Tephra data from varved lakes of the <u>lastLast</u> Glacial-Interglacial <u>transitionTransition</u>: towards a global inventory and better chronologies <u>on the Varved Sediments Database</u> (VARDA)

5 Anna Beckett¹, Cecile Blanchet², Alexander Brauser², Rebecca Kearney², Celia Martin-Puertas¹, Ian Matthews¹, Konstantin Mittelbach², Adrian Palmer¹, Arne Ramisch^{2, 3}, Achim Brauer²

¹Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, TW20 0EX, UK

10 ²GFZ German Research Center, for Geoscience, Section Climate <u>Dynamics</u> and Landscape Evolution, <u>Telegrafenberg</u>, 14473 Potsdam, Germany

³Now at: University of Innsbruck, Inngain 52, 6020 Innsbruck, Austria

Correspondence to: A. Beckett (anna.beckett.2020@live.rhul.ac.uk)

Abstract

- 15 The VarveVarved Sediments Database (VARDA) was launched in 2020 and aimed to establish a community database for annually-resolved chronological archives with their associated high-resolution proxy records. This resource would support reproducibility through accessible data for the paleoclimate and modelling communities. In this paper, we used VARDA to assemble an extensive has been extended by a dataset of European tephra geochemical data and metadata to enable the synchronisation of varve records during the Last Glacial-Interglacial
- 20 Transition (LGIT, here defined as 25 ka BP to 8 ka BP). Geochemical data from 49 known individual tephra layers across 19 varve-lake records have been included, with Lago di Grande Monticchio being the single biggest contributor of geochemical data with 28 tephra layers. The Vedde Ash and Laacher See tephra are the most common layers being found in 6 different varve records and highlights the potential of refining the absolute age estimates for these tephra layers using varve chronologies and for synchronising regional paleoclimate archives.
- 25 This is the first stage in a 5 year plan funded by the Past Global Changes (PAGES) Data Stewardship Scholarship to incorporate a global dataset of tephra geochemical data in varve records. Further stages of this project will focus on different regions and timescales.

1. Introduction

Varved lake sediment records are annually-resolved archives of climatic and environmental change (Brauer, 2004;

- 30 Zolitschka et al., 2015), with comparable resolution to ice-cores (Rasmussen et al., 2007). The very nature of these records allows for robust chronologies based on annual layer counts, which can be validated by using independent radiometric dating techniques. Furthermore, other lithological and biological proxy data within these archives can be explored at sub-decadal to seasonal scales (Brauer et al., 2008; Zolitschka et al., 2015). Over the last two decades, there has been an increasing focus on (crypto-) tephra in varved sediments. Improved techniques for
- 35 extracting tephra from sediments with a low shard concentration (e.g. Merkt et al., 1993; Blockley et al., 2005; Walsh et al., 2021) has enabled distal tephra horizons to be detected in varve lake records, enabling the application of tephrochronology to improve varve chronologies (e.g. Stihler et al., 1992; Wulf et al., 2004, 2016; Palmer et al., 2020), the use of varve chronologies to generate more precise ages for tephra layers (e.g. Lane et al., 2015; Dräger et al., 2017; Walsh et al., 2021) and as a synchronisation tool to better understand the time-transgressive nature of rapid environmental and climatic change at regional scales (Tephra lattices) (Lane et al., 2013; Macleod

et al., 2014; Wulf et al., 2016).

55

Tephra horizons detected within varve sediments are often well constrained, undisturbed and can be precisely dated using the varve chronologies (Lane et al., 2013; Palmer et al., 2020; Walsh et al., 2023). However, a key step in developing a tephrochronology requires a link between the tephra horizon in a sediment archive and an

- 45 eruption of a known age. This stage is normally undertaken using geochemical data which links the tephra to an eruptive centre (Timms et al., 2019). As more tephra horizons have been detected, there have been important community efforts to improve the accessibility of tephra geochemical datasets. Examples include the RESET Database (Bronk Ramsey et al., 2015) and TephraBase (Newton et al., 2007) which both provide geochemical data and metadata related to the sample analysis. VOLCORE (Mahony et al., 2020), is a more recent addition to
- 50 tephra databases, providing stratigraphic and geographical data on visible tephra layers discovered in ocean drilling projects.

Further to this, there has been a major increase in the number of varve chronologies reported over the past 30 years and even more recently an increase in papers discussing tephra horizons detected in varve records (see Fig. 1). In 2012, the Varve Working Group (VWG) created a database of varved records in apps) file format, containing metadata relating to the chronologies of 108 varve lake records, as discussed in <u>Ojala et al., (2012)</u>, but this database lacks specific data from proxies and additional chronological control. The recent development of

In this paper, we present an extensive dataset of tephra horizons identified in varved records-using VARDA,

- VARDA (Varved Sediments Database 1.0 <u>(Ramisch et al., 2020)</u>) has provided for the first time a global database of varve sites that includes metadata on site locations, duration of the varve record and the associated proxy data.
- 60 together with their published geochemical datasets and metadata<u>a</u> as an update to VARDA. This dataset focuses on European varve records<u>on VARDA</u>, specifically during the Last Glacial—Interglacial Transition<u>(LGIT)</u> because of the abundance of sequences with tephra reported in this region. We discuss the nature of lake identification, data collection and the range of records now available within the database.

