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Abstract. The availability of detailed surface runoff and river flow data across large geographic areas is needed for several 10 

scientific applications, such as refined freshwater environmental risk assessments. Some limiting factors in developing 

detailed river flow datasets over large spatial scales have been paucity of detailed input spatial data and challenges in 

processing of these data. The well-established USDA Curve Number (CN) method was applied for spatially distributed 

hydrologic processing to estimate surface runoff.  Publicly available global datasets for hydrologic soil groups, land cover, 

and precipitation were spatially processed by applying the CN equations to create a global mean annual surface runoff grid 15 

of 50 meters.  Runoff was spatially combined with global hydrology of catchments and rivers from publicly available 

datasets to estimate daily mean annual flow (MAF) across the globe.  Estimated daily MAF were compared with measured 

gauge flow at rivers in several countries which showed good correlation (R2 of 0.76 - 0.98). These flow estimates can be 

used for diverse applications at local watersheds to larger regions across the globe. The two spatial data products of this 

project representing MAF at the global scale are publicly available for download at 20 

https://doi.org/10.6084/m9.figshare.22694146 (Heisler, et al., 2023).  

1 Background and summary 

The impetus for this research was identified while evaluating detailed river flow data necessary to conduct aquatic risk 

assessments (USEPA, 2021) for chemicals disposed of down the drain in regions and countries where such flow data do not 

exist.  The iSTREEM® model (Kapo et al., 2016) (https://www.istreem.org/) is used to conduct aquatic exposure 25 

assessments, as part of environmental safety assessments in the United States (U.S.) and is based on detailed river hydrology 

and river flow data derived from the NHDPlus V2 dataset (USEPA, 2012).  The mean annual average river flow data 

(McKay, et al., 2012) in NHDPlus V2 was estimated from surface runoff based on precipitation and temperature variation 

from 1900-2008 (McCabe and Wolock, 2011).  However, to conduct exposure assessments in other countries, such detailed 

river flow datasets, or the data are not publicly available.  Other similar down the drain models used for exposure 30 

assessments in Canada (Grill, et al., 2016; Ferrer and DeLeo, 2017), United Kingdom (Kilgallon, et al., 2017), China 
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(Hodges, et al., 2012; Grill, et al., 2018), and Asia (Wannaz, et al., 2018) have identified the need for refined river flow data 

to better estimate chemical exposure to the aquatic environment. 

    Process driven approaches to estimate surface runoff have been applied at lower resolution spatial scales, primarily due to 

limitations in the availability of detailed input spatial data and computing resources (Bierkens, 2015; Beck, et al., 2017). 35 

Improvements in technology and computing power over the past few years have made it possible to apply data intensive 

approaches to create datasets not just over smaller geographies, but at global scales.  These novel developments have made it 

possible to practically implement heavily process driven approaches to estimate surface runoff and river flow at a global 

scale.  Spatial data are relevant as more detailed scale brings about improved accuracy in flow estimation thereby bridging 

the gap toward more accurate predictions at refined spatial scales.  40 

     There are several surface runoff and river flow datasets available at a global scale, each offering different benefits.  Many 

of the process-based surface runoff datasets (Arnell, 1999; Vörösmarty, et al., 2010) consider the aspects of geomorphology 

and climate, but are available at a coarse spatial resolution of approximately 50 km and need further processing before they 

can be adapted for river flow.  The global freshwater model WaterGAP (Alcamo, et al., 2003; Döll, et al., 2003) estimates 

river flows based on water storage, withdrawals and consumptive uses on a global scale, but is available at a medium spatial 45 

resolution of 10 km.  A regression method was developed (Barbarossa, et al., 2017) to calculate mean annual streamflow that 

overcomes some of the past challenges of spatial scale by providing flows at a detailed catchment scale, but the use of 

coefficients and assigning equal weightage to the catchment-level variables may not account for all the local factors that 

influence flow. The most recent FLO1K (Barbarossa, et al., 2018) dataset provides streamflow at a resolution of 

approximately 1 km for the globe.  It takes a different data-driven approach by fitting an artificial neural network regression 50 

on flow observations from monitoring stations and estimating streamflow across the upstream hydrologic network by using 

flow observations in combination with covariates of upstream catchment physiography. 

    While these approaches each offer unique benefits, our research explores an alternate approach using the Curve Number 

(CN) method developed by the U.S. Department of Agriculture (USDA) (USDA, 1986) and publicly available global 

datasets (Ross, et al., 2018; ESA and Université Catholique de Louvain, 2010; Fick and Hijmans, 2017). These datasets 55 

offered an opportunity to combine the CN method towards creating a global surface runoff with detailed global hydrology 

datasets from HydroBASINS (Lehner and Grill, 2013) and HydroRIVERS (HydroRIVERS, 2019) to estimate river flow.  

Two advantages of this approach are that it does not rely on monitored flow data as an input and instead allows for 

evaluation of estimated flow accuracy using the monitored (measured gauge) flow data, and secondly, the use of detailed 

input spatial data captures the local variations of soils, land cover and precipitation thus providing an estimate of river flow 60 

reflective of local geographic conditions. 

    Presented here is a detailed description of the standardized framework, methodology, global input datasets, and spatial 

processing steps used to estimate global river flows, as well as several comparisons of the results to monitored gauge data for 

evaluation. The data generated in this project is publicly available and ready for use in a diverse set of applications, including 
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down the drain environmental exposure modelling, and offers flexibility for applying at various spatial scales across the 65 

globe. 

2 Methods 

2.1 Surface runoff and river flow 

The first step in estimating the amount of flow in a stream or river is to quantify the amount of surface runoff feeding into 

the stream or river which is influenced by several inter-related physical factors.  Water flows occur on land surface when 70 

there is more water than the land can absorb, and the water reaches the nearby creeks, streams, rivers, lakes, and other 

surface waterbodies.  Runoff varies temporally and spatially based on natural and anthropogenic factors including rainfall 

intensity and duration, soil characteristics, land cover, slope, and drainage area.  In the U.S., variability in surface runoff has 

been predominantly attributed to variation in rainfall (McCabe and Wolock, 2011). Runoff datasets have been used to derive 

river flows in the U.S., the NHDPlus V2 dataset (USEPA, 2012) being a recent example of this; however, such detailed 75 

datasets are not available at the global scale and a methodology for estimating surface runoff and eventually river flow 

leveraging this unique combination of data was needed.  

