		删除[伊洛。]: the
1	Mapping 24 woody plant species phenology and ground forests	删除[伊洛。]: of ecosystems
2	phenology over China from 1951-2020	删除[伊洛。]: simulating
3 4	Mengyao Zhu ¹ , Junhu Dai ^{1,2,3} , Huanjiong Wang ¹ , Juha M. Alatalo ⁴ , Wei Liu ^{1,2} , Yulong Hao ^{1,2} , Quansheng Ge ^{1,2}	删除[伊洛。]: y
5	¹ Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research,	删除[伊洛。]: records
6 7 8	Chinese Academy of Sciences, Beijing, 100101, China ² College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China ³ China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, 45320, Pakistan	删除[伊洛。]: typical
9	⁴ Environmental Science Centre, Qatar University, Doha, 2713, Qatar	删除[伊洛。]: map the
10	Correspondence to: Junhu Dai (daijh@igsnrr.ac.cn); Quansheng Ge (geqs@igsnrr.ac.cn)	删除[伊洛。]:,
11	Abstract. Plant phenology refers to the cyclic plant growth events, and is one of the most important indicators of climate	/ 删除[伊洛。]: with a spatial resolution of 0.1° and a tem
12	change. Integration of plant phenology information is crucial for understanding cosystem response to global change and	/ 删除[伊洛。]: A
13	modeling, the material and energy balance of terrestrial ecosystems. Utilizing 24,552 in-situ phenological, observations, of 24	加]]际[[[)] 伯。]: A
14	representative woody plants species from the Chinese Phenology Observation Network (CPON), we have developed maps	/ 删除[伊洛。]: upscaling
15	delineating species phenology (SP) and ground phenology (GP) of forests over China from 1951-2020 _# These maps offer a	删除[伊洛。]: method was used
16	detailed spatial resolution of 0.1° and a temporal resolution of 1day, Our method involves a, model-based, approach, to	
17	upscale, in-situ phenological, observations to SP maps, followed by the application of weighted average and quantile methods,	删除[伊洛。]: generate
18	to <u>derive</u> GP maps from <u>the SP data</u> . The <u>resulting SP maps for the</u> 24 woody plants <u>exhibit a high degree of concordance</u>	删除[伊洛。]: SP maps from
19	with in-situ observations, <u>manifesting</u> an average <u>deviation</u> of 6.9 days <u>for</u> spring and 10.8 days <u>for</u> autumn <u>phenological</u>	
20	events. Moreover, the GP maps demonstrate robust alignment, with extant Land Surface Phenology (LSP) products sourced	│ 删除[伊洛。]: y
21	from remote sensing data, particularly with in deciduous forests, where the average discrepancy is 8.8 days in spring and 15.1	│删除[伊洛。]: were used
22	days in autumn. This dataset provides an independent and reliable phenology data source for China on a long-time scale of	│ 删除[伊洛。]: generate
23	70 years, and contributes to more comprehensive research on plant phenology and climate change at both regional and	
24	national scales. The dataset can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).	删除[伊洛。]: maps
25		删除[伊洛。]: he validation shows that t
25	1 Introduction	删除[伊洛。]: of
26	Plant phenology, the discipline that examines the timing of plant life cycle events, emerges in response to the seasonal	删除[伊洛。]: the
27	changes in climate and environmental conditions (Lieth, 1974; Schwartz, 2003). These events are pivotal stages in a plant's	
28	life, such as budburst, leaf unfolding, flowering, leaf coloring, and defoliation. Recognized as a sensitive biological indicator	删除[伊洛。]: in
29	of climate change (Fu et al., 2015; Richardson et al., 2013), plant phenology is instrumental in understanding ecosystem	删除[伊洛。]: in
30	responses to global change (Menzel et al., 2020), and is a significant factor in modeling the exchanges of matter, and energy	
31	within, terrestrial ecosystems (Keenan et al., 2014). The demand for extensive, long-term, and reliable plant phenology data	删除[伊洛。]: T
	1	删除[伊洛。]: of forests have good agreement
		删除[伊洛。]: by
		刪除「伊洛。」: with an

删除[伊洛。]: of great significance

			删除[伊洛。]: To be helpful for
32	is pronounced among researchers for effective, biological monitoring and predictive studies, Although such data are now	\swarrow	删除[伊洛。]: ons
33	available from various sources (Piao et al., 2019; Tang et al., 2016), including in-situ observations (Templ et al., 2018),		1	
34	satellite remote sensing (Bolton et al., 2020; Dixon et al., 2021), and tower-based digital cameras (Richardson et al., 2018),	$\langle \rangle$	删除[伊洛。]: , long-term, dependable plant phenology d $\overline{\cdots}$
35	harmonizing this information across broad spatial and temporal scales remains a significant scientific challenge, complicated		删除[伊洛。]: Presently,
36	by inconsistencies among data sources (Fisher et al., 2006; Park et al., 2021).		删除[伊洛。], monual
37	The practice of conducting manual, in-situ observations for species phenology (SP) boasts a rich history extending over		加四门开始。	j. manuar
38	several centuries (Aono and Kazui, 2008), yielding highly accurate data for specific plant species (Polgar and Primack,		删除[伊洛。]: etc. Nevertheless,
39	2011). In 1963, the Chinese Academy of Sciences established the Chinese Phenology Observation Network (CPON), which		删除[伊洛。]: between
40	stands as a benchmark for phenological data collection through its standardized, nationwide network, engaging numerous		1	
41	professional observers and an extensive repository of ground-based observations. CPON's repository, to date, encompasses,		删除[伊洛。]: different
42	over 1.2 million records for upwards of 900 plant species from more than 150 sites across China (Fig. 1), cementing its		删除[伊洛。]: precise phenological information
43	dominant status as a data center for phenological research in China. These phenology records have been contributed to		毗於中沙	h dh
44	examining the spatio-temporal patterns of plant phenological shifts (Dai et al., 2014; Ge et al., 2015), the environmental		删除[伊洛。	j: the
45	factors affecting plant phenology (Dai et al., 2013; Wang et al., 2020), and the development of phenology models in China		删除[伊洛。]: individual
46	(Tao et al., 2018). However, the spatial distribution of in-situ, data is often uneven and limited, particularly at regional and		删除[伊洛。]: a multitude of
47	global scales (Donnelly et al., 2022), with significant gaps over extended timescales. Advances in species-level phenology		-	
48	modeling offer a promising avenue to overcome these spatial and temporal constraints (Fu et al., 2020; Hufkens et al., 2018).		删除[伊洛。]: incorporating
49	In scenarios lacking of direct phenological observations, such models are invaluable for generating large-scale predictions,		删除[伊洛。]: T
50	thereby <u>filling in</u> the missing data gaps in both space and time (Cleland et al., 2007; Wang et al., 2012). This modeling			
51	approach has been exemplified by the Extended Spring Indices (SI-x) model, which has produced detailed gridded maps		删除[伊洛。]: CPON has amassed
52	delineating, the first leaf and first bloom events for three woody plants across the contiguous United States with resolutions		删除[伊洛。]: phenology
53	from 1° to 1 km, (Ault et al., 2015; Izquierdo-Verdiguier et al., 2018). Adopting a similar strategy, it is feasible to extrapolate		删除[伊汝]: pertaining to more than
54	the, CPON phenology observations across, China, facilitating the integration and scaling up of this rich dataset to serve,		101 PAN [12- 11] o	j. pertaining to more than
55	regional and national <u>research needs</u> ,		删除[伊洛。]: across over
56	In contrast to manual in-situ observations, satellite remote sensing facilitates expansive, monitoring and mapping of land		删除[伊洛。]: throughout
57	surface phenology (LSP) at a landscape scale, yielding more comprehensive phenological data (Studer et al., 2007). Over the		_	
58	past four decades, remote sensing technologies have, witnessed substantial enhancements, leading to significant, strides, in		删除[伊洛。]: as well as
59	both spatial and temporal resolution (Misra et al., 2020; Dronova and Taddeo, 2022). Currently, a variety of LSP products,		删除[伊洛。]: phenology
60	based on vegetation indices like NDVI and EVI from diverse remote sensing sources, provide LSP data on regional and		刪除∩冊次]: observed
61	global scales with resolutions, from 10 km down to 30 m (e.g., Li et al., 2019; Wu et al., 2021). The reliability of these LSP		加四日子]. Observed
62	data <u>sets is highly dependent on validation against</u> ground phenology (GP) data derived from in-situ SP observations (Tian et		删除[伊洛。]: y
63	al., 2021; Zhang et al., 2017), necessitating a seamless transition from individual (i.e., SP) to landscape (i.e., GP) level.		删除[伊洛。]: phenology
64	Methods such as weighted averages and quantiles have proven their efficacy in this aggregation process from individual to			
65	community or landscape levels (Donnelly et al., 2022; Fitchett et al., 2015). For instance, the weighted average method has		删除[伊洛。]: e
			<u> </u> 副於「 伊汝	1. interpolating

删除[伊洛。]: interpolating 删除[伊洛。]: been successfully applied to create griddec

删除[伊洛。]·ata

		/1	删除[伊洛。]: on a
66	been validated at the site scale through combined field, and remote sensing studies, to aggregate GP data, from in-situ SP		删除[伊洛。]: investigations
67	observations, considering species abundance as weights (Liang et al., 2011). Recent studies have suggested that quantile	\leq	
68	methods (e.g., 30th percentile) holds greater promise than the commonly used average methods at larger scales, as	$\langle \rangle $	删除[伊洛。]: monitoring
69	demonstrated in Europe and the USA (Ye et al., 2022). Nevertheless, such methods have not yet been applied to aggregate	<u>N</u> Ì	删除[伊洛。]: ,
70	large-scale GP from SP data in China, This gap potentially limits the ground-truthing, for LSP products and hampers a		删除[伊洛。]: at the community or landscape levels
71	comprehensive understanding of the spatial and temporal patterns of phenological shifts over the country.		might [17 17] o]. at the community of fandscape revers
72	In this study, we aimed to develop long-term, high-resolution SP and GP maps of China, spanning from 1951 to 2020		删除[伊洛。]: data
73	with a 0.1° resolution, This effort will produce spatially continuous, gridded phenology products that are notably missing in		删除[伊洛。]: Some r
74	the current Chinese context, yet are vital for diverse scientific and ecological applications. Drawing from the extensive		
75	database of the CPON, we analyzed 24,552 in-situ phenology observations of 24 representative woody plants from 122 sites		删除[伊洛。]: the
76	over, six decades, This analysis included three critical phenophases for each species; the first leaf date (FLD), first flower		删除[伊洛。]: on a
77	date (FFD), and 100% leaf coloring date (LCD), In our methodology, we employed five species-level phenology models		删除[伊洛。]: there is no previous study endeavored to
78	with gridded meteorological data to simulate, SP maps, To refine these maps for each plant species, we applied species		
79	distribution maps as spatial filters. We further synthesized these SP maps into GP maps, utilizing weighted average and		删除[伊洛。]: for
80	quantile methods that incorporated the distribution probabilities of the species as weights. The SP maps underwent a		删除[伊洛。]: ing
81	rigorous_cross-validation_process to ensure accuracy, while the GP maps' reliability was verified through comparative		mittArtask
82	analysis, with existing LSP products. The contribution of this study is the introduction of a novel grid phenology dataset for		删除[伊洛。]:,
83	China, This dataset enhances the spectrum of available phenology data within the country, and serves as an independent,		删除[伊洛。]: which may
84	source for <u>validating</u> LSP products. <u>Moreover, it is expected to significantly advance</u> research on plant phenology and global		删除[伊洛。]: constrain the availability of ground valida
85	change by <u>providing a more detailed portrayal of</u> the spatiotemporal <u>trends in</u> plant phenology <u>patterns</u> .		
			删除[伊洛。]: o-
86	2 Methods		删除[伊洛。]: characteristics
87	2.1 Data acquisition and processing		删除[伊洛。]: changes
88	2.1.1 Phenology observations		则除[毋波]]
89			删除[伊洛。]: spanning 1951-2020
89 90	The in-situ phenology observations from 1963 to 2018 were obtained from the CPON. We selected 24, representative woody plants species across 17 families, (Table 1). These species are not only prevalent in China's forest ecosystems (Fang		删除[伊洛。]:,
90	et al., 2011), but also extensively recorded within CPON database. The longitudinal span of these observations covers, 55		删除[伊洛。]: W
92	years across 122 sites, with a total of 24,552 individual records, covering a diverse spectrum of land cover, ecological, and		
93	climatic conditions across China (Fig. 1). Each species in the study has a substantial representation in the dataset, with at		删除[伊洛。]: the past
94	least 40 years of phenologucal data from a minimum of 13 distinct sites. We focused on three phenophases for each species:		删除[伊洛。]: from CPON
95	spring FLD, spring FFD, and autumn LCD. To ensure the integrity of the dataset, we applied three-sigma limits, a statistical		删除[伊洛。]: T
96	filter that retains data within three standard deviations from the species' mean, phenological, dates, (Pukelsheim, 1994),		
			删除[伊洛。]:, namely
			删除[伊洛。]:, were included for each species
	3		删除[伊洛。]: W
			删除[伊洛_]· and produce