Figure 1: Results of systematic search of Google Scholar using advanced search functions for each year from 1951 to 2021 using key word searches.

65 2. Methods

70

75

2.1. Lake record identification

This work is an initial stage of a five-year programme which aims to reach a global scale and therefore, as a first step, three criteria were required to be met before tephra data was collected in order to develop the framework for later stages of the project. Firstly, we defined a region to collect tephra data from. Since the taphrostratigraphies, of different volcanic provinces in Europe are reasonably well developed it was considered that there was sufficient tephra data to establish the required metadata and the framework could be tested when developing this part of the database. Secondly, we focused on a specific time period, and, in this case, we chose the Last Glaeial Interglaeial Transition (LGIT),LGIT, here defined broadly between 25 and 8 ka BP. This will enable varved records to be synchronised using tephra during a period of known abrupt climate change during the last deglaciation. Finally, when tephra layers had been identified within a published varve record on VARDA, it was essential that those reported tephra layers included tephra geochemistry and information on the analytical operating conditions including instrument settings and secondary standards used for calibration...

Using the pre-existing "age within time span" and "search by continent" features in VARDA (Fig. 2a), lake records that were within the determined time period and region were narrowed down to a total of 33 records. The

80 next stage consisted of systematic literature search through the Varve Working Group (VWG) papers and, using Google Scholar, to identify more recent publications for each lake site and to determine which sites contained tephra layers.

Figure 2: a) Screenshot of the parameters used on VARDA to narrow down the search for lakes within the specified time frame and region. (Last accessed: 18/07/2022). b) location of all records with tephra geochemical data included in this update. c) region where tephra data has been collected, including relative location to the Greenland ice core records. *** indicates sites that are non-varved.

2.2. Data collection

With the aim of adding new proxy-records to VARDA (which is beyond the scope of the present paper), we structured the newly-acquired data using fields identified in Ramisch *et al.* (2020). Where necessary, new fields were adopted to create a standard approach for documenting and compiling tephra geochemical data in line with established tephra community standards (e.g. Timms *et al.*, 2019; Wallace et al., 2022), and metadata related to the tephra layer as identified by the authors (Table 1 and Table 2). This process generates the relevant information for each individual tephra layer and the sites it has been identified in.

- 90 Of the parameters in Table 1, 'Correlation' and 'Source' are mandatory but can be recorded as 'Unknown'. This allows for 1) the input of tephra geochemical data from unknown eruptions and therefore not correlated to a named tephra layer; and 2) allows for the input of tephra layers with an unknown or unconfirmed volcanic source. Tephra layers without a known source or correlation can still be valuable isochronous marker horizons therefore making these fields mandatory was deemed appropriate.
- 95 Table 2 outlines all the relevant information published with the geochemical data and provides context to the major element geochemistry. This includes providing age estimates and the methods used for dating each layer, which aids in distinguishing identical geochemical signatures based on age. It must be noted that the 'Age cal.BP' provided on the database may vary for the same tephra layer across different sites; defining the 'best' age for a tephra layer is subjective and therefore this project has taken the approach to use the date quoted in the paper
- 100 publishing the geochemical data. This allows for recalculating ages of the tephra horizon using the most recent ¹⁴C calibration curve, if appropriate. In addition, there has been a recent drive in the tephra community for reporting the analytical conditions used for obtaining geochemistry, and including the standard materials used for calibrating the analytical device. This metadata information enables the data to be reproducible and consistent for future tephra investigations and was therefore collected from the literature for each tephra layer, with future
- 105 additions to include the published analytical totals of the standardssecondary standards; comparing analytical totals for secondary standards gives quality assurance for accurate tephra correlations and should be more widely used.

