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Abstract. Plant phenology refers to the cyclic plant growth events, and is one of the most important indicators of climate11
change. Integration of plant phenology information is of great significance for understanding the response of ecosystems to12
global change and simulating the material and energy balance of terrestrial ecosystems. Based on 24552 in-situ phenology13
observation records of 24 typical woody plants from the Chinese Phenology Observation Network (CPON), we map the14
species phenology (SP) and ground phenology (GP) of forests over China from 1951-2020, with a spatial resolution of 0.1°15
and a temporal resolution of 1 day. A model-based upscaling method was used to generate SP maps from in-situ16
SPphenology observations, and then weighted average and quantile methods were used to generate GP maps from SP maps.17
The validation shows that the SP maps of 24 woody plants are largely consistent with the in-situ observations, with an18
average error of 6.9 days in spring and 10.8 days in autumn. The GP maps of forests have good agreement with the existing19
Land Surface Phenology (LSP) products derived by remote sensing data, particularly in deciduous forests, with an average20
difference of 8.8 days in spring and 15.1 days in autumn. The dataset provides an independent and reliable phenology data21
source on a long-time scale of 70 years in China, and contributes to more comprehensive research on plant phenology and22
climate change at regional and national scales. The dataset can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu23
et al., 2023).24

1 Introduction25

Plant phenology refers to plant cyclic growth and development events, which are formed by adaptation to seasonal26
changes in climate and environmental conditions (Lieth, 1974; Schwartz, 2003). These phenological events include critical27
stages such as budburst, leaf unfolding, flowering, leaf coloring, and defoliation. As a highly sensitive biological indicator of28
climate change (Fu et al., 2015; Richardson et al., 2013), plant phenology is not only important for comprehending29
ecosystem responses to global change (Inouye, 2022; Menzel et al., 2020), but also a significant factor in simulating material30
and energy balance of terrestrial ecosystems (Keenan et al., 2014; Wang et al., 2020b). To be helpful for biological31
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monitoring and predictions, long-term, dependable plant phenology data on a global scale are greatly desired by related32
scientific research personnel. Presently, such data can be procured from diverse sources (Piao et al., 2019; Tang et al., 2016),33
including manual in-situ observations (Schwartz et al., 2012; Templ et al., 2018), satellite remote sensing (Bolton et al.,34
2020; Dixon et al., 2021), and tower-based digital cameras (Nasahara and Nagai, 2015; Richardson et al., 2018), etc.35
Nevertheless, integrating large-scale and long-term plant phenology information continues to pose a formidable challenge,36
owing to the substantial gaps in spatial and temporal scales between different data sources (Fisher et al., 2006; Park et al.,37
2021).38

The practice of conducting manual, in-situ observations for species phenology (SP) boasts a rich history spanning39
several centuries (Aono and Kazui, 2008), yielding precise phenological information for the individual plant species (Polgar40
and Primack, 2011). In 1963, the Chinese Academy of Sciences inaugurated the Chinese Phenology Observation Network41
(CPON), a standardized, nationwide network employing a multitude of professional observers and incorporating extensive42
ground-based observations. To date, CPON has amassed over 1.2 million SPphenology records pertaining to more than 90043
plant species across over 150 sites throughout China (Fig. 1), cementing its dominant status as a data center for phenological44
research in China. These phenologySP records have been contributed to examining the spatiotemporal patterns of plant45
phenological shifts (Dai et al., 2014; Ge et al., 2015), the environmental determinants influencing plant phenology (Dai et46
al., 2013; Wang et al., 2020a), as well as the development of phenology models in China (Tao et al., 2018; Wang et al.,47
2015). Nonetheless, the spatial coverage of in-situ phenologySP data remains sporadic and restricted on regional and global48
scales (Donnelly et al., 2022), with noticeable gaps appearing in longer time scales. The progression of species-level49
phenology modeling presents an opportunity to address these limitations (Fu et al., 2020; Hufkens et al., 2018). In the50
absence of actual observed phenologySP data, phenology models can be employed to generate large-scale predictions,51
thereby interpolating the missing SP data in both space and time (Cleland et al., 2007; Schwartz et al., 2013; Wang et al.,52
2012). For instance, the Extended Spring Indices (SI-x) model has been successfully applied to create gridded maps53
illustrating the first leaf and first bloom events for three woody plants at a resolution ranging from 1° to 1 km across the54
contiguous United States (Ault et al., 2015; Izquierdo-Verdiguier et al., 2018). Similarly, this model-based approach can be55
adapted to model and map the SP data throughout China. This would enable the integration and synthesis of CPON's long-56
term phenology observations at regional and national scales within the country.57

