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Abstract. Plant phenology refers to the cyclic plant growth events, and is one of the most important indicators of climate11
change. Integration of plant phenology information is crucial for understanding ecosystem response to global change and12
modeling the material and energy balance of terrestrial ecosystems. Utilizing 24,552 in-situ phenological observations of 2413
representative woody plants species from the Chinese Phenology Observation Network (CPON), we have developed maps14
delineating species phenology (SP) and ground phenology (GP) of forests over China from 1951-2020. These maps offer a15
detailed spatial resolution of 0.1° and a temporal resolution of 1day. Our method involves a model-based approach to16
upscale in-situ phenological observations to SP maps, followed by the application of weighted average and quantile methods17
to derive GP maps from the SP data. The resulting SP maps for the 24 woody plants exhibit a high degree of concordance18
with in-situ observations, manifesting an average deviation of 6.9 days for spring and 10.8 days for autumn phenological19
events. Moreover, the GP maps demonstrate robust alignment with extant Land Surface Phenology (LSP) products sourced20
from remote sensing data, particularly within deciduous forests, where the average discrepancy is 8.8 days in spring and 15.121
days in autumn. This dataset provides an independent and reliable phenology data source for China on a long-time scale of22
70 years, and contributes to more comprehensive research on plant phenology and climate change at both regional and23
national scales. The dataset can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).24

1 Introduction25

Plant phenology, the discipline that examines the timing of plant life cycle events, emerges in response to the seasonal26
changes in climate and environmental conditions (Lieth, 1974; Schwartz, 2003). These events are pivotal stages in a plant's27
life, such as budburst, leaf unfolding, flowering, leaf coloring, and defoliation. Recognized as a sensitive biological indicator28
of climate change (Fu et al., 2015; Richardson et al., 2013), plant phenology is instrumental in understanding ecosystem29
responses to global change (Menzel et al., 2020) and is a significant factor in modeling the exchanges of matter and energy30
within terrestrial ecosystems (Keenan et al., 2014). The demand for extensive, long-term, and reliable plant phenology data31
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is pronounced among researchers for effective biological monitoring and predictive studies. Although such data are now32
available from various sources (Piao et al., 2019; Tang et al., 2016), including in-situ observations (Templ et al., 2018),33
satellite remote sensing (Bolton et al., 2020; Dixon et al., 2021), and tower-based digital cameras (Richardson et al., 2018),34
harmonizing this information across broad spatial and temporal scales remains a significant scientific challenge, complicated35
by inconsistencies among data sources (Fisher et al., 2006; Park et al., 2021).36

The practice of conducting manual, in-situ observations for species phenology (SP) boasts a rich history extending over37
several centuries (Aono and Kazui, 2008), yielding highly accurate data for specific plant species (Polgar and Primack,38
2011). In 1963, the Chinese Academy of Sciences established the Chinese Phenology Observation Network (CPON), which39
stands as a benchmark for phenological data collection through its standardized, nationwide network, engaging numerous40
professional observers and an extensive repository of ground-based observations. CPON’s repository, to date, encompasses41
over 1.2 million records for upwards of 900 plant species from more than 150 sites across China (Fig. 1), cementing its42
dominant status as a data center for phenological research in China. These phenology records have been contributed to43
examining the spatio-temporal patterns of plant phenological shifts (Dai et al., 2014; Ge et al., 2015), the environmental44
factors affecting plant phenology (Dai et al., 2013; Wang et al., 2020), and the development of phenology models in China45
(Tao et al., 2018). However, the spatial distribution of in-situ data is often uneven and limited, particularly at regional and46
global scales (Donnelly et al., 2022), with significant gaps over extended timescales. Advances in species-level phenology47
modeling offer a promising avenue to overcome these spatial and temporal constraints (Fu et al., 2020; Hufkens et al., 2018).48
In scenarios lacking of direct phenological observations, such models are invaluable for generating large-scale predictions,49
thereby filling in the missing data gaps in both space and time (Cleland et al., 2007; Wang et al., 2012). This modeling50
approach has been exemplified by the Extended Spring Indices (SI-x) model, which has produced detailed gridded maps51
delineating the first leaf and first bloom events for three woody plants across the contiguous United States with resolutions52
from 1° to 1 km (Ault et al., 2015; Izquierdo-Verdiguier et al., 2018). Adopting a similar strategy, it is feasible to extrapolate53
the CPON phenology observations across China, facilitating the integration and scaling up of this rich dataset to serve54
regional and national research needs.55