Field Name	Field type	Field Description
Dataset	Short text	File name of the original dataset
Lake	Short text	Name of the lake where the tephra layer was found in
Correlation	Short text	Name of the correlated tephra layer e.g. Vedde Ash
		Option for 'Unknown'
Sample ID	Short text	The lab code of ID used to identify the sample
Source	Short text	Volcanic origin of the tephra layer
		Option for 'Unknown'
Lab	Short text	Laboratory/Institution where analysis was undertaken
Analytical method	Short text	Type of geochemical analysis undertaken e.g. WDS EPMA
SiO2 wt%	Number	Weight total % of Silicon (separate fields for raw and normalised
T'00 /0/		values)
1102 305%	Number	Weight total % of Litanium dioxide (separate fields for raw and
A12O3+84	Mumhar	Normalised values) Waight total % of Aluminium oxide (constate fields for your and
MI203 00 20	number	weight total 76 of Aluminium oxide (separate fields for faw and
FeO(tot) wt%	Number	Waight total % of Iron oxides (senarate fields for raw and
160(101) 00/10	runnoer	weight total 70 of from oxides (separate fields for faw and
MnO wt%	Number	Weight total % of Manganese oxide (senarate fields for raw and
0000 00.0	rumoer	normalised values)
MgO wt%	Number	Weight total % of Magnesium oxide (separate fields for raw and
		normalised values)
CaQ mt%	Number	Weight total % of Calcium oxide (separate fields for raw and
		normalised values)
Na2O wt%	Number	Weight total % of Sodium oxide (separate fields for raw and
		normalised values)
K2O wt%	Number	Weight total % of Potassium oxide (separate fields for raw and
		normalised values)
P2O5 wt%	Number	Weight total % of Phosphorus pentoxide (separate fields for raw
		and normalised values)
SO2 wt%	Number	Weight total % of Sulphur dioxide (separate fields for raw and
6 7		normalised values)
Cl wt%	Number	Weight total % of Chlorine (separate fields for raw and normalised
E	Marchan	values) Wainhthetel % of Elements for the former of the second states in the
г М(30	Number	weight total 76 of Fluorine (separate fields for raw and normalised
Tatal ant#4	Manul	Values) Some of Waight total 9/ of all alarsants
1 otal WC 70	Number	ourn of weight total % of all elements

110 Table 1: Criteria Mandatory fields for recording tephra geochemical data. Creen - Mandatory, Yellow - Optional.

Table 2: Criteria for meta data relating to individual tephra layers, as identified by the publishing authors. Green<u>M</u> = Mandatory, $\frac{\text{Yellow} = 0}{2}$ Optional.

115

Field Name	Field type	Field Description	
Dated in core	True/False	Have the publishing authors dated the tephra layers in situ?	М
		Either True or False	_
Age transfer reference	DOI	If previous field False, provide DOI of the reference for the	0
-		age of the tephra recognised by the authors	_
Age cal BP	Number	Estimated age of the tephra layer in calibrated years before	M
		present (either in situ or external age)	
Cal age mean	Number	Mean tephra age (Optional)	0
Cal age median	Number	Median tephra age (Optional)	ō
Uncertainty (+/-)	Number	Uncertainty of the tephra age in +/- years	ō
Sigma	Number	Confidence window of the age uncertainty: 1 = 68%, 2 =	0
		95.4%, 3 = 99.7%, 4 = 99.9%	
Calibrated	True/False	Has the tephra age provided been calibrated in any way?	M
		E.g. using 14Cs	
Calibration curve	Short text	If "Calibrated = True": calibration curve used for age	
		estimation e.g. IntCall3	
Dating method	Short text	Method used for dating the tephra layer e.g. varve counting,	Μ
2		14Cs, age modelling.	_
Depth	Number	What depth within the lake sequence/core was the tephra	Μ
-		identified at?	_
Depth units	Short text	Unit of measurement for the depth of tephra layers	M
Notes	Short text	Additional relevant information not aligned with any other	0
		field entry	_
Primary data source	URL	DOI of the primary paper that published the tephra	Μ
-		geochemical data	_
Analytical method	Short text	Method used for obtaining geochemical data e.g. WDS	Μ
-		EPMA	
Analytical instrument	Short text	Type of analytical instrument used e.g. Cameca SX-100,	Μ
Beam diameter	Number	Measured in µm	
Beam current	Number	Measured in nA	M
Beam Accelerating	Number	Measured in kV	M
Voltage			_
Standards	Short text	Standard material used for analytical calibration e.g. Lipari	Μ
		Obsidian	

