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Abstract. Plant phenology refers to the cyclic plant growth events, and is one of the most important indicators of climate11
change. Integration of plant phenology information is of great significance for understanding the response of ecosystems to12
global change and simulating the material and energy balance of terrestrial ecosystems. Based on 24552 in-situ phenology13
observation records of 24 typical woody plants from the Chinese Phenology Observation Network (CPON), we map the14
species phenology (SP) and ground phenology (GP) of forests over China from 1951-2020, with a spatial resolution of 0.1°15
and a temporal resolution of 1 day. A model-based upscaling method was used to generate SP maps from in-situ phenology16
observations, and then weighted average and quantile methods were used to generate GP maps from SP maps. The validation17
shows that the SP maps of 24 woody plants are largely consistent with the in-situ observations, with an average error of 6.918
days in spring and 10.8 days in autumn. The GP maps of forests have good agreement with the existing Land Surface19
Phenology (LSP) products derived by remote sensing data, particularly in deciduous forests, with an average difference of20
8.8 days in spring and 15.1 days in autumn. The dataset provides an independent and reliable phenology data source on a21
long-time scale of 70 years in China, and contributes to more comprehensive research on plant phenology and climate22
change at regional and national scales. The dataset can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al.,23
2023).24

1 Introduction25

Plant phenology refers to plant cyclic growth and development events, which are formed by adaptation to seasonal26
changes in climate and environmental conditions (Lieth, 1974; Schwartz, 2003). These phenological events include critical27
stages such as budburst, leaf unfolding, flowering, leaf coloring, and defoliation. As a highly sensitive biological indicator of28
climate change (Fu et al., 2015; Richardson et al., 2013), plant phenology is not only important for comprehending29
ecosystem responses to global change (Menzel et al., 2020), but also a significant factor in simulating material and energy30
balance of terrestrial ecosystems (Keenan et al., 2014). To be helpful for biological monitoring and predictions, long-term,31
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dependable plant phenology data on a global scale are greatly desired by related scientific research personnel. Presently,32
such data can be procured from diverse sources (Piao et al., 2019; Tang et al., 2016), including manual in-situ observations33
(Templ et al., 2018), satellite remote sensing (Bolton et al., 2020; Dixon et al., 2021), and tower-based digital cameras34
(Richardson et al., 2018), etc. Nevertheless, integrating large-scale and long-term plant phenology information continues to35
pose a formidable challenge, owing to the substantial gaps in spatial and temporal scales between different data sources36
(Fisher et al., 2006; Park et al., 2021).37

The practice of conducting manual, in-situ observations for species phenology (SP) boasts a rich history spanning38
several centuries (Aono and Kazui, 2008), yielding precise phenological information for the individual plant species (Polgar39
and Primack, 2011). In 1963, the Chinese Academy of Sciences inaugurated the Chinese Phenology Observation Network40
(CPON), a standardized, nationwide network employing a multitude of professional observers and incorporating extensive41
ground-based observations. To date, CPON has amassed over 1.2 million phenology records pertaining to more than 90042
plant species across over 150 sites throughout China (Fig. 1), cementing its dominant status as a data center for phenological43
research in China. These phenology records have been contributed to examining the spatiotemporal patterns of plant44
phenological shifts (Dai et al., 2014; Ge et al., 2015), the environmental determinants influencing plant phenology (Dai et45
al., 2013; Wang et al., 2020), as well as the development of phenology models in China (Tao et al., 2018). Nonetheless, the46
spatial coverage of in-situ phenology data remains sporadic and restricted on regional and global scales (Donnelly et al.,47
2022), with noticeable gaps appearing in longer time scales. The progression of species-level phenology modeling presents48
an opportunity to address these limitations (Fu et al., 2020; Hufkens et al., 2018). In the absence of actual observed49
phenology data, phenology models can be employed to generate large-scale predictions, thereby interpolating the missing50
data in both space and time (Cleland et al., 2007; Wang et al., 2012). For instance, the Extended Spring Indices (SI-x) model51
has been successfully applied to create gridded maps illustrating the first leaf and first bloom events for three woody plants52
at a resolution ranging from 1° to 1 km across the contiguous United States (Ault et al., 2015; Izquierdo-Verdiguier et al.,53
2018). Similarly, this model-based approach can be adapted to model and map the SP data throughout China. This would54
enable the integration and synthesis of CPON's long-term phenology observations at regional and national scales within the55
country.56

