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Abstract Water quality data represents a critical resource for the evaluation of aquatic ecosystems' well-being and 

the assurance of clean water sources for human populations. While the availability of water quality datasets is 20 

growing, the absence of a publicly accessible national water quality dataset for both inland and ocean in China has 

been notable. To address this issue, we utilized R and Python programming languages to collect, tidy, reorganize, 

curate, and compile three publicly available datasets, thereby creating an extensive spatiotemporal repository of 

surface water quality data for China. Distinguished as the most expansive, clean, and easily accessible water quality 

dataset in China by now, this repository comprised over 330,000 observations encompassing daily (3,588), weekly 25 

(217,751), and monthly (114,954) records of surface water quality spanning the period from 1980 to 2022. It 

spanned 18 distinct indicators, meticulously gathered at 2384 monitoring sites, which were further categorized as 

daily (244 sites), weekly (149 sites), and monthly (1,991 sites), ranging from inland locations to coastal and oceanic 

areas. This dataset will support studies relevant to the assessment, modelling, and projection of water quality, ocean 

biomass, and biodiversity in China, and therefore make substantial contributions to both national and global water 30 

resources management.  

This water quality dataset and supplementary metadata are available for download on figshare repository at 

https://doi.org/10.6084/m9.figshare.22584742.v1 (Lin et al., 2023). 

 

1 Introduction 35 

The implications of the 2030 Agenda for Sustainable Development necessitate the utilization of high-quality 

monitoring data for the purpose of gauging progress and facilitating evidence-based policymaking (Allen et al., 
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2021). Water, constituting the foundational pillar of sustainable development (UNESCO, 2019), bears a profound 

interconnection with numerous targets within the Sustainable Development Goals (SDGs), notably SDG 6 (Sadoff et 

al., 2020), which endeavors to ensure the universal availability and sustainable management of water and sanitation, 40 

and SDG 14, which focuses on the conservation and sustainable utilization of oceans, seas, and marine resources. 

With the campaign of ecological civilization and a series of marine policies (e.g., Maritime Power and Strategy, 

Chen et al., (2019)), China is committed to the preservation of water resources while simultaneously advancing 

resource management methodologies. To effectively accomplish the United Nations' SDGs and align with China's 

extensive policy frameworks, it is crucial to systematically compile water-related data across both inland and 45 

coastal/oceanic domains (Dai et al., 2022). Within the context of the Source-to-Sea (S2S) aquatic continuum, water 

quality data emerges as a pivotal factor in discerning pollution levels (Regnier et al., 2022). This information plays a 

critical role in the preservation of water resources and the provision of sanitation services (UNESCO, 2023). 

Water quality refers to the selected physical, chemical, and biological characteristics of water that determine its 

suitability for a particular use (World Health Organization, 2017). There are some key properties widely recognized 50 

for measuring water quality. In terms of physical characteristics, key considerations include the color, temperature 

(TEMP), sediment content, turbidity, electrical conductivity, and the concentration of Total Suspended Solids 

(TSSs) (Oteng-Peprah et al., 2018). Chemical constituents play a significant role in the determination of water 

quality. These encompass parameters such as the Potential of Hydrogen (pH), acidity levels, and indicators 

reflecting nutrient levels, including Ammonia Nitrogen (NH4N), Nitrite Nitrogen (NO2N), and Nitrate Nitrogen 55 

(NO3N), and various forms of phosphorus such as Dissolved Inorganic Phosphorus (DIP) and Total Phosphorus 

(TP). Additionally, the concentration of oxygen required for microorganisms to decompose organic matter is highly 

considered, which includes Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and 

Dissolved Oxygen (DO) (Hassan Omer, 2020). Biological indicators provide insights into the presence, condition, 

and abundance of various living organisms within water bodies, such as bacteria, algae, and pathogens. Overall, 60 

these indicators are crucial for assessing water quality and ensuring the health of aquatic ecosystems and human 

populations that rely on clean water sources.  