6

Results

- Of the 33 lakes of suitable age and location on VARDA, 22 contained tephra layers, but only 19 of those have
 published geochemical data of the tephra layers (locations displayed in Fig. 2b). The lake archives with tephra
 geochemical data are (Fig. 3, Fig. 4): Belau (Dörfler et al., 2012), Bled (Lane et al., 2011b), Czechowskie (Wulf
 et al., 2016), Diss Mere (Martin-Puertas et al., 2021; Walsh et al., 2021), Eurskogstjärnet (Zillén et al., 2002),
 Gropviken (Macleod et al., 2014), Hämelsee (Jones et al., 2018), Holzmaar (Wulf et al., 2013), Längsee (Schmidt
 et al., 2002), Lochaber (Palmer et al., 2020), Meerfelder Maar (Lane et al., 2015), Lago di Grande Monticchio
 (Wulf et al., 2004, 2008), Mötterudstjärnet (Zillén et al., 2002), Obrid (Vogel et al., 2010), Prespa (Wagner et al.,
- 2012), Rehwiese (Wulf et al., 2013), Soppensee, (Lane et al., 2011a), Tiefer, See (Wulf et al., 2016) and Trzechowskie (Wulf et al., 2013). Where applicable, if only part of the lake record fell within the time frame, all tephra layers found in the record, including pre 25 ka BP and/or post 8 ka BP, were compiled to create a consistent approach for each lake record.
- 130 Figure 3 displays the interconnections established between the archives through the correlated tephra layers. Within these 19 lake archives, there are 49 <u>individual eorrelatedknown</u> tephra layers each with at least one lake archive providing geochemical data. The volcanic source regions for these tephra layers found in Europe are Iceland, Eifel, Massif Central, the <u>Hellenic Arc</u> and <u>the MediterraneanItaly</u>, including multiple tephra layers from the Somma-Vesuvius and Campi <u>Elegrej</u> volcanic complexes. There are an additional 24 tephra layers with 'unknown' correlations that have been included in the database. The Vedde Ash (Iceland) and Laacher See Tephra
- 135 'unknown' correlations that have been included in the database. The Vedde Ash (Iceland) and Laacher See Tephra (Eifel) layers are the most commonly found and if combined, allow us to synchronise nine records (Fig. 3). Geographically the Vedde Ash (Katla, Iceland) is the most widespread tephra layer in the database, reaching from Scotland in the West to Sweden and Slovenia in the East (Fig. 4B). Both the Askja-S tephra layer (Askja, Iceland) and Neapolitan Yellow Tuff (MediterraneanCampi Elaggei, Italy) are found in four records across Europe (Fig.
- 140 4A and 4D). Lage di Grande Monticehio is the site with the most identified tephra layers at present; there are 28 tephra layers (all of Mediterranean origin) within the time period of 0 100ka BP included in the database but additional layers have been identified earlier in the record (See: Wulf *et al.*, 2012), Lago di Grande Monticchio is the site with the most identified tephra layers at present; there are 28 tephra layers (all originating from Italy or the Hellenic Arc) within the time period of 0 100ka BP included in the database but additional layers have been 145 identified earlier in the record (See: Wulf *et al.*, 2012), which will be added to the database in the next steps of the project.

4. Implications

The collection of this information is helpful to identify both the temporal (Fig. 3) and spatial range of the tephra layers in <u>predominantly</u> varved <u>(and three non-varved) sediment</u> records across Europe (Fig. 4). Clearly, there is a concentration of tephra layers reported around the Late <u>glaeialGlacial</u> period (~15 -11 ka BP) most likely reflecting the wealth of studies focusing on investigating this period of abrupt climate change and its impact on the temperate mid-latitudes of Europe. Nonetheless there is considerable scope to extend these studies to the period immediately after the Last Glacial Maximum in Europe. Recent investigations in mid- and late Holocene tephra layers in European varves show potential for a more robust Holocene tephrostratigraphic framework in the

155 North Atlantic sector (Dräger et al., 2017; Walsh et al., 2021; Walsh et al., 2023). Extending the spatial reach of

the tephra database will allow us to build tephra lattices that will help in connecting/synchronising climate records on a global scale.

Comparison of varve records to non-varved records shows where varved sediments with tephra are lacking but will also provide important information on the potential of finding cryptotephra in varve sequences across Europe

160 based on the likely passage of the tephra plume at the time of the cruption. For an example with comparing to other well known tephra databases, Figure 4 displays a kernel density estimation (KDE) of the extent of the Askja-S, Vedde Ash, Laacher See and Neapolitan Yellow Tuff tephra layers using all known records in the RESET Database (Bronk Ramsey of al., 2015a). Superimposed over this, is a KDE of tephra plume using only the sites containing these tephra layers in VARDA (Ramisch of al., 2020). Furthermore, the location of seven additional

- 165 sites with robust varve chronologies, which have high potential for cryptotephra investigations are identified (Figure 4)-dispersal at the time of the cruption. For an example with comparing to other well-known tephra databases, Figure 4 displays a kernel density estimation (KDE) of the extent of the Askja-S, Vedde Ash, Laacher See and Neapolitan Yellow Tuff tephra layers using all known records in the RESET Database (Bronk Ramsey et al., 2015a) and additional more recent sites that extend the known limit of tephra dispersal (Wulf et al., 2013;
- 170 <u>Haflidason et al., 2019; Jones et al., 2020</u>). The KDE in this instance, is used purely statistically to broadly estimate the 95% confidence interval for spatial distribution of sites containing each tephra layer (Bronk Ramsey et al., 2015a). Superimposed over this, is a KDE of the tephra dispersal using only the sites containing these tephra layers in VARDA (Ramisch et al., 2020). Furthermore, the location of six additional sites with varve chronologies (Ammersee, (von Grafenstein et al., 1998; von Grafenstein et al., 1999), Gosciaz, (Bonk et al., 2021; Müller et al.,
- 175 2021), Hancza (Lauterbach et al., 2011b), Lagoon Etoliko (Haenasler et al., 2013), Mondsee (Lauterbach et al., 2011a; Swierczynski et al., 2013) and Schleinsee (Clark et al., 1989)), which have high potential for cryptotephra investigations are highlighted (Figure 4). These sites have been identified through a simple query using VARDA search functions for sites within Europe and within the appropriate time span.