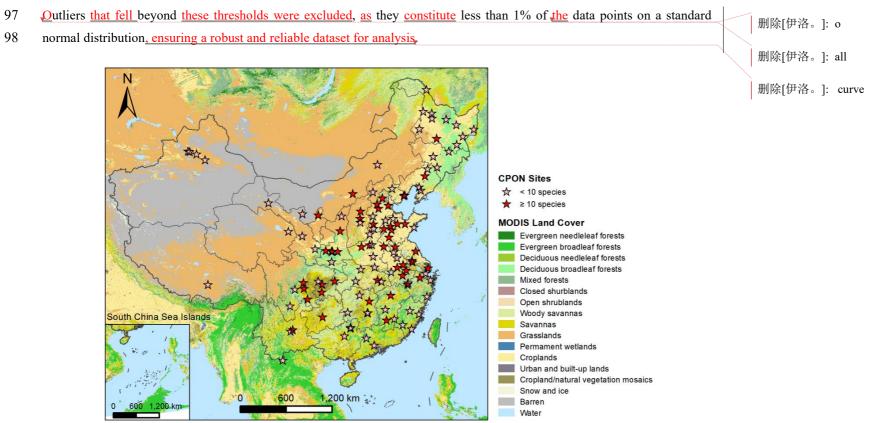


Figure 1: Geographic distribution of CPON sites (n = 122) included in the phenology dataset across China. Sites with less than 10 recorded species are marked with pink asterisks, while sites with more than 10 recorded species are marked with red asterisks. Note that the markings on the map of several adjacent sites may overlap each other. The background map shows the IGBP land cover type from the MODIS Land Cover product (Friedl and Sulla-Menashe, 2022).

104

Table 1: List of 24 species of woody plants from 17 families in China. Number of records represents the total number of
 three phenophases (FLD, FFD and LCD) of all sites and all years for each species.

No.	Species	Family	Life form	Number of sites	Number of years	Number of records
1	Ginkgo biloba	Ginkgoaceae	Tree	45	49	1110
2	Metasequoia glyptostroboides	Cupressaceae	Tree	37	47	860
3	Magnolia denudata	Magnoliaceae	Tree	42	47	980
4	Salix babylonica	Salicaceae	Tree	65	42	1526

5	Populus × canadensis	Salicaceae	Tree	43	51	954
6	Robinia pseudoacacia	Fabaceae	Tree	54	45	1757
7	Albizia julibrissin	Fabaceae	Tree	36	47	984
8	Cercis chinensis	Fabaceae	Shrub	52	49	1207
9	Prunus armeniaca	Rosaceae	Tree	46	45	950
10	Ulmus pumila	Ulmaceae	Tree	60	44	1428
11	Morus alba	Moraceae	Tree	50	50	1071
12	Broussonetia papyrifera	Moraceae	Tree	41	43	1103
13	Quercus acutissima	Fagaceae	Tree	17	40	292
14	Pterocarya stenoptera	Juglandaceae	Tree	29	46	936
15	Juglans regia	Juglandaceae	Tree	50	47	816
16	Betula platyphylla	Betulaceae	Tree	13	43	369
17	Acer pictum subsp. mono	Sapindaceae	Tree	18	46	492
18	Ailanthus altissima	Simaroubaceae	Tree	34	47	873
19	Melia azedarach	Meliaceae	Tree	61	46	1410
20	Firmiana simplex	Malvaceae	Tree	57	48	1403
21	Hibiscus syriacus	Malvaceae	Shrub	58	47	1096
22	Fraxinus chinensis	Oleaceae	Tree	23	40	505
23	Syringa oblata	Oleaceae	Shrub	50	51	1163
24	Paulownia fortunei	Paulowniaceae	Tree	49	48	1267
Total		-	-	122	55	24552

108 **2.1.2 Climate data**

- 109 The daily mean temperature (T) <u>data spanning</u> from 1950 to 2020 were <u>sourced</u> from two <u>distinct repositories</u>: (1) <u>Site-</u>
- 110 specific temperature (Site T) was retrieved from, the China Meteorological Data Service Center (CMDSC,

111 <u>https://data.cma.cn/).</u> This dataset was primarily utilized for parameterizing the phenology models. (2) Gridded temperature

- 112 (Grid T) was derived from the ERA5-Land climate reanalysis datasets (Muñoz Sabater, 2019; Muñoz-Sabater et al., 2021),
- 113 available through the Copernicus Climate Change Service (C3S, https://cds.climate.copernicus.eu/). Grid T was employed /
- 114 for phenology simulation and upscaling processes, with a fine spatial resolution of 0.1°, approximately equating to 10 km,

删除[伊洛。]: -

- 删除[伊洛。]: from
- 删除[伊洛。]: at
- 删除[伊洛。]:)

删除[伊洛。]: climate observations in

删除[伊洛。]: e

			删除[伊洛。]: H
115	To obtain daily grid T values, we computed the average from hourly temperature data recorded at four distinct times of the	{ /	
116	<u>day</u> (4:00, 10:00, 16:00, 22:00)	Ł,	
117	The current bioclimatic variables (BIOCLIM+) were obtained from Climatologies at High Resolution for the Earth		删除[伊洛。]: variab
118	Land Surface Areas (CHELSA, https://chelsa-climate.org/) to determine the species distribution (Brun et al., 2022a, b).	'/	删除[伊洛。]: BIOC
119	These, variables encapsulate the average ecological and climatic conditions for the period 1981-2010, boasting a high	Ł	
120	resolution of 0.0083°. From the available bioclimatic data, we extracted both the traditional set of 19 bioclimatic layers		柳际[伊谷。]:₩
121	(Bio1-Bio19) and an additional set of 50, layers, To mitigate the effects of autocorrelation among these bioclimatic variables,		删除[伊洛。]: biocl
122	we computed the correlation coefficient between each pair of layer. Variables exhibiting a correlation coefficient above 0.8		
123	relative to preceding layers were omitted to prevent redundancy. Consequently, a subset of 12 bioclimatic layers was		· · ·
124	selected for inclusion, as the environmental variables within the species distribution models (detailed in Table S1). These		删除[伊洛。]: W
125	selected layers were then resampled to a 0.1° resolution to ensure consistency with the resolution of the grid T data.		删除[伊洛。]: every
126	2.1.3 Forest and species distribution data		删除[伊洛。]: s
127	The forest distribution map of China was sourced from the dataset of "Annual Dynamics of Global Land Cover and its		删除[伊洛。]: to red
128	Long-term Changes from 1982 to 2015" dataset (Liu et al., 2020). To discern forested regions, we reclassified the annual,		删除[伊洛。]: and th
129	land cover (LC) layers, into, 'forest' and 'non-forest' categories, We, then determined the duration, of forest cover, by summing		咖嗦[伊宿。]. and u
130	the annual layers, and pixels representing at least one year of forest cover were identified as forest distribution areas. For		删除[伊洛。]: greate
131	forest type, categorization, we employed the widely recognized, International Geosphere-Biosphere Program (IGBP)		 删除[伊洛。]: with t
132	classification system from the MODIS Land Cover Type (MCD12C1) Version 6.1 data product (Friedl and Sulla-Menashe,		
133	2022). In our classification scheme, we combined evergreen needleleaf forest (class 1) and evergreen broadleaf forest (class		删除[伊洛。]: As a ı
134	2) to delineate, evergreen forest category, Similarly, deciduous needleleaf (class 3) and deciduous broadleaf forest (class 4)		删除[伊洛。]: ere
135	were amalgamated into deciduous forest category. The mixed forest (class 5) category was retained as is, To achieve a		删除[伊洛。]: retain
136	consistent spatial resolution across our datasets, both the forest distribution map and forest type map were resampled from		
137	their original 0.05° resolutio to a 0.1° resolutiousing the majority method, to match the resolution of the grid T data.		删除[伊洛。]: for
138	The county-level species distribution maps were sourced from the comprehensive Database of China's Woody Plants		┃ 删除[伊洛。]:match
139	(Fang et al., 2011). This authoritative database consolidates distribution data from an exhaustive suite of national, provincial,		
140	and regional floristic surveys, and inventory reports published in China up to 2009, (Cai et al., 2021). Additionally, we		删除[伊洛。]: Each
141	obtained 4.371 occurrence records for 24 selected woody plant species from the Global Biodiversity Information Facility		删除[伊洛。]: were
142	(GBIF, 2022; https://www.gbif.org/), which were subsequently utilized as the occurrence data inputs for species distribution		删除[伊洛。]: as
143	modeling (detailed in Table S2), To ensure the reliability of our data, we included only those occurrence records that had		
144	<u>location</u> coordinate with an uncertainty of less than $2,000$ meters, Moreover, the dataset was meticulously cleansed to		删除[伊洛。]:,
145	eliminate any duplicate records, thereby enhancing the robustness of the species distribution models employed in our		删除[伊洛。]: and
146	analysis		
			删除[伊洛。]: the nu

derive the daily grid T iables OCLIM+ climatic China ry two reduce the impact of autocorrelation an then excluded the layers with ater than the previous result ined tch ch year's re reclassified number of years 删除[伊洛。]: 删除[伊洛。]: was obtained 删除[伊洛。]: add 删除[伊洛。]· all