In contrast to manual in-situ observations, satellite remote sensing facilitates expansive monitoring and mapping of land56
surface phenology (LSP) at a landscape scale, yielding more comprehensive phenological data (Studer et al., 2007). Over the57
past four decades, remote sensing technologies have witnessed substantial enhancements, leading to significant strides in58
both spatial and temporal resolution (Misra et al., 2020; Dronova and Taddeo, 2022). Currently, a variety of LSP products,59
based on vegetation indices like NDVI and EVI from diverse remote sensing sources, provide LSP data on regional and60
global scales with resolutions from 10 km down to 30 m (e.g., Li et al., 2019; Wu et al., 2021). The reliability of these LSP61
datasets is highly dependent on validation against ground phenology (GP) data derived from in-situ SP observations (Tian et62
al., 2021; Zhang et al., 2017), necessitating a seamless transition from individual (i.e., SP) to landscape (i.e., GP) level.63
Methods such as weighted averages and quantiles have proven their efficacy in this aggregation process from individual to64
community or landscape levels (Donnelly et al., 2022; Fitchett et al., 2015). For instance, the weighted average method has65
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been validated at the site scale through combined field and remote sensing studies to aggregate GP data from in-situ SP66
observations, considering species abundance as weights (Liang et al., 2011). Recent studies have suggested that quantile67
methods (e.g., 30th percentile) holds greater promise than the commonly used average methods at larger scales, as68
demonstrated in Europe and the USA (Ye et al., 2022). Nevertheless, such methods have not yet been applied to aggregate69
large-scale GP from SP data in China. This gap potentially limits the ground-truthing for LSP products and hampers a70
comprehensive understanding of the spatial and temporal patterns of phenological shifts over the country.71

In this study, we aimed to develop long-term, high-resolution SP and GP maps of China, spanning from 1951 to 202072
with a 0.1° resolution. This effort will produce spatially continuous, gridded phenology products that are notably missing in73
the current Chinese context, yet are vital for diverse scientific and ecological applications. Drawing from the extensive74
database of the CPON, we analyzed 24,552 in-situ phenology observations of 24 representative woody plants from 122 sites75
over six decades. This analysis included three critical phenophases for each species: the first leaf date (FLD), first flower76
date (FFD), and 100% leaf coloring date (LCD). In our methodology, we employed five species-level phenology models77
with gridded meteorological data to simulate SP maps. To refine these maps for each plant species, we applied species78
distribution maps as spatial filters. We further synthesized these SP maps into GP maps, utilizing weighted average and79
quantile methods that incorporated the distribution probabilities of the species as weights. The SP maps underwent a80
rigorous cross-validation process to ensure accuracy, while the GP maps' reliability was verified through comparative81
analysis with existing LSP products. The contribution of this study is the introduction of a novel grid phenology dataset for82
China. This dataset enhances the spectrum of available phenology data within the country and serves as an independent83
source for validating LSP products. Moreover, it is expected to significantly advance research on plant phenology and global84
change by providing a more detailed portrayal of the spatiotemporal trends in plant phenology patterns.85

2 Methods86

2.1 Data acquisition and processing87

2.1.1 Phenology observations88

The in-situ phenology observations from 1963 to 2018 were obtained from the CPON. We selected 24 representative89
woody plants species across 17 families (Table 1). These species are not only prevalent in China’s forest ecosystems (Fang90
et al., 2011), but also extensively recorded within CPON database. The longitudinal span of these observations covers 5591
years across 122 sites, with a total of 24,552 individual records, covering a diverse spectrum of land cover, ecological, and92
climatic conditions across China (Fig. 1). Each species in the study has a substantial representation in the dataset, with at93
least 40 years of phenologucal data from a minimum of 13 distinct sites. We focused on three phenophases for each species:94
spring FLD, spring FFD, and autumn LCD. To ensure the integrity of the dataset, we applied three-sigma limits, a statistical95
filter that retains data within three standard deviations from the species' mean phenological dates (Pukelsheim, 1994).96
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Outliers that fell beyond these thresholds were excluded, as they constitute less than 1% of the data points on a standard97
normal distribution, ensuring a robust and reliable dataset for analysis.98

99
Figure 1: Geographic distribution of CPON sites (n = 122) included in the phenology dataset across China. Sites with less100
than 10 recorded species are marked with pink asterisks, while sites with more than 10 recorded species are marked with red101
asterisks. Note that the markings on the map of several adjacent sites may overlap each other. The background map shows102
the IGBP land cover type from the MODIS Land Cover product (Friedl and Sulla-Menashe, 2022).103

104
Table 1: List of 24 species of woody plants from 17 families in China. Number of records represents the total number of105
three phenophases (FLD, FFD and LCD) of all sites and all years for each species.106

No. Species Family Life form Number of
sites

Number of
years

Number of
records

1 Ginkgo biloba Ginkgoaceae Tree 45 49 1110

2 Metasequoia glyptostroboides Cupressaceae Tree 37 47 860

3 Magnolia denudata Magnoliaceae Tree 42 47 980

4 Salix babylonica Salicaceae Tree 65 42 1526
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5 Populus × canadensis Salicaceae Tree 43 51 954