In contrast to manual in-situ observations, satellite remote sensing facilitates the monitoring and mapping of land58
surface phenology (LSP) on a more expansive scale. It provides more comprehensive LSP information at the landscape level59
(Studer et al., 2007). Over the past four decades, remote sensing technology has witnessed considerable advancements,60
significantly improving the spatial and temporal resolution (Misra et al., 2020; Dronova and Taddeo, 2022). At present, a61
multitude of LSP products derived from vegetation indices (e.g., NDVI and EVI) procured from multi-source remote sensing62
data are accessible, offering regional and global LSP data with varying spatial resolutions ranging from 10 km to 30 m (e.g.,63
Ganguly et al., 2010; Li et al., 2019; Wu et al., 2021; Zhang et al., 2020). The credibility of these LSP data remains largely64
contingent upon ground phenology (GP) validation based on in-situ observed SP data (Tian et al., 2021; Zhang et al., 2017),65
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particularly the coordination and aggregation from individual-level phenology (i.e., SP) to landscape-level phenology (i.e.,66
GP). Weighted average and quantile methods have been proven effective for aggregating phenology from individual to67
community or landscape levels (Donnelly et al., 2022; Fitchett et al., 2015). Prior research has validated weighted average68
method on a site scale through field investigations and remote sensing monitoring, to aggregate GP at the community or69
landscape levels from in-situ SP data weighted by species abundance (Liang et al., 2011). Some recent studies have70
suggested that the quantile method (e.g., 30th percentile) holds greater promise than the commonly used average method on71
a larger scale, as evidenced in Europe and the USA (Ye et al., 2022). However, there is no previous study endeavored to72
employ these methods for aggregating large-scale GP from SP data in China, which may constrain the availability of ground73
validation evidence for LSP products and hinder comprehensive understanding of the spatio-temporal characteristics of74
phenological changes over the country.75

In this study, we aimed to develop long-term SP and GP maps of China with a 0.1° resolution spanning 1951-2020,76
supplying spatially continuous grided phenology products currently absent in the country and crucial for a wider array of77
applications. We utilized 24,552 in-situ phenology observations of 24 representative woody plants from 122 sites over the78
past six decades from CPON. Three phenophases, namely the first leaf date (FLD), first flower date (FFD), and 100% leaf79
coloring date (LCD), were included for each species. We employed five species-level phenology models and grided80
meteorological data to simulate and produce SP maps, and utilized species distribution maps as masks of SP maps for each81
corresponding plant species. We applied weighted average and quantile methods on SP maps to aggregate and produce GP82
maps, which used the distribution probabilities of each species as weights. The accuracy of SP maps was assessed through83
cross-validation, while the reliability of GP maps was evaluated by comparing them with existing LSP products. This study84
introduces a novel grid phenology dataset for China, which supplements China’s existing phenology data sources and85
provides an independent phenology data source for LSP product verification. The dataset will facilitate more comprehensive86
research on plant phenology and global change by better characterizing the spatiotemporal patterns of plant phenology.87

2 Methods88

2.1 Data acquisition and processing89

2.1.1 Phenology observations90

The in-situ phenology observations from 1963 to 2018 were obtained from the CPON. We selected 24 species of woody91
plants from 17 families in China (Table 1) that are common and widespread in forest ecosystems in China (Fang et al., 2011)92
and well-documented in CPON. These species have been observed over 55 years in 122 sites, with a total of 24,552 records,93
covering a range of land cover, ecological, and climatic conditions across China (Fig. 1). Each species had at least 40 years94
and 13 sites of phenology data. We extractedstudied three phenophases for each species: spring FLD, spring FFD, and95
autumn LCD. Three-sigma limits, which refers to data within three standard deviations from a mean, was used to set the96
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upper and lower limits of phenology data for each species (Pukelsheim, 1994). We identified and removed outliers beyond97
the three-sigma lines, because they represented less than 1% of all data points on a standard normal distribution98
curve.Outliers were eliminated for each species based on the principle of three sigma limits.99

100
Figure 1: Geographic distribution of CPON sites (n = 122) included in the phenology dataset across China. Sites with less101
than 10 recorded species are marked with pink asterisks, while sites with more than 10 recorded species are marked with red102
asterisks. Note that the markings on the map of several adjacent sites may overlap each other. The background map shows103
the IGBP land cover type from the MODIS Land Cover product (Friedl and Sulla-Menashe, 2022).104

105
Table 1: List of 24 species of woody plants from 17 families in China. Number of records represents the total number of106
three phenophases (FLD, FFD and LCD) of all sites and all years for each species.107