2.2 Curve number and data 

The Curve Number (CN) method (USDA, 1986 and 1997) developed by the USDA Soil Conservation Service in the 1950s 

provides a simplified approach to estimate key hydrologic processes while being grounded in a physical representation of 80 

saturated flow and runoff processes (Ponce and Hawkins, 1996; Garen and Moore, 2005). This method is based on 

algorithms for estimating surface runoff for a given unit of area and is a function of soil group, land cover complex, and 

antecedent moisture conditions from rainfall. The method was originally developed to determine the quantity of direct runoff 

in rural and urban watersheds from a specified amount of rainfall. The CN method is a well-established approach that has 

been used for ungauged watersheds since the rainfall and watershed data are generally more readily available and easier to 85 

obtain (USDA, 1997).  The CN method avoids the problems inherent to parameterizing and running more complex models 

due to its simplicity and relatively low data input requirements, and has been implemented in a variety of hydrologic, 

erosion, and water quality models (Carousel, et al., 2005; Knisel and Davis, 1999; Arnold et al., 2012; Steglich, et al., 2019).  

This method of estimating rainfall excess from rainfall-runoff relationships is widely used in applied hydrology (Ponce, et 

al., 1996; USDA, 1997; Burke, 1981).  Intricate variability in the rainfall-runoff relationship has been shown to be well 90 

represented by the CN method (Young and Carleton, 2006) which has led to its adoption into complex regulatory models 

including the USEPA model for pesticide risk assessment, Pesticide in Water Calculator (USEPA, 2020). 

    The CN method was selected as the optimal approach to achieve a runoff estimation that was scalable to accommodate the 

best available data resources across geographies with the finest resolution.  This method was adopted in this study because, 
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firstly, it has been widely used throughout the U.S. (Verma, et al., 2017; Woodward, et al., 2003; Tedela, et al., 2012) and 95 

several regions across the world (Hawkins, 1984, Brocca et al., 2009; Fan, et al., 2013; Lal et al., 2015).  Secondly, it has 

been tested on watersheds of varying sizes (Tedela, et al., 2012).  Finally, the input only requires readily available spatial 

datasets.  The last aspect was an important consideration on this project due to the need to expand this approach to the global 

scale and availability of detailed input spatial datasets at that scale were limited. 

    In short, the CN method uses two equations to estimate surface runoff (Qr): 100 

𝑆 = (1000 𝐶𝑁) − 10⁄            (1) 

where S is potential maximum retention after runoff begins (inches) and CN is the curve number value of the land cover type 

ranging from 0 to 100. 

𝑄𝑟 = (𝑃 − 0.2𝑆)2 (𝑃 + 0.8𝑆)⁄           (2) 

where Qr is runoff in inches, P is rainfall in inches, and S is the potential maximum retention after runoff begins in inches. 105 

    CN primarily considers the physical characteristics of a soil and land cover that occupies the landmass which directly 

influences the amount of rainfall that infiltrates into the soil and the remaining amount that aggregates at a receiving 

waterbody nearby as surface runoff.  The major factors that determine CN, and thus runoff, are soil classes, land cover type 

(e.g., cropland, forest, urban area, etc.), and precipitation, which are discussed in detail in the subsequent sections.  The 

schematic in Fig. 1 provides an overview of the various datasets used in spatial processing, and Table 1 lists in detail the 110 

spatial datasets used for CN and flow estimation.  The CN-based runoff estimation method is not restricted for use in small 

watersheds, and it applies well to other large areas if the geographical variations of rainfall, soil and land cover complex are 

considered (Garen and Moore, 2005).  In using the CN method, we did not identify limitations on the size of the watershed, 

but the rainfall should be uniform across the watershed (Burke, 1981). Therefore, this is best accomplished by working with 

smaller hydrologic units of a river basin which is discussed in the subsequent sections. 115 
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Figure 1. Overview of the CN approach to generate the 50 m runoff grid 

 

Table 1. Datasets used in developing the CN mean annual surface runoff and river flow 120 

Attribute Name 
Resolution and 

Extent 
Data Source Description 

Soil 

Hydrologic 

Group 

HYSOGs250m ~250m gridded, 

global 

Soil hydrologic groups: 

HYSOGs 250m dataset 

(Ross et al., 2018) 

Gridded soil hydrologic groups 

developed for curve number-

based runoff estimation 

Land Cover GlobCover 

2009 

~300 m gridded, 

global 

Land cover: ESA GlobCover 

2009 land cover dataset 

(ESA and Université 

Catholique de Louvain, 

2010) 

Land cover classifications with 

22 classes based on annual 

MERIS (Medium Resolution 

Imaging Spectrometer 

Instrument) fine resolution 

surface reflectance mosaics for 

2009 

Precipitation WorldClim 2 ~1 km gridded, Precipitation: WorldClim 1 Mean monthly precipitation data 
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global km precipitation dataset 

(Fick and Hijmans, 2017) 

representing the time period 

from 1970-2000 

Hydrology HydroBASINS 

and 

HydroRIVERS 

Vector, global Hydrology:  HydroBASINS 

(Lehner and Grill, 2013) and 

HydroRIVERS 

(HydroRIVERS, 2019) 

datasets 

Spatial hydrologic dataset for 

watershed boundaries and sub-

basins, and river network 

features 

 

2.2.1 Soils 

A key input needed to determine the CN in Eq. (1) is the Hydrologic Soil Group (HSG), which represents the minimum 

water infiltration rate of a given soil type. Surface runoff is affected by how much moisture a given soil type can retain, and 

depends on soil properties such as permeability, texture, and compaction. HSGs are divided into four groups, A through D, 125 

with group A having the lowest runoff potential and D having the highest runoff potential (USDA, 1986; Ross, et al., 2018). 

Some countries have a publicly available soils database with HSGs listed such as the Soil SURveyGeOgraphic (SSURGO) 

database in the U.S. (Soil Survey Staff, 2009). However, most countries do not have readily available soils databases and the 

soil properties do not include HSG or the definition of HSG may not be consistent across countries. Therefore, the HSG 

input used in this model was obtained from the HYSOGs250m (Ross, et al., 2018) raster HSG dataset which has their 130 

classification of HSG derived from soil texture classes at a spatial resolution of approximately 250 m and represent typical 

soil runoff potential at a global scale. According to Ross et al. (2018), the process for producing HYSOGs250m consisted of 

classifying HSGs from USDA-based soil texture classes and specifications, and took into account soil texture, depth to 

bedrock, and groundwater table depth. This global dataset available in a gridded format was used for hydrologic soil group 

classification inputs needed for CN estimation. 135 

2.2.2 Land cover 

In addition to soils, the land cover complex (e.g., cropland, forest, urban area, etc.) covering the landmass plays a key role in 

the hydrologic water cycle by controlling infiltration and is a key input needed to determine CN. The type of land cover in 

combination with the soil type directly influence the amount of runoff from precipitation.  For example, croplands with clay 

soils have higher runoff potential compared to croplands with sandy soils where water infiltration is higher, which results in 140 

lower runoff potential. Similarly, impervious surfaces (e.g., paved parking lots, driveways, roads, etc.) in urban areas have 

low possibilities for infiltration and result in higher runoff potentials (USDA, 1986). The GlobCover (ESA and Université 

Catholique de Louvain, 2010; Bontemps, et al., 2011) initiative of the European Space Agency developed a service for the 

generation of global land cover maps, based on satellite imagery. GlobCover’s 2009 release offers 22 land cover classes 

following the United Nations classification system, including cropland, forest, grassland and artificial surfaces covering the 145 
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globe at a resolution of 300 m. These data are also highly desirable for this application as it has been validated by an 

international group of land cover experts with the highest accuracies occurring in Europe (Bontemps, et al., 2011). Due to its 

wide uses, global coverage, validation of the dataset, and spatial resolution, this gridded dataset was used to meet the land 

cover needs for CN estimates. 