147 2.2 Generating species phenology maps using a model-based upscaling method

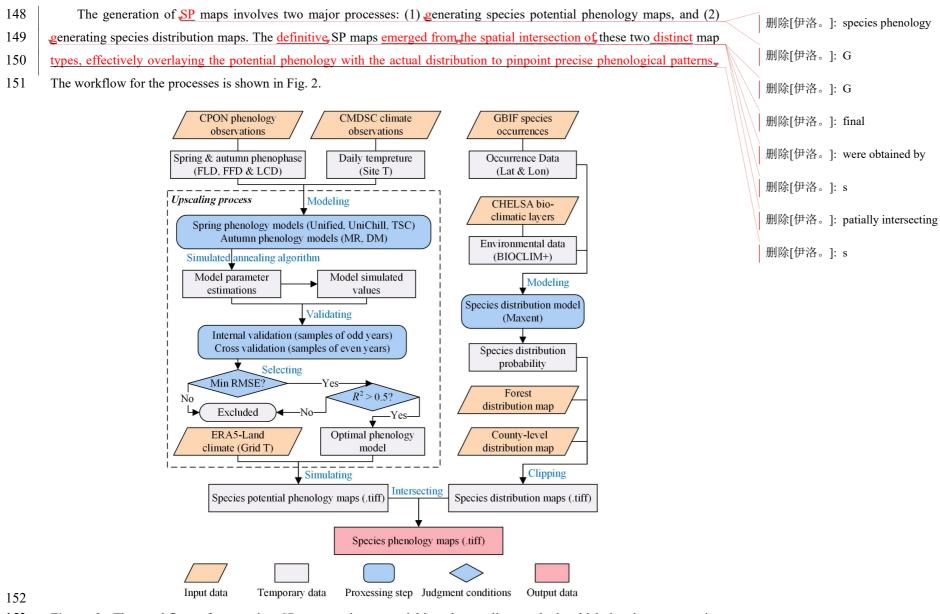


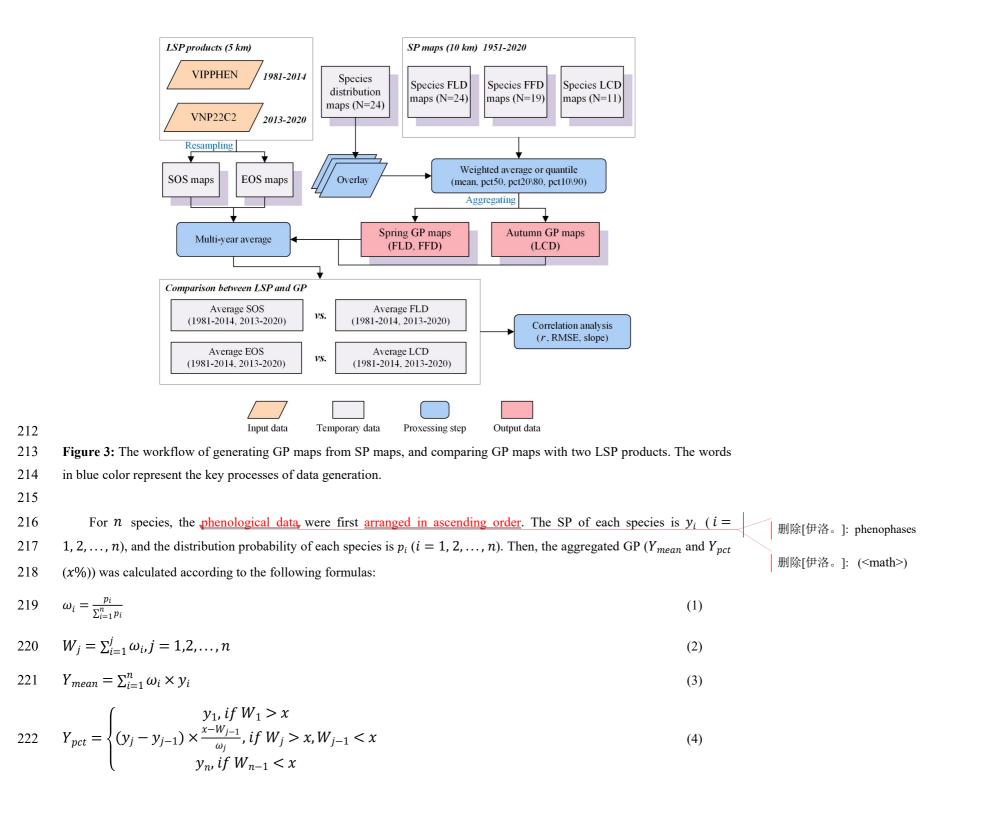
Figure 2: The workflow of generating SP maps using a model-based upscaling method, which involves two major processes: (1) Generating species potential phenology maps, and (2) Generating species distribution maps. The words in blue color represent the key processes of data generation. ".tiff" indicates the GeoTIFF format of the grid phenology or distribution maps.

157	2.2.1 Species potential phenology maps		删除[伊洛。]: phenology observations
158	In the first process, we employed a model-based upscaling method to transform in-situ phenology observations into		删除[伊洛。]: built t
159	grid <u>ded</u> phenology maps. Phenology models were constructed utilizing the phenophases (i.e., FLD, FFD, LCD), recorded by		
160	the CPON, in conjunction with the site T from the CMDSC climate observations. For each species under study, we		删除[伊洛。]: models
161	developed a suite of phenology models to the respective seasonal phases. Three models were designated for spring /		│ 删除[伊洛。]: ,
162	phenology; the Unichill, Unified (Chuine, 2000) and temporal-spatial coupling (TSC) models (Ge et al., 2014), And two	4	-
163	models were designated for autumn phenology; the multiple regression (MR) (Estrella and Menzel, 2006) and temperature-		删除[伊洛。]: a
164	photoperiod (TP) models (Delpierre et al., 2009). The details of the modeling formulae and their respective parameters are		删除[伊洛。]: models
165	elaborated upon, in Appendix S1. The modeling strategy involved a cross-validation approach, where data, from odd years		删除[伊洛。]: are described
166	were used for model training, while data, from even years were set aside for model validation purposes. The estimation of all		mnk[产招。]. are described
167	model parameters was, executed via, the simulated annealing algorithm (Chuine et al., 1998), ensuring a robust optimization		删除[伊洛。]: For each model,
168	process for the phenology models.		删除[伊洛。]: samples
169	For model validation, the models' root mean square error (RMSE) and goodness of fit (R^2) were calculated between the		
170	model predicted values and the original observed values. We conducted an internal validation, using the data, from odd years	$\parallel \parallel \mid$	删除[伊洛。]: phenology modeling
171	to evaluate the models' fitting efficacy. On the other hand, we conducted a cross validation was ondata from even years to		删除[伊洛。]: and samples
172	evaluate, the models' capability to simulate and extrapolate phenology data beyond the sample used for model development.		
173	The optimal phenology model for each species was determined as the one with the smallest RMSE during the cross-		删除[伊洛。]: reserved for cross validation on the model
174	validation process, and an R^2 exceeding 0.5 (or 0.3 for LCD) during both validation processes. Species for which no model		删除[伊洛。]: A
175	met these predefined criteria, were omitted from the subsequent generation of SP, and GP maps.		删除[伊洛。]: were
176	To simulate SP maps, we input daily grid T data from ERA5-Land climate reanalysis, into the previously determined		
177	optimal phenology models for each species. The simulation was conducted on a pixel-by-pixel basis, enabling the		删除[伊洛。]: estimated using
178	interpolation and upscaling of phenology observations from discrete sites to a comprehensive gridded phenology maps		删除[伊洛。]: I
179	(Chuine et al., 2000). It is important to note, however, that the availability of grid T data allows for the simulation of species		
180	phenology, even in areas lacking observed, species distribution. Therefore, we refer to the resultant maps, as species potential		删除[伊洛。]: was conducted
181	phenology maps. This distinction emphasizes that while the simulated values represent potential phenological events based		删除[伊洛。]: on samples
182	on climatic variables, they should not be misconstrued as actual observed values in regions where the species does not exist,		删除[伊洛。]: fitting effect of the model
			mpx[产招。]. Itting effect of the model
183	2.1.2 Species distribution maps		删除[伊洛。]: ,
184	In the second process, species distribution maps were generated by integrating species distribution models with county-		删除[伊洛。]: and
185	level species distribution data. For each species, we constructed models, using the Maximum Entropy Species Distribution		
186	Modelling (Maxent; Phillips et al., 2006) version.3.4.4. Maxent is a widely utilized tool in species distribution modeling due		删除[伊洛。]: conducted
187	to its efficacy in estimating, a species' distributional range by finding the distribution pattern with maximum entropy (i.e.,		删除[伊洛。]: samples

188 closest to the uniform), Maxent models the likelihood of species presence across geographical grids, assigning a predicted

删除[伊洛。]· If

删除[伊洛。]: greater than


删除[伊洛。]: in cross validation

删除[伊洛。]: the simulation and extrapolation effect of

删除[伊洛。]: from

8

		/ 删除[伊洛。]: It expresses a probability distribution when
189	probability of occurrence to each grid cell, To configure, the Maxent model, we utilized occurrence data, from the GBIF	删除[伊洛。]: build
190	database, paired with environmental data inputs, from the 12 bioclimatic layers provided by, BIOCLIM+, In the model	
191	parameter settings, both linear and quadratic feature types were used to capture the relationship between species presence	删除[伊洛。]: species location records
192	and environmental variables. Additionally, to validate the model and assess its predictive performance, we employed a 5-	删除[伊洛。]: were used as occurrence data input
193	fold cross validation method,	删除[伊洛。]: and
194	To evaluate the accuracy of the Maxent species distribution models, we applied the receiver operating characteristic	
195	(ROC) curve analysis. The integral of the ROC curve, referred to as the area under the curve (AUC), serves as a quantitative	删除[伊洛。]: from
196	measure, of the model's prediction accuracy, (Fielding and Bell, 1997). An AUC value approaching 1.0 is indicative of a	删除[伊洛。]: were used as the environmental data input
197	model with high predictive accuracy, In our study, the Maxent models demonstrated robust predictive power, with an	
198	average test AUC of 0.845, and a standard deviation of 0.043 across the different species (Table S2).	删除[伊洛。]: and
199	2.3 Generating ground phenology maps using weighted average and weighted quantile methods	删除[伊洛。]: was used as the replicated run type
200	In our study, we aggregated individual-level SP maps into Jandscape-level GP maps using four aggregation methods: (1)	删除[伊洛。]: method was used to test the accuracy of ti …
201	weighted average (mean); (2) weighted median (pct50); (3) weighted 20th percentile (pct20) for spring phenology or	删除[伊洛。]: value
202	weighted 80th percentile (pct80) for autumn phenology; (4) weighted 10th percentile (pct10) for spring phenology or	删除[伊洛。]: as an indicator
203	weighted 90th percentile (pct90) for autumn phenology. Previous studies typically <u>utilized</u> species abundance as weights for	
204	aggregation at a local scale, but obtaining such data at the regional scale proves challenging. Therefore, we replaced species	删除[伊洛。]: of the model
205	abundance with species distribution probability as aggregation weight for each species. This assumption stems from the	删除[伊洛。]: The closer the
206	positive correlation between species distribution and abundance (Brown, 1984), indicating that species tend to exhibit higher	删除[伊洛。]:, the more accurate the prediction result of …
207	abundance in the core of their geographic range (Sagarin and Gaines, 2002). The aggregation techniques applied in this	
208	study (e.g., pct50, pct20\80 and pct10\90) are analogous to the methods used for extracting LSP from remote sensing data	删除[伊洛。]: The
209 210	(e.g., midpoint, dynamic threshold and maximum curvature). The procedures followed in the generation of GP maps are <u>illustrated</u> in Fig. 3.	删除[伊洛。]: for different species
210		删除[伊洛。]: was
		删除[伊洛。]: ,
		删除[伊洛。]: with
		删除[伊洛。]: W
		删除[伊洛。]: four methods
		删除[伊洛。]: aggregate from individual-level SP maps to
		删除[伊洛。]: aggregation
		删除[伊洛。]: the
		删除[伊洛。]: it is difficult to
	9	删除[伊洛。]:instead of species abundance
		删除[毋溶,]: is based on