Figure 3: Connectivity of tephra layers between varved lake records, with dashed lines connecting the same layer between records. Ages used are as detailed in the compiled database. *Records that are non-varved but are included for good chronological control-see: Ramisch *et al.*, (2020) for further details.

Figure 4: Kernel Density Estimation plots (Bronk Ramsey et al., 2015a) of four tephra layers present in four or more varve records comparing RESET database supplemented by a selection of more recent identifications that extend the range (dashed line) with the spatial range using the VARDA (solid line). KDE provides a 95% confidence interval on the dispersal range of tephra using the spatial distribution of sites queried. Age estimations sourced from: A) Kearney et al., (2018), B) Bronk Ramsey et al., (2015b), C) Reinig et al., (2021) and D) Bronk Ramsey et al., (2015b). These are the current most precise age estimates for the specific tephra horizons and may not correspond with age estimates in the database.

Tephra sites are as follows: 1 Soppenase; 2 Hämekee; 3 Tiefer See; 4 Czechowskie; 5 Lochaber Master Varve Chronology; 6 Gropviken; 7 Meerfelder, Maar; 8 Bled; 9 Holzmaar; 10 Rehwiese; 11 Trzechowskie; 12 Längses; 13 Lago di Grande Monticchio.

Potential tephra sites are: a Hancza; b Gonciaz; c Schleimse; d Ammerses; e Mondaes; f Lagoon Etolia.

185 **185** Conclusions

There is much potential in detecting (crypto-) tephra in varved sediment records as they act as one of the most precise forms of isochronous marker horizons that can help in better understanding the rates of regional climatic responses to global perturbations. By concentrating on the European tephrostratigraphy during the LGIT, we have initiated the inclusion of these important datasets, in particular the geochemical information and metadata to

- 190 improve accessibility. Further iterations of this expanded database are planned through the PAGES Database Stewardship Scholarship by extending the spatial coverage and temporal range for tephra horizons in varved sediments. The inclusion of tephra geochemistry in the database provides an opportunity to explore unsupervised data-analysis of tephra geochemistry (e.g. machine learning) beyond current-methodologies. Expanding the collection of tephra geochemistry provides opportunities to explore novel and emerging data analysis techniques
- 195 to identify unknown tephra layers based on their geochemical signatures, potential dispersal and estimated age. Finally, further research into tephrochronology in varved records should focus on exploring other regions and time periods with as much intensity as has been given to the LGIT in Europe.

O. Data availability

200 Tephra geochemical data compiled for this project is available open access at the GFZ Data Services https://doi.org/10.5880/fidgeo.2023.015 (Beckett et al., 2022) or via https://varve.gfz-potsdam.de.

3-7. Author Contributions

AnB; Data Curation; Investigation; Validation; Visualisation; Manuscript Writing (original draft & review/editing). CB: Visualisation; Project administration; Manuscript writing (review/editing). AlB; Database administration; Data curation; Manuscript writing (review/editing); Software. RK: Manuscript writing (review/editing); CMP: Conceptualization; Funding acquisition; Manuscript writing (review/editing); KM: Database administration; Software. AP: Conceptualization; Manuscript Writing (review/editing); Project Administration; Funding acquisition; Manuscript writing (review/editing); Project Administration; Software.

210 Supervision. AR: Conceptualization; Project administration. ACB: Manuscript writing (review/editing); Conceptualization.

4-8. Competing interests

The authors declare that they have no conflict of interest.

215

9. Acknowledgements

We acknowledge the PAGES Data Stewardship Scholarship (No 102) for financial support in the generation and inclusion of the tephra datasets into the database. This work was supported by the German Federal Ministry of Education and Research (BMBF) as a Research for Sustainability initiative (FONA; http://www.fona.de, last access: 10 November 2022) through the Palmod project. Professor Simon Blockley is thanked for his help accessing and navigating the RESET Database.

10. References

Blockley, S. P. E., Pyne-O'Donnell, S. D. F., Lowe, J. J., Matthews, I. P., Stone, A., Pollard, A. M., Turney, C. S. M., and Molyneux, E. G.: A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments, Quaternary Science Reviews, 24, 1952–1960, https://doi.org/10.1016/j.quascirev.2004.12.008, 2005.