In contrast to manual in-situ observations, satellite remote sensing facilitates the monitoring and mapping of land57
surface phenology (LSP) on a more expansive scale. It provides more comprehensive LSP information at the landscape level58
(Studer et al., 2007). Over the past four decades, remote sensing technology has witnessed considerable advancements,59
significantly improving the spatial and temporal resolution (Misra et al., 2020; Dronova and Taddeo, 2022). At present, a60
multitude of LSP products derived from vegetation indices (e.g., NDVI and EVI) procured from multi-source remote sensing61
data are accessible, offering regional and global LSP data with varying spatial resolutions ranging from 10 km to 30 m (e.g.,62
Li et al., 2019; Wu et al., 2021). The credibility of these LSP data remains largely contingent upon ground phenology (GP)63
validation based on in-situ observed SP data (Tian et al., 2021; Zhang et al., 2017), particularly the coordination and64
aggregation from individual-level phenology (i.e., SP) to landscape-level phenology (i.e., GP). Weighted average and65
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quantile methods have been proven effective for aggregating phenology from individual to community or landscape levels66
(Donnelly et al., 2022; Fitchett et al., 2015). Prior research has validated weighted average method on a site scale through67
field investigations and remote sensing monitoring, to aggregate GP at the community or landscape levels from in-situ SP68
data weighted by species abundance (Liang et al., 2011). Some recent studies have suggested that the quantile method (e.g.,69
30th percentile) holds greater promise than the commonly used average method on a larger scale, as evidenced in Europe70
and the USA (Ye et al., 2022). However, there is no previous study endeavored to employ these methods for aggregating71
large-scale GP from SP data in China, which may constrain the availability of ground validation evidence for LSP products72
and hinder comprehensive understanding of the spatio-temporal characteristics of phenological changes over the country.73

In this study, we aimed to develop long-term SP and GP maps of China with a 0.1° resolution spanning 1951-2020,74
supplying spatially continuous grided phenology products currently absent in the country and crucial for a wider array of75
applications. We utilized 24,552 in-situ phenology observations of 24 representative woody plants from 122 sites over the76
past six decades from CPON. Three phenophases, namely the first leaf date (FLD), first flower date (FFD), and 100% leaf77
coloring date (LCD), were included for each species. We employed five species-level phenology models and grided78
meteorological data to simulate and produce SP maps, and utilized species distribution maps as masks of SP maps for each79
corresponding plant species. We applied weighted average and quantile methods on SP maps to aggregate and produce GP80
maps, which used the distribution probabilities of each species as weights. The accuracy of SP maps was assessed through81
cross-validation, while the reliability of GP maps was evaluated by comparing them with existing LSP products. This study82
introduces a novel grid phenology dataset for China, which supplements China’s existing phenology data sources and83
provides an independent phenology data source for LSP product verification. The dataset will facilitate more comprehensive84
research on plant phenology and global change by better characterizing the spatiotemporal patterns of plant phenology.85

2 Methods86

2.1 Data acquisition and processing87

2.1.1 Phenology observations88

The in-situ phenology observations from 1963 to 2018 were obtained from the CPON. We selected 24 species of woody89
plants from 17 families in China (Table 1) that are common and widespread in forest ecosystems in China (Fang et al., 2011)90
and well-documented in CPON. These species have been observed over 55 years in 122 sites, with a total of 24,552 records,91
covering a range of land cover, ecological, and climatic conditions across China (Fig. 1). Each species had at least 40 years92
and 13 sites of phenology data. We extracted three phenophases for each species: spring FLD, spring FFD, and autumn93
LCD. Three-sigma limits, which refers to data within three standard deviations from a mean, was used to set the upper and94
lower limits of phenology data for each species (Pukelsheim, 1994). We identified and removed outliers beyond the three-95
sigma lines, because they represented less than 1% of all data points on a standard normal distribution curve.96
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97
Figure 1: Geographic distribution of CPON sites (n = 122) included in the phenology dataset across China. Sites with less98
than 10 recorded species are marked with pink asterisks, while sites with more than 10 recorded species are marked with red99
asterisks. Note that the markings on the map of several adjacent sites may overlap each other. The background map shows100
the IGBP land cover type from the MODIS Land Cover product (Friedl and Sulla-Menashe, 2022).101

102
Table 1: List of 24 species of woody plants from 17 families in China. Number of records represents the total number of103
three phenophases (FLD, FFD and LCD) of all sites and all years for each species.104

No. Species Family Life form Number of
sites

Number of
years

Number of
records

1 Ginkgo biloba Ginkgoaceae Tree 45 49 1110

2 Metasequoia glyptostroboides Cupressaceae Tree 37 47 860

3 Magnolia denudata Magnoliaceae Tree 42 47 980

4 Salix babylonica Salicaceae Tree 65 42 1526

5 Populus × canadensis Salicaceae Tree 43 51 954

6 Robinia pseudoacacia Fabaceae Tree 54 45 1757
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7 Albizia julibrissin Fabaceae Tree 36 47 984