No. Species Family Life form Number of
sites

Number of
years

Number of
records

1 Ginkgo biloba Ginkgoaceae Tree 45 49 1110

2 Metasequoia glyptostroboides Cupressaceae Tree 37 47 860

3 Magnolia denudata Magnoliaceae Tree 42 47 980



5

4 Salix babylonica Salicaceae Tree 65 42 1526

5 Populus × canadensis Salicaceae Tree 43 51 954

6 Robinia pseudoacacia Fabaceae Tree 54 45 1757

7 Albizia julibrissin Fabaceae Tree 36 47 984

8 Cercis chinensis Fabaceae Shrub 52 49 1207

9 Prunus armeniaca Rosaceae Tree 46 45 950

10 Ulmus pumila Ulmaceae Tree 60 44 1428

11 Morus alba Moraceae Tree 50 50 1071

12 Broussonetia papyrifera Moraceae Tree 41 43 1103

13 Quercus acutissima Fagaceae Tree 17 40 292

14 Pterocarya stenoptera Juglandaceae Tree 29 46 936

15 Juglans regia Juglandaceae Tree 50 47 816

16 Betula platyphylla Betulaceae Tree 13 43 369

17 Acer pictum subsp. mono Sapindaceae Tree 18 46 492

18 Ailanthus altissima Simaroubaceae Tree 34 47 873

19 Melia azedarach Meliaceae Tree 61 46 1410

20 Firmiana simplex Malvaceae Tree 57 48 1403

21 Hibiscus syriacus Malvaceae Shrub 58 47 1096

22 Fraxinus chinensis Oleaceae Tree 23 40 505

23 Syringa oblata Oleaceae Shrub 50 51 1163

24 Paulownia fortunei Paulowniaceae Tree 49 48 1267

Total - - 122 55 24552

108

2.1.2 Climate data109

The daily mean temperature (T) from 1950-2020 were obtained from two sources: (1) Site T was extracted from climate110
observations in the China Meteorological Data Service Center (CMDSC, https://data.cma.cn/) and used to parameterize the111
phenology models. (2) Grid T was extracted from ERA5-Land climate reanalysis data (Muñoz Sabater, 2019; Muñoz-112
Sabater et al., 2021) from the Copernicus Climate Change Service (C3S, https://cds.climate.copernicus.eu/) and used for113
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phenology simulation and upscaling at a spatial resolution of 0.1° (about 10 km). Hourly grid T was averaged across four114
phases (4:00, 10:00, 16:00, 22:00) to derive the daily grid T.115

The current bioclimatic (BIOCLIM+) variables were obtained from Climatologies at High Resolution for the Earth116
Land Surface Areas (CHELSA, https://chelsa-climate.org/) to determine the species distribution (Brun et al., 2022a, b). The117
BIOCLIM+ variables indicate the average ecological and climatic conditions during 1981-2010, with a high resolution of118
0.0083°. We extracted the traditional 19 bioclimatic layers (Bio1-Bio19) and the complementary 50 bioclimatic layers in119
China. We calculated the correlation between every two layers to reduce the impact of autocorrelation among these120
bioclimatic layers, and then excluded the layers with a correlation coefficient greater than 0.8 with the previous layers. As a121
result, 12 bioclimatic layers were retained as the environmental data inputs for the species distribution models (Table S1).122
These layers were resampled to 0.1° to match the resolution of the grid T data.123

2.1.3 Forest and species distribution data124

The forest distribution map of China was derived from the dataset of “Annual Dynamics of Global Land Cover and its125
Long-term Changes from 1982 to 2015” (Liu et al., 2020). Each year’s land cover (LC) layers were reclassified as forest and126
non-forest, and then the number of years of forest cover was obtained by adding all layers. Pixels with at least one year of127
forest cover were identified as forest distribution areas. The forest types were identified from the most commonly used128
International Geosphere-Biosphere Program (IGBP) classification from MODIS Land Cover Type (MCD12C1) Version 6.1129
data product (Friedl and Sulla-Menashe, 2022). We merged evergreen needleleaf forest (class 1) and evergreen broadleaf130
forest (class 2) into evergreen forest, and deciduous needleleaf forest (class 3) and deciduous broadleaf forest (class 4) into131
deciduous forest. Mixed forest (class 5) was also included in the forest type. The forest distribution map and forest type map132
wereas resampled from 0.05° to 0.1° by the majority method to match the resolution of the grid T data.133

The county-level species distribution maps were obtained from the updated Database of China's Woody Plants (Fang et134
al., 2011). The distribution maps in this database were compiled from all national, provincial, and regional floras and135
inventory reports in China published before 2009, which are considered authoritative (Cai et al., 2021). We then obtained a136
total of 4371 occurrence records for 24 woody plant speciesthe species occurrence records from the Global Biodiversity137
Information Facility (GBIF, 2022; https://www.gbif.org/)(GBIF; https://www.gbif.org/), and used them as the occurrence138
data inputs for the species distribution models (GBIF, 2022). The occurrence records were filtered by including the139
coordinate locations with uncertainty less than 2000 meters, and cleaned by removing duplicate records (Table S2).140

2.2 Generating species phenology maps using a model-based upscaling method141

The generation of species phenology maps involves two major processes: (1) Generating species potential phenology142
maps, and (2) Generating species distribution maps. The final SP maps were obtained by spatially intersecting these two143
maps. The workflow for the processes is shown in Fig. 2.144
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146
Figure 2: The workflow of generating SP maps using a model-based upscaling method, which involves two major147
processes: (1) Generating species potential phenology maps, and (2) Generating species distribution maps. The words in blue148
color represent the key processes of data generation. “.tiff” indicates the GeoTIFF format of the grid phenology or149
distribution maps.150