2.2.3 Precipitation 150 

In addition to the incorporation of soil characteristics and land use factors to estimate CN, the distribution and intensity of 

precipitation determines the amount of water over a land area and thus has a direct impact on the volume of surface water 

runoff.  The WorldClim 2 (Fick and Hijmans, 2017) dataset offers spatially-resolved monthly climate data for global land 

areas at a spatial resolution of approximately 1 km (30 arc-seconds).  Among other climatic variables, the dataset provides 

average monthly precipitation over a temporal range of 30 years (1970-2000), using data from 34,542 weather stations 155 

across the globe. The dataset was created by interpolating between weather station data taking into account satellite data on 

variables such as elevation, cloud cover, land surface temperature, and distance to a coast. This dataset was validated and had 

global cross-validation correlations of 0.86 for precipitation (Fick and Hijmans, 2017); therefore WorldClim 2 was used to 

represent the precipitation needed to estimate runoff based on the CN method. While the temporal resolution of this dataset 

is at a monthly scale, this dataset was leveraged because it represented highest temporal resolution spatial global dataset 160 

available for use as model input, and the data were converted into daily precipitation rates (inches per day) for use in Eq. (2).   

2.2.4 Hydrology 

The estimated flows were connected to river networks using the HydroBASINS (Lehner and Grill, 2013) and HydroRIVERS 

(HydroRIVERS, 2019) datasets. HydroBASINS is a global dataset that provides spatially resolved watershed boundaries, 

and sub-basin and catchment-level delineations. It consists of hierarchically nested river basins and catchments based on the 165 

widely accepted Pfafstetter coding system levels (Verdin and Verdin, 1999). The Pfafstetter system defines nested basin to 

catchment levels numbered from one to twelve globally, where level-1 refers to the largest unit (i.e., river basin) and level-12 

refer to the smallest unit (i.e., river catchment).  Given the need for this project to develop detailed river flows, the smallest 

level size or most detailed catchment (i.e., level-12 polygons) from HydroBASINS were identified as the spatial unit of 

analysis.  The level-12 catchments in HydroBASINS ranged in size from 0.03 km2 to approximately 1,220 km2 with an 170 

average of approximately 130 km2. HydroRIVERS (2019) is a subset of the HydroBASINS dataset and offers a suite of 

vector line networks depicting streams and rivers at the global scale.  There exists a spatial and tabular relationship between 

the river lines in HydroRIVERS and level-12 catchments from HydroBASINS data layers, thereby linking the streams and 

rivers to their respective level-12 catchments.  Due to the large size, both datasets are distributed at a regional scale to 

include nine regions covering the globe: (1) Africa, (2) North American Arctic, (3) Central and South-East Asia, (4) 175 

Australia and Oceania, (5) Europe and Middle East, (6) Greenland, (7) North America and Caribbean, (8) South America, 
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and (9) Siberia.  Hydrology for both datasets, including all nine regions, was used as model input for river basins, 

catchments, and flow connectivity. 

2.3 Curve number refinement 

This section describes how the previously described hydrologic soil group and land use data were used to derive CNs for use 180 

in Eq.1.  The hydrologic soil groups from HYSOGs250m (Ross, et al., 2018) covering the globe consisted of eight soil 

groups – four standard soil groups (A, B, C, and D) and four dual soil groups (A/D, B/D, C/D, and D/D).  Dual soil groups 

were consolidated with their corresponding standard groups (i.e., A/D with group A, B/D with group B, etc.) for 

simplification and efficient processing of CN calculations.  The hydrologic soil group and the fraction of imperviousness 

area based on the land cover are the most significant drivers in determining the CN.  The 22 land cover classes from 185 

GlobCover (ESA and Université Catholique de Louvain, 2010) covering the globe were aggregated to six land cover classes 

for efficient processing of CN calculations.  The aggregation was done by grouping similar land cover types that had similar 

CNs into one group (within the same soil type), thus prioritizing imperviousness for runoff estimation.  Standard CNs 

provided by the USDA (1986) were used for the consolidated hydrologic soil groups and land cover classes to develop a 

unique CN value for each hydrologic soil group (A, B, C, and D) and land cover class combination.  For example, separate 190 

land cover classes from GlobCover representing forests including broadleaved evergreen forest, broadleaved deciduous 

forest, needle leaved evergreen forest, and mixed broadleaved and needle leaved forest were aggregated and classified as a 

single wood/forest land class. These land classes would have had relatively small variation in CNs and thus for the purpose 

of this study to aid in efficient processing, they were aggregated into a single wood/forest land use class.  Similar land use 

aggregations were performed for cropland, grassland, and urban land cover classes. All CNs are based on Antecedent 195 

Moisture Condition II for average conditions (USDA, 1997).  These CNs were aggregated for the hydrologic soil group-land 

cover combination and refined for further use (Table 2). 

 

Table 2. Curve numbers for the combination of land cover class and hydrologic soil group 

Land Cover 

Class 
Land Cover Description 

Hydrological Soil Group – CN Value 

A B C D 

1 Cultivated Land 67 76 83 87 

2 Wood/Forest land 38 61 74 80 

3 Meadow 30 58 71 78 

4 Open Water 0 0 0 0 

5 Urban-average 74 83 88 91 

6 Desert/bare 63 77 85 88 

  200 
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    Lower runoff is expected in areas with a low CN value, for example, meadow land with a hydrologic soil group of ‘A’ has 

a CN of 30.  Similarly, higher runoff is a factor of high CN value, for example, cultivated crop land with a hydrologic soil 

group of ‘D’ has a CN of 87.  Group A soils (more sand and less clay) have very low runoff potential and group D soils (less 

sand and more clay) have high runoff potential.  On a regional scale, the area represented by each soil group is highly 205 

variable (Table 3).  At a global scale, 4% of the area is represented by group A soils, 13% by group B, 67% by group C and 

16% by group D soils; showing the higher runoff potential soils comprise a larger proportion by area. 