			删除[伊洛。
223	where ω_i is a weight to each species, W_j is the cumulative weight from the 1st to the $j_{\pm th}$ species, $x\%$ is the percentile tag		删除[伊洛。
224	which takes values from 10%, 20%, 50%, 80% and 90%. These calculations, enable the construction of aggregated GP maps		删除[伊洛。
225	by combining species phenology maps with species distribution maps and weighting them by species distribution	\mathbb{N}	厕际[伊谷。
226	probability.		删除[伊洛。
227	To evaluate the data quality and reliability of the aggregated GP maps, we undertook a comparative analysis with two		删除[伊洛。
228	established LSP products derived from remote sensing data; (1) VIPPHEN_NDVI dataset (1981-2014), utilized the midpoint		- \
229	method to extract the start of season (SOS) and the end of season (EOS) from the AVHRR data (Didan and Barreto, 2016);		删除[伊洛。
230	(2) VNP22C2 datasetproduct (2013-2020), utilized the, maximum curvature method to derive SOS and EOS from the		删除[伊洛。
231	MODIS data (Zhang et al., 2020). To align the spatial resolution of these datasets with our GP maps, we resampled both LSP		删除[伊洛。
232	products, from 5 km to 0.1° using the average method, Subsequently, we conducted a correlation analysis to assess the		
233	consistency between our GP data and the LSP products, specifically comparing the FLD with SOS for the spring, and the		删除[伊洛。
234	LCD with EOS for the autumn. The comparison involved averaging the LSP and GP maps across two distinct periods: 1981-		删除[伊洛。
235	2014 and 2013-2020. The statistical measures calculated for this assessment included the Pearson correlation coefficient (r) ,		
236	RMSE, and linear regression slope between GP and LSP across different forest types (Table S3).		删除[伊洛。
			i
			删除[伊洛。
237	3 Results and discussion		删除[伊洛。 删除[伊洛。
237 238	3 Results and discussion The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u>		删除[伊洛。
238	The dataset encompasses, two distinct types of phenology maps over China: (1) Annual, SP maps for 24 woody plants		删除[伊洛。
238 239	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u> <u>species</u> , <u>constructed</u> using the model-based upscaling method; (2) <u>Annual</u> , GP maps <u>for forest vegetation</u> , generated by four		删除[伊洛。 删除[伊洛。 删除[伊洛。
238 239 240	The dataset <u>encompasses</u> two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> SP maps <u>for 24 woody plants</u> <u>species</u> , <u>constructed</u> <u>using</u> the model-based upscaling method; (2) <u>Annual</u> GP maps <u>for forest vegetation</u> , generated by four aggregation methods, <u>accompanied</u> <u>by</u> quality assurance (QA) maps. These maps <u>detail the phenological events of</u> FLD,		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
238 239 240 241	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u> species, constructed using the model-based upscaling method; (2) <u>Annual</u> , GP maps <u>for forest vegetation</u> , generated by four aggregation methods, <u>accompanied by</u> , quality assurance (QA) maps. These maps <u>detail the phenological events of</u> , FLD, FFD <u>in spring</u> , and LCD <u>in autumn</u> , spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution		删除[伊洛。 删除[伊洛。 删除[伊洛。
238 239 240 241 242	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u> species, constructed using the model-based upscaling method; (2) <u>Annual</u> , GP maps for forest vegetation, generated by four aggregation methods, <u>accompanied by</u> , quality assurance (QA) maps. These maps <u>detail the phenological events of</u> , FLD, FFD <u>in spring</u> , and LCD <u>in autumn</u> , spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored <u>as</u> a 16-bit signed integer, <u>with</u> GeoTIFF <u>file</u> format, <u>comprising</u> , a two-dimension		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u> <u>species</u> , <u>constructed using</u> , the model-based upscaling method; (2) <u>Annual</u> , GP maps <u>for forest vegetation</u> , generated by four aggregation methods, <u>accompanied by</u> , quality assurance (QA) maps. These maps <u>detail the phenological events of</u> , FLD, FFD <u>in spring</u> , and LCD <u>in autumn</u> , <u>spanning</u> from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored <u>as</u> a 16-bit signed integer, <u>with</u> GeoTIFF file format, <u>comprising</u> , a two-dimension raster (641 row × 361 column). The phenology data <u>are expressed in</u> Julian Day of <u>the year</u> (DOY), <u>indicating</u> the <u>elapsed</u> ,		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 244 245 	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> SP maps for 24 woody plants species, constructed using the model-based upscaling method; (2) <u>Annual</u> GP maps for forest vegetation, generated by four aggregation methods, <u>accompanied</u> by, quality assurance (QA) maps. These maps <u>detail</u> the phenological events of FLD, FFD in spring, and LCD in autumn, spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored <u>as</u> a 16-bit signed integer, within GeoTIFF file format, <u>comprising</u> , a two-dimension raster (641 row × 361 column). The phenology data <u>are expressed in</u> Julian Day of the year (DOY), <u>indicating</u> the <u>elapsed</u> number of days from January 1st to the <u>occurrence</u> of phenological event. The <u>dataset's valid DOY</u> values range from 1 to 366, <u>while</u> null values <u>are denoted by</u> ,-1.		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 244 	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> , SP maps <u>for 24 woody plants</u> species, constructed using the model-based upscaling method; (2) <u>Annual</u> , GP maps <u>for forest vegetation</u> , generated by four aggregation methods, <u>accompanied by</u> , quality assurance (QA) maps. These maps <u>detail the phenological events of</u> , FLD, FFD <u>in spring</u> , and LCD <u>in autumn</u> , spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored as a 16-bit signed integer, within GeoTIFF file format, <u>comprising</u> , a two-dimension raster (641 row × 361 column). The phenology data are expressed in Julian Day of the year (DOY), indicating the elapsed, number of days from January 1st to the <u>occurrence</u> , of phenological_event. The <u>dataset's</u> valid <u>DOY</u> values range from 1 to		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 244 245 	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> SP maps for 24 woody plants species, constructed using the model-based upscaling method; (2) <u>Annual</u> GP maps for forest vegetation, generated by four aggregation methods, <u>accompanied</u> by, quality assurance (QA) maps. These maps <u>detail</u> the phenological events of FLD, FFD in spring, and LCD in autumn, spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored <u>as</u> a 16-bit signed integer, within GeoTIFF file format, <u>comprising</u> , a two-dimension raster (641 row × 361 column). The phenology data <u>are expressed in</u> Julian Day of the year (DOY), <u>indicating</u> the <u>elapsed</u> number of days from January 1st to the <u>occurrence</u> of phenological event. The <u>dataset's valid DOY</u> values range from 1 to 366, <u>while</u> null values <u>are denoted by</u> ,-1.		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 244 245 246 	The dataset <u>encompasses</u> two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> SP maps <u>for 24 woody plants</u> species, constructed using the model-based upscaling method; (2) <u>Annual</u> GP maps <u>for forest vegetation</u> , generated by four aggregation methods, <u>accompanied by</u> quality assurance (QA) maps. These maps <u>detail</u> the phenological events of FLD, FFD <u>in spring</u> , and LCD <u>in autumn</u> spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored as a 16-bit signed integer, <u>within</u> GeoTIFF file format, <u>comprising</u> a two-dimension raster (641 row × 361 column). The phenology data <u>are expressed in</u> Julian Day of the year (DOY), <u>indicating</u> the <u>elapsed</u> number of days from January 1st to the <u>occurrence</u> of phenological event. The <u>dataset's</u> valid <u>DOY</u> values range from <u>1</u> to 366, <u>while</u> null values <u>are denoted by</u> -1. 3.1 Simulation and validation of species phenology maps		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。
 238 239 240 241 242 243 244 245 246 247 	The dataset <u>encompasses</u> , two <u>distinct</u> types of phenology maps over China: (1) <u>Annual</u> SP maps for 24 woody plants species, constructed using the model-based upscaling method; (2) <u>Annual</u> GP maps for forest vegetation, generated by four aggregation methods, <u>accompanied by</u> quality assurance (QA) maps. These maps <u>detail</u> the phenological events of FLD, FFD in spring, and LCD in <u>autumn</u> spanning from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each <u>phenology</u> map is stored <u>as</u> a 16-bit signed integer, within GeoTIFF file format, <u>comprising</u> a two-dimension raster (641 row × 361 column). The phenology data <u>are expressed</u> in Julian Day of the year (DOY), <u>indicating</u> the <u>elapsed</u> number of days from January 1st to the <u>occurrence</u> of phenological event. The <u>dataset's</u> valid <u>DOY</u> values range from <u>1</u> to 366, <u>while</u> null values <u>are denoted by</u> -1. 3.1 Simulation and validation of species phenology maps The SP maps of FLD (24 species), FFD (19 species), and LCD (12 species) were <u>generated by applying</u> the optimal		删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。

- 251 known to exist. The presented, maps illustrate, a clear spatial pattern in the timing of phenophases correlated with, latitude.
- 252 Specifically, the onset of spring event such as FLD and FFD for these species is markedly delayed, with increasing latitude,
- 253 <u>Conversely, the autumn LCD occurs earlier as the latitude increases</u>, <u>While these</u>, <u>spatial patterns are consistent across</u>

]:,]: in this study were]: in previous studies]: product]: which used]: B]: were resampled]:]: by]: to match the spatial resolution of GP maps]: The LSP and GP maps were averaged in t]: was conducted 删除[伊洛。]: between 删除[伊洛。]: and 删除[伊洛。]: in 删除[伊洛。]: between 删除[伊洛。]· and

]: W

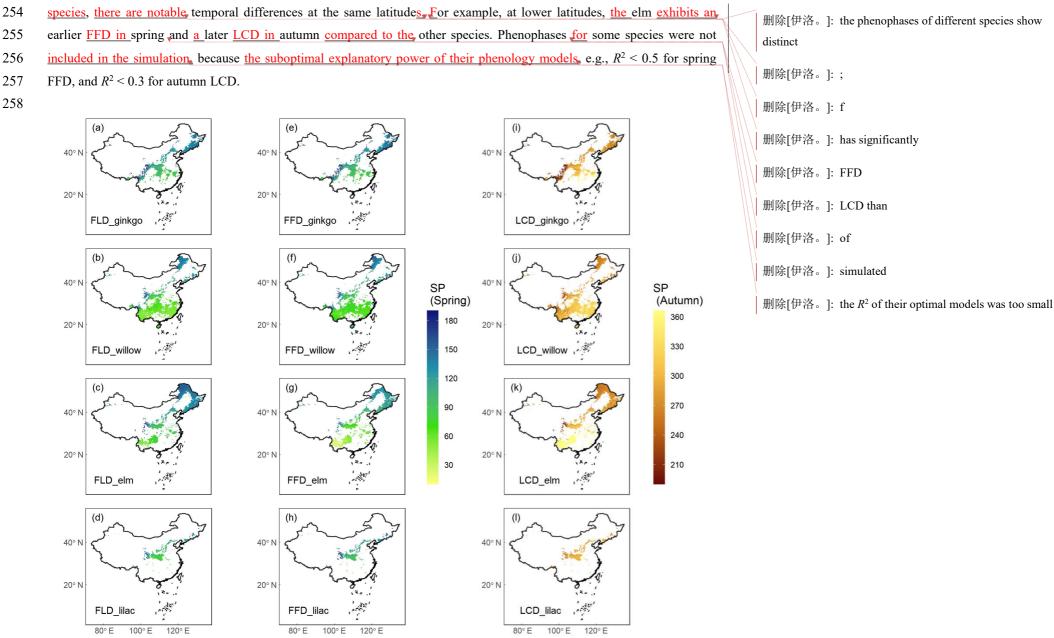
]: the

]: of

]: first

]: formulas

]: the


]: the

]: the

]: the

]: Finally, t

]:

259

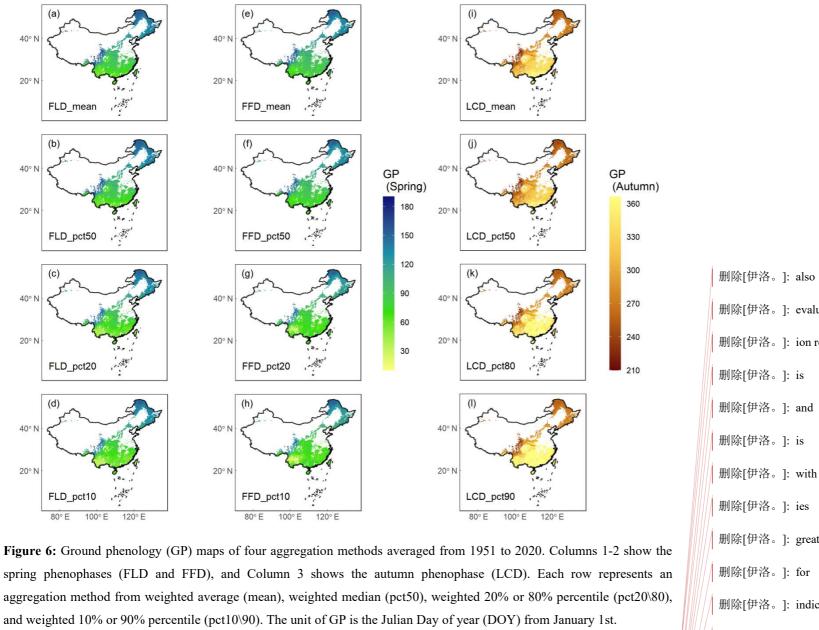
Figure 4: Species phenology (SP) maps of four typical woody species averaged from 1951 to 2020. Columns 1-2 show the spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents a species from ginkgo (*Ginkgo biloba*), willow (*Salix babylonica*), elm (*Ulmus pumila*), and lilac (*Syringa oblata*). The unit of phenology data is the Julian Day of year (DOY) from January 1st.

265 Table 2: The optimal phenology models and cross-validation results of 24 species. RMSE represents the root mean square

error between the model simulated values and original values. R^2 represents goodness of fit of the optimal phenology model.