2.2.1 Species potential phenology maps151

In the first process, we used a model-based upscaling method to convert in-situ phenology observations into grid152
phenology maps. Phenology models were built using the phenophases (i.e., FLD, FFD, LCD) from CPON phenology153
observations and the corresponding site T from CMDSC climate observations. For each species, we built three spring154
phenology models: the Unichill, Unified (Chuine, 2000) and temporal-spatial coupling (TSC) models (Ge et al., 2014), and155
two autumn phenology models: the multiple regression (MR) (Estrella and Menzel, 2006) and temperature-photoperiod (TP)156
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models (Delpierre et al., 2009). The details of the model formulae are described in Appendix S1. For each model, samples157
from odd years were used for phenology modeling, and samples from even years were reserved for cross validation on the158
model. All model parameters were estimated using the simulated annealing algorithm (Chuine et al., 1998).159

For model validation, the models’ root mean square error (RMSE) and goodness of fit (R2) were calculated between the160
model simulated values and original values. Internal validation was conducted on samples from odd years to evaluate the161
fitting effect of the model, and cross validation was conducted on samples from even years to evaluate the simulation and162
extrapolation effect of the model. The optimal phenology model for each species was selected based on the smallest RMSE163
in cross validation and R2 greater than 0.5 (0.3 for LCD) in both validations. If no model met these conditions, the species164
was excluded when generating SP maps or GP maps.165

For simulating SP maps, daily grid T data from ERA5-Land climate reanalysis were input into the optimal phenology166
model and simulated pixel by pixel. This way, the phenology observations from individual sites were interpolated and167
upscaled into a grid phenology map based on the phenology models (Chuine et al., 2000). However, as long as there was168
grid T data, simulated species phenology could be obtained, even if there was no species distribution. Therefore, we named it169
as species potential phenology map to avoid taking simulated values as true values in areas without species distribution.170

2.1.2 Species distribution maps171

In the second process, we simulated the species distribution maps using both species distribution models and county-172
level species distribution data. Species distribution models were built for each species using Maximum Entropy Species173
Distribution Modelling (Maxent; Phillips et al., 2006) version.3.4.4. Maxent estimates the range of a species by finding the174
species distribution of maximum entropy (i.e., closest to the uniform), which is widely adopted in species distribution175
modeling (Phillips et al., 2006). It expresses a probability distribution where each grid cell has a predicted probability of176
presence for the species. To build the Maxent model, species location records from the GBIF database were used as177
occurrence data input, and the 12 bioclimatic layers from BIOCLIM+ were used as the environmental data input. In the178
model parameter settings, linear and quadratic feature types were used and 5-fold cross validation was used as the replicated179
run type.180

For model validation, the receiver operating characteristic (ROC) curve analysis method was used to test the accuracy181
of the Maxent prediction model. The area under the ROC curve, known as the AUC value, is usually used as an indicator of182
the prediction accuracy of the model (Fielding and Bell, 1997). The closer the AUC value is to 1.0, the more accurate the183
prediction result of the model is. The average test AUC for different species was 0.845, with a standard deviation of 0.043184
(Table S2).185

2.3 Generating ground phenology maps using weighted average and weighted quantile methods186

We used four methods to aggregate from individual-level SP maps to landscape-level GP maps: (1) weighted average187
(mean); (2) weighted median (pct50); (3) weighted 20th percentile (pct20) for spring phenology or weighted 80th percentile188
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(pct80) for autumn phenology; (4) weighted 10th percentile (pct10) for spring phenology or weighted 90th percentile (pct90)189
for autumn phenology. Previous studies typically used species abundance as aggregation weights at the local scale, but it is190
difficult to obtain such data at the regional scale. Therefore, we used species distribution probability instead of species191
abundance as aggregation weight for each species. This assumption is based on a positive correlation between species192
distribution and abundance (Brown, 1984), demonstrating that species tend to be most abundant at the center of their193
geographic range (Sagarin and Gaines, 2002).The weight of each species was determined by the species distribution194
probability, as it is assumed that the species abundance is positively related to the species distribution probability. The195
aggregation methods of GP in this study (e.g., pct50, pct20\80 and pct10\90) are comparable and similar to the extraction196
methods of LSP from remote sensing data (e.g., midpoint, dynamic threshold and maximum curvature). The workflow is197
shown in Fig. 3.198

199
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201
Figure 3: The workflow of generating GP maps from SP maps, and comparing GP maps with two LSP products. The words202
in blue color represent the key processes of data generation.203

204

For � species, the phenophases (�) were first sorted from small to large. The SP of each species is �� (� = 1, 2, . . . , �),205

and the distribution probability of each species is �� (� = 1, 2, . . . , �). Then, the aggregated GP (����� and ���� (�%)) was206

calculated according to the following formulas:207

�� = ��

�=1
� ���

(1)208

�� = �=1
� ��, � = 1,2, . . . , �� (2)209

����� = �=1
� �� × ��� (3)210

���� =
�1, �� �1 > �

(�� − ��−1) × �−��−1
��

, �� �� > �, ��−1 < �

��, �� ��−1 < �
(4)211
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Where �� is the weight of each species, �� is the cumulative weight from the first to the � species, �% is the percentile tag212

which takes values from 10%, 20%, 50%, 80% and 90%. These formulas were used to calculate the aggregated GP maps by213
combining the species phenology maps with the species distribution maps and weighting them by the species distribution214
probability.215