 

Table 3. Area covered by each hydrologic soil group across the region and globe 

Region 
Hydrological Soil Group – Percentage of Total Area 

A (%) B (%) C (%) D (%) 

Africa 14 24 41 21 

North American Arctic 0 9 87 4 

Central and South-East Asia 0 4 87 9 

Australia and Oceania 0 3 66 31 

Europe and Middle East 5 26 68 1 

North America and Caribbean 0 16 67 17 

South America 0 4 65 31 

Siberia 0 6 93 1 

Global extent (total of all regions) 4 13 67 16 

 210 

    Recently, the GCN250 dataset (Jaafar, et al., 2019) with global gridded CNs became available and was used to compare to 

results from the methods and land use dataset used in this study.  The GCN250 dataset used a different underlying land use 

dataset with more land use classes, and thus provided an appropriate dataset to evaluate the land use (and thereby CN) 

aggregations used in this study.  To do this, the CNs for soil group C (which was found to be the most predominant soil 

group across the globe, Table 3) from this study were compared to those in GCN250.  For each of the six land use types in 215 

this study (Table 2), the CNs from GCN250 set of the relevant land use types were averaged and then compared to the 

aggregated CN in this study.  For soil group C, the average CNs from the GCN250 dataset were 75, 74, 82, Not applicable/0, 

88, and 92 for ‘Cultivated land’, ‘Wood/forest land’, ‘Meadow’, ‘Open water’, ‘Urban’, and ‘Desert/bare’ land types, 

respectively; and in the same order, from this study the CNs were 83, 74, 71, 0, 88, and 85.  Additionally, the small variation 

in CN for forest types in our aggregation was also found in the GCN250 dataset where the range in CN tree plant functional 220 

types (PFT) was relatively small, for example for soil type C, CN ranged from 70-77 across the tree PFTs.  The results from 
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this comparison indicate good agreement and that the land use type aggregation used in our study were reasonable, 

appropriate, and fit-for-purpose. 

2.4 Surface runoff dataset 

The ArcGIS (Esri, 2019) suite of software was used for spatial data management and processing operations.  The 225 

coordination system was standardized across all three input datasets to bring them from their native projection system to the 

World Cylindrical Equal Area (WCEA) (GIS Geography, 2020) in ArcGIS.  This projection system was chosen since it 

reduces spatial distortion at the Equator and poles, to keep any possible shift in raster values to the minimum, and for spatial 

operations over large areas that require equal-area representation.  Hydrologic soils groups, land cover, and precipitation 

were individually reprojected (using the ‘project raster’ function in ArcGIS) to the WCEA projection system.  The 230 

precipitation dataset required additional processing to convert the source monthly precipitation data to an annual mean daily 

precipitation value for each grid cell.  The hydrologic soil groups, land cover and newly created annual mean daily 

precipitation gridded datasets were resampled by applying the nearest neighbor method (using the ‘resample’ function in 

ArcGIS) from their native resolution to 50 m as a common denominator to normalize for variation in spatial resolution 

across the source datasets.  The nearest neighbor resampling method causes the least amount of error in the resampled output 235 

(Esri, 2021; Brandsma and Können, 2006), and thus was preferred for use in our work.  Resampling was additionally done to 

avoid generalizing values from any pixel values that cross each other.  From this step on, until the CN runoff was estimated, 

all spatial processing was performed at 50 m, and the final runoff data was created at 50 m resolution. 

    The hydrologic soils group and land cover datasets were spatially reclassified (using the ‘reclass by table’ function in 

ArcGIS) so the source soil groups, and land cover classes are adjusted into the newly consolidated four hydrologic soil 240 

groups and six land cover classes as outlined in Table 2.  Both the reclassified datasets were spatially combined (using the 

‘combine’ function in ArcGIS) to apply the unique CN values to all raster cells representing the soil group-land cover 

matrix. At this point each raster cell in the resulting dataset has a CN value for each combination of soil group and land 

cover class. Substituting for CN in Eq. (1) where CN represents cell value in the raster dataset just created, potential 

maximum retention (S) value for each cell was calculated (using the ‘raster calculator’ in ArcGIS).  An additional step was 245 

included as a check for the runoff condition in Eq. (2): If P<0.2S, then Qr=0.   Substituting for potential maximum retention 

(S) and mean annual daily precipitation (P) in Eq. (2), daily runoff (Qr) in inches per day was calculated (using the ‘raster 

calculator’ in ArcGIS) for each grid cell at 50m spatial resolution covering the globe.  The units of Qr were next converted 

from inches to millimeters (using the ‘raster calculator’ in ArcGIS) for a daily mean annual runoff (MAR) (Fig. 2(a)) for 

subsequent flow estimation. 250 
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Figure 2. (a) Estimated global surface runoff grid (MAR, mm) at 50 m resolution based on the CN method. (b) Estimated Mean Annual 255 
Flow (MAF, m3s-1) at HydroBASINS level-12 catchments covering the globe 

    The MAR dataset covers the global landmass and excludes parts of the Arctic and Antarctic regions due to non-

availability of some of the input datasets for a particular geography.  For example, hydrologic soils group data did not 

include Greenland, hence MAR was not calculated for that geography.  Similarly, MAR was not estimated for some tropical 

islands including Hawaii and Mauritius due to non-availability of hydrologic soils group data for those areas.  As to our 260 

knowledge, the MAR thus created is the highest spatial resolution (at 50 m) surface runoff dataset available at the global 

scale representing a combination of land cover and soils with the incorporation of precipitation over a 30-year temporal scale 

– accounting for the historic variability from dry and wet years to arrive at a best estimate of runoff under current conditions. 

(a) 

(b) 
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2.5 Catchment MAF estimation 

With the MAR estimated for the globe, the next step was to estimate mean annual river flow.  Flow in a stream or river at 265 

any location is an aggregation of the water runoff from a given surface area over a period of time (i.e., volume/time).  At a  

large scale, the river basin determines the boundary to aggregate runoff and determines the amount of water represented as 

river flow discharging from the basin. At a small scale, hydrologic features including sub-basins and much smaller 

catchments comprise the larger river basin and provide the geographic variability of flow across the river basin.  Using the 

runoff grid, flow can be aggregated for individual catchments based on the spatial scale of interest, with smaller catchments 270 

providing more detailed flow at local scales, which was the need for this project.  Hence, a global hydrologic dataset of 

catchments and rivers was required to convert the MAR gridded data (50 m) to river flow (i.e., volume flux).  The level-12 

catchment spatial vector polygons from HydroBASINS identified as the spatial unit of analysis were used for processing in 

the subsequent steps.  