Bonk, A., Müller, D., Ramisch, A., Kramkowski, M. A., Noryśkiewicz, A. M., Sekudewicz, I., Gąsiorowski, M., Luberda-Durnaś, K., Słowiński, M., Schwab, M., Tjallingii, R., Brauer, A., and Błaszkiewicz, M.: Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland), Quaternary Science Reviews, 251, 106715, https://doi.org/10.1016/j.quascirev.2020.106715, 2021.

Brauer, A.: Annually Laminated Lake Sediments and Their Palaeoclimatic Relevance, in: The Climate in Historical Times: Towards a Synthesis of Holocene Proxy Data and Climate Models, edited by: Fischer, H., Kumke, T., Lohmann, G., Flöser, G., Miller, H., von Storch, H., and Negendank, J. F. W., Springer, Berlin, Heidelberg, 109–127, https://doi.org/10.1007/978-3-662-10313-5 7, 2004.

Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F. W.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Nature Geosci, 1, 520–523, https://doi.org/10.1038/ngeo263, 2008.

Bronk Ramsey, C., Housley, R. A., Lane, C. S., Smith, V. C., and Pollard, A. M.: The RESET tephra database and associated analytical tools, Quaternary Science Reviews, 118, 33–47, https://doi.org/10.1016/j.quascirev.2014.11.008, 2015a.

Bronk Ramsey, C., Albert, P.G., Blockley, S.P., Hardiman, M., Housley, R.A., Lane, C.S., Lee, S., Matthews, I.P., Smith, V.C. and Lowe, J.J.: Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews, 118, 18-32. https://doi.org/10.1016/j.quascirev.2014.11.007, 2015b

Clark, J. S., Merkt, J., and Muller, H.: Post-Glacial Fire, Vegetation, and Human History on the Northern Alpine Forelands, South-Western Germany, Journal of Ecology, 77, 897–925, https://doi.org/10.2307/2260813, 1989.

Dörfler, W., Feeser, I., van den Bogaard, C., Dreibrodt, S., Erlenkeuser, H., Kleinmann, A., Merkt, J., and Wiethold, J.: A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies - Walter Dörfler, Ingo Feeser, Christel van den Bogaard, Stefan Dreibrodt, Helmut Erlenkeuser, Angelika Kleinmann, Josef Merkt, Julian Wiethold, 2012, The Holocene, 22, 1413–1426, https://doi.org/10.1177/0959683612449756, 2012.

Dräger, N., Theuerkauf, M., Szeroczyńska, K., Wulf, S., Tjallingii, R., Plessen, B., Kienel, U., and Brauer, A.: Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany), The Holocene, 27, 450–464, https://doi.org/10.1177/0959683616660173, 2017.

von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J., and Johnsen, S.: The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland, Climate Dynamics, 14, 73–81, https://doi.org/10.1007/s003820050210, 1998.

Grafenstein, U. von, Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S. J.: A Mid-European Decadal Isotope-Climate Record from 15,500 to 5000 Years B.P., Science, 284, 1654–1657, https://doi.org/10.1126/science.284.5420.1654, 1999.

Haenssler, E., Nadeau, M.-J., Vött, A., and Unkel, I.: Natural and human induced environmental changes preserved in a Holocene sediment sequence from the Etoliko Lagoon, Greece: New evidence from geochemical proxies, Quaternary International, 308–309, 89–104, https://doi.org/10.1016/j.quaint.2012.06.031, 2013.

Haflidason, H., Regnéll, C., Pyne-O'Donnell, S., and Svendsen, J. I.: Extending the known distribution of the Vedde Ash into Siberia: occurrence in lake sediments from the Timan Ridge and the Ural Mountains, northern Russia, Boreas, 48, 444–451, https://doi.org/10.1111/bor.12354, 2019.

Jones, G., Lane, C. S., Brauer, A., Davies, S. M., de Bruijn, R., Engels, S., Haliuc, A., Hoek, W. Z., Merkt, J., Sachse, D., Turner, F., and Wagner-Cremer, F.: The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework, Boreas, 47, 28–40, https://doi.org/10.1111/bor.12250, 2018.

Jones, G., Davies, S. M., Staff, R. A., Loader, N. J., Davies, S. J., and Walker, M. J. C.: Traces of volcanic ash from the Mediterranean, Iceland and North America in a Holocene record from south Wales, UK, Journal of Quaternary Science, 35, 163–174, https://doi.org/10.1002/jqs.3141, 2020.

Kearney, R., Albert, P.G., Staff, R.A., Pál, I., Veres, D., Magyari, E. and Ramsey, C.B.: Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker. Quaternary Science Reviews, 188, 174-182. https://doi.org/10.1016/j.quascirev.2018.03.035, 2018.

Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C., and Lotter, A. F.: Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: A case study of Soppensee and NGRIP, Quaternary International, 246, 145–156, https://doi.org/10.1016/j.quaint.2010.11.028, 2011a.