). Species		FLD			FFD		LCD			
No.		Optimal model	RMSE	<i>R</i> ²	Optimal model	RMSE	<i>R</i> ²	Optimal model	RMSE	R ²	
1	Ginkgo biloba	TSC	7.30	0.669	TSC	7.53	0.553	DM	12.54	0.40	
2	Metasequoia glyptostroboides	TSC	6.10	0.687	Unified	9.59	0.126	DM	9.99	0.29	
3	Magnolia denudata	UniChill	6.47	0.781	TSC	7.33	0.576	DM	9.31	0.28	
4	Salix babylonica	TSC	8.97	0.854	TSC	9.40	0.787	MR	18.23	0.38	
5	Populus × canadensis	UniChill	5.94	0.808	UniChill	6.14	0.728	MR	9.45	0.13	
6	Robinia pseudoacacia	TSC	5.47	0.863	TSC	6.18	0.785	DM	11.74	0.29	
7	Albizia julibrissin	UniChill	7.48	0.500	Unified	8.23	0.376	MR	9.18	0.56	
8	Cercis chinensis	TSC	7.90	0.723	UniChill	7.39	0.751	DM	9.09	0.17	
9	Prunus armeniaca	TSC	6.05	0.865	UniChill	4.78	0.929	MR	14.52	0.19	
10	Ulmus pumila	UniChill	5.09	0.901	UniChill	8.38	0.862	DM	11.16	0.65	
11	Morus alba	TSC	6.70	0.905	UniChill	7.99	0.860	DM	9.04	0.17	
12	Broussonetia papyrifera	UniChill	7.60	0.804	TSC	6.18	0.821	DM	9.97	0.61	
13	Quercus acutissima	UniChill	6.73	0.931	UniChill	5.12	0.950	MR	14.35	0.76	
14	Pterocarya stenoptera	UniChill	7.52	0.804	UniChill	7.89	0.710	MR	11.57	0.41	
15	Juglans regia	TSC	6.04	0.739	UniChill	8.54	0.595	DM	8.41	0.14	
16	Betula platyphylla	UniChill	3.80	0.915	UniChill	3.70	0.906	DM	8.27	0.65	
17	Acer pictum subsp. mono	TSC	2.29	0.894	TSC	3.78	0.814	DM	4.71	0.67	
18	Ailanthus altissima	UniChill	5.22	0.867	UniChill	8.34	0.664	DM	10.39	0.06	
19	Melia azedarach	TSC	6.81	0.828	TSC	6.70	0.851	MR	10.19	0.13	
20	Firmiana simplex	UniChill	6.02	0.694	Unified	8.10	0.314	DM	12.30	0.19	
21	Hibiscus syriacus	TSC	9.66	0.666	Unified	13.38	0.331	DM	12.76	0.46	
22	Fraxinus chinensis	TSC	6.25	0.852	Unified	12.35	0.319	MR	9.76	0.53	
23	Syringa oblata	UniChill	7.01	0.864	UniChill	5.11	0.920	MR	12.36	0.47	

24	4 Paulownia fortu	nei UniChill	4.63 0.762 UniChill	7.02	0.693 MR	10.01	0.250	/	删除[伊洛。]: simulation effects of
	The <u>effectiveness</u> of	of the simulated SP maps w	as evaluated by cross-va	lidation on	the optimal pheno	ology models	s (Table		删除[伊洛。]: species phenology
2)	. The results showed	that spring phenology yiel	ded, significantly more a	ccurate simu	<u>lations</u> than autu	mn phenolo	gy (Fig.		删除[伊洛。]: ere
5)	. Quantitatively, the I	RMSE <u>for</u> the optimal mod	lel of FLD (6.38 days) a	nd FFD (7.	46 days) in sprin	g were signi	ficantly		「 「 「 「 「 」 「 」 「 」 」 」 」 」 」 」
sr	naller than that of LC	CD (10.80 days) in autumn	. <u>Correspondingly</u> , the	R ² <u>for spring</u>	g FLD (0.799) ar	nd FFD (0.6	76), w <u>as</u>		删除[伊洛。]: the simulation effects of
si	gnificantly <u>higher</u> con	npared to autumn LCD (0.	372), When comparing t	he simulatio	on effects of, FLD	and FFD in	spring,		删除[伊洛。]: were
no	significant difference	e was observed. Among the	e optimal spring phenolo	gy models, t	the FFD simulation	ons derived f	rom the		删除[伊洛。]: better
		els <u>demonstrated</u> significan				del <u>Convers</u>	ely, for		
aı	itumn <u>phenology</u> , the	simulations effects LCD we	ere comparable between	the MR and	TP models.				删除[伊洛。]: that of
									删除[伊洛。]: of
	20 -								删除[伊洛。]: of
	<u>ω</u> 15								
	RMSE (Adays)			<					删除[伊洛。]: the optimal model of
	WSE								删除[伊洛。]: in spring
	₩ ₅				•				删除[伊洛。]: ere
	0 -	•							
		FLD	FFD		LCD				删除[伊洛。]: in autumn
	1.0 -		—						删除[伊洛。]: However, there was
	0.8 -				- 				■除[毋次]] 1.1.4
	0.6 کل		\perp \perp						删除[伊洛。]: between spring FLD and FFD simulation effects
	0.4		•		>─				
	0.2								删除[伊洛。]: simulation effects of
	0.0 -								删除[伊洛。]: were
		FLD	FFD Phenophase		LCD				删除[伊洛。]: .
		Optimal model	Unified 🔶 UniChill 🔶 TSC		TP				咖啡[伊伯。]:.
									删除[伊洛。]: But
Fi	igure 5: The RMSE (a	a) and R^2 (b) of cross-validation of the cross-val	ation on the optimal pher	ology mode	els for 24 woody	species. Eacl	n model		删除[伊洛。]: in


is represented by a different color, with warm colors for three spring phenology models (Unified, UniChill, TSC), and cool colors for two autumn phenology models (MR, TP). The model with the smallest RMSE was selected as the optimal model for each species. The horizontal line represents the median value, the diamond mark represents the mean value, and the dot mark represents the outlier in the boxplot.

删除[伊洛。]: LCD删除[伊洛。]: a删除[伊洛。]: similar for

283 **3.2 Aggregation of ground phenology maps**

284	The results of GP maps generated by four distinct aggregation methods (mean, pct50, pct20\80, pct10\90) exhibited
285	similar spatial patterns (Fig. 6), These maps demonstrate a consistent pattern of phenological variation in relation to both
286	latitude and altitude. Specifically, with increasing latitude or altitude, spring GP (FLD and FFD) occurred progressively,
287	later, while autumn GP (LCD) occurred earlier. When comparing the various aggregation methods, the GP maps aggregated
288	by the mean and pct50 methods showed a high degree of consistency, with r being 0.992, In contrast, the GP maps
289	aggregated by the pct20\80 and pct10\90 methods exhibited slightly more spatial variability and were less correlated with the
290	former methods, with r being 0.968 and 0.949, respectively. The remarkable, consistency between the maps aggregated
291	through mean and pct50 methods suggests, that both the weighted mean, and weighted quantile approaches, are, robust and
292	reliable for the aggregation of GP.
293	

删除[伊洛。]: different 删除[伊洛。]: showed 删除[伊洛。]:, 删除[伊洛。]: i.e., the 删除[伊洛。]: along 删除[伊洛。]: or 删除[伊洛。]: W 删除[伊洛。]: the 删除[伊洛。]: e of 删除[伊洛。]: the 删除[伊洛。]: became 删除[伊洛。]: and the 删除[伊洛。]: became 删除[伊洛。]: For different 删除[伊洛。]: from 删除[伊洛。]: were highly consistent 删除[伊洛。]:; 删除[伊洛。]: while 删除[伊洛。]: from 删除[伊洛。]: were 删除[伊洛。]: different from 删除[伊洛。]: two 删除[伊洛。]: and showed larger spatial variation than th 删除[伊洛。]: high 删除[伊洛。]: maps indicated 删除[伊洛。]: method 删除[伊洛。]: method 删除[伊洛。]·were

- 299

295

296

297

298

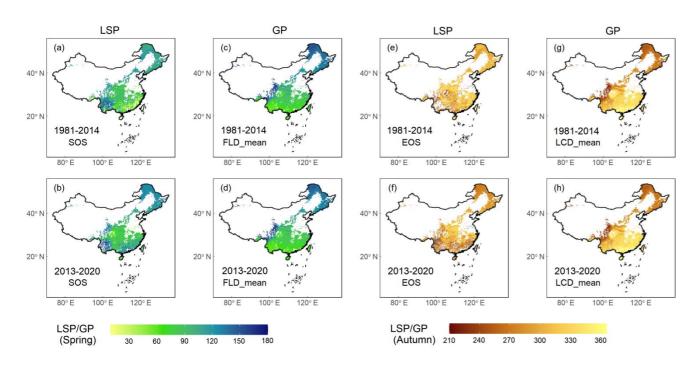
300 We have introduced two types of QA maps to assess the reliability of the aggregated GP maps (Fig. S1). The first QA 301 map represents the total distribution probability of all species considered in the aggregation process, while the second QA 302 map indicates the total number of species that have a distribution probability exceeding 0.1. In these QA maps, higher values 303 correlate with a greater total number or higher cumulative probability of species within the aggregation, which signifies a 304 higher reliability of GP maps for those particular areas. Notably, the most dependable GP aggregation results are distributed

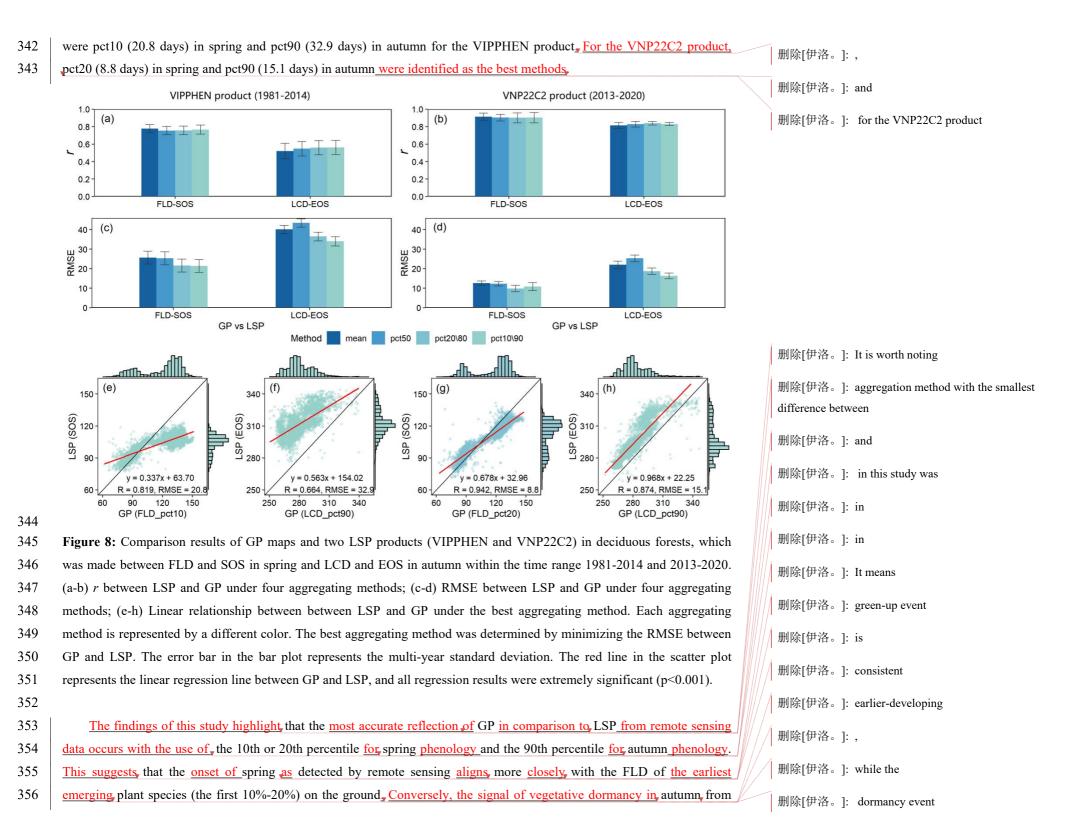
删除[伊洛。]: evaluate 删除[伊洛。]: ion results of 删除[伊洛。]: greater than 删除[伊洛。]: indicating that GP maps 删除[伊洛。]: have 删除[伊洛。]: in these 删除[伊洛。]: The regions with 删除[伊洛。]: reliable 删除[伊洛。]: were