    The level-12 catchments were spatially overlaid with the global MAR grid (using the ‘zonal statistics as table’ function in 275 

ArcGIS) to calculate individual catchment-level average value of the MAR (mm d-1).  This average MAR for each level-12 

catchment was first converted to units of md-1 and then multiplied by the total geographic area of the level-12 catchment 

(m2) to generate an estimate of local catchment flow (m3d-1).  This annual mean flow was ultimately converted into units of 

m3s-1 , the volume of water represented by the stream corresponding to that catchment.  These calculations were performed at 

individual level-12 catchments to estimate catchment-level mean annual flow (MAF, m3s-1).  Aggregating HydroBASINS 280 

from all regions (excluding Greenland, parts of Arctic and the Antarctic), there were 1,017,091 level-12 catchments covering 

the globe at which MAF was estimated.  For areas not covered by the MAR grid due to limitations of data availability, MAF 

was not estimated.  The MAFs thus created represent discharge from each catchment as a discrete unit and do not account for 

flows from the hydrologic upstream contributions that make up for flows in a large stream or river. 

2.6 Hydrologic sequencing 285 

A simple and practical approach to catchment flow routing was utilized – flow from runoff is immediately routed through 

the catchments based on their hydrologic connectivity.  After delineating individual level-12 catchment flow, cumulative 

flows (accounting for upstream flow contributions for each catchment) were computed by routing the hydrologic sequencing 

of the spatial catchment network and aggregating individual catchment flows.  This was performed by utilizing the 

Pfafstetter coding system within the HydroBASINS level-12 catchments (Lehner and Grill, 2013) to order the catchments 290 

hydrologically from upstream to downstream.  For this purpose, a hydrologic sequencing program was created using the C 

programming language (Esri, 2021) which harnessed the coding system of the level-12 catchments for hydrologic routing.  

Documentation from the NHDPlus V2 dataset for the U.S. (McKay et al., 2012) was referenced for guidance in developing 

the hydrologic sequencing program.  Hydrologic routing methods and channel storage, additional flows (e.g., subsurface 

flows, snow melt, etc.), abstractions, or attenuation were not considered for refinements of the catchment flow. 295 
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2.7 River MAF estimation 

Applying the hydrologic sequencing program, individual level-12 catchment MAFs were aggregated by hydrologically 

routing (upstream to downstream) the river network, including flows from all tributaries, generating an aggregated MAF 

across the river basin.  This sequencing program was applied for individual river basin separately to cover the entire region 

of HydroBASINS level-12 catchment dataset, combining MAFs to develop aggregated river flows for all river basins within 300 

the region.  The process was then repeated for the 8-regions and aggregated MAF for all level-12 catchments (n = 1,017,091) 

covering the globe was estimated (Fig. 2(b)). 

    A spatial and tabular relationship (HydroRIVERS, 2019) exists between each HydroBASINS level-12 catchment and the 

corresponding river segments in HydroRIVERS which hydrologically represents the catchment.  The river segments are 

uniquely identified by the HYBAS_L12 attribute representing the level-12 catchment, however there are multiple segments 305 

per catchment indicating all rivers within a catchment.  Since there was only one MAF calculated per level-12 catchment, all 

the river segments within the catchment represent the same MAF.  To simplify this spatially, the multiple river segments per 

catchment were aggregated (using the ‘dissolve’ function in ArcGIS) to create a single HydroRIVERS river segment per 

level-12 catchment.  This process was repeated for each region separately for the 8-regions thereby creating a total of 

1,004,749 river segments covering the global extent. 310 

    The level-12 catchment and river segments are related through a tabular relationship with HYBAS_L12 as the common 

attribute, i.e., individual catchment can be joined to its corresponding river segment.  Utilizing this relationship, the 

aggregated MAF calculated earlier for each level-12 catchment was transferred to the corresponding river segment in 

HydroRIVERS (using the ‘join’ function in ArcGIS), thereby providing MAF for the river network.  This process was 

performed for each region separately, developing the MAF for the entire river network covering the globe (n = 1,004,749 315 

rivers) (Fig. 3).  Aggregated MAF (m3s-1) representing flowing water at both level-12 catchments of HydroBASINS and the 

river network of HydroRIVERS was estimated at the global scale. 
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Figure 3. Estimated MAF (m3s-1) at the HydroRIVERS river network covering the globe 320 

    In most cases there exists a one-to-one relationship (HydroRIVERS, 2019) between level-12 catchments from 

HydroBASINS and river segments from HydroRIVERS, but there are instances where such relationship do not exist either 

due to inherent limitation of spatial resolution of source data (e.g., very small catchments) or due to other local hydrologic 

challenges like subsurface flows (e.g., springs or inland sinks with no visible surface outlet).  Due to these limitations, total 

number of river segments in each region is slightly lower than the total number of level-12 catchments.  At the global scale, 325 

there are about 1.2% (n = 12,342) fewer river segments with MAF data than the catchments. 

     Across the global river network, about 10.2% of the river segments (n= 102,674) resulted with an estimated MAF of 0 

m3s-1.  This was due to two distinct climatic conditions across parts of the globe: firstly, areas with insufficient precipitation 

and surface runoff resulting in non-existent river flows in certain arid and semi-arid regions of the globe (e.g., parts of North 

Africa, South-West parts of North America, Central Asia, most of Australia, etc.), and secondly, Arctic and Antarctic regions 330 

covered by ice where most of the precipitation is in the form of snow in winter and surface runoff is very challenging to 

quantify in such places (e.g., Northern Canada, parts of Northern Europe and Siberia, etc.).  The river flows are not always 

high in areas with high precipitation as the flow is primarily dependent on the soil-land cover-precipitation mix across all 

parts of the entire river basin. 

 335 

Data Availability  

Two data spatial products from this project are available at https://doi.org/10.6084/m9.figshare.22694146 for public 

distribution (Heisler, et al., 2023).  The first dataset is the global coverage of the aggregated MAF values on the 

HydroBASINS level-12 catchment levels, including the polygon level-12 catchments with the tabular attribute RIV_Q_CMS 
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representing MAF ( m3s-1).  The second dataset is the global coverage of the aggregated MAF values on the HydroRIVERS 340 

river network, including the river line network with the tabular attribute RIV_Q_CMS representing MAF (m3s-1).  Both 

datasets are spatial vectors distributed in the World Geodetic System 1984 (WGS84) datum geographic coordinate system 

for consistency with the source HydroBASINS and HydroRIVERS data. 