Sustaining elevated water quality standards stands as an imperative requisite for the perpetuity of diverse spheres, 

encompassing natural ecosystems, public health, and socio-economic systems. Contaminants such as excessive 

nutrients that enter water bodies can have detrimental effects on the integrity, functioning, and biodiversity of both 65 

riverine and oceanic ecosystems which provide a habitat for a diverse array of flora and fauna (Morin and Artigas, 

2023). For instance, the influx of pesticides into aquatic systems has been unequivocally associated with the 

diminishment of aquatic species and perturbations in food chains (Stehle et al., 2015). Consequently, the unwavering 

adherence to stringent water quality standards emerges as an imperative measure for ameliorating the adversative 

consequences, thereby safeguarding fragile habitats, and preserving ecological equilibrium (Hering et al.,2015). 70 

Furthermore, the assurance of clean water represents a fundamental safeguard against the outbreak of waterborne 

maladies (Gleick and Palaniappan, 2010), with direct implications for the preservation of public health (Prüss-Ustün 

et al., 2014) and the concomitant mitigation of healthcare expenditures. Maladies such as cholera, typhoid, and 
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hepatitis find direct causation in the inadequacy of water quality (Leju Celestino Ladu et al., 2018). Lastly, impaired 

water quality can have severe economic consequences, including reduced agricultural productivity, increased costs 75 

of water treatment, and damage to tourism industries reliant on pristine water bodies (United Nations, 2018).  

The recognition of the significance of the water quality to nature, society, food, and security has accelerated the 

arising and availability of local, national, and global water quality datasets. For example, local water quality datasets 

include the water QUAlity, DIscharge and Catchment Attributes providing data for 1386 German catchments for the 

purpose of studying the species of nitrogen, phosphorus, and organic carbon (Ebeling et al., 2022), a set of water 80 

chemistry measurements including carbon species, dissolved nutrients, and major ions to describe the 

biogeochemical conditions of permafrost-affected in Arctic watersheds (Shogren et al., 2022), catchment-wide 

biogeochemical monitoring platform for capturing water temperature, pH, alkalinity, suspended solid, chlorophyll 

concentrations, and nutrient and cation data of the Thames basin in the United Kingdom to promote drinking water 

resource management (Bowes et al., 2018). The Water Quality Portal (WQP) is comprising thousands of water 85 

quality variables encompassing physical conditions, chemical and bacteriological water analyses, chemical analyses 

of fish tissue, taxon abundance data, toxicity data, habitat assessment scores, and biological index scores, which was 

widely applied to lots of domains (e.g., to examine water clarity in lakes and reservoirs; Read et al., 2017). 

Aggregating five large water quality datasets, the Global River Water Quality Archive (GRQA) has significantly 

expanded both the geographic and historical reach of existing water quality datasets by incorporating 42 parameters 90 

related to nutrient species, carbon content, sediment composition, and oxygen levels (Virro et al., 2021). 

Despite significant advances in open data science for water quality research globally, Asia lags far behind other 

regions in this regard (Virro et al., 2021; Lin et al., 2023). As the largest country in East Asia, China's water quality 

data are notably limited in the comprehensive global dataset, with a notable absence of data from coastal and 

oceanic regions. The publicly available data consists of only 3595 daily observations in total from 244 sites, 95 

spanning from 1980 to 2009, as documented in GRQA. This is far from being adequate for water quality analysis 

and modelling. Additionally, the water data available from open data centres are stored in a user-unfriendly format 

that require significant additional efforts to make them credible, editable, and reusable. For example, monthly water 

quality data spanning from 2006 to 2022 are presented as reports with figures derived from statistical analysis, 

instead of providing more reliable monitoring data. Although some studies have employed national-scale water 100 

quality data for assessment and modelling covering China (Ma et al., 2020a; Ma et al., 2020b; Huang et al., 2021; 

Zhang et al., 2022), these datasets are not publicly available due to licensing restrictions and/or government-

sanctions (Lin et al., 2023). To date, there is no clean and publicly accessible national water quality dataset covering 

whole China. 

Therefore, there is a pressing need to reorganize, curate, and manage the continuous, long-time series, standardized, 105 

well-organized, and consistent water quality datasets from inland to coastal/oceanic areas within China. These 

datasets stand as invaluable resources to support researchers and decision-makers. They enable an in-depth 

examination of water quality status, encompassing the entire spectrum from riverine environments to the vast 

expanse of the oceans. Furthermore, they provide the means to model various dimensions of water quality indicators 
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and forecast the ramifications of emergent water pollution phenomena (i.e., coastal eutrophication and oceanic 110 

harmful algal blooms due to additional nitrogen input from land and releases of radionuclides from inland redundant 

nuclear power plant accidents). It is also valuable to the effective management of water resources to support the 

United Nation Water Action Decade (2018-2028) and Ocean Decade (2021-2030; Folke et al., 2021). Our water 

quality dataset is thus initiated to meet the huge demand for Chinese water quality data, to boost national water data 

sharing, and to advance global water-related research and applications. It intends to collect non-sensitive and 115 

publicly available water quality data, to apply consistency to the formatting and curation, and to establish a 

standardized set of metadata for different water quality aspects.  