6 Robinia pseudoacacia Fabaceae Tree 54 45 1757

7 Albizia julibrissin Fabaceae Tree 36 47 984

8 Cercis chinensis Fabaceae Shrub 52 49 1207

9 Prunus armeniaca Rosaceae Tree 46 45 950

10 Ulmus pumila Ulmaceae Tree 60 44 1428

11 Morus alba Moraceae Tree 50 50 1071

12 Broussonetia papyrifera Moraceae Tree 41 43 1103

13 Quercus acutissima Fagaceae Tree 17 40 292

14 Pterocarya stenoptera Juglandaceae Tree 29 46 936

15 Juglans regia Juglandaceae Tree 50 47 816

16 Betula platyphylla Betulaceae Tree 13 43 369

17 Acer pictum subsp. mono Sapindaceae Tree 18 46 492

18 Ailanthus altissima Simaroubaceae Tree 34 47 873

19 Melia azedarach Meliaceae Tree 61 46 1410

20 Firmiana simplex Malvaceae Tree 57 48 1403

21 Hibiscus syriacus Malvaceae Shrub 58 47 1096

22 Fraxinus chinensis Oleaceae Tree 23 40 505

23 Syringa oblata Oleaceae Shrub 50 51 1163

24 Paulownia fortunei Paulowniaceae Tree 49 48 1267

Total - - 122 55 24552

107

2.1.2 Climate data108

The daily mean temperature (T) data spanning from 1950 to 2020 were sourced from two distinct repositories: (1) Site-109
specific temperature (Site T) was retrieved from the China Meteorological Data Service Center (CMDSC,110
https://data.cma.cn/). This dataset was primarily utilized for parameterizing the phenology models. (2) Gridded temperature111
(Grid T) was derived from the ERA5-Land climate reanalysis datasets (Muñoz Sabater, 2019; Muñoz-Sabater et al., 2021),112
available through the Copernicus Climate Change Service (C3S, https://cds.climate.copernicus.eu/). Grid T was employed113
for phenology simulation and upscaling processes, with a fine spatial resolution of 0.1°, approximately equating to 10 km.114
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To obtain daily grid T values, we computed the average from hourly temperature data recorded at four distinct times of the115
day (4:00, 10:00, 16:00, 22:00).116

The current bioclimatic variables (BIOCLIM+) were obtained from Climatologies at High Resolution for the Earth117
Land Surface Areas (CHELSA, https://chelsa-climate.org/) to determine the species distribution (Brun et al., 2022a, b).118
These variables encapsulate the average ecological and climatic conditions for the period 1981-2010, boasting a high119
resolution of 0.0083°. From the available bioclimatic data, we extracted both the traditional set of 19 bioclimatic layers120
(Bio1-Bio19) and an additional set of 50 layers. To mitigate the effects of autocorrelation among these bioclimatic variables,121
we computed the correlation coefficient between each pair of layer. Variables exhibiting a correlation coefficient above 0.8122
relative to preceding layers were omitted to prevent redundancy. Consequently, a subset of 12 bioclimatic layers was123
selected for inclusion as the environmental variables within the species distribution models (detailed in Table S1). These124
selected layers were then resampled to a 0.1° resolution to ensure consistency with the resolution of the grid T data.125

2.1.3 Forest and species distribution data126

The forest distribution map of China was sourced from the dataset of “Annual Dynamics of Global Land Cover and its127
Long-term Changes from 1982 to 2015” dataset (Liu et al., 2020). To discern forested regions, we reclassified the annual128
land cover (LC) layers into ‘forest’ and ‘non-forest’ categories. We then determined the duration of forest cover by summing129
the annual layers, and pixels representing at least one year of forest cover were identified as forest distribution areas. For130
forest type categorization, we employed the widely recognized International Geosphere-Biosphere Program (IGBP)131
classification system from the MODIS Land Cover Type (MCD12C1) Version 6.1 data product (Friedl and Sulla-Menashe,132
2022). In our classification scheme, we combined evergreen needleleaf forest (class 1) and evergreen broadleaf forest (class133
2) to delineate evergreen forest category. Similarly, deciduous needleleaf (class 3) and deciduous broadleaf forest (class 4)134
were amalgamated into deciduous forest category. The mixed forest (class 5) category was retained as is.. To achieve a135
consistent spatial resolution across our datasets, both the forest distribution map and forest type map were resampled from136
their original 0.05° resolutio to a 0.1° resolutio using the majority method, to match the resolution of the grid T data.137

The county-level species distribution maps were sourced from the comprehensive Database of China's Woody Plants138
(Fang et al., 2011). This authoritative database consolidates distribution data from an exhaustive suite of national, provincial,139
and regional floristic surveys and inventory reports published in China up to 2009 (Cai et al., 2021). Additionally, we140
obtained 4,371 occurrence records for 24 selected woody plant species from the Global Biodiversity Information Facility141
(GBIF, 2022; https://www.gbif.org/), which were subsequently utilized as the occurrence data inputs for species distribution142
modeling (detailed in Table S2). To ensure the reliability of our data, we included only those occurrence records that had143
location coordinate with an uncertainty of less than 2,000 meters. Moreover, the dataset was meticulously cleansed to144
eliminate any duplicate records, thereby enhancing the robustness of the species distribution models employed in our145
analysis.146
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2.2 Generating species phenology maps using a model-based upscaling method147

The generation of SP maps involves two major processes: (1) generating species potential phenology maps, and (2)148
generating species distribution maps. The definitive SP maps emerged from the spatial intersection of these two distinct map149
types, effectively overlaying the potential phenology with the actual distribution to pinpoint precise phenological patterns..150
The workflow for the processes is shown in Fig. 2.151

152
Figure 2: The workflow of generating SP maps using a model-based upscaling method, which involves two major153
processes: (1) Generating species potential phenology maps, and (2) Generating species distribution maps. The words in blue154
color represent the key processes of data generation. “.tiff” indicates the GeoTIFF format of the grid phenology or155
distribution maps.156
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2.2.1 Species potential phenology maps157