Finally, to assess data quality, the aggregated GP maps in this study were compared with two LSP products extracted216
from remote sensing in previous studies to assess data quality: (1) VIPPHEN_NDVI product (1981-2014), which used217
midpoint method to extract the start of season (SOS) and the end of season (EOS) from the AVHRR data (Didan and218
Barreto, 2016); (2) VNP22C2 product (2013-2020), which used maximum curvature method to extract SOS and EOS from219
the MODIS data (Zhang et al., 2020b). Both LSP products were resampled from 5 km to 0.1° by the average method to220
match the spatial resolution of GP maps. The LSP and GP maps were averaged in two segments (1981-2014 and 2013-221
2020), and the correlation analysis was conducted between FLD and SOS in spring and between LCD and EOS in autumn.222
Pearson correlation coefficient (Rr), RMSE, and linear regression slope were used to evaluate the consistency between GP223
and LSP.224

3 Results and discussion225

The dataset includes two types of phenology maps over China: (1) Yearly SP maps generated by the model-based226
upscaling method for 24 woody plants; (2) Yearly GP maps generated by four aggregation methods, along with the227
corresponding quality assurance (QA) maps. The phenology maps provide spring FLD, FFD, and autumn LCD of woody228
plants and forests over China from 1951 to 2020, with a spatial resolution of 0.1° and a temporal resolution of 1 day. Each229
map is stored in a 16-bit signed integer file in GeoTIFF format, which contains a two-dimension raster (641 row × 361230
column). The unit of phenology data is the Julian Day of year (DOY), which represents the actual number of days from231
January 1st to the date of phenology occurrence. The valid values range from DOY 1 to 366, and the null values equal to -1.232

3.1 Simulation and validation of species phenology maps233

The SP maps of FLD (24 species), FFD (19 species), and LCD (12 species) were simulated using the optimal234
phenology models, and then masked by the species distribution maps. Here, we present the results of simulated SP maps of235
four typical woody species (Fig. 4), including ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and236
lilac (Syringa oblata). These maps showed that the phenophases of different species have a consistent spatial pattern of237
variation along latitude. Specifically, spring FLD and FFD of these species were significantly later with increasing latitude,238
while autumn LCD was significantly earlier with increasing latitude. Despite similar spatial patterns, the phenophases of239
different species show distinct temporal differences at the same latitude; for example, at lower latitudes, elm has240
significantly earlier spring FFD and later autumn LCD than other species. Phenophases of some species were not simulated241
because the R2 of their optimal models was too small, e.g., R2 < 0.5 for spring FFD, and R2 < 0.3 for autumn LCD.242
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244
Figure 4: Species phenology (SP) maps of four typical woody species averaged from 1951 to 2020. Columns 1-2 show the245
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents a species246
from ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ulmus pumila), and lilac (Syringa oblata). The unit of247
SPphenology data is the Julian Day of year (DOY) from January 1st.248

249
Table 2: The optimal phenology models and cross-validation results of 24 species. RMSE represents the root mean square250
error between the model simulated values and original values. R2 represents goodness of fit of the optimal phenology model.251

No. Species FLD FFD LCD
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Optimal
model RMSE R2 Optimal