2 Data and methods 

2.1 Openly accessible data sources 

The Chinese surface water quality dataset presented herein derived from three publicly accessible online data 120 

sources. Details of these original datasets were provided in Table 1. 

Table 1. Source datasets for compiling China water quality dataset. 

Name Data Sources Timestep 
Original observations 

(source/China) 
Timeframe 

Number of the 

parameters 

Number of  

the sites 

(source/China) 

Global daily water 
quality data 

Global River Water Quality 
Archive (GRQA) 

Daily 
17,000,000/3595 1898-2020 42 93,057/244 

National weekly 
water quality data 

China National Environmental 
Monitoring Centre (CNEMC) 

Weekly (7-day 
moving 
average) 

225,336/225,336 2007-2018 4 150/150 

National monthly 
water quality data 

National Marine Environmental 
Monitoring Center (NMEMC) 

monthly  

116,304/116,304 2017-2022 6 1991/1991 

 

2.1.1 GRQA 

As the most comprehensive water quality dataset, GRQA has incorporated inland water quality data from five 125 

existing sources, including the Canadian Environmental Sustainability Indicators program, Global Freshwater 

Quality Database, GLObal RIver Chemistry database, European Environment Agency, and USGS WQP for selected 

42 water quality parameters (e.g., nutrients, carbon, oxygen, and sediments; Read et al., 2017; Virro et al., 2021) 

with globally 93,057 sites in total spanning from 1898 to 2020 (Table 1).  

2.1.2 CNEMC 130 

As the most advanced and complete environmental data center, the China National Environmental Monitoring 

Centre (CNEMC) is an online information system managed by the agency of the China Ministry of Ecology and 

Environment. The CNEMC was established in 1979 to monitor all environmental aspects (e.g., quality of air, water, 

soil), to provide publicly online data, to assess environmental impacts, and to report on water environment for local 

and national governments. Water quality data available from this center included yearly water quality reports 135 
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spanning from 2006 to 2022 (http://www.cnemc.cn/jcbg/qgdbsszyb/index_6.shtml), 7-day moving average 

(weekly) inland water quality data stored into individual WORD file or PDF file named by year with week number 

spanning from the year of 2007 to 2018 (Table 1), real-time water quality data for 11 indicators (TEMP, electrical 

conductivity, pH, DO, turbidity, CODMn, NH4H, TP, TN, Chlorophyll, and algal density) with a frequency of 4 

hours (https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html), and real-time water quality data with a 140 

frequency of 1 month for 25 indicators (TEMP, electrical conductivity, pH, DO, turbidity, CODMn, BOD, NH4H, TP, 

TN, Fluorid, Cu, Zn, Se, As, Hg, Cd, Cr, Pb, Cyanide, Volatile Phenol, Total Petroleum Hydrocarbons (TPH), An-

ionic Surfactant, and Sulfide) with data licensing and sharing restrictions. In this paper, we provided the digital 

weekly water quality data which is publicly available.  

This weekly water quality data was collected and constructed by following the standards from the Environmental 145 

Quality standards for surface water (GB3838-2002). Water samples were automatically collected at six intervals 

throughout the day, with a sampling frequency of one sample every four hours (00:00-04:00, 04:00-08:00, 08:00-

12:00, 12:00-16:00, 16:00-20:00, 20:00-24:00). The weekly water quality dataset was derived through the 

computation of daily averages encompassing Monday through Sunday. This process yielded a single numerical 

value that served as a representative of a set of valid data samples. Specifically, a minimum of four data samples 150 

were aggregated to calculate the daily average, and five daily average data points were used to compute the weekly 

average. 

2.1.3 NMEMC 

Maintained by the China Ministry of Ecology and Environment since 2018, the National Marine Environmental 

Monitoring Center (NMEMC) is an agency of a history of 60 years that specialized in marine ecological and 155 

environmental monitoring and protection. Monthly coastal/oceanic water quality data were accessible via 

http://ep.nmemc.org.cn:8888/Water/ that were recorded from the year 2017 to 2023 and kept updated until now. 

Meanwhile weekly water quality reports of some important beaches along the coastal areas of China from 2019-

2022 were available via http://www.nmemc.org.cn/hjzl/hsycszzb/index.shtml and annual average ocean 

ecological environment bulletins http://www.nmemc.org.cn/hjzl/sthjgb/. Observation data were only available for 160 

monthly coastal/oceanic water quality data. 