Code availability 

ArcGIS Pro version 2.1 of the ArcGIS suite of software was used for spatial data management and processing operations.  345 

GIS models were built within ArcGIS for spatial processing and used for repetitive calculations and operations with raster 

and vector data over the eight regions. 

3 Results and Discussion 

3.1 Evaluation of river flow 

The resulting modelled river flow was evaluated by comparing to measured river flow at gauge stations.  At the regional 350 

scale, it is challenging to compare the estimated river MAF to any measured flow since there is significant variability in the 

presence of measured flow at gauge stations by country, and public access to measured flow at these gauges is limited at a 

global scale. As such, in areas with readily available measured river flow data, quantitative comparisons were made to 

evaluate the estimated MAF by employing R2 and RMSE (root mean square error) modelled values; where R2 is a relative 

measure of fit and RMSE is an absolute measure of fit in comparison to the range of estimated discharge data. Prior to these 355 

interpretations, all models were assessed to ensure relatively normal distribution of the model’s residuals. Due to the 

complex nature of river discharge, all data points were retained unless determined to be an extreme outlier from the dataset. 

To compare data across the multiple geographies used, a comparison between models was also included by calculating and 

assessing each model’s RMSE-Observations Standard Deviation Ratios (RSR) (Moriasi et al. 2007).  

The NHDPlus V2 river flow dataset (USEPA, 2012) and Global Runoff Data Centre (GRDC, 2020) database were used 360 

for the measured gauge data comparisons. The NHDPlus V2 covers the entire United States, is publicly available, and is the 

most detailed large-scale hydrology with detailed catchments and river networks. While the global GRDC dataset is less 

detailed (i.e., fewer gauge locations per country), the U.S. only NHDPlus V2 data was used to demonstrate a regional 

comparison, using the Ohio River Basin as a case study, following previous iSTREEM® regional developments (Kapo et al. 

2016, Wang et al. 2000).  On a global scale, the GRDC dataset was used to make national-level comparisons. The 365 

comparison results (Table 4) are discussed in the following sections.  
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Table 4. Comparison of estimated river MAF (m3s-1) with gauge adjusted mean annual river flow from NHDPlus V2 for the Ohio River 

and GRDC gauge measured mean annual discharge across 11 countries. *RSR = standard deviation ratios 370 

 

3.2 

Comparison with NHDPlus river flow data case study 

The NHDPlus V2 river flow dataset (USEPA, 2012) provides a robust and abundant flow data source for the U.S. NHDPlus 

V2 river flow is based on runoff, temperature, precipitation and adjusted to USGS gauge flow measurements from 1971-375 

2000 (McCabe and Wolock, 2011).  The Ohio River basin of about 422,000 km2 with 167,698 gauge locations was used as 

an example of a regional flow comparison.   

    Since NHDPlus catchments are much smaller in size than the level-12 catchments it was appropriate to create river flows 

for NHDPlus catchments using the estimated MAR data.  Utilizing the estimated global MAR (mm) dataset at 50m 

resolution, MAFs (m3s-1) for each NHDPlus catchment and cumulative river flows (by hydrologic sequencing) across all 380 

catchments within the Ohio River basin were estimated in the same manner as was done with the HydroBASINS level-12 

catchments at the global scale.  Estimated MAFs at NHDPlus catchments were compared with the corresponding gauge 

adjusted mean annual flows from NHDPlus for the same catchments;  just over 167,000 NHDPlus catchments were analyzed 

for this comparison. Results showed a very strong correlation (R2 = 0.97) (Fig. 4 (a)Error! Reference source not found.) with 

the estimated MAFs being slightly lower than NHDPlus flows. The regression line (0.87) also indicated that the estimated 385 

MAFs are in good agreement (within a factor of 1.1) but slightly lower than NHDPlus flows. A lower RMSE value of 46 

m3s-1 (Table 4) shows good agreement when compared to the estimated flows to NHDPlus (Table 4).  This process showed 

Country R2 RMSE (m3s-1) 
Estimated Discharge 

Ranges (m3s-1) 
RSR* 

Ohio River, United States (n = 167, 698) 0.97 47 0 - 8,673 0.18 

United States (n = 936) 0.90 522 0.01- 18,209 0.45 

Canada (n = 629) 0.89 316 0.06 - 8,494 0.50 

Mexico (n = 60) 0.91 196 1 - 1,942 0.31 

Brazil (n = 481) 0.95 3,916 0.7 - 178,003 0.28 

China (n = 28) 0.69 431 4 - 1,670 0.71 

Japan (n = 141) 0.79 69 8 – 523 0.69 

India (n = 29) 0.92 917 12 - 3,061 1.5 

Philippines (n = 46) 0.87 24 0.5 – 258 0.36 

Germany (n = 334) 0.98 74 0.1 - 2,321 0.23 

France (n = 297) 0.76 75 0.1 - 1,723 0.48 

United Kingdom (n = 204) 0.80 11 0.1 - 173 0.52 
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that the CN based approach that uses local data on soils, land cover and precipitation to estimate MAR, and then MAF, 

provided confidence in applying the method to other geographies and with different sized catchments.  

 390 
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 395 
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 400 

 

 

Figure 4. Comparison of estimated river MAF (m3s-1) with: (a) gauge adjusted mean annual river flow from NHDPlus V2 (n=167, 698) 

for the Ohio River; and GRDC gauge measured mean annual discharge in (b) United States (n=936), (c) Canada (n=629), (d) Mexico 

(n=60), (e) Brazil (n=481), (f) China (n=28), (g) Japan (n=141), (h) India (n=29), (i) Philippines (n=46), (j) Germany (n=334), (k) France 405 
(n=297), and (l) United Kingdom (n=204).  The 1:1 agreement line is included on the plots as the dashed line. 
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3.3 Comparison with Global Runoff Data Centre gauge data 

The Global Runoff Data Centre (GRDC, 2020) database provides daily and monthly observations of gauge stations 

monitored from the early 1800’s, with variable record length. GRDC data were obtained for several countries in different 

geographic regions across the globe to compare against the developed MAF of the rivers.  Eleven countries were identified 410 

based on the priority for iSTREEM® expansion (McDonough, 2021), the impetus for this project, and to represent variance 

in geographic regions across the globe.  Though the WorldClim 2 (Fick and Hijmans, 2017) precipitation data used for this 

project focused on a temporal range from 1970-2000, GRDC gauge data for that period for the countries of interest was 

limited in certain cases.  For this exercise, from GRDC, about 4,000-gauges in the eleven countries along with spatial 

locations and mean monthly discharge data (m3s-1) from the beginning of monitoring until 2020 were obtained.  For each 415 

gauge location, mean monthly discharge for the years provided were averaged by year to arrive at a mean annual discharge 

(m3s-1) value for each gauge.  Gauges in the eleven countries were monitored over a varied period of time, thus only those 

years and months that had data were averaged and used.  Though the temporal ranges do not entirely overlap with the 

precipitation data representing 30-years (1970-2000) and the GRDC gauge data representing a varied time scale by country, 

multiple years were considered to account for the variability from the dry and wet years over a larger period thereby aiding 420 

in better understanding the average flows. 