model RMSE R2 Optimal
model RMSE R2

1 Ginkgo biloba TSC 7.30 0.669 TSC 7.53 0.553 DM 12.54 0.401

2 Metasequoia
glyptostroboides TSC 6.10 0.687 Unified 9.59 0.126 DM 9.99 0.295

3 Magnolia denudata UniChill 6.47 0.781 TSC 7.33 0.576 DM 9.31 0.284

4 Salix babylonica TSC 8.97 0.854 TSC 9.40 0.787 MR 18.23 0.380

5 Populus × canadensis UniChill 5.94 0.808 UniChill 6.14 0.728 MR 9.45 0.139

6 Robinia pseudoacacia TSC 5.47 0.863 TSC 6.18 0.785 DM 11.74 0.297

7 Albizia julibrissin UniChill 7.48 0.500 Unified 8.23 0.376 MR 9.18 0.567

8 Cercis chinensis TSC 7.90 0.723 UniChill 7.39 0.751 DM 9.09 0.175

9 Prunus armeniaca TSC 6.05 0.865 UniChill 4.78 0.929 MR 14.52 0.191

10 Ulmus pumila UniChill 5.09 0.901 UniChill 8.38 0.862 DM 11.16 0.654

11 Morus alba TSC 6.70 0.905 UniChill 7.99 0.860 DM 9.04 0.175

12 Broussonetia papyrifera UniChill 7.60 0.804 TSC 6.18 0.821 DM 9.97 0.615

13 Quercus acutissima UniChill 6.73 0.931 UniChill 5.12 0.950 MR 14.35 0.765

14 Pterocarya stenoptera UniChill 7.52 0.804 UniChill 7.89 0.710 MR 11.57 0.415

15 Juglans regia TSC 6.04 0.739 UniChill 8.54 0.595 DM 8.41 0.141

16 Betula platyphylla UniChill 3.80 0.915 UniChill 3.70 0.906 DM 8.27 0.655

17 Acer pictum subsp. mono TSC 2.29 0.894 TSC 3.78 0.814 DM 4.71 0.670

18 Ailanthus altissima UniChill 5.22 0.867 UniChill 8.34 0.664 DM 10.39 0.066

19 Melia azedarach TSC 6.81 0.828 TSC 6.70 0.851 MR 10.19 0.135

20 Firmiana simplex UniChill 6.02 0.694 Unified 8.10 0.314 DM 12.30 0.190

21 Hibiscus syriacus TSC 9.66 0.666 Unified 13.38 0.331 DM 12.76 0.464

22 Fraxinus chinensis TSC 6.25 0.852 Unified 12.35 0.319 MR 9.76 0.533

23 Syringa oblata UniChill 7.01 0.864 UniChill 5.11 0.920 MR 12.36 0.475

24 Paulownia fortunei UniChill 4.63 0.762 UniChill 7.02 0.693 MR 10.01 0.250

252
The simulation effects of species phenology maps were evaluated by cross-validation on the optimal phenology models253

(Table 2). The results showed that the simulation effects of spring phenology were significantly better than that of autumn254
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phenology (Fig. 5). Specifically, the RMSE of the optimal model of FLD (6.38 days) and FFD (7.46 days) in spring were255
significantly smaller than that of LCD (10.80 days) in autumn. And the R2 of the optimal model of FLD (0.799) and FFD256
(0.676) in spring were significantly greater than that of LCD (0.372) in autumn. However, there was no significant257
difference between spring FLD and FFD simulation effects in spring. Among the optimal spring phenology models, the FFD258
simulation effects of UniChill and TSC models were significantly better than Unified model.UniChill and TSC models, as259
the optimal model, had significantly better FFD simulation effects than Unified models for the different phenology models in260
spring. But in autumn, the LCD simulations effects are similar for MR and TP models.MR and TP models had similar LCD261
simulation effects for the different phenology models in autumn.262

263
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Figure 5: The RMSE (a) and R2 (b) of cross-validation on the optimal phenology models for 24 woody species. Each model266
is represented by a different color, with warm colors for three spring phenology models (Unified, UniChill, TSC), and cool267
colors for two autumn phenology models (MR, TP). The model with the smallest RMSE was selected as the optimal model268
for each species. The horizontal line represents the median value, the diamond mark represents the mean value, and the dot269
mark represents the outlier in the boxplot.270

3.2 Aggregation of ground phenology maps271

The results of GP maps generated by four different aggregation methods (mean, pct50, pct20\80, pct10\90) showed272
similar spatial patterns (Fig. 6), i.e., the consistent variation along latitude or altitude. With the increase of latitude or273
altitude, the spring GP (FLD and FFD) became later, and the autumn GP (LCD) became earlier. For different aggregation274
methods, the GP maps aggregated from the mean and pct50 methods were highly consistent, with Rr being 0.992; while the275
GP maps aggregated from the pct20\80 and pct10\90 methods were slightly different from the former two, with Rr being276
0.968 and 0.949, and showed larger spatial variation than the former two. The high consistency between the mean and pct50277
maps indicated that both the weighted mean method and weighted quantile method were robust for the aggregation of GP.278

279
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280
Figure 6: Ground phenology (GP) maps of four aggregation methods averaged from 1951 to 2020. Columns 1-2 show the281
spring phenophases (FLD and FFD), and Column 3 shows the autumn phenophase (LCD). Each row represents an282
aggregation method from weighted average (mean), weighted median (pct50), weighted 20% or 80% percentile (pct20\80),283
and weighted 10% or 90% percentile (pct10\90). The unit of GP is the Julian Day of year (DOY) from January 1st.284

285
We also provided two QA maps to evaluate the reliability of the aggregation results of GP maps (Fig. S1). The first is286

the total distribution probability of all species, and the second is the total number of species with distribution probabilities287
greater than 0.1. In the QA maps, higher values mean larger total number or probability of species for the aggregation,288
indicating that GP maps have higher reliability in these areas. The regions with the most reliable GP aggregation results were289
distributed around 30° N in China. The total number of species is about 15 for FLD and FFD, and is about 6 for LCD in290
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these regions. It should be noted that in the QA map, in areas where the total number of species is less than 5 or the total291
probability of species is less than 1, the aggregation results of GP may not be reliable.292