Guidelines in the Specification for Offshore Environmental Monitoring (HJ 442-2008) directed the methodologies, 

criteria, and quality assurance measures for monthly sampling of ocean water quality. Employing Niskin and Go-Flo 

water samplers, samples were collected multiple times annually, typically during the months of April through 

December, as illustrated in Figure 1. The acquisition of this dataset entailed the collection of various quality control 165 

samples, including matrix spikes, blanks, parallels, and quality control check samples, which underwent meticulous 

collection and subsequent intra-laboratory comparison.  

http://www.cnemc.cn/jcbg/qgdbsszyb/index_6.shtml
https://szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html
http://ep.nmemc.org.cn:8888/Water/
http://www.nmemc.org.cn/hjzl/hsycszzb/index.shtml
http://www.nmemc.org.cn/hjzl/sthjgb/
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Figure 1. Sampling frequency for ocean water quality 

 170 

2.2 Procedure for downloading and preprocessing source data  

2.2.1 Data capturing 

We extracted those sites located in China based on the geopolitical map after importing all coordinate data of the 

GRQA dataset into ArcGIS10.8. Afterwards, metadata information of countries/regions from GRQA were tidied and 

renamed for consistency. For instance, regions identified as “HK”, “Macao”, and “Taiwan” were renamed as 175 

“China”. Therefore, we obtained daily water quality data in China from GRQA, which consisted of 244 stations for 

15 selected water quality indicators (i.e., BOD, DO, COD, DIP, Dissolved Oxygen Saturation (DOSAT), NH4N, 

NO2N, NO3N, pH, Total Dissolved Phosphorus (TDP), TEMP, TP, TSSs, Dissolved Organic Carbon (DOC), and 

Total Organic Carbon (TOC)). 

Weekly water quality data were tidied up from the reports collection derived from 180 

http://www.cnemc.cn/sssj/szzdjczb/index.shtml. To obtain all these files automatically, we inspected the elements 

of the webpage to locate the key nodes where href attribute specified the URL of the page the link goes for each 

report. Subsequently, a series of packages (i.e., rvest, RSelenium, XML, purrr) in R language were used to request 

remote URL and scrape the hyperlinks. A collection of hyperlinks was listed to download the original reports using 

downloader package. A total of 500 reports were identified, all of which were in WORD file format (i.e., DOC, 185 

DOCX, and PDF). These reports were originally designated with filenames that combined the year and the week 

number. Upon closer examination of the front-page summaries in each report, it came to our attention that certain 

original report filenames exhibited inconsistencies with the actual content within. An illustrative example was the 

report labeled as "2010 - 1st week," which erroneously contained observations from the 37th week of the same year. 

A comparable situation arose with the reports for the 53rd week in the years 2011 and 2013, as revealed through an 190 

individual cross-referencing of filenames and report summaries. After the identification of these duplications, the 

affected files were expunged from the collection. Subsequently, a conversion process was undertaken to transform 

each of these files into editable CSV files. These CSV files were then amalgamated into a unified worksheet file, 

comprising 11 columns. These columns encompassed a serial number, information on the watersheds 

(MonitoringLocationDescriptionText), the site name (MonitoringLocationName), the monitoring location type (e.g., 195 

river, lake, and reservoir; MonitoringLocationType), indicator values, the water quality index for the current week, 

http://www.cnemc.cn/sssj/szzdjczb/index.shtml
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the water quality index for the previous week, and descriptions on major pollutants. The columns related to the 

water quality index for the current week, the water quality index for the previous week, and major pollutants were 

omitted from the dataset, as they primarily consisted of descriptive text aimed at summarizing water quality 

information. The column containing the serial number was also excluded. The indicators featured in this dataset 200 

included DO, CODMn, NH4N, and pH. 

We have collected the monthly coastal/oceanic water quality data from the NMEMC manually for the years 2017, 

2018, 2019, 2020, 2021, and 2022. All data were stored as CSV files and were appended into a single worksheet 

file, which consisted of 14 columns (i.e., ocean’s name (MonitoringLocationDescriptionText), province 

(ProvinceName), city (CityCode), code of the monitoring station (Source_MonitoringLocationCode), longitude 205 

(LongitudeMeasure_WGS84), latitude (LongitudeMeasure_WGS84), monitoring date (MonitoringDate), values of 

the indicators, water quality index for the current month). The column of the water quality index for this observation 

was removed. Indicators of the coastal/oceanic water quality data included COD, Dissolved Inorganic Nitrogen 

(DIN), DO, DIP, pH, and TPH. 

2.2.2 Coordinates of the monitoring sites  210 

Information of longitude and latitude is the fundamental information for identifying the location of a monitoring site. 