8 Cercis chinensis Fabaceae Shrub 52 49 1207

9 Prunus armeniaca Rosaceae Tree 46 45 950

10 Ulmus pumila Ulmaceae Tree 60 44 1428

11 Morus alba Moraceae Tree 50 50 1071

12 Broussonetia papyrifera Moraceae Tree 41 43 1103

13 Quercus acutissima Fagaceae Tree 17 40 292

14 Pterocarya stenoptera Juglandaceae Tree 29 46 936

15 Juglans regia Juglandaceae Tree 50 47 816

16 Betula platyphylla Betulaceae Tree 13 43 369

17 Acer pictum subsp. mono Sapindaceae Tree 18 46 492

18 Ailanthus altissima Simaroubaceae Tree 34 47 873

19 Melia azedarach Meliaceae Tree 61 46 1410

20 Firmiana simplex Malvaceae Tree 57 48 1403

21 Hibiscus syriacus Malvaceae Shrub 58 47 1096

22 Fraxinus chinensis Oleaceae Tree 23 40 505

23 Syringa oblata Oleaceae Shrub 50 51 1163

24 Paulownia fortunei Paulowniaceae Tree 49 48 1267

Total - - 122 55 24552

105

2.1.2 Climate data106

The daily mean temperature (T) from 1950-2020 were obtained from two sources: (1) Site T was extracted from climate107
observations in the China Meteorological Data Service Center (CMDSC, https://data.cma.cn/) and used to parameterize the108
phenology models. (2) Grid T was extracted from ERA5-Land climate reanalysis data (Muñoz Sabater, 2019; Muñoz-109
Sabater et al., 2021) from the Copernicus Climate Change Service (C3S, https://cds.climate.copernicus.eu/) and used for110
phenology simulation and upscaling at a spatial resolution of 0.1° (about 10 km). Hourly grid T was averaged across four111
phases (4:00, 10:00, 16:00, 22:00) to derive the daily grid T.112

The current bioclimatic (BIOCLIM+) variables were obtained from Climatologies at High Resolution for the Earth113
Land Surface Areas (CHELSA, https://chelsa-climate.org/) to determine the species distribution (Brun et al., 2022a, b). The114
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BIOCLIM+ variables indicate the average ecological and climatic conditions during 1981-2010, with a high resolution of115
0.0083°. We extracted the traditional 19 bioclimatic layers (Bio1-Bio19) and the complementary 50 bioclimatic layers in116
China. We calculated the correlation between every two layers to reduce the impact of autocorrelation among these117
bioclimatic layers, and then excluded the layers with a correlation coefficient greater than 0.8 with the previous layers. As a118
result, 12 bioclimatic layers were retained as the environmental data inputs for the species distribution models (Table S1).119
These layers were resampled to 0.1° to match the resolution of the grid T data.120

2.1.3 Forest and species distribution data121

The forest distribution map of China was derived from the dataset of “Annual Dynamics of Global Land Cover and its122
Long-term Changes from 1982 to 2015” (Liu et al., 2020). Each year’s land cover (LC) layers were reclassified as forest and123
non-forest, and then the number of years of forest cover was obtained by adding all layers. Pixels with at least one year of124
forest cover were identified as forest distribution areas. The forest types were identified from the most commonly used125
International Geosphere-Biosphere Program (IGBP) classification from MODIS Land Cover Type (MCD12C1) Version 6.1126
data product (Friedl and Sulla-Menashe, 2022). We merged evergreen needleleaf forest (class 1) and evergreen broadleaf127
forest (class 2) into evergreen forest, and deciduous needleleaf forest (class 3) and deciduous broadleaf forest (class 4) into128
deciduous forest. Mixed forest (class 5) was also included in the forest type. The forest distribution map and forest type map129
were resampled from 0.05° to 0.1° by the majority method to match the resolution of the grid T data.130

The county-level species distribution maps were obtained from the updated Database of China's Woody Plants (Fang et131
al., 2011). The distribution maps in this database were compiled from all national, provincial, and regional floras and132
inventory reports in China published before 2009, which are considered authoritative (Cai et al., 2021). We then obtained a133
total of 4371 occurrence records for 24 woody plant species from the Global Biodiversity Information Facility (GBIF, 2022;134
https://www.gbif.org/), and used them as the occurrence data inputs for the species distribution models . The occurrence135
records were filtered by including the coordinate locations with uncertainty less than 2000 meters, and cleaned by removing136
duplicate records (Table S2).137

2.2 Generating species phenology maps using a model-based upscaling method138

The generation of species phenology maps involves two major processes: (1) Generating species potential phenology139
maps, and (2) Generating species distribution maps. The final SP maps were obtained by spatially intersecting these two140
maps. The workflow for the processes is shown in Fig. 2.141
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142
Figure 2: The workflow of generating SP maps using a model-based upscaling method, which involves two major143
processes: (1) Generating species potential phenology maps, and (2) Generating species distribution maps. The words in blue144
color represent the key processes of data generation. “.tiff” indicates the GeoTIFF format of the grid phenology or145
distribution maps.146