3.3 Data quality and usability293

GP and LSP were compared between FLD and SOS in spring and between LCD and EOS in autumn during two294
segments (1981-2014 and 2013-2020). The results showed that GP and two LSP products had similar spatial patterns in295
central and northern China but relatively different patterns in southern China (Fig. 7), particularly for LCD and EOS in296
autumn (Fig. 7e-h). This is likely due to the prevalence of deciduous forests (DF) in central and northern China (Fig. 1). In297
contrast, evergreen forests (EF) and mixed forests (MF) are found in southern China. GP in this study was generated by298
aggregating the SPphenology of 24 deciduous woody plants, which made up a large proportion of DF deciduous forests but299
a small proportion of evergreen or mixed forestsEF or MF. Additionally, LSP extracted from remote sensing data tends to300
have a larger error in evergreen and mixed forestsEF and MF due to the lack of obvious seasonal change and frequent cloud301
cover in these regions (Liu et al., 2016b). As a result, the consistency between GP and LSP was relatively poor in evergreen302
or mixed forestsEF and MF areas (Fig. S2), with the maximum Rr being 0.44 in spring and 0.54 in autumn, and the303
minimum RMSE being 28.5 days in spring and 38.5 days in autumn (Table S2). In contrast, the consistency between GP and304
LSP was much better in DF deciduous forestsarea, with the maximum Rr being 0.95 in spring and 0.88 in autumn, and the305
minimum RMSE being 8.8 days in spring and 15.1 days in autumn, respectively.306
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307

308
Figure 7: Comparison of GP maps in this study and two LSP products (VIPPHEN and VNP22C2) extracted from remote309
sensing in previous studies, which was made between FLD and SOS in spring and LCD and EOS in autumn. Row 1 shows310
the comparison between VIPPHEN product and GP map averaged in 1981-2014, and Row 2 shows the comparison between311
VNP22C2 product and GP map averaged in 2013-2020. (a-b) SOS from two LSP products; (c-d) FLD aggregated by mean312
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method; (e-f) EOS from two LSP products; (g-h) LCD aggregated by mean method. The unit of GP or LSP is the Julian Day313
of year (DOY) from January 1st.314

315
To further assess the quality of the data, we examined the consistency between GP and LSP specifically in DF areas316

deciduous forests. The results showed that GP and LSP had good consistency in DF areas for both VIPPHEN and VNP22C2317
products, i.e., high correlation (R), small difference (RMSE), and good linear relationship (Fig. 8). Compared with the LSP318
of VIPPHEN product, the LSP of VNP22C2 product has better consistency with the GP of this study. In addition, for both319
products, the consistency between GP and LSP in spring (Fig. 8e, g) was significantly better than that in autumn (Fig. 8f, h).320
When comparing different aggregation methods (mean, pct50, pct20/80, pct10/90), there was no significant difference in Rr321
between GP and LSP (Fig. 8a, b). All methods produced similar Rr values, ranging from 0.76-0.78 in spring and 0.49-0.53 in322
autumn for the VIPPHEN product, and from 0.90-0.91 in spring and 0.79-0.84 in autumn for the VNP22C2 product.323
However, different methods produced significantly different RMSE values between GP and LSP (Fig. 8c, d), largely due to324
the differences in the average values of GP under different methods. The best aggregation methods, with the minimum325
RMSE, were pct10 (20.8 days) in spring and pct90 (32.9 days) in autumn for the VIPPHEN product, and pct20 (8.8 days) in326
spring and pct90 (15.1 days) in autumn for the VNP22C2 product.327
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329
Figure 8: Comparison results of GP maps and two LSP products (VIPPHEN and VNP22C2) in DF areas deciduous forests,330
which was made between FLD and SOS in spring and LCD and EOS in autumn within the time range 1981-2014 and 2013-331
2020. (a-b) Rr between LSP and GP under four aggregating methods; (c-d) RMSE between LSP and GP under four332
aggregating methods; (e-h) Linear relationship between between LSP and GP under the best aggregating method. Each333
aggregating method is represented by a different color. The best aggregating method was determined by minimizing the334
RMSE between GP and LSP in DF areas. The error bar in the bar plot represents the multi-year standard deviation. The red335
line in the scatter plot represents the linear regression line between GP and LSP, and all regression results were extremely336
significant (p<0.001).337

338
It is worth noting that the aggregation method with the smallest difference between GP and LSP in this study was the339

10th or 20th percentile in spring and the 90th percentile in autumn. It means that the spring green-up event detected by340
remote sensing is more consistent with the FLD of earlier-developing plant species (the first 10%-20%) on the ground, while341
the autumn dormancy event from remote sensing is more consistent with the LCD of later-senescent plant species (the last342
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10%) on the ground. These results reveal a potential connection between GPs and LSPs despite their different physical343
implications in diagnosing phenology.344

In general, this dataset provides high reliability SP and GPspecies and ground phenology simulations of forests over345
China for the past 70 years. It is an independent phenology data source generated by the modeling and aggregation based on346
ground observations. There are several considerations in data application:347

(1) For SP maps, the accuracy of data was determined by RMSE and R2 of cross-validation on the optimal phenology348
model for each species (Table 2). Additionally, the reliability of SPphenology data in space was affected by the number of349
sites available for modeling on each species (Table 1). For instance, the accuracy of Betula platyphylla’s FLD was very high350
overall (RMSE = 3.80 and R2 = 0.915), but the local accuracy might be relatively poor in areas with sparse sites due to very351
few sites of Betula platyphylla in space (n = 13). In this study, the SP maps of 24 species in China were found to be largely352
consistent with the in-situ observations, with an average error of 6.4, 7.5 and 10.8 days for FLD, FFD and LCD,353
respectively. These errors were the same or smaller than those of phenology modelling in previous studies. For example, the354
simulation error of spring FLD and FFD was 7-9 days in central Europe (Basler, 2016) and was 12.3-12.7 days in the United355
States (Izquierdo-Verdiguier et al., 2018), while the simulation error of autumn LCD was 10.3-13.0 days in France356
(Delpierre et al., 2009) and 5.9-22.8 days in the United States (Jeong and Medvigy, 2014). Therefore, compared with other357
studies on the regional scale, the SP maps of China in this study were found to have relatively high accuracy.358