They were used to export spatial point data and were overlapped with other maps to obtain metadata information. 

For daily water quality data, the longitude and latitude information were given by the GRQA dataset. Site location 

for weekly water quality data was coded as plain text of the administrative address, lacking geographic coordinates 

(i.e., longitude, latitude). We first used geocoding API methods to find the address for a given place, thereby 215 

transforming the address into a corresponding geographic entity. Afterwards, we validated each of them by 

overlapping with the layers of watersheds and rivers according to the official maps obtained from the National 

Geomatics Center of China (http://www.ngcc.cn/ngcc/html/1/391/392/16114.html). All sites were confirmed to be 

located at the outlet of a river reach. As the geographic coordinates for the station labeled "Xuqiao" were 

unidentifiable from the provided information within the original files, the data associated with this station were 220 

excluded from the dataset. 

General information for the monthly coastal/oceanic water quality data was findable via the NMEMC. However, 

there were some information inconsistencies in longitude and latitude for the same station or place. For example, the 

station with code number FJD10003 was recorded with 120.57 E and 26.84 N in the year 2021 but with 120.58 E 

and 26.84 N in 2022. In addition, some stations with the same longitude and latitude may have different code 225 

numbers. Therefore, we first grouped them by code numbers and computed the average value of the longitude and 

latitude of that station to replace the initial value. Subsequently, we removed the column of the code number to 

avoid the same stations. Finally, we dropped the duplicated rows to get the unique stations. 

All the transferred longitude and latitude information was merged into a single table and then imported into ArcGIS 

as point shapefile in World Geodetic System 1984 (WGS84). After overlapping with the city-level administrative 230 
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map and watersheds delineation map obtained from the National Geomatics Center of China, we derived other 

metadata information such as city, sub-watersheds (MonitoringLocationTypeName), etc. The code for the province 

(ProvinceCode) and city (CityCode) was referred to the China Area Code and Zip code of Version 2021. 

2.2.3 Data cleaning and technical validation 

We undertook a comprehensive standardization process across all the above mentioned data providers. This 235 

harmonization encompassed the transformation of downloaded time series into a uniform file format, shifting from 

CSV files to R time series. Additionally, we ensured consistency in indicator selection, units, data structure, 

identification of missing values, and language.  

Given the limited availability of indicators within the (sub)dataset, all of them were incorporated into our water 

quality dataset. This inclusive selection comprised both physical parameters (e.g., TEMP, TSSs) and chemical 240 

parameters (e.g., pH, BOD, COD, CODMn, DO, DOSAT, DIN, NH4N, NO2N, NO3N, TDP, DIP, TP, TPH, DOC, 

TOC). We adopted GRQA as a reference for indicator abbreviations, with the aim of facilitating international 

compatibility when appending to global datasets. It is noteworthy that, except for temperature (°C), pH, and DOSAT 

(%), the original unit of measurements for all indicators in the (sub)dataset was milligrams per liter (mg L−1), and we 

retained this unit uniformity for consistency. Eight columns (i.e., MonitoringLocationIdentifier, 245 

LongitudeMeasure_WGS84, LatitudeMeasure_WGS84, MonitoringDate (with the format %d/%m/%y), 

IndicatorsName, Value, Unit, SourceProvider) were then included for structuring the full dataset. Column for 

MonitoringLocationIdentifier was created as an index to connect with the metadata file.  

Some observations for different indicators were merged into a single column when converting the PDF file to 

editable files for weekly water quality data. Those columns were selected to be divided and tidied up into several 250 

columns via regular expression automatically and validation manually. Particularly, three additional columns were 

added to indicate the specific year (column MonitoringYear), week number (column MonitoringWeek), and 

Monitoring date (column MonitoringDate) for the weekly water quality data. The specific years and week numbers 

were subtracted from the filenames. The column of MonitoringDate for that specific week was estimated using R 

according to the international standard ISO 8601 that Monday was considered the first day of a week. They were 255 

validated with the descriptive text on the cover of each report that was deleted later from the weekly water quality 

dataset. The column of MonitoringDate from ocean water quality data was assumed to occur on the first day of that 

month to keep consistency in the date format of other datasets.  

In addition, duplicated rows were identified and removed by using distinct function in R based on the unique site, 

indicators, monitoring week/date, and values from the (sub)datasets that included 1776 site pairs from the weekly 260 

water quality dataset due to the file inconsistencies mentioned in 2.2.1. Negative values (with 7 observations) were 

omitted from the weekly water quality dataset. No duplicated rows and negative values were identified from the 

monthly water quality datasets. In cases where 7 sites provided two daily observations but lacked specific timestamp 

information from the GRQA, we substituted these records with the calculated average value of the two observations. 