2.2.1 Species potential phenology maps147

In the first process, we used a model-based upscaling method to convert in-situ phenology observations into grid148
phenology maps. Phenology models were built using the phenophases (i.e., FLD, FFD, LCD) from CPON phenology149
observations and the corresponding site T from CMDSC climate observations. For each species, we built three spring150
phenology models: the Unichill, Unified (Chuine, 2000) and temporal-spatial coupling (TSC) models (Ge et al., 2014), and151
two autumn phenology models: the multiple regression (MR) (Estrella and Menzel, 2006) and temperature-photoperiod (TP)152
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models (Delpierre et al., 2009). The details of the model formulae are described in Appendix S1. For each model, samples153
from odd years were used for phenology modeling, and samples from even years were reserved for cross validation on the154
model. All model parameters were estimated using the simulated annealing algorithm (Chuine et al., 1998).155

For model validation, the models’ root mean square error (RMSE) and goodness of fit (R2) were calculated between the156
model simulated values and original values. Internal validation was conducted on samples from odd years to evaluate the157
fitting effect of the model, and cross validation was conducted on samples from even years to evaluate the simulation and158
extrapolation effect of the model. The optimal phenology model for each species was selected based on the smallest RMSE159
in cross validation and R2 greater than 0.5 (0.3 for LCD) in both validations. If no model met these conditions, the species160
was excluded when generating SP maps or GP maps.161

For simulating SP maps, daily grid T data from ERA5-Land climate reanalysis were input into the optimal phenology162
model and simulated pixel by pixel. This way, the phenology observations from individual sites were interpolated and163
upscaled into a grid phenology map based on the phenology models (Chuine et al., 2000). However, as long as there was164
grid T data, simulated species phenology could be obtained, even if there was no species distribution. Therefore, we named it165
as species potential phenology map to avoid taking simulated values as true values in areas without species distribution.166

2.1.2 Species distribution maps167

In the second process, we simulated the species distribution maps using both species distribution models and county-168
level species distribution data. Species distribution models were built for each species using Maximum Entropy Species169
Distribution Modelling (Maxent; Phillips et al., 2006) version.3.4.4. Maxent estimates the range of a species by finding the170
species distribution of maximum entropy (i.e., closest to the uniform), which is widely adopted in species distribution171
modeling (Phillips et al., 2006). It expresses a probability distribution where each grid cell has a predicted probability of172
presence for the species. To build the Maxent model, species location records from the GBIF database were used as173
occurrence data input, and the 12 bioclimatic layers from BIOCLIM+ were used as the environmental data input. In the174
model parameter settings, linear and quadratic feature types were used and 5-fold cross validation was used as the replicated175
run type.176

For model validation, the receiver operating characteristic (ROC) curve analysis method was used to test the accuracy177
of the Maxent prediction model. The area under the ROC curve, known as the AUC value, is usually used as an indicator of178
the prediction accuracy of the model (Fielding and Bell, 1997). The closer the AUC value is to 1.0, the more accurate the179
prediction result of the model is. The average test AUC for different species was 0.845, with a standard deviation of 0.043180
(Table S2).181

2.3 Generating ground phenology maps using weighted average and weighted quantile methods182

We used four methods to aggregate from individual-level SP maps to landscape-level GP maps: (1) weighted average183
(mean); (2) weighted median (pct50); (3) weighted 20th percentile (pct20) for spring phenology or weighted 80th percentile184
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(pct80) for autumn phenology; (4) weighted 10th percentile (pct10) for spring phenology or weighted 90th percentile (pct90)185
for autumn phenology. Previous studies typically used species abundance as aggregation weights at the local scale, but it is186
difficult to obtain such data at the regional scale. Therefore, we used species distribution probability instead of species187
abundance as aggregation weight for each species. This assumption is based on a positive correlation between species188
distribution and abundance (Brown, 1984), demonstrating that species tend to be most abundant at the center of their189
geographic range (Sagarin and Gaines, 2002). The aggregation methods of GP in this study (e.g., pct50, pct20\80 and190
pct10\90) are comparable and similar to the extraction methods of LSP from remote sensing data (e.g., midpoint, dynamic191
threshold and maximum curvature). The workflow is shown in Fig. 3.192

193

194
Figure 3: The workflow of generating GP maps from SP maps, and comparing GP maps with two LSP products. The words195
in blue color represent the key processes of data generation.196

197

For � species, the phenophases (�) were first sorted from small to large. The SP of each species is �� (� = 1, 2, . . . , �),198

and the distribution probability of each species is �� (� = 1, 2, . . . , �). Then, the aggregated GP (����� and ���� (�%)) was199

calculated according to the following formulas:200
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�� = ��

�=1
� ���

(1)201

�� = �=1
� ��, � = 1,2, . . . , �� (2)202

����� = �=1
� �� × ��� (3)203

���� =
�1, �� �1 > �

(�� − ��−1) × �−��−1
��

, �� �� > �, ��−1 < �

��, �� ��−1 < �
(4)204

Where �� is the weight of each species, �� is the cumulative weight from the first to the � species, �% is the percentile tag205

which takes values from 10%, 20%, 50%, 80% and 90%. These formulas were used to calculate the aggregated GP maps by206
combining the species phenology maps with the species distribution maps and weighting them by the species distribution207
probability.208