Lane, C. S., Andrič, M., Cullen, V. L., and Blockley, S. P. E.: The occurrence of distal Icelandic and Italian tephra in the Lateglacial of Lake Bled, Slovenia, Quaternary Science Reviews, 30, 1013–1018, https://doi.org/10.1016/j.quascirev.2011.02.014, 2011b.

Lane, C. S., Brauer, A., Blockley, S. P. E., and Dulski, P.: Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas, Geology, 41, 1251–1254, https://doi.org/10.1130/G34867.1, 2013.

Lane, C. S., Brauer, A., Martín-Puertas, C., Blockley, S. P. E., Smith, V. C., and Tomlinson, E. L.: The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany, Quaternary Science Reviews, 122, 192–206, https://doi.org/10.1016/j.quascirev.2015.05.025, 2015.

Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Obremska, M., Von Grafenstein, U., and Participants, D.: Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps), Journal of Quaternary Science, 26, 253–267, https://doi.org/10.1002/jqs.1448, 2011a.

Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Plessen, B., Grafenstein, U. V., and Participants, D.: Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland, Boreas, 40, 57–72, https://doi.org/10.1111/j.1502-3885.2010.00159.x, 2011b.

Macleod, A., Brunnberg, L., Wastegård, S., Hang, T., and Matthews, I. P.: Lateglacial cryptotephra detected within clay varves in Östergötland, south-east Sweden, Journal of Quaternary Science, 29, 605–609, https://doi.org/10.1002/jqs.2738, 2014.

Mahony, S. H., Barnard, N. H., Sparks, R. S. J., and Rougier, J. C.: VOLCORE, a global database of visible tephra layers sampled by ocean drilling, Sci Data, 7, 330, https://doi.org/10.1038/s41597-020-00673-1, 2020.

Martin-Puertas, C., Walsh, A. A., Blockley, S. P. E., Harding, P., Biddulph, G. E., Palmer, A., Ramisch, A., and Brauer, A.: The first Holocene varve chronology for the UK: Based on the integration of varve counting, radiocarbon dating and tephrostratigraphy from Diss Mere (UK), Quaternary Geochronology, 61, 101134, https://doi.org/10.1016/j.quageo.2020.101134, 2021.

Merkt, J., Müller, H., Knabe, W., Müller, P., and Weiser, T.: The early Holocene Saksunarvatn tephra found in lake sediments in NW Germany, Boreas, 22, 93–100, https://doi.org/10.1111/j.1502-3885.1993.tb00168.x, 1993.

Müller, D., Tjallingii, R., Płóciennik, M., Luoto, T. P., Kotrys, B., Plessen, B., Ramisch, A., Schwab, M. J., Błaszkiewicz, M., Słowiński, M., and Brauer, A.: New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland, Boreas, 50, 535–555, https://doi.org/10.1111/bor.12499, 2021.

Newton, A. J., Dugmore, A. J., and Gittings, B. M.: Tephrabase: tephrochronology and the development of a centralised European database, Journal of Quaternary Science, 22, 737–743, https://doi.org/10.1002/jqs.1094, 2007.

Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M., and Lamoureux, S. F.: Characteristics of sedimentary varve chronologies – A review, Quaternary Science Reviews, 43, 45–60, https://doi.org/10.1016/j.quascirev.2012.04.006, 2012.

Palmer, A. P., Matthews, I. P., Lowe, J. J., MacLeod, A., and Grant, R.: A revised chronology for the growth and demise of Loch Lomond Readvance ('Younger Dryas') ice lobes in the Lochaber area, Scotland, Quaternary Science Reviews, 248, 106548, https://doi.org/10.1016/j.quascirev.2020.106548, 2020.

Ramisch, A., Brauser, A., Dorn, M., Blanchet, C., Brademann, B., Köppl, M., Mingram, J., Neugebauer, I., Nowaczyk, N., Ott, F., Pinkerneil, S., Plessen, B., Schwab, M. J., Tjallingii, R., and Brauer, A.: VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments, Earth System Science Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, 2020.

Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early Holocene climate oscillations recorded in three Greenland ice cores, Quaternary Science Reviews, 26, 1907–1914, https://doi.org/10.1016/j.quascirev.2007.06.015, 2007.

Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J. and Land, A.: Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature, 595(7865), 66-69. https://doi.org/10.1038/s41586-021-03608-x, 2021.

Schmidt, R., van den Bogaard, C., Merkt, J., and Müller, J.: A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate, Quaternary International, 88, 45–56, https://doi.org/10.1016/S1040-6182(01)00072-6, 2002.

Stihler, S. D., Stone, D. B., and Beget, J. E.: "Varve" counting vs. tephrochronology and 137Cs and 210Pb dating: A comparative test at Skilak Lake, Alaska, Geology, 20, 1019–1022, https://doi.org/10.1130/0091-7613(1992)020<1019:VCVTAC>2.3.CO;2, 1992.