Missing (e.g., noted as ‘-’) and empty data were replaced with NA, and were omitted from the dataset. Values that 265 
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falling below known detection limits were denoted as “< DL” within the monthly water quality datasets. COD, DO, 

DIN, DIP, and TPH detection limits were 0.15 mg/L, 0.32 mg/L, 0.001 mg/L, 0.001 mg/L, and 0.001 mg/L, 

respectively. The descriptions in the stations that were originally in Chinese were replaced with Hanyu Pinyin. 

2.3 Methods for quality assurance 

Since data quality will generate bias and uncertainty for the results despite conducting imputation (Tiyasha et al., 270 

2020), it was a necessary step to conduct data quality assurance to determine the shortcomings, errors and issues of 

research results, and ensure robust study for different data users (Koelmans et al., 2019). In this paper, we used data 

availability and outliers for identifying quality assurance characteristics. 

2.3.1 Availability 

Data availability was characterized to assess the available records, both spatially and temporally. For each time 275 

series, we first counted the length of the records (LengthofData) to illustrate the general temporal coverage. Then, 

we assessed the data intensity, computed as the ratio between the length of the time series and the length of the time 

series without missing values. Furthermore, we used overall availability, longest availability, and continuity to 

measure the characteristics of availability following the methods from Crochemore et al. (2019).  

2.3.2 Outliers detection and treatment 280 

Outliers were detected by using the interquartile range (IQR) method. IQR is the range between the first (Q1) and 

third (Q3) quartile. Data points that fell below Q1-1.5×IQR and above Q3+1.5×IQR were considered outliers. Since 

it was difficult to determine whether an outlier is an error caused by faulty equipment or data entry errors or not, no 

observations were omitted from the original datasets. 

3 Data Records 285 

3.1 General information of metadata 

All data were constructed in the form of CSV, while site information was provided with point shapefile (.shp) map 

(available for download at https://figshare.com/s/4f4af7fa7b8457467ea7). Referring to the inventory information 

of WQP, descriptions of the metadata for each time series of the water quality dataset were explained in Table 2.  

 290 

 

 

 

https://figshare.com/s/4f4af7fa7b8457467ea7
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Table 2. Metadata information for water quality data 

Field name General introduction Descriptions Data type 

ID / Identifier for each indicator and each site Int 

WaterDataType Water data type within a broader aspect “W2” stands for water quality data String 

MonitoringLocationIdentifier Identifier for monitoring location Identifiers for the stations Int 

MonitoringLocationDescriptionText Given by the data source   String 

MonitoringLocationName Given by the data source Name of the station String 

MonitoringLocationType Indicate the type of monitoring site River, Lake, Reservoir, Ocean String 

MonitoringLocationTypeCode Using code to indicate the type River(R), Lake(L), Reservoir(V), Ocean(C) Character 

MonitoringLocationTypeName Specific the name of that monitoring site In which rivers, which lakes String 

Source_MonitoringLocationCode Location code from the original datasets  String 

LongitudeMeasure_WGS84   Float 

LatitudeMeasure_WGS84   Float 

ProvinceName The acronym of a specific province  String 

ProvinceCode China area code and zip code  Int 

CityCode China area code and zip code  Int 

IndicatorsName   String 

IndicatorsUnit   String 

ResolutionCode Using numbers to identify the spatial 

resolution 

 Int 

ResolutionName Temporal resolution  String 

CountryCode   String 

StartDate   Date 

EndDate   Date 

LengthofData Count of number of the time series’ 
observations 

 Int 

DataIntensity Ratio between the length of the 
observation series and the length of the 
time series without missing values 

 Float 

OverallAvailability Length of the observation series, as a 
fraction of the dataset’ longest period  

Refers to Crochemore et al. (2019) Float 

LongestAvailability Length of the longest observation series 
without gaps, as a fraction of the dataset’ 
longest period  

Refers to Crochemore et al. (2019) Float 

Continuity Ratio between longest availability and 
overall availability 

Refers to Crochemore et al. (2019) Float 

SourceProvider Data source  String 

SourceProviderID To separate the type of data source Classified as authoritative and non-authoritative String 

 295 

3.2 Spatial-temporal distribution of monitoring sites 

Following cross-validation, it was observed that there was no spatial convergence among monitoring sites from 

different data sources (Figure 2). The dataset contained a large number of water quality monitoring sites for the 

coastal and oceanic areas obtained from NMENC (Figure 2). Inland water quality monitoring sites were primarily 

located on the River Class 1, 2, and 3 (with a total of 5 Classes) based on the Chinese river grade classification. 300 

Most GRQA sites were located in tributaries, while the CNEMC provided most of the stations from the mainstream. 
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Figure 2. Spatial distribution of water quality monitoring sites from different sources with drainages in China. 