			删除[伊洛。]:	Т
305	around the 30° N latitude with in China. In this region, the total number of species contributing to FLD and FFD is about 15,	_	删除[伊洛。]:	for FLD and FFD
306	whereas for LCD, the number is around 6, However, it should be noted that the QA maps also identify areas where the GP			
307	aggregation may be less dependable. Specifically, in regions, where the total number of species is fewer, than 5 or the total	$\left \right $	删除[伊洛。]:	and
308	probability, is <u>below</u> , 1, the <u>reliability of the aggregated GP results may be compromised</u> ,		删除[伊洛。]:	about
309	3.3 Data quality and usability		删除[伊洛。]:	for LCD in these regions
310	Our comparative analysis between GP and LSP focused on the FLD and SOS in spring, as well as the LCD and EOS in		删除[伊洛。]:	It should be noted that in the QA map,
311	autumn across, two periods, (1981-2014 and 2013-2020). The results revealed, that GP and two LSP products exhibited		删除[伊洛。]:	areas
312	congruent spatial patterns in central and northern China, while discrepancies were more pronounced in southern China (Fig.			
313	7), particularly regarding, LCD and EOS in autumn (Fig. 7e-h). This is likely due to the prevalence of deciduous forests in		删除[伊洛。]:	less
314	central and northern China (Fig. 1). In contrast, southern China is characterized by a higher presence of evergreen and mixed		删除[伊洛。]:	of species
315	forests, The GP maps in this study were, derived from, the phenological data, of 24 deciduous woody plants species, which		删除[伊洛。]:	less than
316	are well-represented in deciduous forests but less so in evergreen or mixed forests. Moreover, LSP metrics obtained from			
317	remote sensing data are generally more error-prone in evergreen and mixed forests due to the lack of obvious seasonal		删除[伊洛。]:	aggregation results of GP may not be reliable
318	change and frequent cloud cover in these regions (Liu et al., 2016b). <u>Consequently</u> , the <u>correlation</u> between GP and LSP in		删除[伊洛。]:	were compared between
319	evergreen or mixed forests was found to be relatively weak (Fig. S2), with the highest r being 0.44 in spring and 0.54 in		删除[伊洛。]:	and between
320 321	autumn _x and the <u>lowest</u> RMSE being 28.5 days in spring and 38.5 days in autumn (Table S2). In deciduous forests, however _x the <u>alignment</u> between GP and LSP was <u>substantially stronger</u> , with the <u>highest</u> r being 0.95 in spring and 0.88 in autumn,			
321	and the lowest RMSE being 8.8 days in spring and 15.1 days in autumn, respectively.		删除[伊洛。]:	during
522	and the towest Kivish being 8.8 days in spring and 15.1 days in autumn, respectively.		删除[伊洛。]:	segments
			删除[伊洛。]:	showed
			删除[伊洛。]:	had similar
			删除[伊洛。]:	but relatively different patterns
			删除[伊洛。]:	for
			删除[伊洛。]:	evergreen and mixed forests are found in
			删除[伊洛。]:	
			删除[伊洛。]:	as
			删除[伊洛。]:	generated by aggregating
			删除[伊洛。]:	
			删陈[伊洛。]:	made up a large proportion of
	17		删除[伊洛。]:	a small proportion of

删除[伊洛。]: in evergreen or mixed forests

删除[伊洛。]·




Figure 7: Comparison of GP maps in this study and two LSP products (VIPPHEN and VNP22C2) extracted from remote sensing in previous studies, which was made between FLD and SOS in spring and LCD and EOS in autumn. Row 1 shows the comparison between VIPPHEN product and GP map averaged in 1981-2014, and Row 2 shows the comparison between VNP22C2 product and GP map averaged in 2013-2020. (a-b) SOS from two LSP products; (c-d) FLD aggregated by mean method; (e-f) EOS from two LSP products; (g-h) LCD aggregated by mean method. The unit of GP or LSP is the Julian Day of year (DOY) from January 1st.

330

323

331 To further assess the data quality, we scrutinized the congruence between GP and LSP specifically within deciduous 332 forests. The analysis indicated that GP and LSP exhibit a robust consistency for both VIPPHEN and VNP22C2 products, 333 characterized by strong correlations, minor differences, and solid linear relationships (Fig. 8). The LSP derived from the 334 VIPPHEN product demonstrated superior consistency with our study's GP compared to the VNP22C2 product's LSP. 335 Furthermore, for both LSP products, the consistency between GP and LSP was significantly better in spring (Fig. 8e, g) than 336 in autumn (Fig. 8f, h). When evaluating the influence of different aggregation methods on the GP and LSP correlation, no 337 significant difference was observed in r among the methods (Fig. 8a, b). The consistency, as measured by r, was comparable 338 across all methods, with values ranging from 0.76-0.78 in spring and 0.49-0.53 in autumn for the VIPPHEN product, For the 339 VNP22C2 product, r values ranging from 0.90-0.91 in spring and 0.79-0.84 in autumn, Contrastingly, the RMSE between 340 GP and LSP varied notably across the different methods (Fig. 8c, d), which is largely attributable to the disparities in the 341 average GP values generated by each method. The most effective aggregation methods, which yielded the smallest RMSE,

删除[伊洛。]: of the data 删除[伊洛。]: examined 删除[伊洛。]: consistency 删除[伊洛。]: Compared with 删除[伊洛。]: t 删除[伊洛。]: of 删除[伊洛。]:, 删除[伊洛。]: LSP of 删除[伊洛。]: has better consistency with the GP of this 删除[伊洛。]: was significantly better 删除[伊洛。]: that 删除[伊洛。]: (mean, pct50, pct20/80, pct10/90) 删除[伊洛。]: there was 删除[伊洛。]: between GP and LSP 设置格式[伊洛。]: 字体: 倾斜 删除[伊洛。]: A 删除[伊洛。]: produced similar r values 删除[伊洛。]:, 删除[伊洛。]: and 删除[伊洛。]: for the VNP22C2 product 删除[伊洛。]: However 删除[伊洛。]: different methods produced significantly 删除[伊洛。]: t 删除[伊洛。]: values 删除[伊洛。]: due 删除[伊洛。]: differences 删除[伊洛。]: of GP under different 删除[伊洛。]·s

		/	删除[伊洛。]: more consisten
357	remote sensing is in greater concordance, with the LCD of the last senescent plant species (the last 10%), These insights are	\swarrow	删除[伊洛。]: later-
358	significant because they, reveal a discernible link, between GP, and LSP, despite inherent differences in how these two types		
359	of phenology are measured. The consistency between early spring and late autumn events in GP and LSP underscores the		删除[伊洛。]: on the ground
360	potential for integrating these two phenological data sources to enhance our understanding of ecosystem dynamics and the		删除[伊洛。]: results
361	effects of climate change on vegetative cycles.	$\left \right \right $	
362	The dataset represents a robust compilation of species and ground phenology simulations for forests of China over the		删除[伊洛。]: potential connection
363	past 70 years, distinguishing itself, as an independent phenological, data source derived from, ground observations through,		删除[伊洛。]: s
364	modeling and aggregation, When applying this data, several factors must be considered;		删除[伊洛。]: s
365	(1) For SP maps, the accuracy is contingent upon the RMSE and R^2 resulting from cross-validation against the optimal		
366	phenology model for each species (Table 2). Additionally, the spatial reliability of phenology data, is influenced, by the		删除[伊洛。]: their different physical implications in …
367	density of observational sites per species (Table 1). For instance, while the FLD of Betula platyphylla's exhibits high overall		删除[伊洛。]: In general, this
368	<u>accuracy</u> (RMSE = 3.80 and R^2 = 0.915), the accuracy may be compromised locally in areas with fewer observation sites, (n		
369	= 13). Across the 24 species studied, SP maps consistently aligned, with the in-situ observations, with an average error of 6.4		删除[伊洛。]: provides high reliability
370	days for FLD, 7.5 days for FFD, and 10.8 days for LCD. These errors are comparable or lower than those reported in		删除[伊洛。]: of
371	phenological studies from other regions. For example, simulation error of spring FLD and FFD was 7-9 days in central		删除[伊洛。]: over
372	Europe (Basler, 2016) and was 12.3-12.7 days in the United States (Izquierdo-Verdiguier et al., 2018), while the simulation		
373	error of autumn LCD was 10.3-13.0 days in France (Delpierre et al., 2009) and 5.9-22.8 days in the United States (Jeong and		删除[伊洛。]: for
374	Medvigy, 2014). Consequently, compared with other studies on the regional scale, the SP maps of China in this study were		删除[伊洛。]: .
375	found to have relatively high accuracy.		
376	(2) For GP maps, data reliability can be assessed using QA maps, which reflect the total number or probability of		删除[伊洛。]: It is
377	species. Additionally, reliability can be evaluated by comparing GP maps with other LSP products, with a high degree of		删除[伊洛。]: y
378	consistency indicating strong reliability. However, it is crucial to note that, GP data primarily, represent, phenological,		删除[伊洛。]: generated by
379	estimates <u>for</u> deciduous forest components, resulting in higher reliability within deciduous forests and lower, within		加州东[F·田。]. generated by
380	evergreen or mixed forests. In this study, GP maps for forests in China demonstrated strong consistency with existing LSP		删除[伊洛。]: the
381	products, especially, within deciduous forests, The correlation coefficients of FLD and LCD were 0.91 and 0.84,		删除[伊洛。]: based on ground observations
382	respectively. Furthermore, the discrepancies, between GP and LSP for FLD and LCD were relatively minor in deciduous		
383	forests, at 8.8 days and 15.1 days, respectively. Previous studies have reported lower, consistency between LSP and single		删除[伊洛。]: There are several considerations in data …
384	species phenology, with correlations ranging from 0.50 to 0.51 in the United States (Peng et al., 2017) and Germany		删除[伊洛。]: of data was
385	(Kowalski et al., 2020), and discrepancies, spanning, 12 to 14.5 days in the United States (Peng et al., 2017) and Canada		
386	(Delbart et al., 2015). On the other hand, research comparing <u>GP</u> aggregates (average or quantile values) of multiple species		删除[伊洛。]: determined by
387	has yielded, better correlation coefficients, ranging from, 0.61 to 0.71 in Europe (Rodriguez-Galiano et al., 2015; Tian et al.,		删除[伊洛。]: of
388	2021), and 0.54 to 0.57 for the 30th percentile GP in China (Wu et al., 2016). These studies reported discrepancies, between		删除[伊洛。]: on
389	GP and LSP of 10.3-12.4 days in China (Wu et al., 2016), 13.9 days in Europe, and around 12.3 days in the United States		₩3₩10,4E °]. OII
390	(Ye et al., 2022), which are greater, than the FLD discrepancies but less than those for, LCD found in our, study. While the		删除[伊洛。]: in space was
			删除[伊洛。]: affected
	20		