    Some of the gauge location spatial coordinates provided by GRDC were inaccurate when compared to the gauge location 

descriptions provided. As such, these were manually checked and were moved to adjust to the gauge description provided.  

This inaccuracy could be due to the gauge location’s latitude and longitude value limited to the first or second decimal (e.g., 

126.1, 34.88, etc.) which significantly affects the location accuracy. For example, when the gauge description was mentioned 425 

as ‘station on Yellow River’ in China and if it was miles away from the river, the gauge point was manually moved to the 

closest location on the river.  This process was performed in ArcGIS guided by the aerial imagery data provided by Esri 

(2019). The number of gauges thus adjusted on a per-country basis is discussed below in the comparison.  In certain cases, 

where the location could not be corrected with reasonable accuracy, these gauges were discarded from further use which 

varied by country and resulted in 2.5% of total gauges (n = 95). 430 

    In North America, the U.S., Canada, and Mexico were used for comparison. In the U.S., to conduct a nation-wide 

comparison, GRDC mean annual discharge data from gauge locations covering the entire U.S. was used to compare against 

estimated MAF at level-12 catchments where GRDC gauges spatially overlapped. The gauges in Hawaii were excluded due 

to lack of MAF data for that area.  Across the continental U.S., the 1,014 gauges included those in Alaska that fall in the 

Arctic zone, and this comparison showed good correlation (R2 = 0.82). However, the comparison with flow gauges 435 

exclusively for Alaska showed moderate agreement (R2 = 0.55). For gauges that fell in the Alaskan Arctic zone, estimated 

river MAF flows were consistently under predicted which indicated that flows from snowmelt and permafrost may not have 

been adequately captured by this method.   When the gauges in Alaska were excluded and only those gauges in the 

continental U.S. were considered (n=936); the comparison showed a stronger correlation (R2 = 0.90) (Fig. 4 (b)).  The 
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regression line slope (1.21) indicates that the predicted MAF flows were also in good agreement, but slightly higher than the 440 

GRDC monitored values. An RMSE value of 522 m3s-1 (Table 4) indicates some variability between the estimated and 

measured flows but the model is still able to predict the data with relative accuracy.  

    The comparison of estimated MAF was performed against GRDC mean annual river discharge data for gauge locations in 

Canada, which also followed similar results as Canada also has Arctic zones. The gauge locations were distributed across the 

country including the northern regions that fall in the Arctic zone. A comparison of flows at all the 1,153 GRDC gauge 445 

locations covering entire Canada showed moderate agreement (R2 = 0.60). Similar to Alaska in the U.S., for gauges in the 

Arctic zone, estimated river MAF flows were consistently under-predicted also suggesting that flows from snowmelt and 

permafrost may not have been captured. When the gauges in the Arctic region (above the Arctic circle) were excluded, 

representing the gauges in the non-Arctic zone (n=629) (i.e., southern region of Canada below the Arctic circle), the 

correlation improved (R2 = 0.89) (Fig. 4 (c)). Regression showed that the estimated MAF flows were generally lower than 450 

the measured gauge when comparing the results to the 1:1 line (i.e., slope of 0.6) thereby underestimating the modelled 

discharges. This is likely due to underprediction of flow in countries that have a large area with high snowmelt and/or 

permafrost, even below the Artic zone.  An RMSE of 315 m3s-1 (Table 4) also suggests an acceptable amount of error and 

shows overall good agreement of estimated flows with gauge flows in Canada. 

     For Mexico, the comparison of estimated MAF against river discharge at 60 GRDC gauges showed a strong correlation 455 

(R2 = 0.91) (Fig. 4(d)) (five of the 60 GRDC gauges were spatially adjusted for location accuracy). The slope of the 

regression tracked just higher than above the 1:1 line (slope = 1.5) indicating that the estimated MAF values were slightly 

higher than the gauge measurements.  An RMSE of 196 m3s-1 compared to the range of estimated discharges, ranging 

between ~ 1 and 2000 m3s-1, indicates some variability between the modelled and estimated flows in Mexico. Based on the 

variation present, the model was still able to reasonably predict flows given the smaller amount of data as comparison, and 460 

an increase in publicly available data would provide additional confidence in the accuracy of the model.  

    In South America, estimated MAF in Brazil was compared to measured data from 481 GRDC gauges (Fig. 4(e)).  The 

comparison showed a strong correlation between estimated MAF and GRDC gauge data (R2 = 0.96) (20 GRDC gauges had 

to be spatially adjusted for location accuracy) and the regression line nearly aligned with the 1:1 line (slope = 1.1) indicating 

a strong agreement between estimated MAF and gauge data.  An RMSE of 3916 m3s-1 (Table 4), suggests that the model 465 

produces acceptable discharge predictions accounting for the large variability in Brazil estimated discharges (1 to 178,003 

m3s-1), with model residuals trending closely to the model’s line of best fit.  

    China, Japan, India, and Philippines were all included for flow comparison in Asia.  GRDC gauge data for China was very 

limited (n=28) and estimated MAF compared with mean annual river discharges from GRDC showed a reasonable 

correlation (R2 = 0.69) (Fig. 4(f)) (7 gauge locations were corrected for spatial accuracy and one site was removed as an 470 

extreme outlier). These results suggest the variability in the modelled discharges can be attributed to the estimated GRDC 

discharged used for testing. The slope of the regression for the China model (slope = 1.1) indicates the estimated MAF was 

generally in good agreement with gauge measurements. The RMSE value of 431 m3s-1 (Table 4) indicates reasonable 
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agreement of measured and estimated flows, however there is lack of measured data for larger river discharge locations 

which could account for some variability in flows. Based on the results of the China model comparison, even with limited 475 

data, there was good agreement, and it is anticipated that model results comparison would improve with more river discharge 

information, particularly from locations in additional watersheds, representing ranges of conditions within the country.  

Additional sources of measured flow monitoring programs or data in China could not be identified as many were not 

publicly available for use and thus could not be used in the comparative analysis.   