In the first process, we employed a model-based upscaling method to transform in-situ phenology observations into158
gridded phenology maps. Phenology models were constructed utilizing the phenophases (i.e., FLD, FFD, LCD) recorded by159
the CPON, in conjunction with the site T from the CMDSC climate observations. For each species under study, we160
developed a suite of phenology models to the respective seasonal phases. Three models were designated for spring161
phenology: the Unichill, Unified (Chuine, 2000) and temporal-spatial coupling (TSC) models (Ge et al., 2014). And two162
models were designated for autumn phenology: the multiple regression (MR) (Estrella and Menzel, 2006) and temperature-163
photoperiod (TP) models (Delpierre et al., 2009). The details of the modeling formulae and their respective parameters are164
elaborated upon in Appendix S1. The modeling strategy involved a cross-validation approach, where data from odd years165
were used for model training, while data from even years were set aside for model validation purposes. The estimation of all166
model parameters was executed via the simulated annealing algorithm (Chuine et al., 1998), ensuring a robust optimization167
process for the phenology models.168

For model validation, the models’ root mean square error (RMSE) and goodness of fit (R2) were calculated between the169
model predicted values and the original observed values. We conducted an internal validation using the data from odd years170
to evaluate the models' fitting efficacy. On the other hand, we conducted a cross validation was ondata from even years to171
evaluate the models' capability to simulate and extrapolate phenology data beyond the sample used for model development.172
The optimal phenology model for each species was determined as the one with the smallest RMSE during the cross-173
validation process and an R2 exceeding 0.5 (or 0.3 for LCD) during both validation processes. Species for which no model174
met these predefined criteria were omitted from the subsequent generation of SP and GP maps.175

To simulate SP maps, we input daily grid T data from ERA5-Land climate reanalysis into the previously determined176
optimal phenology models for each species. The simulation was conducted on a pixel-by-pixel basis, enabling the177
interpolation and upscaling of phenology observations from discrete sites to a comprehensive gridded phenology maps178
(Chuine et al., 2000). It is important to note, however, that the availability of grid T data allows for the simulation of species179
phenology, even in areas lacking observed species distribution. Therefore, we refer to the resultant maps as species potential180
phenology maps. This distinction emphasizes that while the simulated values represent potential phenological events based181
on climatic variables, they should not be misconstrued as actual observed values in regions where the species does not exist.182

2.1.2 Species distribution maps183

In the second process, species distribution maps were generated by integrating species distribution models with county-184
level species distribution data. For each species, we constructed models using the Maximum Entropy Species Distribution185
Modelling (Maxent; Phillips et al., 2006) version.3.4.4. Maxent is a widely utilized tool in species distribution modeling due186
to its efficacy in estimating a species’ distributional range by finding the distribution pattern with maximum entropy (i.e.,187
closest to the uniform). Maxent models the likelihood of species presence across geographical grids, assigning a predicted188
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probability of occurrence to each grid cell. To configure the Maxent model, we utilized occurrence data from the GBIF189
database, paired with environmental data inputs from the 12 bioclimatic layers provided by BIOCLIM+. In the model190
parameter settings, both linear and quadratic feature types were used to capture the relationship between species presence191
and environmental variables. Additionally, to validate the model and assess its predictive performance, we employed a 5-192
fold cross validation method.193

To evaluate the accuracy of the Maxent species distribution models, we applied the receiver operating characteristic194
(ROC) curve analysis. The integral of the ROC curve, referred to as the area under the curve (AUC), serves as a quantitative195
measure of the model’s prediction accuracy (Fielding and Bell, 1997). An AUC value approaching 1.0 is indicative of a196
model with high predictive accuracy. In our study, the Maxent models demonstrated robust predictive power, with an197
average test AUC of 0.845 and a standard deviation of 0.043 across the different species (Table S2).198

2.3 Generating ground phenology maps using weighted average and weighted quantile methods199

In our study, we aggregated individual-level SP maps into landscape-level GP maps using four aggregation methods: (1)200
weighted average (mean); (2) weighted median (pct50); (3) weighted 20th percentile (pct20) for spring phenology or201
weighted 80th percentile (pct80) for autumn phenology; (4) weighted 10th percentile (pct10) for spring phenology or202
weighted 90th percentile (pct90) for autumn phenology. Previous studies typically utilized species abundance as weights for203
aggregation at a local scale, but obtaining such data at the regional scale proves challenging. Therefore, we replaced species204
abundance with species distribution probability as aggregation weight for each species. This assumption stems from the205
positive correlation between species distribution and abundance (Brown, 1984), indicating that species tend to exhibit higher206
abundance in the core of their geographic range (Sagarin and Gaines, 2002). The aggregation techniques applied in this207
study (e.g., pct50, pct20\80 and pct10\90) are analogous to the methods used for extracting LSP from remote sensing data208
(e.g., midpoint, dynamic threshold and maximum curvature). The procedures followed in the generation of GP maps are209
illustrated in Fig. 3.210

211
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212
Figure 3: The workflow of generating GP maps from SP maps, and comparing GP maps with two LSP products. The words213
in blue color represent the key processes of data generation.214

215

For � species, the phenological data were first arranged in ascending order. The SP of each species is �� ( � =216

1, 2, . . . , �), and the distribution probability of each species is �� (� = 1, 2, . . . , �). Then, the aggregated GP (����� and ����217