删除[伊洛。]: available for modeling on each

删除[伊洛。]: number of

		删除[伊洛。]: landscape-level
391	aggregated, GP data derived, from species-level phenology data in this study are generally reliable, it's important to recognize	- 删除[伊洛]]: aggregated
392	that limitations still exist in the available species-specific data, particularly when applied to evergreen or mixed forest		
393	regions.	删除[伊洛。]: showed good reliability
394	(3) For phenology maps in different seasons, the phenology data exhibit significantly higher reliability for spring events	删除[伊洛。]: available species and different aggregation
395	compared to those, in autumn. The underlying reason is that the biological processes underlying, autumn phenology is more]: reliability of
396	complex than those of spring (Menzel, 2002). Moreover, the mechanistic drivers of autumn phenology are intricate, which	刷际[伊格。	j: renability of
397	poses an additional challenge (Gill et al., 2015; Wu et al., 2018). For example, temperature has large effects on the autumn	删除[伊洛。]: in
398	phenology than the spring phenology (Fu et al., 2018). In addition to temperature, other environmental factors such as	删除[伊洛。]: was found to be significantly higher than that
399	precipitation (An et al., 2020), photoperiod (Lang et al., 2019), solar radiation (Wu et al., 2021b), spring phenology (Liu et		
400	al., 2016a), and growing-season productivity (Zani et al., 2020), also play significant roles in shaping, autumn phenology.	删除[伊洛。]: mechanism of
401	Given the multiplicity and complexity of these driving mechanisms, modeling autumn phenology becomes a more daunting	删除[伊洛。]: compared to
402	task, (Melaas et al., 2016). As a result, SP and GP maps for autumn manifest lower model performance and data quality	删除[伊洛。	1. that
403	relative to their spring counterparts,	刷际[伊伯。	j: that
		删除[伊洛。]: phenology
404	4 Data availability	删除[伊洛。]: driving mechanisms
405	The annual SP and GP maps over China can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).	删除[伊洛。]: for the
406	This dataset is licensed under a CC-BY 4.0 license. The spatial reference system of the dataset is EPSG:4326(WGS84).	删除[伊洛。]: complex
		删除[伊洛。	l: may
407	5 Conclusions	删除[伊洛。	
407 408	5 Conclusions Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset,	删除[伊洛。 删除[伊洛。	
		删除[伊洛。	
408	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset,	删除[伊洛。 删除[伊洛。]: drive]: Thus, modeling autumn phenology is more
408 409	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 ot	删除[伊洛。]: drive]: Thus, modeling autumn phenology is more
408 409 410	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 ot 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using,	删除[伊洛。 删除[伊洛。]: drive]: Thus, modeling autumn phenology is more]: ,
408 409 410 411	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using, a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China.	删除[伊洛。 删除[伊洛。 删除[伊洛。	 j: drive j: Thus, modeling autumn phenology is more j: , j: ,
408 409 410 411 412	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using, a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing, weighted average and quantile methods to aggregate phenology data, from the	删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。	 i drive i: Thus, modeling autumn phenology is more i: i: i: i:
408 409 410 411 412 413	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The, SP maps were produced using, a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels. Quality assessments of the dataset indicate, an average error for SP maps of 6.9	删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。	 j: drive j: Thus, modeling autumn phenology is more j: , j: ,
408 409 410 411 412 413 414	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951_ot 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing, weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest, discrepancies between the GP maps and existing LSP products is 8.8	删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。	 i drive i: Thus, modeling autumn phenology is more i: i: i: i:
408 409 410 411 412 413 414 415 416 417	Leveraging historical observations from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using a model-based upscaling method to extend the phenology data from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data from the species to community and landscape levels. Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP	删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛	 i drive i: Thus, modeling autumn phenology is more i: , i: , i: ing i: in poorer model performance and inferior i: In this study, mainly based on
408 409 410 411 412 413 414 415 416 417 418	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using a model-based upscaling method to extend the phenology data from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this	删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛	 i drive i: Thus, modeling autumn phenology is more i: , i: i: ing i: in poorer model performance and inferior
408 409 410 411 412 413 414 415 416 417 418 419	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The, SP maps were produced using a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest, discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from, this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this dataset provides an invaluable tool for discerning, the spatial patterns of plant phenology along the geographic gradient (e.g.,	删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。	 i drive i: Thus, modeling autumn phenology is more i: , i: , i: ing i: in poorer model performance and inferior i: In this study, mainly based on
408 409 410 411 412 413 414 415 416 417 418	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using a model-based upscaling method to extend the phenology data from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this	删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。 删除[伊洛。	 i drive i: Thus, modeling autumn phenology is mor ••• i: , i: , iii ng ii n poorer model performance and inferior ••• ii n this study, mainly based on ii historical phenology observations ii we developed a new
408 409 410 411 412 413 414 415 416 417 418 419	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The, SP maps were produced using a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest, discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from, this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this dataset provides an invaluable tool for discerning, the spatial patterns of plant phenology along the geographic gradient (e.g.,	删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛	 i. drive i. Thus, modeling autumn phenology is more i. , i. , i. ing i. in poorer model performance and inferior i. In this study, mainly based on i. historical phenology observations i. we developed a new i. :
408 409 410 411 412 413 414 415 416 417 418 419	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The, SP maps were produced using a model-based upscaling method to extend the phenology data, from in-situ observations to a regional scale, across China. The GP maps were generated by employing weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest, discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo- Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from, this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this dataset provides an invaluable tool for discerning, the spatial patterns of plant phenology along the geographic gradient (e.g.,	删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛	 i. drive i. Thus, modeling autumn phenology is more i. , i. , i. ing i. in poorer model performance and inferior i. In this study, mainly based on i. historical phenology observations i. we developed a new i. :
408 409 410 411 412 413 414 415 416 417 418 419	Leveraging historical observations, from the CPON, this study introduces a novel, long-term gridded phenology dataset, that includes SP maps for 24 woody plants species and GP maps of forests over China, covering the period from 1951 of 2020, The dataset features, a spatial resolution of 0.1° and a temporal resolution of 1 day. The SP maps were produced using, a model-based upscaling method to extend the phenology data from in-situ observations to a regional scale, across China. The GP maps were generated by employing, weighted average and quantile methods to aggregate phenology data, from the species to community and landscape levels, Quality assessments of the dataset indicate, an average error for SP maps of 6.9 days in spring and 10.8 days in autumn, The smallest, discrepancies between the GP maps and existing LSP products is 8.8 days for spring and 15.1 days for autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo-Verdiguier et al., 2018; Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps from this research, exhibit comparable, or smaller simulation errors, and the GP maps show strong concordance, with other LSP products, underscoring the dataset's high accuracy and reliability. As the inaugural phenological map set for China, this dataset provides an invaluable tool for discerning, the spatial patterns of plant phenology along the geographic gradient (e.g., longitude, latitude, and altitude), It also enables the examination of temporal trends (e.g., interannual, decadal, and secular)	删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛 删除[伊洛	 i drive i Thus, modeling autumn phenology is mor ••• i, i, ing in poorer model performance and inferior ••• in this study, mainly based on historical phenology observations we developed a new : of

- 421 in plant phenology throughout China. Moreover, the dataset offers critical support for research on the impacts of global
- 422 change, aids in terrestrial ecosystem modeling, and contributes to natural resource management strategies.

423 Author contribution

424 QG and JD designed the study and planned the modeling. HW developed the model code. WL and YH performed the

- simulations. MZ processed the modeling data, performed the computations and drafted the manuscript. JD and JA critically
- 426 revised the manuscript. All authors discussed and contributed to the modeling and manuscript.

427 Competing interests

428 The authors declare that they have no conflict of interest.

429 Acknowledgements

430 This study was jointly supported by National Key Research and Development Program of China (2018YFA0606102),

431 National Natural Science Foundation of China (42271062), and Strategic Priority Research Program (A) of Chinese

432 Academy of Sciences (XDA19020303; XDA26010202). Phenology data was provided by CPON. Temperature data was

433 provided by Copernicus Climate Change Service (C3S).

434 References

- An, S., Chen, X., Zhang, X., Lang, W., Ren, S., and Xu, L.: Precipitation and minimum temperature are primary climatic
 controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau, Remote Sens., 12, 431,
 https://doi.org/10.3390/rs12030431, 2020.
- Aono, Y. and Kazui, K.: Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to
 reconstruction of springtime temperatures since the 9th century, Int. J. Climatol., 28, 905–914,
 https://doi.org/10.1002/joc.1594, 2008.
- Ault, T. R., Schwartz, M. D., Zurita-Milla, R., Weltzin, J. F., and Betancourt, J. L.: Trends and natural variability of spring
 onset in the coterminous United States as evaluated by a new gridded dataset of spring indices, J. Clim., 28, 8363–8378,
 https://doi.org/10.1175/jcli-d-14-00736.1, 2015.
- Basler, D.: Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central
 Europe, Agric. For. Meteorol., 217, 10–21, https://doi.org/10.1016/j.agrformet.2015.11.007, 2016.

删除[伊洛。]: of
删除[伊洛。]: across
删除[伊洛。]: T
删除[伊洛。]: can also provide important data
删除[伊洛。]: impact assessment
删除[伊洛。]: simulation
设置格式[伊洛。]: 字体颜色: 自动设置, 非突出显示

- Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface
 phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685,
 https://doi.org/10.1016/j.rse.2020.111685, 2020.
- Brown, J. H.: On the Relationship between Abundance and Distribution of Species, Am. Nat., 124, 255–279,
 https://doi.org/10.1086/284267, 1984.
- Brun, P., Zimmermann, N., Hari, C., Pellissier, L., and Karger, D.: CHELSA-BIOCLIM+ A novel set of global climate related predictors at kilometre-resolution, EnviDat [data set], 10, 2022a.
- Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., and Karger, D. N.: Global climate-related predictors at kilometer
 resolution for the past and future, Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022,
 2022b.
- Cai, H., Lyu, L., Shrestha, N., Tang, Z., Su, X., Xu, X., Dimitrov, D., and Wang, Z.: Geographical patterns in phylogenetic
 diversity of Chinese woody plants and its application for conservation planning, Divers. Distrib., 27, 179–194,
 https://doi.org/10.1111/ddi.13180, 2021.
- 459 Chuine, I.: A unified model for budburst of trees, J. Theor. Biol., 207, 337–347, https://doi.org/10.1006/jtbi.2000.2178,
 460 2000.
- Chuine, I., Cour, P., and Rousseau, D.: Fitting models predicting dates of flowering of temperate-zone trees using simulated
 annealing, Plant Cell Environ., 21, 455–466, https://doi.org/10.1046/j.1365-3040.1998.00299.x, 1998.
- Chuine, I., Cambon, G., and Comtois, P.: Scaling phenology from the local to the regional level: advances from speciesspecific phenological models, Global Change Biol., 6, 943–952, https://doi.org/10.1046/j.1365-2486.2000.00368.x,
 2000.
- Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D.: Shifting plant phenology in response to global
 change, Trends Ecol. Evol., 22, 357–365, https://doi.org/10.1016/j.tree.2007.04.003, 2007.
- Dai, J., Wang, H., and Ge, Q.: Multiple phenological responses to climate change among 42 plant species in Xi'an, China,
 Int. J. Biometeorol., 57, 749–758, https://doi.org/10.1007/s00484-012-0602-2, 2013.
- Dai, J., Wang, H., and Ge, Q.: Characteristics of spring phenological changes in China over the past 50 years, Adv.
 Meteorol., 2014, 1–8, https://doi.org/10.1155/2014/843568, 2014.
- Delbart, N., Beaubien, E., Kergoat, L., and Le Toan, T.: Comparing land surface phenology with leafing and flowering
 observations from the PlantWatch citizen network, Remote Sens. Environ., 160, 273–280,
 https://doi.org/10.1016/j.rse.2015.01.012, 2015.
- 475 Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., and François, C.: Modelling interannual and spatial
 476 variability of leaf senescence for three deciduous tree species in France, Agric. For. Meteorol., 149, 938–948,
 477 https://doi.org/10.1016/j.j.gov/10.1016/j.j.gov/10.114.2000
- 477 https://doi.org/10.1016/j.agrformet.2008.11.014, 2009.

- 478 Didan, K. and Barreto, A.: NASA MEaSUREs Vegetation Index and Phenology (VIP) Phenology NDVI Yearly Global
- 479 0.05Deg CMG, NASA EOSDIS Land Processes DAAC, accessed on 2022-08-11,
- 480 https://doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_NDVI.004, 2016.
- 481 Dixon, D. J., Callow, J. N., Duncan, J. M., Setterfield, S. A., and Pauli, N.: Satellite prediction of forest flowering
 482 phenology, Remote Sens. Environ., 255, 112197, https://doi.org/10.1016/j.rse.2020.112197, 2021.
- 483 Donnelly, A., Yu, R., Jones, K., Belitz, M., Li, B., Duffy, K., Zhang, X., Wang, J., Seyednasrollah, B., Gerst, K. L., and
- 484 others: Exploring discrepancies between in situ phenology and remotely derived phenometrics at NEON sites,
 485 Ecosphere, 13, e3912, https://doi.org/10.1002/ecs2.3912, 2022.
- 486 Dronova, I. and Taddeo, S.: Remote sensing of phenology: Towards the comprehensive indicators of plant community
 487 dynamics from species to regional scales, J. Ecol., 110, 1460–1484, https://doi.org/10.1111/1365-2745.13897, 2022.
- Estrella, N. and Menzel, A.: Responses of leaf colouring in four deciduous tree species to climate and weather in Germany,
- 489 Clim. Res., 32, 253–267, https://doi.org/10.3354/cr032253, 2006.
- Fang, J., Wang, Z., and Tang, Z.: Atlas of woody plants in China: distribution and climate, Springer Science & Business
 Media, 2011.
- Fielding, A. H. and Bell, J. F.: A review of methods for the assessment of prediction errors in conservation presence/absence
 models, Environ. Conserv., 24, 38–49, https://doi.org/10.1017/s0376892997000088, 1997.
- Fisher, J. I., Mustard, J. F., and Vadeboncoeur, M. A.: Green leaf phenology at Landsat resolution: Scaling from the field to
 the satellite, Remote Sens. Environ., 100, 265–279, https://doi.org/10.1016/j.rse.2005.10.022, 2006.
- Fitchett, J. M., Grab, S. W., and Thompson, D. I.: Plant phenology and climate change: Progress in methodological
 approaches and application, Prog. Phys. Geogr., 39, 460–482, https://doi.org/10.1177/0309133315578940, 2015.
- Friedl, M. and Sulla-Menashe, D.: MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061, NASA
 EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12Q1.061, 2022.
- Fu, Y., Li, X., Zhou, X., Geng, X., Guo, Y., and Zhang, Y.: Progress in plant phenology modeling under global climate
 change, Sci. China Earth Sci., 63, 1237–1247, https://doi.org/10.1007/s11430-019-9622-2, 2020.
- Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., and others:
 Declining global warming effects on the phenology of spring leaf unfolding, Nature, 526, 104–107,
 https://doi.org/10.1038/nature15402, 2015.
- Fu, Y. H., Piao, S., Delpierre, N., Hao, F., Hänninen, H., Liu, Y., Sun, W., Janssens, I. A., and Campioli, M.: Larger
 temperature response of autumn leaf senescence than spring leaf-out phenology, Global Change Biol., 24, 2159–2168,
 https://doi.org/10.1111/gcb.14021, 2018.
- 508 GBIF: GBIF Occurrence Download, accessed on 2022-08-12, https://doi.org/10.15468/dl.7dwjev, 2022.
- 509 Ge, Q., Wang, H., and Dai, J.: Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-
- 510 first century, Int. J. Biometeorol., 58, 473–484, https://doi.org/10.1007/s00484-013-0671-x, 2014.