Finally, to assess data quality, the aggregated GP maps in this study were compared with two LSP products extracted209
from remote sensing in previous studies: (1) VIPPHEN_NDVI product (1981-2014), which used midpoint method to extract210
the start of season (SOS) and the end of season (EOS) from the AVHRR data (Didan and Barreto, 2016); (2) VNP22C2211
product (2013-2020), which used maximum curvature method to extract SOS and EOS from the MODIS data (Zhang et al.,212
2020). Both LSP products were resampled from 5 km to 0.1° by the average method to match the spatial resolution of GP213
maps. The LSP and GP maps were averaged in two segments (1981-2014 and 2013-2020), and the correlation analysis was214
conducted between FLD and SOS in spring and between LCD and EOS in autumn. Pearson correlation coefficient (r),215
RMSE, and linear regression slope were used to evaluate the consistency between GP and LSP.216

3 Results and discussion217

The dataset includes two types of phenology maps over China: (1) Yearly SP maps generated by the model-based218
upscaling method for 24 woody plants; (2) Yearly GP maps generated by four aggregation methods, along with the219
corresponding quality assurance (QA) maps. The phenology maps provide spring FLD, FFD, and autumn LCD of woody220
plants and forests over China from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each221
map is stored in a 16-bit signed integer file in GeoTIFF format, which contains a two-dimension raster (641 row × 361222
column). The unit of phenology data is the Julian Day of year (DOY), which represents the actual number of days from223
January 1st to the date of phenology occurrence. The valid values range from DOY 1 to 366, and the null values equal to -1.224
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3.1 Simulation and validation of species phenology maps225

The SP maps of FLD (24 species), FFD (19 species), and LCD (12 species) were simulated using the optimal226
phenology models, and then masked by the species distribution maps. Here, we present the results of simulated SP maps of227
four typical woody species (Fig. 4), including ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and228
lilac (Syringa oblata). These maps showed that the phenophases of different species have a consistent spatial pattern of229
variation along latitude. Specifically, spring FLD and FFD of these species were significantly later with increasing latitude,230
while autumn LCD was significantly earlier with increasing latitude. Despite similar spatial patterns, the phenophases of231
different species show distinct temporal differences at the same latitude; for example, at lower latitudes, elm has232
significantly earlier spring FFD and later autumn LCD than other species. Phenophases of some species were not simulated233
because the R2 of their optimal models was too small, e.g., R2 < 0.5 for spring FFD, and R2 < 0.3 for autumn LCD.234

235
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236
Figure 4: Species phenology (SP) maps of four typical woody species averaged from 1951 to 2020. Columns 1-2 show the237
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents a species238
from ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and lilac (Syringa oblata). The unit of239
phenology data is the Julian Day of year (DOY) from January 1st.240

241
Table 2: The optimal phenology models and cross-validation results of 24 species. RMSE represents the root mean square242
error between the model simulated values and original values. R2 represents goodness of fit of the optimal phenology model.243

No. Species
FLD FFD LCD

Optimal
model RMSE R2 Optimal

model RMSE R2 Optimal
model RMSE R2
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1 Ginkgo biloba TSC 7.30 0.669 TSC 7.53 0.553 DM 12.54 0.401