    Similar comparisons were made for Japan with 141 gauges and resulting in an R2 = 0.79 (Fig. 4 (g)), India with 29 gauges 480 

with an R2 = 0.92 (Fig. 4 (h)) (four locations manually corrected and one removed as an extreme outlier after confirming 

location), and the Philippines, with 46 gauges, with an R2 = 0.87 (Fig. 4 (i)) (nine gauge locations corrected). For Japan, the 

estimated MAF were generally lower than the reported gauge measurements (slope = 0.5), however still within a factor of 2 

indicating reasonable agreement, and the relatively high R2 (0.79) indicating that the model was able to capture flow 

variability.  For India, the MAF estimates were generally higher (slope = 2.1), which indicates reasonable agreement given 485 

that limited data for is available for comparison and that it is a large and geographically diverse country. The Philippines 

MAF predictions were generally in very close agreement to gauge measurements (slope = 1.0). RMSEs of 69 m3s-1 for 

Japan, 917 m3s-1 for India and 24 m3s-1 for Philippines (Table 4) indicate good agreement of the estimated MAF with gauge 

flows based on the range of estimated discharges per country (Table 4), in addition to all slopes being within a factor of 2. 

    Germany, France, and the United Kingdom (U.K.) were used for flow comparisons in Europe.  The comparisons in 490 

Germany at 334 GRDC gauges showed a very high correlation with R2 = 0.98 (Fig. 4 (j)) (five locations corrected), and 

France at 297 GRDC gauges showed a good correlation with R2 = 0.76 (Fig. 4 (k)) (nine locations corrected) and the U.K. at 

204 GRDC gauges also showed a good correlation with R2 = 0.80 (Fig. 4 (l)) (six locations corrected and 23 number were 

removed due to a lack of predicted flows). MAF predictions for Germany and France suggest good agreement with the gauge 

measurements resulting in regression slopes close to one (slope = 0.8, slope = 0.73, respectively). MAF predictions for the 495 

United Kingdom were also reasonably well predicted, generally lower than gauge measurements with a regression slope of 

0.58. Assessment of the gauge data from the U.K., indicates a lack of higher discharge locations in the dataset, which may 

account for the slight model underprediction when compared to other European countries.  RMSEs of 74 m3s-1 for Germany, 

11 m3s-1 for the U.K., and 75 m3s-1 for France (Table 4) all indicate good agreement of the estimated MAF with gauge flows, 

with the three model’s residuals trending closely to each line of best fit (Fig. 4 (j, k, l)). When compared to the range of 500 

estimated discharges, all three models displayed an acceptable variation for conservative applications (Table 4), and 

predicted flows were generally within a factor of two of gauge measurements indicating good model performance. 

    To compare model results from hydrologically diverse regions of the globe we calculated and compared RMSE-

Observations Standard Deviation Ratios (RSR) (Golmohammadi et al., 2014). RSR values vary from an optimal value of 

0.00 to a large positive value, with lower values indicating higher model simulation performance (Golmohammadi, et al., 505 

2014; Moriasi, et al., 2007). In review of the literature, the RSR was selected to rely on more than validation metric and on 

the recommendations of Singh et al. 2005 to incorporate a normalized error index. We applied a rating scale similar to the 
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one proposed by Singh et al. 2005 and applied by Moriasi et al. 2007; rating RSR values <0.50 as “Very Good” with a 

decrease in rating for each 10% increase in RSR value (Table 5).  

Table 5. RSR model rating applied in our data assessment as proposed by Moriasi et al. (2007) 510 

Performance Rating  RSR  

Very Good 0.00 ≤ 0.50 

Good 0.50 ≤ 0.60 

Satisfactory 0.60 ≤ 0.70 

Unsatisfactory  > 0.70 

 

    Comparing model performance based on RSR values, the majority (8 out of 12) of evaluated regions had RSR values less 

than or equal to 0.5, the threshold for “very good”, suggesting very good model performance in most cases (Fig.5). 

Additionally, two additional regions had RSR values <= 0.6 or =< 0.7, indicating these had “good” and “satisfactory” 

performance, further indicating good to reasonable model performance across the regions evaluated. Of the regions 515 

evaluated, only two had RSR values above 0.7 (i.e., “unsatisfactory”), however, these were also the regions with least 

amount of gauge locations available for comparison (i.e. China, India). The amount of measured gauge locations available 

for each country was generally associated with better model performance (Table 4). Thus, it is likely that higher RSRs 

associated with these two countries is attributed to the limited gauge locations available for comparison, coupled with large 

geographic areas and associated hydrological and meteorologic variability which may not necessarily capture the variability 520 

in flows across these regions.  As the model performance was “very good” to “satisfactory” for almost all locations (i.e. 10 

out of 12), where there were more gauge locations for comparison, this suggests that the inclusion of larger datasets would 

substanstially improve the model performance evaluation. As noted above, we there are large datasets available for the 

countries selected, however, these are not publicly available, and our goal was to produce models using publicly available 

information.  525 
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Figure 5. Comparison of RMSE-Observations Standard Deviation Ratios (RSR) for each country modelled. Following the assessment 

ratings as Moriasi et al. (2007), model performance was compared between counties to identify trends and limitation of each model and to 

determine the capabilities of the methodology we propose. Model Rating scale is provided in Table 5. All models with an RSR of < 0.5 we 530 
described as “Very Good” (Dashed Line) and models with RSR values >0.7 were rated as “Unsatisfactory” (Solid Line). 

4 Conclusion 

Across the twelve country comparisons between monitored and modeled data, the R2 values from the linear regressions 

ranged from 0.69 – 0.98 indicating good overall correlation with measured data. Additionally, the slopes of the linear 

regressions were within a factor of 1 for six of the twelve countries, and within a factor of 1.5 for ten of the twelve countries, 535 

and within a factor of 2 for all twelve countries evaluated. Since the estimated MAF both over and under-estimated when 

comparing with gauge measurements, it suggests that there is not necessarily a bias in one direction, however, these 

differences could occur from variability in number of flow gauges available and gauge location accuracy, temporal range of 

flow measurements, and other location-specific factors such as high snowmelt or permafrost.  The RMSEs across these 

comparisons ranged from 11 to 3,916 (m3s-1) indicating reasonable agreement between the estimated flows and measured 540 
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flows per country (Table 4).  From these comparisons across diverse regions across the globe, it was found that MAF 

estimated based on the CN approach was effective in estimating flows across a wide selection of landscapes. As future work 

continues in modelling global surface waters, more granular gauge data will help with improving model evaluation.  Higher 

resolution monitoring data, similar to that used in our Ohio River evaluation regional case study, would potentially better 

capture variability across countries. The evaluations presented in this paper, however, provide reasonable confidence that 545 

these estimated MAF data can be used for applications at local and regional scales. The resulting spatially resolved global 

river flow dataset provides a useful tool that can be leveraged to support various scientific applications including for use in 

chemical safety assessments of down-the-drain chemicals across the globe (McDonough et al., 2021).     
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