- Ge, Q., Wang, H., Rutishauser, T., and Dai, J.: Phenological response to climate change in China: a meta-analysis, Global
 Change Biol., 21, 265–274, https://doi.org/10.1111/gcb.12648, 2015.
- 513 Gill, A. L., Gallinat, A. S., Sanders-DeMott, R., Rigden, A. J., Short Gianotti, D. J., Mantooth, J. A., and Templer, P. H.:
- Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies,
 Ann Bot, 116, 875–888, https://doi.org/10.1093/aob/mcv055, 2015.
- Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richardson, A. D.: An integrated phenology modelling framework
 in R, Methods Ecol. Evol., 9, 1276–1285, https://doi.org/10.1111/2041-210x.12970, 2018.
- Izquierdo-Verdiguier, E., Zurita-Milla, R., Ault, T. R., and Schwartz, M. D.: Development and analysis of spring plant
 phenology products: 36 years of 1-km grids over the conterminous US, Agric. For. Meteorol., 262, 34–41,
 https://doi.org/10.1016/j.agrformet.2018.06.028, 2018.
- Jeong, S.-J. and Medvigy, D.: Macroscale prediction of autumn leaf coloration throughout the continental United States,
 Global Ecol. Biogeogr., 23, 1245–1254, https://doi.org/10.1111/geb.12206, 2014.
- Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger, D. Y., Munger, J. W., O'Keefe, J., Schmid, H. P.,
 Wing, I. S., and others: Net carbon uptake has increased through warming-induced changes in temperate forest
 phenology, Nat. Clim. Change, 4, 598–604, https://doi.org/10.1038/nclimate2253, 2014.
- Kowalski, K., Senf, C., Hostert, P., and Pflugmacher, D.: Characterizing spring phenology of temperate broadleaf forests
 using Landsat and Sentinel-2 time series, Int. J. Appl. Earth Obs. Geoinf., 92, 102172,
 https://doi.org/10.1016/j.jag.2020.102172, 2020.
- 529 Lang, W., Chen, X., Qian, S., Liu, G., and Piao, S.: A new process-based model for predicting autumn phenology: how is
- leaf senescence controlled by photoperiod and temperature coupling?, Agric. For. Meteorol., 268, 124–135,
 https://doi.org/10.1016/j.agrformet.2019.01.006, 2019.
- Li, X., Zhou, Y., Meng, L., Asrar, G. R., Lu, C., and Wu, Q.: A dataset of 30 m annual vegetation phenology indicators
 (1985–2015) in urban areas of the conterminous United States, Earth Syst. Sci. Data, 11, 881–894,
 https://doi.org/10.5194/essd-11-881-2019, 2019.
- Liang, L., Schwartz, M. D., and Fei, S.: Validating satellite phenology through intensive ground observation and landscape
 scaling in a mixed seasonal forest, Remote Sens. Environ., 115, 143–157, https://doi.org/10.1016/j.rse.2010.08.013,
 2011.
- Lieth, H.: Purposes of a phenology book, in: Phenology and Seasonality Modeling, edited by: Lieth, H., Springer, Berlin,
 Heidelberg, 3–19, https://doi.org/10.1007/978-3-642-51863-8_1, 1974.
- Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., and Liang, S.: Annual dynamics of global land cover and its long-term
 changes from 1982 to 2015, Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, 2020.
- 542 Liu, Q., Fu, Y. H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., Janssens, I. A., and Piao, S.: Delayed autumn phenology in the
- 543 Northern Hemisphere is related to change in both climate and spring phenology, Global Change Biol., 22, 3702–3711,
- 544 https://doi.org/10.1111/gcb.13311, 2016a.

- Liu, Y., Wu, C., Peng, D., Xu, S., Gonsamo, A., Jassal, R. S., Arain, M. A., Lu, L., Fang, B., and Chen, J. M.: Improved
- 546 modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf
- forests of central North America, Remote Sens. Environ., 176, 152–162, https://doi.org/10.1016/j.rse.2016.01.021,
 2016b.
- Melaas, E. K., Sulla-Menashe, D., Gray, J. M., Black, T. A., Morin, T. H., Richardson, A. D., and Friedl, M. A.: Multisite
 analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat, Remote
 Sens. Environ., 186, 452–464, https://doi.org/10.1016/j.rse.2016.09.014, 2016.
- Menzel, A.: Phenology: its importance to the global change community, Clim. Change, 54, 379,
 https://doi.org/10.1023/A:1016125215496, 2002.
- Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., and Estrella, N.: Climate change fingerprints in
 recent European plant phenology, Global Change Biol., 26, 2599–2612, https://doi.org/10.1111/gcb.15000, 2020.
- Misra, G., Cawkwell, F., and Wingler, A.: Status of phenological research using Sentinel-2 data: A review, Remote Sens.,
 12, 2760, https://doi.org/10.3390/rs12172760, 2020.
- Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data
 Store (CDS), 2019.
- Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to 1980, Copernicus Climate Change Service (C3S) Climate Data
 Store (CDS), 2021.
- Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M.,
 Harrigan, S., Hersbach, H., and others: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications,
 Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
- Park, D. S., Newman, E. A., and Breckheimer, I. K.: Scale gaps in landscape phenology: challenges and opportunities,
 Trends Ecol. Evol., 36, 709–721, https://doi.org/10.1016/j.tree.2021.04.008, 2021.
- Peng, D., Wu, C., Li, C., Zhang, X., Liu, Z., Ye, H., Luo, S., Liu, X., Hu, Y., and Fang, B.: Spring green-up phenology
 products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology
- 569 Network and AmeriFlux observations, Ecol. Indic., 77, 323–336, https://doi.org/10.1016/j.ecolind.2017.02.024, 2017.
- 570 Phillips, S. J., Anderson, R. P., and Schapire, R. E.: Maximum entropy modeling of species geographic distributions, Ecol.
 571 Modell., 190, 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026, 2006.
- Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., and Zhu, X.: Plant phenology and
 global climate change: Current progresses and challenges, Glob Chang Biol, 25, 1922–1940,
 https://doi.org/10.1111/gcb.14619, 2019.
- 575 Polgar, C. A. and Primack, R. B.: Leaf-out phenology of temperate woody plants: from trees to ecosystems, New Phytol.,
- 576 191, 926–941, https://doi.org/10.1111/j.1469-8137.2011.03803.x, 2011.
- 577 Pukelsheim, F.: The three sigma rule, Am. Stat., 48, 88–91, https://doi.org/10.2307/2684253, 1994.

- 578 Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.: Climate change, phenology,
- and phenological control of vegetation feedbacks to the climate system, Agric. For. Meteorol., 169, 156–173,
 https://doi.org/10.1016/j.agrformet.2012.09.012, 2013.
- Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, M. R., Keenan, T. F.,
 Klosterman, S. T., Kosmala, M., and others: Tracking vegetation phenology across diverse North American biomes
 using PhenoCam imagery, Sci. Data, 5, 1–24, https://doi.org/10.1038/sdata.2018.28, 2018.
- Rodriguez-Galiano, V., Dash, J., and Atkinson, P. M.: Intercomparison of satellite sensor land surface phenology and ground
 phenology in Europe, Geophys. Res. Lett., 42, 2253–2260, https://doi.org/10.1002/2015gl063586, 2015.
- 586 Sagarin, R. D. and Gaines, S. D.: The 'abundant centre' distribution: to what extent is it a biogeographical rule?, Ecol. Lett.,
- 587 5, 137–147, https://doi.org/10.1046/j.1461-0248.2002.00297.x, 2002.
- 588 Schwartz, M. D.: Phenology: an integrative environmental science, Springer, 2003.
- 589 Studer, S., Stöckli, R., Appenzeller, C., and Vidale, P. L.: A comparative study of satellite and ground-based phenology, Int.
- 590 J. Biometeorol., 51, 405–414, https://doi.org/10.1007/s00484-006-0080-5, 2007.
- Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S. J., and Yang, X.: Emerging opportunities and
 challenges in phenology: a review, Ecosphere, 7, e01436, https://doi.org/10.1002/ecs2.1436, 2016.
- Tao, Z., Wang, H., Dai, J., Alatalo, J., and Ge, Q.: Modeling spatiotemporal variations in leaf coloring date of three tree
 species across China, Agric. For. Meteorol., 249, 310–318, https://doi.org/10.1016/j.agrformet.2017.10.034, 2018.
- 595 Templ, B., Koch, E., Bolmgren, K., Ungersböck, M., Paul, A., Scheifinger, H., Rutishauser, T., Busto, M., Chmielewski, F.-
- M., Hájková, L., and others: Pan European Phenological database (PEP725): a single point of access for European data,
 Int. J. Biometeorol., 62, 1109–1113, https://doi.org/10.1007/s00484-018-1512-8, 2018.
- Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., and
 others: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks
 across Europe, Remote Sens. Environ., 260, 112456, https://doi.org/10.1016/j.rse.2021.112456, 2021.
- Wang, H., Dai, J., and Ge, Q.: The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in
 China from 1952 to 2007, Sci. China Earth Sci., 55, 991–1000, https://doi.org/10.1007/s11430-011-4349-0, 2012.
- Wang, H., Wu, C., Ciais, P., Peñuelas, J., Dai, J., Fu, Y., and Ge, Q.: Overestimation of the effect of climatic warming on
 spring phenology due to misrepresentation of chilling, Nat. Commun., 11, 4945, https://doi.org/10.1038/s41467-02018743-8, 2020.
- 606 Wu, C., Hou, X., Peng, D., Gonsamo, A., and Xu, S.: Land surface phenology of China's temperate ecosystems over 1999–
- 607 2013: Spatial-temporal patterns, interaction effects, covariation with climate and implications for productivity,
 608 Agricultural and Forest Meteorology, 216, 177–187, https://doi.org/10.1016/j.agrformet.2015.10.015, 2016.
- 609 Wu, C., Wang, X., Wang, H., Ciais, P., Peñuelas, J., Myneni, R. B., Desai, A. R., Gough, C. M., Gonsamo, A., Black, A. T.,
- 610 and others: Contrasting responses of autumn-leaf senescence to daytime and night-time warming, Nat. Clim. Change, 8,
- 611 1092–1096, https://doi.org/10.1038/s41558-018-0346-z, 2018.

- 612 Wu, W., Sun, Y., Xiao, K., and Xin, Q.: Development of a global annual land surface phenology dataset for 1982–2018 from
- the AVHRR data by implementing multiple phenology retrieving methods, Int. J. Appl. Earth Obs. Geoinf., 103,
 102487, https://doi.org/10.1016/j.jag.2021.102487, 2021a.
- Wu, Z., Chen, S., De Boeck, H. J., Stenseth, N. C., Tang, J., Vitasse, Y., Wang, S., Zohner, C., and Fu, Y. H.: Atmospheric
 brightening counteracts warming-induced delays in autumn phenology of temperate trees in Europe, Global Ecol.
 Biogeogr., 30, 2477–2487, https://doi.org/10.1111/geb.13404, 2021b.
- Ye, Y., Zhang, X., Shen, Y., Wang, J., Crimmins, T., and Scheifinger, H.: An optimal method for validating satellite-derived
 land surface phenology using in-situ observations from national phenology networks, ISPRS J. Photogramm. Remote
- 620 Sens., 194, 74–90, https://doi.org/10.1016/j.isprsjprs.2022.09.018, 2022.
- Zani, D., Crowther, T. W., Mo, L., Renner, S. S., and Zohner, C. M.: Increased growing-season productivity drives earlier
 autumn leaf senescence in temperate trees, Science, 370, 1066–1071, https://doi.org/10.1126/science.abd8911, 2020.
- 623 Zhang, X., Wang, J., Gao, F., Liu, Y., Schaaf, C., Friedl, M., Yu, Y., Jayavelu, S., Gray, J., Liu, L., and others: Exploration
- of scaling effects on coarse resolution land surface phenology, Remote Sens. Environ., 190, 318–330,
 https://doi.org/10.1016/j.rse.2017.01.001, 2017.
- 626 Zhang, X., Friedl, M., and Henebry, G.: VIIRS/NPP Land Cover Dynamics Yearly L3 Global 0.05 Deg CMG V001, NASA
- 627 EOSDIS Land Processes DAAC, accessed on 2022-08-11, https://doi.org/10.5067/VIIRS/VNP22C2.001, 2020.
- 628 Zhu, M., Dai J.: Species phenology and ground phenology maps over China from 1951-2020, Science Data Bank [data set],
- 629 https://doi.org/10.57760/sciencedb.07995. DOI:10.57760/sciencedb.07995, 2023.