2 Metasequoia
glyptostroboides TSC 6.10 0.687 Unified 9.59 0.126 DM 9.99 0.295

3 Magnolia denudata UniChill 6.47 0.781 TSC 7.33 0.576 DM 9.31 0.284

4 Salix babylonica TSC 8.97 0.854 TSC 9.40 0.787 MR 18.23 0.380

5 Populus × canadensis UniChill 5.94 0.808 UniChill 6.14 0.728 MR 9.45 0.139

6 Robinia pseudoacacia TSC 5.47 0.863 TSC 6.18 0.785 DM 11.74 0.297

7 Albizia julibrissin UniChill 7.48 0.500 Unified 8.23 0.376 MR 9.18 0.567

8 Cercis chinensis TSC 7.90 0.723 UniChill 7.39 0.751 DM 9.09 0.175

9 Prunus armeniaca TSC 6.05 0.865 UniChill 4.78 0.929 MR 14.52 0.191

10 Ulmus pumila UniChill 5.09 0.901 UniChill 8.38 0.862 DM 11.16 0.654

11 Morus alba TSC 6.70 0.905 UniChill 7.99 0.860 DM 9.04 0.175

12 Broussonetia papyrifera UniChill 7.60 0.804 TSC 6.18 0.821 DM 9.97 0.615

13 Quercus acutissima UniChill 6.73 0.931 UniChill 5.12 0.950 MR 14.35 0.765

14 Pterocarya stenoptera UniChill 7.52 0.804 UniChill 7.89 0.710 MR 11.57 0.415

15 Juglans regia TSC 6.04 0.739 UniChill 8.54 0.595 DM 8.41 0.141

16 Betula platyphylla UniChill 3.80 0.915 UniChill 3.70 0.906 DM 8.27 0.655

17 Acer pictum subsp. mono TSC 2.29 0.894 TSC 3.78 0.814 DM 4.71 0.670

18 Ailanthus altissima UniChill 5.22 0.867 UniChill 8.34 0.664 DM 10.39 0.066

19 Melia azedarach TSC 6.81 0.828 TSC 6.70 0.851 MR 10.19 0.135

20 Firmiana simplex UniChill 6.02 0.694 Unified 8.10 0.314 DM 12.30 0.190

21 Hibiscus syriacus TSC 9.66 0.666 Unified 13.38 0.331 DM 12.76 0.464

22 Fraxinus chinensis TSC 6.25 0.852 Unified 12.35 0.319 MR 9.76 0.533

23 Syringa oblata UniChill 7.01 0.864 UniChill 5.11 0.920 MR 12.36 0.475

24 Paulownia fortunei UniChill 4.63 0.762 UniChill 7.02 0.693 MR 10.01 0.250

244
The simulation effects of species phenology maps were evaluated by cross-validation on the optimal phenology models245

(Table 2). The results showed that the simulation effects of spring phenology were significantly better than that of autumn246
phenology (Fig. 5). Specifically, the RMSE of the optimal model of FLD (6.38 days) and FFD (7.46 days) in spring were247



14

significantly smaller than that of LCD (10.80 days) in autumn. And the R2 of the optimal model of FLD (0.799) and FFD248
(0.676) in spring were significantly greater than that of LCD (0.372) in autumn. However, there was no significant249
difference between spring FLD and FFD simulation effects. Among the optimal spring phenology models, the FFD250
simulation effects of UniChill and TSC models were significantly better than Unified model.. But in autumn, the LCD251
simulations effects are similar for MR and TP models.252

253

254
Figure 5: The RMSE (a) and R2 (b) of cross-validation on the optimal phenology models for 24 woody species. Each model255
is represented by a different color, with warm colors for three spring phenology models (Unified, UniChill, TSC), and cool256
colors for two autumn phenology models (MR, TP). The model with the smallest RMSE was selected as the optimal model257
for each species. The horizontal line represents the median value, the diamond mark represents the mean value, and the dot258
mark represents the outlier in the boxplot.259

3.2 Aggregation of ground phenology maps260

The results of GP maps generated by four different aggregation methods (mean, pct50, pct20\80, pct10\90) showed261
similar spatial patterns (Fig. 6), i.e., the consistent variation along latitude or altitude. With the increase of latitude or262
altitude, the spring GP (FLD and FFD) became later, and the autumn GP (LCD) became earlier. For different aggregation263
methods, the GP maps aggregated from the mean and pct50 methods were highly consistent, with r being 0.992; while the264
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GP maps aggregated from the pct20\80 and pct10\90 methods were slightly different from the former two, with r being265
0.968 and 0.949, and showed larger spatial variation than the former two. The high consistency between the mean and pct50266
maps indicated that both the weighted mean method and weighted quantile method were robust for the aggregation of GP.267

268

269
Figure 6: Ground phenology (GP) maps of four aggregation methods averaged from 1951 to 2020. Columns 1-2 show the270
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents an271
aggregation method from weighted average (mean), weighted median (pct50), weighted 20% or 80% percentile (pct20\80),272
and weighted 10% or 90% percentile (pct10\90). The unit of GP is the Julian Day of year (DOY) from January 1st.273

274
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We also provided two QA maps to evaluate the reliability of the aggregation results of GP maps (Fig. S1). The first is275
the total distribution probability of all species, and the second is the total number of species with distribution probabilities276
greater than 0.1. In the QA maps, higher values mean larger total number or probability of species for the aggregation,277
indicating that GP maps have higher reliability in these areas. The regions with the most reliable GP aggregation results were278
distributed around 30° N in China. The total number of species is about 15 for FLD and FFD, and is about 6 for LCD in279
these regions. It should be noted that in the QA map, in areas where the total number of species is less than 5 or the total280
probability of species is less than 1, the aggregation results of GP may not be reliable.281