 

Our dataset encompasses monitoring site records spanning from 1980 to 2022 (Figure 3). Number of sites for daily, 305 

weekly, and monthly observations were 244, 149, and 1991 respectively (Supplementary Information Metadata and 

Statistics). Notably, GRQA predominantly contributes observations from monitoring sites prior to 2006, with an 

average of 133 observations obtained from approximately 13 sites per year, as illustrated in Figure 3a and Figure 3b. 

In contrast, CNEMC provides data from monitoring sites between 2007 and 2018, averaging around 126 sites per 

year, while NMEMC covers the period from 2017 to 2022 with an average of approximately 1249 sites per year. 310 

Despite CNEMC providing fewer monitoring sites, it consists of a comparable number of observations with an 

average of approximately 18,145 observations per year compared to NMEMC with an average of 19,369 

observations. Comparatively, CNEMC and NMEMC datasets offer a greater number of records in comparison to 

GRQA. Temporal overlaps between various sources were identified on two occasions. The first instance transpired 

during the years 2007 to 2009, involving data from the GRQA and the CNEMC. The second temporal overlap was 315 

documented between CNEMC and NMEMC for the years 2017 to 2018. Overall, the number of monitoring sites 

with records exhibited a slight increase before 2016, followed by a significant surge after 2016. 
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Figure 3. Distribution of monitoring sites (a) and observations (b) from different sources over time. 

3.3 Characteristics of time series  

The study has identified four distinct types of monitoring locations, comprising rivers, lakes, reservoirs, and 330 

coast/ocean (Table 3). The majority of the monitoring sites were located in the coast/ocean, with 1991 sites, 

followed by 365 sites in rivers that encompassed most of the indicators. Rivers from CNEMC demonstrated a 

considerable number of observations for CODMn, DO, NH4N, and pH indicators, while COD, DIN, DIP, DO, pH, 

and TPH indicators have the most observations in the ocean. Despite having fewer sites and observations for most 

indicators, rivers had a longer time series period compared to other types. Indicators of COD, DIP, and TPH 335 

exhibited some values that fell below the detection limits. Approximately 12.6% of TPH observations were below 

the detection limits.  

 
Table 3. Stats for different types of the monitoring sites and indicators. 

Location 

Type 

Sites 
in total 

Indicat
ors’ 
number 

Indicators
’ 

name 

Sites  Observati
ons 

Start date End date Below 
limits(n) 

Outliers 

(%) 

Sources(n) 

Coast/Ocean 1991 6 COD 1991 19,367 2017-05 2022-08 94 4.88 NMEMC 

   DIN 1991 19,369 2017-05 2022-08 / 8.99 NMEMC 

   DIP 1991 19,369 2017-05 2022-08 939 6.76 NMEMC 

   DO 1991 18,143 2017-05 2022-08 / 2.78 NMEMC 

   pH 1991 19,338 2017-05 2022-08 / 3.69 NMEMC 

   TPH 1991 19,368 2017-05 2022-08 2453 2.88 NMEMC 

River 366 15 BOD 10 432 1980-01-07 1997-11-27 / 6.71 GRQA 

   COD 10 235 1988-01-03 1997-11-27 / 6.81 GRQA 

   CODMn 122 45,491 2007-10-29 2018-12-24 / 4.59 CNEMC 

   DIP 3 9 1981-08-06 1983-11-27 / 0.00 GRQA 

   DO 135 45,932 1980-01-07 2018-12-24 / 3.99/3.59 CNEMC(45,459)/GRQA(473) 

   DOC 5 16 1981-07-22 2008-05-21 / 0.00 GRQA 

   DOSAT 24 31 1986-01-14 1999-02-11 / 3.23 GRQA 

   NH4N 123 45,567 1983-02-24 2018-12-24 / 12.28/0.00 CNEMC(45,562)/GRQA(5) 

   NO2N 13 334 1981-08-06 1997-11-10 / 7.19 GRQA 

   NO3N 119 388 1981-07-22 2009-09-05 / 6.96 GRQA 

   pH 251 46,181 1980-01-21 2018-12-24 / 0.50/0.99 CNEMC(45,571)/GRQA(610) 