(2) For GP maps, the reliability of data can be determined by QA maps which provide the total number or probability of359
species. Additionally, the reliability can also be evaluated by comparing GP data with other LSP products, with high360
consistency indicating good reliability. Since GP data actually provide phenology estimates of the deciduousDF components361
in the forests, it has better reliability in the DF areas deciduous forests but less reliability in evergreen or mixed forestsEF or362
MF areas. In this study, GP maps of forests in China were found have good consistency with the existing LSP products,363
particularly in DF area deciduous forestss, where the correlation coefficients of FLD and LCD were 0.91 and 0.84,364
respectively. The differences between GP and LSP in FLD and LCD were also found to be relatively small in DF area365
deciduous forests, being 8.8 days and 15.1 days, respectively. Previous studies have shown poor consistency between single366
species and LSP, with correlation coefficients ranging from 0.50 to 0.51 in the United States (Peng et al., 2017) and367
Germany (Kowalski et al., 2020), and differences ranging from 12 to 14.5 days in the United States (Peng et al., 2017) and368
Canada (Delbart et al., 2015). In contrast, research comparing average or quantile values of multiple species has shown369
better results similar to this study. For example, the correlation coefficients between the average (or weighted average) GP370
and LSP were found to be 0.61 to 0.71 in Europe (Rodriguez-Galiano et al., 2015; Tian et al., 2021). The correlation371
coefficients between the 30th percentile GP and LSP were found to be 0.54 to 0.57 in China (Wu et al., 2016). The372
differences between the GP and LSP in previous studies were 10.3-12.4 days in China (Wu et al., 2016), 13.9 days in373
Europe, and 12.3 days in the United States (Ye et al., 2022), which was larger than the results of FLD but smaller than that374
of LCD in this study. Although the landscape-level GP data aggregated from species-level SPphenology data in this study375
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showed good reliability, limitations in available species and different aggregation methods suggest that future comparisons376
between GP and LSP in other regions still need to be improved.377

(3) For phenology maps in different seasons, the reliability of phenology data in spring was found to be significantly378
higher than that in autumn. The underlying reason is that the mechanism of autumn phenology is more complex compared to379
that of spring phenology (Menzel, 2002). Moreover, the driving mechanisms forinfluencing factors of the autumn phenology380
are complex not yet fully understood, which poses an additional challenge (Gill et al., 2015; Wu et al., 2018). For example,381
temperature has large effects on the autumn phenology than the spring phenology (Fu et al., 2018). In addition to382
temperature, other environmental factors such as precipitation (An et al., 2020), photoperiod (Lang et al., 2019), solar383
radiation (Wu et al., 2021b), spring phenology (Liu et al., 2016a), and growing-season productivity (Zani et al., 2020) may384
also drive autumn phenology. Thus, modeling autumn phenology is more challenging compared to spring phenology385
(Melaas et al., 2016), resulting in poorer model performance and inferior data quality of SP or GP maps in autumn.386

4 Data availability387

The annual SP and GP maps over China can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu et al., 2023).388
This dataset is licensed under a CC-BY 4.0 license. The spatial reference system of the dataset is EPSG:4326(WGS84).389

5 Conclusions390

In this study, mainly based on CPON historical phenology observations, we developed a new long-term gridded391
phenology dataset: SP maps of 24 woody plants and GP maps of forests over China from 1951–2020, with a spatial392
resolution of 0.1° and a temporal resolution of 1 day. For the generation of SP maps, we adopted a model-based upscaling393
method to realize the scale expansion of SPphenology date from in-situ to regional scales in China. For the generation of GP394
maps, we adopted weighted average and weighted quantile methods to realize the aggregation from species to community or395
landscape levels in China. Dataset quality assessment shows that the average error of SP maps is 6.9 days in spring and 10.8396
days in autumn, and the minimum difference between GP maps and existing LSP products is 8.8 days in spring and 15.1397
days in autumn. Compared to the previous studies (Basler, 2016; Delpierre et al., 2009; Izquierdo-Verdiguier et al., 2018;398
Jeong and Medvigy, 2014; Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP maps in this study have the same or399
smaller simulation error, and the GP maps in this study have good agreement with other LSP products, so the data has high400
accuracy and reliability. This dataset is the first phenology map of China. It can be used to investigate the spatial pattern of401
plant phenology more clearly along the geographic gradient (e.g., longitude, latitude, and altitude), and to reveal the402
temporal trends (e.g., interannual, decadal, and secular) of plant phenology across China. The dataset can also provide403
important data support for global change impact assessment, terrestrial ecosystem simulation, and natural resource404
management.405
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