(�%)) was calculated according to the following formulas:218

�� = ��

�=1
� ���

(1)219
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����� = �=1
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���� =
�1, �� �1 > �

(�� − ��−1) × �−��−1
��

, �� �� > �, ��−1 < �

��, �� ��−1 < �
(4)222
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where �� is a weight to each species, �� is the cumulative weight from the 1st to the �-th species, �% is the percentile tag223

which takes values from 10%, 20%, 50%, 80% and 90%. These calculations enable the construction of aggregated GP maps224
by combining species phenology maps with species distribution maps and weighting them by species distribution225
probability.226

To evaluate the data quality and reliability of the aggregated GP maps, we undertook a comparative analysis with two227
established LSP products derived from remote sensing data: (1) VIPPHEN_NDVI dataset (1981-2014), utilized the midpoint228
method to extract the start of season (SOS) and the end of season (EOS) from the AVHRR data (Didan and Barreto, 2016);229
(2) VNP22C2 datasetproduct (2013-2020), utilized the maximum curvature method to derive SOS and EOS from the230
MODIS data (Zhang et al., 2020). To align the spatial resolution of these datasets with our GP maps, we resampled both LSP231
products from 5 km to 0.1° using the average method. Subsequently, we conducted a correlation analysis to assess the232
consistency between our GP data and the LSP products, specifically comparing the FLD with SOS for the spring, and the233
LCD with EOS for the autumn. The comparison involved averaging the LSP and GP maps across two distinct periods: 1981-234
2014 and 2013-2020. The statistical measures calculated for this assessment included the Pearson correlation coefficient (r),235
RMSE, and linear regression slope between GP and LSP across different forest types (Table S3).236

3 Results and discussion237

The dataset encompasses two distinct types of phenology maps over China: (1) Annual SP maps for 24 woody plants238
species, constructed using the model-based upscaling method; (2) Annual GP maps for forest vegetation, generated by four239
aggregation methods, accompanied by quality assurance (QA) maps. These maps detail the phenological events of FLD,240
FFD in spring, and LCD in autumn, spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution241
of 1 day. Each phenology map is stored as a 16-bit signed integer within GeoTIFF file format, comprising a two-dimension242
raster (641 row × 361 column). The phenology data are expressed in Julian Day of the year (DOY), indicating the elapsed243
number of days from January 1st to the occurrence of phenological event. The dataset's valid DOY values range from 1 to244
366, while null values are denoted by -1.245

3.1 Simulation and validation of species phenology maps246

The SP maps of FLD (24 species), FFD (19 species), and LCD (12 species) were generated by applying the optimal247
phenology models. Here, we present the results of the SP maps for four emblematic woody species (Fig. 4), including ginkgo248
(Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and lilac (Syringa oblata). These maps have been refined249
using species distribution maps to ensure that the simulated phenologies were relevant only to areas where the species are250
known to exist. The presented maps illustrate a clear spatial pattern in the timing of phenophases correlated with latitude.251
Specifically, the onset of spring event such as FLD and FFD for these species is markedly delayed with increasing latitude.252
Conversely, the autumn LCD occurs earlier as the latitude increases. While these spatial patterns are consistent across253
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species, there are notable temporal differences at the same latitudes, For example, at lower latitudes, the elm exhibits an254
earlier FFD in spring and a later LCD in autumn compared to the other species. Phenophases for some species were not255
included in the simulation, because the suboptimal explanatory power of their phenology models, e.g., R2 < 0.5 for spring256
FFD, and R2 < 0.3 for autumn LCD.257

258

259
Figure 4: Species phenology (SP) maps of four typical woody species averaged from 1951 to 2020. Columns 1-2 show the260
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents a species261
from ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and lilac (Syringa oblata). The unit of262
phenology data is the Julian Day of year (DOY) from January 1st.263

264
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Table 2: The optimal phenology models and cross-validation results of 24 species. RMSE represents the root mean square265
error between the model simulated values and original values. R2 represents goodness of fit of the optimal phenology model.266