3.3 Data quality and usability282

GP and LSP were compared between FLD and SOS in spring and between LCD and EOS in autumn during two283
segments (1981-2014 and 2013-2020). The results showed that GP and two LSP products had similar spatial patterns in284
central and northern China but relatively different patterns in southern China (Fig. 7), particularly for LCD and EOS in285
autumn (Fig. 7e-h). This is likely due to the prevalence of deciduous forests in central and northern China (Fig. 1). In286
contrast, evergreen and mixed forests are found in southern China. GP in this study was generated by aggregating the287
phenology of 24 deciduous woody plants, which made up a large proportion of deciduous forests but a small proportion of288
evergreen or mixed forests. Additionally, LSP extracted from remote sensing data tends to have a larger error in evergreen289
and mixed forests due to the lack of obvious seasonal change and frequent cloud cover in these regions (Liu et al., 2016b).290
As a result, the consistency between GP and LSP was relatively poor in evergreen or mixed forests (Fig. S2), with the291
maximum r being 0.44 in spring and 0.54 in autumn, and the minimum RMSE being 28.5 days in spring and 38.5 days in292
autumn (Table S2). In contrast, the consistency between GP and LSP was much better in deciduous forests, with the293
maximum r being 0.95 in spring and 0.88 in autumn, and the minimum RMSE being 8.8 days in spring and 15.1 days in294
autumn, respectively.295
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296
Figure 7: Comparison of GP maps in this study and two LSP products (VIPPHEN and VNP22C2) extracted from remote297
sensing in previous studies, which was made between FLD and SOS in spring and LCD and EOS in autumn. Row 1 shows298
the comparison between VIPPHEN product and GP map averaged in 1981-2014, and Row 2 shows the comparison between299
VNP22C2 product and GP map averaged in 2013-2020. (a-b) SOS from two LSP products; (c-d) FLD aggregated by mean300
method; (e-f) EOS from two LSP products; (g-h) LCD aggregated by mean method. The unit of GP or LSP is the Julian Day301
of year (DOY) from January 1st.302

303
To further assess the quality of the data, we examined the consistency between GP and LSP specifically in deciduous304

forests. The results showed that GP and LSP had good consistency for both VIPPHEN and VNP22C2 products, i.e., high305
correlation, small difference, and good linear relationship (Fig. 8). Compared with the LSP of VIPPHEN product, the LSP of306
VNP22C2 product has better consistency with the GP of this study. In addition, for both products, the consistency between307
GP and LSP in spring (Fig. 8e, g) was significantly better than that in autumn (Fig. 8f, h). When comparing different308
aggregation methods (mean, pct50, pct20/80, pct10/90), there was no significant difference in r between GP and LSP (Fig.309
8a, b). All methods produced similar r values, ranging from 0.76-0.78 in spring and 0.49-0.53 in autumn for the VIPPHEN310
product, and from 0.90-0.91 in spring and 0.79-0.84 in autumn for the VNP22C2 product. However, different methods311
produced significantly different RMSE values between GP and LSP (Fig. 8c, d), largely due to the differences in the average312
values of GP under different methods. The best aggregation methods, with the minimum RMSE, were pct10 (20.8 days) in313
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spring and pct90 (32.9 days) in autumn for the VIPPHEN product, and pct20 (8.8 days) in spring and pct90 (15.1 days) in314
autumn for the VNP22C2 product.315

316
Figure 8: Comparison results of GP maps and two LSP products (VIPPHEN and VNP22C2) in deciduous forests, which317
was made between FLD and SOS in spring and LCD and EOS in autumn within the time range 1981-2014 and 2013-2020.318
(a-b) r between LSP and GP under four aggregating methods; (c-d) RMSE between LSP and GP under four aggregating319
methods; (e-h) Linear relationship between between LSP and GP under the best aggregating method. Each aggregating320
method is represented by a different color. The best aggregating method was determined by minimizing the RMSE between321
GP and LSP. The error bar in the bar plot represents the multi-year standard deviation. The red line in the scatter plot322
represents the linear regression line between GP and LSP, and all regression results were extremely significant (p<0.001).323

324
It is worth noting that the aggregation method with the smallest difference between GP and LSP in this study was the325

10th or 20th percentile in spring and the 90th percentile in autumn. It means that the spring green-up event detected by326
remote sensing is more consistent with the FLD of earlier-developing plant species (the first 10%-20%) on the ground, while327
the autumn dormancy event from remote sensing is more consistent with the LCD of later-senescent plant species (the last328
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10%) on the ground. These results reveal a potential connection between GPs and LSPs despite their different physical329
implications in diagnosing phenology.330

In general, this dataset provides high reliability species and ground phenology simulations of forests over China for the331
past 70 years. It is an independent phenology data source generated by the modeling and aggregation based on ground332
observations. There are several considerations in data application:333

(1) For SP maps, the accuracy of data was determined by RMSE and R2 of cross-validation on the optimal phenology334
model for each species (Table 2). Additionally, the reliability of phenology data in space was affected by the number of sites335
available for modeling on each species (Table 1). For instance, the accuracy of Betula platyphylla’s FLD was very high336
overall (RMSE = 3.80 and R2 = 0.915), but the local accuracy might be relatively poor in areas with sparse sites due to very337
few sites of Betula platyphylla in space (n = 13). In this study, the SP maps of 24 species in China were found to be largely338
consistent with the in-situ observations, with an average error of 6.4, 7.5 and 10.8 days for FLD, FFD and LCD,339
respectively. These errors were the same or smaller than those of phenology modelling in previous studies. For example, the340
simulation error of spring FLD and FFD was 7-9 days in central Europe (Basler, 2016) and was 12.3-12.7 days in the United341
States (Izquierdo-Verdiguier et al., 2018), while the simulation error of autumn LCD was 10.3-13.0 days in France342
(Delpierre et al., 2009) and 5.9-22.8 days in the United States (Jeong and Medvigy, 2014). Therefore, compared with other343
studies on the regional scale, the SP maps of China in this study were found to have relatively high accuracy.344