Swierczynski, T., Lauterbach, S., Dulski, P., and Brauer, A.: Late Neolithic Mondsee Culture in Austria: living on lakes and living with flood risk?, Climate of the Past, 9, 1601–1612, https://doi.org/10.5194/cp-9-1601-2013, 2013.

Timms, R. G. O., Matthews, I. P., Lowe, J. John., Palmer, A. P., Weston, D. J., MacLeod, A., and Blockley, S. P. E.: Establishing tephrostratigraphic frameworks to aid the study of abrupt climatic and glacial transitions: a case study of the Last Glacial-Interglacial Transition in the British Isles (c. 16-8 ka BP), Earth-Science Reviews, 192, 34–64, https://doi.org/10.1016/j.earscirev.2019.01.003, 2019.

Vogel, H., Zanchetta, G., Sulpizio, R., Wagner, B., and Nowaczyk, N.: A tephrostratigraphic record for the last glacial–interglacial cycle from Lake Ohrid, Albania and Macedonia, Journal of Quaternary Science, 25, 320–338, https://doi.org/10.1002/jqs.1311, 2010.

Wagner, B., Aufgebauer, A., Vogel, H., Zanchetta, G., Sulpizio, R., and Damaschke, M.: Late Pleistocene and Holocene contourite drift in Lake Prespa (Albania/F.Y.R. of Macedonia/Greece), Quaternary International, 274, 112–121, https://doi.org/10.1016/j.quaint.2012.02.016, 2012.

Wallace, K. L., Bursik, M. I., Kuehn, S., Kurbatov, A. V., Abbott, P., Bonadonna, C., Cashman, K., Davies, S.M., Jensen, B., Lane, C., Plunkett, G., Smith, V. C., Tomlinson, E., Thordarsson, T., and Walker, J. D.:

Community established best practice recommendations for tephra studies—from collection through analysis, Sci Data, 9, 447, https://doi.org/10.1038/s41597-022-01515-y, 2022.

Walsh, A. A., Blockley, S. P. E., Milner, A. M., Matthews, I. P., and Martin-Puertas, C.: Complexities in European Holocene cryptotephra dispersal revealed in the annually laminated lake record of Diss Mere, East Anglia, Quaternary Geochronology, 66, 101213, https://doi.org/10.1016/j.quageo.2021.101213, 2021.

Walsh, A. A., Blockley, S. P. E., Milner, A. M., and Martin-Puertas, C.: Updated age constraints on key tephra markers for NW Europe based on a high-precision varve lake chronology, Quaternary Science Reviews, 300, 107897, https://doi.org/10.1016/j.quascirev.2022.107897, 2023.

Wulf, S., Kraml, M., Brauer, A., Keller, J., and Negendank, J. F. W.: Tephrochronology of the 100ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quaternary International, 122, 7–30, https://doi.org/10.1016/j.quaint.2004.01.028, 2004.

Wulf, S., Kraml, M., and Keller, J.: Towards a detailed distal tephrostratigraphy in the Central Mediterranean: The last 20,000 yrs record of Lago Grande di Monticchio, Journal of Volcanology and Geothermal Research, 177, 118–132, https://doi.org/10.1016/j.jvolgeores.2007.10.009, 2008.

Wulf, S., Keller, J., Paterne, M., Mingram, J., Lauterbach, S., Opitz, S., Sottili, G., Giaccio, B., Albert, P. G., Satow, C., Tomlinson, E. L., Viccaro, M., and Brauer, A.: The 100–133 ka record of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio, Quaternary Science Reviews, 58, 104–123, https://doi.org/10.1016/j.quascirev.2012.10.020, 2012.

Wulf, S., Ott, F., Słowiński, M., Noryśkiewicz, A. M., Dräger, N., Martin-Puertas, C., Czymzik, M., Neugebauer, I., Dulski, P., Bourne, A. J., Błaszkiewicz, M., and Brauer, A.: Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland, Quaternary Science Reviews, 76, 129–139, https://doi.org/10.1016/j.quascirev.2013.07.010, 2013.

Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Guðmundsdóttir, E., van den Bogaard, C., Słowiński, M., Błaszkiewicz, M., and Brauer, A.: Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland), Quaternary Science Reviews, 132, 1–14, https://doi.org/10.1016/j.quascirev.2015.11.007, 2016.

Zillén, L. M., Wastegård, S., and Snowball, I. F.: Calendar year ages of three mid-Holocene tephra layers identified in varved lake sediments in west central Sweden, Quaternary Science Reviews, 21, 1583–1591, https://doi.org/10.1016/S0277-3791(02)00036-7, 2002.

Zolitschka, B., Francus, P., Ojala, A. E. K., and Schimmelmann, A.: Varves in lake sediments – a review, Quaternary Science Reviews, 117, 1–41, https://doi.org/10.1016/j.quascirev.2015.03.019, 2015.