No. Species
FLD FFD LCD

Optimal
model RMSE R2 Optimal

model RMSE R2 Optimal
model RMSE R2

1 Ginkgo biloba TSC 7.30 0.669 TSC 7.53 0.553 DM 12.54 0.401

2 Metasequoia
glyptostroboides TSC 6.10 0.687 Unified 9.59 0.126 DM 9.99 0.295

3 Magnolia denudata UniChill 6.47 0.781 TSC 7.33 0.576 DM 9.31 0.284

4 Salix babylonica TSC 8.97 0.854 TSC 9.40 0.787 MR 18.23 0.380

5 Populus × canadensis UniChill 5.94 0.808 UniChill 6.14 0.728 MR 9.45 0.139

6 Robinia pseudoacacia TSC 5.47 0.863 TSC 6.18 0.785 DM 11.74 0.297

7 Albizia julibrissin UniChill 7.48 0.500 Unified 8.23 0.376 MR 9.18 0.567

8 Cercis chinensis TSC 7.90 0.723 UniChill 7.39 0.751 DM 9.09 0.175

9 Prunus armeniaca TSC 6.05 0.865 UniChill 4.78 0.929 MR 14.52 0.191

10 Ulmus pumila UniChill 5.09 0.901 UniChill 8.38 0.862 DM 11.16 0.654

11 Morus alba TSC 6.70 0.905 UniChill 7.99 0.860 DM 9.04 0.175

12 Broussonetia papyrifera UniChill 7.60 0.804 TSC 6.18 0.821 DM 9.97 0.615

13 Quercus acutissima UniChill 6.73 0.931 UniChill 5.12 0.950 MR 14.35 0.765

14 Pterocarya stenoptera UniChill 7.52 0.804 UniChill 7.89 0.710 MR 11.57 0.415

15 Juglans regia TSC 6.04 0.739 UniChill 8.54 0.595 DM 8.41 0.141

16 Betula platyphylla UniChill 3.80 0.915 UniChill 3.70 0.906 DM 8.27 0.655

17 Acer pictum subsp. mono TSC 2.29 0.894 TSC 3.78 0.814 DM 4.71 0.670

18 Ailanthus altissima UniChill 5.22 0.867 UniChill 8.34 0.664 DM 10.39 0.066

19 Melia azedarach TSC 6.81 0.828 TSC 6.70 0.851 MR 10.19 0.135

20 Firmiana simplex UniChill 6.02 0.694 Unified 8.10 0.314 DM 12.30 0.190

21 Hibiscus syriacus TSC 9.66 0.666 Unified 13.38 0.331 DM 12.76 0.464

22 Fraxinus chinensis TSC 6.25 0.852 Unified 12.35 0.319 MR 9.76 0.533

23 Syringa oblata UniChill 7.01 0.864 UniChill 5.11 0.920 MR 12.36 0.475
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24 Paulownia fortunei UniChill 4.63 0.762 UniChill 7.02 0.693 MR 10.01 0.250

267
The effectiveness of the simulated SP maps was evaluated by cross-validation on the optimal phenology models (Table268

2). The results showed that spring phenology yielded significantly more accurate simulations than autumn phenology (Fig.269
5). Quantitatively, the RMSE for the optimal model of FLD (6.38 days) and FFD (7.46 days) in spring were significantly270
smaller than that of LCD (10.80 days) in autumn. Correspondingly, the R2 for spring FLD (0.799) and FFD (0.676) was271
significantly higher compared to autumn LCD (0.372). When comparing the simulation effects of FLD and FFD in spring,272
no significant difference was observed. Among the optimal spring phenology models, the FFD simulations derived from the273
UniChill and TSC models demonstrated significantly better performance than those from the Unified model. Conversely, for274
autumn phenology, the simulations effects LCD were comparable between the MR and TP models.275

276

277
Figure 5: The RMSE (a) and R2 (b) of cross-validation on the optimal phenology models for 24 woody species. Each model278
is represented by a different color, with warm colors for three spring phenology models (Unified, UniChill, TSC), and cool279
colors for two autumn phenology models (MR, TP). The model with the smallest RMSE was selected as the optimal model280
for each species. The horizontal line represents the median value, the diamond mark represents the mean value, and the dot281
mark represents the outlier in the boxplot.282
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3.2 Aggregation of ground phenology maps283

The results of GP maps generated by four distinct aggregation methods (mean, pct50, pct20\80, pct10\90) exhibited284
similar spatial patterns (Fig. 6). These maps demonstrate a consistent pattern of phenological variation in relation to both285
latitude and altitude. Specifically, with increasing latitude or altitude, spring GP (FLD and FFD) occurred progressively286
later, while autumn GP (LCD) occurred earlier. When comparing the various aggregation methods, the GP maps aggregated287
by the mean and pct50 methods showed a high degree of consistency, with r being 0.992. In contrast, the GP maps288
aggregated by the pct20\80 and pct10\90 methods exhibited slightly more spatial variability and were less correlated with the289
former methods, with r being 0.968 and 0.949, respectively. The remarkable consistency between the maps aggregated290
through mean and pct50 methods suggests that both the weighted mean and weighted quantile approaches are robust and291
reliable for the aggregation of GP.292

293
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294
Figure 6: Ground phenology (GP) maps of four aggregation methods averaged from 1951 to 2020. Columns 1-2 show the295
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents an296
aggregation method from weighted average (mean), weighted median (pct50), weighted 20% or 80% percentile (pct20\80),297
and weighted 10% or 90% percentile (pct10\90). The unit of GP is the Julian Day of year (DOY) from January 1st.298

299
We have introduced two types of QA maps to assess the reliability of the aggregated GP maps (Fig. S1). The first QA300

map represents the total distribution probability of all species considered in the aggregation process, while the second QA301
map indicates the total number of species that have a distribution probability exceeding 0.1. In these QA maps, higher values302
correlate with a greater total number or higher cumulative probability of species within the aggregation, which signifies a303
higher reliability of GP maps for those particular areas. Notably, the most dependable GP aggregation results are distributed304
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around the 30° N latitude within China. In this region, the total number of species contributing to FLD and FFD is about 15,305
whereas for LCD, the number is around 6. However, it should be noted that the QA maps also identify areas where the GP306
aggregation may be less dependable. Specifically, in regions where the total number of species is fewer than 5 or the total307
probability is below 1, the reliability of the aggregated GP results may be compromised.308

