

 786 

Figure 5: (a) Spatial distribution of 5°x5°grid boxes (SSRIHgrid) obtained interpolating the 787 

homogenized global land (except for Antarctica) SSR series. The different colours represent the length 788 

(the sum of all records) of the station record, Units: Year. (b) Grid box coverage for the homogenized 789 

global land (except for Antarctica) SSR (SSRIHgrid) except for Antarctica. 790 

 791 

Figure 6: Reconstruction capabilities of the AI model. 792 

 793 

Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is 794 

July 1960, July 1980, and July 2000, respectively. 795 

 796 

Figure 8: Global land (except for Antarctica) time series of the annual anomaly variations SSR (relative 797 

to 1971-2000) before/after reconstruction.  798 

 799 

Figure 9: Same as Figure 8, but for regional annual anomaly variations.  800 

 801 
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Table 1: List of information on the various types of data used in this paper 803 

 Abbreviation Resolution  Time Reference 

In-situ-Raw 
GEBA (Station) Monthly 1922-2020 (Wild et al., 2017) 

WRDC (Station) Monthly 1964-2017 (Tsvetkov et al., 1995) 

In-situ-Homo 

China (Station) Monthly 1950-2016 (Yang et al., 2018b) 

Japan (Station) Monthly 1870-2015 (Ma et al., 2022) 

Europe (Station) Monthly 1922-2012 (Sanchez-Lorenzo et al., 2015) 

Italy (Station) Monthly 1959-2016 (Manara et al., 2016; Manara et al., 2019) 

Reanalysis / 

Model 

ERA5 (Grid) 
Monthly/  

0.25°×0.25° 
1950-2020 (Hersbach et al., 2020) 

20CRv3 (Grid) 
Monthly/  

0.7°×0.7° 
1940-2015 (Slivinski et al., 2019) 

CMIP6 (Grid) Monthly/- 1940-2014 (Eyring et al., 2016) 

804 
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 805 

Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration (third step).806 
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 807 

Figure 2: Spatial distribution of candidate stations (“*”) and added stations (“+”). The different colour bars 808 

represent the length of the station record in months (Units: Month).  809 
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 810 

Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours represent the 811 

length of station records in months.  812 
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 813 

Figure 4: Flowchart of AI reconstruction.814 
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 815 

 816 
Figure 5: (a) Spatial distribution of 5°×5°grid boxes (SSRIHgrid) obtained interpolating the homogenized 817 

global land (except for Antarctica) SSR series. The different colours represent the length (the sum of all 818 

records) of the station record, Units: Year. (b) Grid box coverage for the homogenized global land (except 819 

for Antarctica) SSR (SSRIHgrid) except for Antarctica.  820 
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821 

 822 

Figure 6: Reconstruction capabilities of the AI model. (a) Global land (except for Antarctica) means time-823 

series analysis and AI model reconstruction evaluation. The red line is the SSR of the reconstruction based 824 

on the 20CR-AI /CMIP6-AI model (SSR20CR /SSRCMIP6); The grey line is the masked datasets with missing 825 

values of the SSRIHgrid. The solid black line is the 20CR and CMIP6 validation set (the SSR from the 1th 826 

member of 20CRv3 /CMIP6). (b) Comparisons of the SSR20CR (columns 1, 3) /SSRCMIP6 (columns 2, 4) with 827 

the SSR from the 20CR and CMIP6 validation set. Colour bars represent counts with the same values for 828 

both. Figures also show the SSR20CR (SSRCMIP6) correlation coefficient (CC), root mean squared error (RMSE) 829 

and fitting equation compared to the original dataset in different regions.  830 
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 831 

Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is July 832 

1960, July 1980, and July 2000, respectively.  833 
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 834 

Figure 8: Global land (except for Antarctica) annual SSR anomaly variations (relative to 1971-2000) 835 

before/after reconstruction. The Black solid line represents the SSRIHgrid annual anomalies. The solid blue 836 

line represents the SSRIH20CR annual anomalies. The histograms represent the decadal trends of the 837 

SSRIHgrid /SSRIH20CR (unit: W/m2 per decade) and their 95% uncertainty range from 1955 to 1991, 1991-838 

2018 and 1955-2018.   839 
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 840 

Figure 9: Same as Figure 8, but for regional annual anomaly variations. The green colour filling diagram 841 

represents the variation in grid box coverage (before reconstruction).  842 