(2) For GP maps, the reliability of data can be determined by QA maps which provide the total number or probability of345
species. Additionally, the reliability can also be evaluated by comparing GP data with other LSP products, with high346
consistency indicating good reliability. Since GP data actually provide phenology estimates of the deciduous components in347
the forests, it has better reliability in the deciduous forests but less reliability in evergreen or mixed forests. In this study, GP348
maps of forests in China were found have good consistency with the existing LSP products, particularly in deciduous forests,349
where the correlation coefficients of FLD and LCD were 0.91 and 0.84, respectively. The differences between GP and LSP350
in FLD and LCD were also found to be relatively small in deciduous forests, being 8.8 days and 15.1 days, respectively.351
Previous studies have shown poor consistency between single species and LSP, with correlation coefficients ranging from352
0.50 to 0.51 in the United States (Peng et al., 2017) and Germany (Kowalski et al., 2020), and differences ranging from 12 to353
14.5 days in the United States (Peng et al., 2017) and Canada (Delbart et al., 2015). In contrast, research comparing average354
or quantile values of multiple species has shown better results similar to this study. For example, the correlation coefficients355
between the average (or weighted average) GP and LSP were found to be 0.61 to 0.71 in Europe (Rodriguez-Galiano et al.,356
2015; Tian et al., 2021). The correlation coefficients between the 30th percentile GP and LSP were found to be 0.54 to 0.57357
in China (Wu et al., 2016). The differences between the GP and LSP in previous studies were 10.3-12.4 days in China (Wu358
et al., 2016), 13.9 days in Europe, and 12.3 days in the United States (Ye et al., 2022), which was larger than the results of359
FLD but smaller than that of LCD in this study. Although the landscape-level GP data aggregated from species-level360
phenology data in this study showed good reliability, limitations in available species and different aggregation methods361
suggest that future comparisons between GP and LSP in other regions still need to be improved.362
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(3) For phenology maps in different seasons, the reliability of phenology data in spring was found to be significantly363
higher than that in autumn. The underlying reason is that the mechanism of autumn phenology is more complex compared to364
that of spring phenology (Menzel, 2002). Moreover, the driving mechanisms for the autumn phenology are complex, which365
poses an additional challenge (Gill et al., 2015; Wu et al., 2018). For example, temperature has large effects on the autumn366
phenology than the spring phenology (Fu et al., 2018). In addition to temperature, other environmental factors such as367
precipitation (An et al., 2020), photoperiod (Lang et al., 2019), solar radiation (Wu et al., 2021b), spring phenology (Liu et368
al., 2016a), and growing-season productivity (Zani et al., 2020) may also drive autumn phenology. Thus, modeling autumn369
phenology is more challenging compared to spring phenology (Melaas et al., 2016), resulting in poorer model performance370
and inferior data quality of SP or GP maps in autumn.371

4 Data availability372

The annual SP and GP maps over China can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).373
This dataset is licensed under a CC-BY 4.0 license. The spatial reference system of the dataset is EPSG:4326(WGS84).374

5 Conclusions375

In this study, mainly based on CPON historical phenology observations, we developed a new long-term gridded376
phenology dataset: SP maps of 24 woody plants and GP maps of forests over China from 1951–2020, with a spatial377
resolution of 0.1° and a temporal resolution of 1 day. For the generation of SP maps, we adopted a model-based upscaling378
method to realize the scale expansion of phenology date from in-situ to regional scales in China. For the generation of GP379
maps, we adopted weighted average and weighted quantile methods to realize the aggregation from species to community or380
landscape levels in China. Dataset quality assessment shows that the average error of SP maps is 6.9 days in spring and 10.8381
days in autumn, and the minimum difference between GP maps and existing LSP products is 8.8 days in spring and 15.1382
days in autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo-Verdiguier et al., 2018;383
Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps in this study have the same or384
smaller simulation error, and the GP maps in this study have good agreement with other LSP products, so the data has high385
accuracy and reliability. This dataset is the first phenology map of China. It can be used to investigate the spatial pattern of386
plant phenology more clearly along the geographic gradient (e.g., longitude, latitude, and altitude), and to reveal the387
temporal trends (e.g., interannual, decadal, and secular) of plant phenology across China. The dataset can also provide388
important data support for global change impact assessment, terrestrial ecosystem simulation, and natural resource389
management.390
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