3.3 Data quality and usability309

Our comparative analysis between GP and LSP focused on the FLD and SOS in spring, as well as the LCD and EOS in310
autumn across two periods (1981-2014 and 2013-2020). The results revealed that GP and two LSP products exhibited311
congruent spatial patterns in central and northern China, while discrepancies were more pronounced in southern China (Fig.312
7), particularly regarding LCD and EOS in autumn (Fig. 7e-h). This is likely due to the prevalence of deciduous forests in313
central and northern China (Fig. 1). In contrast, southern China is characterized by a higher presence of evergreen and mixed314
forests. The GP maps in this study were derived from the phenological data of 24 deciduous woody plants species, which315
are well-represented in deciduous forests but less so in evergreen or mixed forests. Moreover, LSP metrics obtained from316
remote sensing data are generally more error-prone in evergreen and mixed forests due to the lack of obvious seasonal317
change and frequent cloud cover in these regions (Liu et al., 2016b). Consequently, the correlation between GP and LSP in318
evergreen or mixed forests was found to be relatively weak (Fig. S2), with the highest r being 0.44 in spring and 0.54 in319
autumn. and the lowest RMSE being 28.5 days in spring and 38.5 days in autumn (Table S2). In deciduous forests, however,320
the alignment between GP and LSP was substantially stronger, with the highest r being 0.95 in spring and 0.88 in autumn,321
and the lowest RMSE being 8.8 days in spring and 15.1 days in autumn, respectively.322
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323
Figure 7: Comparison of GP maps in this study and two LSP products (VIPPHEN and VNP22C2) extracted from remote324
sensing in previous studies, which was made between FLD and SOS in spring and LCD and EOS in autumn. Row 1 shows325
the comparison between VIPPHEN product and GP map averaged in 1981-2014, and Row 2 shows the comparison between326
VNP22C2 product and GP map averaged in 2013-2020. (a-b) SOS from two LSP products; (c-d) FLD aggregated by mean327
method; (e-f) EOS from two LSP products; (g-h) LCD aggregated by mean method. The unit of GP or LSP is the Julian Day328
of year (DOY) from January 1st.329

330
To further assess the data quality, we scrutinized the congruence between GP and LSP specifically within deciduous331

forests. The analysis indicated that GP and LSP exhibit a robust consistency for both VIPPHEN and VNP22C2 products,332
characterized by strong correlations, minor differences, and solid linear relationships (Fig. 8). The LSP derived from the333
VIPPHEN product demonstrated superior consistency with our study's GP compared to the VNP22C2 product’s LSP.334
Furthermore, for both LSP products, the consistency between GP and LSP was significantly better in spring (Fig. 8e, g) than335
in autumn (Fig. 8f, h). When evaluating the influence of different aggregation methods on the GP and LSP correlation, no336
significant difference was observed in r among the methods (Fig. 8a, b). The consistency, as measured by r, was comparable337
across all methods, with values ranging from 0.76-0.78 in spring and 0.49-0.53 in autumn for the VIPPHEN product. For the338
VNP22C2 product, r values ranging from 0.90-0.91 in spring and 0.79-0.84 in autumn. Contrastingly,, the RMSE between339
GP and LSP varied notably across the different methods (Fig. 8c, d), which is largely attributable to the disparities in the340
average GP values generated by each method. The most effective aggregation methods, which yielded the smallest RMSE,341
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were pct10 (20.8 days) in spring and pct90 (32.9 days) in autumn for the VIPPHEN product. For the VNP22C2 product,342
pct20 (8.8 days) in spring and pct90 (15.1 days) in autumn were identified as the best methods.343

344
Figure 8: Comparison results of GP maps and two LSP products (VIPPHEN and VNP22C2) in deciduous forests, which345
was made between FLD and SOS in spring and LCD and EOS in autumn within the time range 1981-2014 and 2013-2020.346
(a-b) r between LSP and GP under four aggregating methods; (c-d) RMSE between LSP and GP under four aggregating347
methods; (e-h) Linear relationship between between LSP and GP under the best aggregating method. Each aggregating348
method is represented by a different color. The best aggregating method was determined by minimizing the RMSE between349
GP and LSP. The error bar in the bar plot represents the multi-year standard deviation. The red line in the scatter plot350
represents the linear regression line between GP and LSP, and all regression results were extremely significant (p<0.001).351

352
The findings of this study highlight that the most accurate reflection of GP in comparison to LSP from remote sensing353

data occurs with the use of the 10th or 20th percentile for spring phenology and the 90th percentile for autumn phenology.354
This suggests that the onset of spring as detected by remote sensing aligns more closely with the FLD of the earliest355
emerging plant species (the first 10%-20%) on the ground. Conversely, the signal of vegetative dormancy in autumn from356
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remote sensing is in greater concordancet with the LCD of the last senescent plant species (the last 10%). Theseinsights are357
significant because they reveal a discernible link between GP and LSP, despite inherent differences in how these two types358
of phenology are measured. The consistency between early spring and late autumn events in GP and LSP underscores the359
potential for integrating these two phenological data sources to enhance our understanding of ecosystem dynamics and the360
effects of climate change on vegetative cycles.361

The dataset represents a robust compilation of species and ground phenology simulations for forests of China over the362
past 70 years, distinguishing itself as an independent phenological data source derived from ground observations through363
modeling and aggregation. When applying this data, several factors must be considered::364

(1) For SP maps, the accuracy is contingent upon the RMSE and R2 resulting from cross-validation against the optimal365
phenology model for each species (Table 2). Additionally, the spatial reliability of phenology data is influenced by the366
density of observational sites per species (Table 1). For instance, while the FLD of Betula platyphylla’s exhibits high overall367
accuracy (RMSE = 3.80 and R2 = 0.915), the accuracy may be compromised locally in areas with fewer observation sites (n368
= 13). Across the 24 species studied, SP maps consistently aligned with the in-situ observations, with an average error of 6.4369
days for FLD, 7.5 days for FFD, and 10.8 days for LCD. These errors are comparable or lower than those reported in370
phenological studies from other regions. For example, simulation error of spring FLD and FFD was 7-9 days in central371
Europe (Basler, 2016) and was 12.3-12.7 days in the United States (Izquierdo-Verdiguier et al., 2018), while the simulation372
error of autumn LCD was 10.3-13.0 days in France (Delpierre et al., 2009) and 5.9-22.8 days in the United States (Jeong and373
Medvigy, 2014). Consequently,, compared with other studies on the regional scale, the SP maps of China in this study were374
found to have relatively high accuracy.375

(2) For GP maps, data reliability can be assessed using QA maps, which reflect the total number or probability of376
species. Additionally, reliability can be evaluated by comparing GP maps with other LSP products, with a high degree of377
consistency indicating strong reliability. However, it is crucial to note that GP data primarily represent phenological378
estimates for deciduous forest components, resulting in higher reliability within deciduous forests and lower within379
evergreen or mixed forests. In this study, GP maps for forests in China demonstrated strong consistency with existing LSP380
products, especially within deciduous forests. The correlation coefficients of FLD and LCD were 0.91 and 0.84,381
respectively. Furthermore, the discrepancies between GP and LSP for FLD and LCD were relatively minor in deciduous382
forests, at 8.8 days and 15.1 days, respectively. Previous studies have reported lower consistency between LSP and single383
species phenology, with correlations ranging from 0.50 to 0.51 in the United States (Peng et al., 2017) and Germany384
(Kowalski et al., 2020), and discrepancies spanning 12 to 14.5 days in the United States (Peng et al., 2017) and Canada385
(Delbart et al., 2015). On the other hand, research comparing GP aggregates (average or quantile values) of multiple species386
has yielded better correlation coefficients, ranging from 0.61 to 0.71 in Europe (Rodriguez-Galiano et al., 2015; Tian et al.,387
2021), and 0.54 to 0.57 for the 30th percentile GP in China (Wu et al., 2016). These studies reported discrepancies between388
GP and LSP of 10.3-12.4 days in China (Wu et al., 2016), 13.9 days in Europe, and around 12.3 days in the United States389
(Ye et al., 2022), which are greater than the FLD discrepancies but less than those for LCD found in our study. While the390
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aggregated GP data derived from species-level phenology data in this study are generally reliable, it's important to recognize391
that limitations still exist in the available species-specific data, particularly when applied to evergreen or mixed forest392
regions..393

(3) For phenology maps in different seasons, the phenology data exhibit significantly higher reliability for spring events394
compared to those in autumn. The underlying reason is that the biological processes underlying autumn phenology is more395
complex than those of spring (Menzel, 2002). Moreover, the mechanistic drivers of autumn phenology are intricate, which396
poses an additional challenge (Gill et al., 2015; Wu et al., 2018). For example, temperature has large effects on the autumn397
phenology than the spring phenology (Fu et al., 2018). In addition to temperature, other environmental factors such as398
precipitation (An et al., 2020), photoperiod (Lang et al., 2019), solar radiation (Wu et al., 2021b), spring phenology (Liu et399
al., 2016a), and growing-season productivity (Zani et al., 2020) also play significant roles in shaping autumn phenology.400
Given the multiplicity and complexity of these driving mechanisms, modeling autumn phenology becomes a more daunting401
task (Melaas et al., 2016). As a result, SP and GP maps for autumn manifest lower model performance and data quality402
relative to their spring counterparts.403

4 Data availability404

The annual SP and GP maps over China can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).405
This dataset is licensed under a CC-BY 4.0 license. The spatial reference system of the dataset is EPSG:4326(WGS84).406

5 Conclusions407

Leveraging historical observations from the CPON, this study introduces a novel, long-term gridded phenology dataset408
that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 ot409
2020. The dataset features a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using410
a model-based upscaling method to extend the phenology data from in-situ observations to a regional scale across China.411
The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data from the412
species to community and landscape levels. Quality assessments of the dataset indicate an average error for SP maps of 6.9413
days in spring and 10.8 days in autumn. The smallest discrepancies between the GP maps and existing LSP products is 8.8414
days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo-415
Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from this416
research exhibit comparable or smaller simulation errors, and the GP maps show strong concordance with other LSP417
products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this418
dataset provides an invaluable tool for discerning the spatial patterns of plant phenology along the geographic gradient (e.g.,419
longitude, latitude, and altitude). It also enables the examination of temporal trends (e.g., interannual, decadal, and secular)420
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in plant phenology throughout China. Moreover, the dataset offers critical support for research on the impacts of global421
change, aids in terrestrial ecosystem modeling, and contributes to natural resource management strategies.422
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