   TDP 3 16 1994-04-12 1996-10-21 / 0.00 GRQA 

   TEMP 92 520 1980-02-06 2009-04-05 / 0.00 GRQA 

   TOC 1 1 1994-08-30 1994-08-30 / 0.00 GRQA 

   TP 10 196 1985-01-07 1996-10-17 / 15.31 GRQA 

   TSSs 12 329 1980-01-08 1997-09-22 / 9.73 GRQA 

Lake 22 4 CODMn 22 6657 2007/10/29 2018/12/24 / 10.64 CNEMC 

(a) (b) 
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   DO 22 6656 2007/10/29 2018/12/24 / 2.48 CNEMC 

   NH4N 22 6667 2007/10/29 2018/12/24 / 6.90 CNEMC 

   pH 22 6661 2007/10/29 2018/12/24 / 0.05 CNEMC 

Reservoir 5 4 CODMn 5 2231 2007/10/29 2018/12/24 / 8.70 CNEMC 

   DO 5 2276 2007/10/29 2018/12/24 / 1.36 CNEMC 

   NH4N 5 2268 2007/10/29 2018/12/24 / 11.02 CNEMC 

   pH 5 2252 2007/10/29 2018/12/24 / 0.27 CNEMC 

 340 

Availability (Figure 4a) and continuity (Figure 4b) plots were used to examine the temporal fragmentation of the 

time series. Some dominated indicators (i.e., CODMn, DO, NH4N, pH) were selected to present in Figure 4. Our 

analysis revealed that observations from inland rivers/lakes/reservoirs exhibited significantly higher availability and 

continuity than ocean. Specifically, for weekly water quality data, data availability for all indicators ranged from 

40% to 80% (Figure 4a), indicating good data availability. In contrast, observations from the ocean showed 345 

moderate availability while exhibited low data continuity for most observations. 

 

  

 Figure 4. Overall availability (a) and continuity (b) for KMnO4 chemical oxygen demand (CODMn), dissolved 

oxygen (DO), ammonia nitrogen (NH4N), and pH. 350 

The presentation of outlier proportions was documented in Table 3. Among all indicator types, NH4N exhibited a 

higher proportion of outliers (Table 3). After the removal of outliers detected through the IQR test, boxplots were 

constructed for each indicator, illustrating a prominent positive skew in their distributions (Figure 5). However, in 

the case of the TOC indicator, the generation of a boxplot was not informative due to the presence of only a single 

data point (Table 3), and as such, it was omitted from presentation in this context. This skewness behavior was 355 

consistent with the characteristics observed in the GRQA dataset. Conversely, indicators of DO and pH 

demonstrated a significant normal distribution across all three data sources. 

 

(a) (b) 
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Figure 5. Boxplots for all indicators with (a) biochemical oxygen demand (BOD), (b) chemical oxygen demand  (COD), (c) 360 
KMnO4 chemical oxygen demand (CODMn), (d) dissolved inorganic nitrogen (DIN), (e) dissolved inorganic phosphorus 

(DIP), (f) dissolved oxygen (DO), (g) dissolved organic carbon (DOC), (h) dissolved oxygen saturation (DOSAT), (i) 

ammonia nitrogen (NH4N), (j) nitrite nitrogen (NO2N), (k) nitrate nitrogen (NO3N), (l) potential of hydrogen (pH), (m) 

total dissolved phosphorus (TDP), (n) temperature (TEMP), (o) total phosphorus (TP), (p) total petroleum hydrocarbons 

(TPH), and (q) total suspended solids (TSSs)). Outliers determined by the interquartile range (IQR) has been removed. 365 
The unit of indicators except TEMP (◦C), pH (%), and DOSAT (%) were mg L−1.  

 

4 Applications 

Given the amount of metadata information included in our inventory and the observations, this database will be 

particularly useful and important for researchers and decision-makers in the fields of hydrology, environmental 370 

research, water resources management, ecological studies, climate change, policy development, public health, and 

oceanography. For example, the indicator of NH4N can be used by hydrologists to develop predictive models, 

calibrate nitrogen models, and generate projections within China. The inland and coastal/oceanic water quality data 

can be connected to display the dynamic of water quality from land to ocean, thereby routing the import, transport, 

and export of pollutants. Researchers can use this data to analyze long-term trends and variations in surface water 375 

quality, which can be vital for understanding the impact of various factors such as climate change, pollution, and 

land use on aquatic ecosystems. Water resource managers can utilize this repository to assess the quality of water in 

different regions, helping to make informed decisions about water allocation, treatment, and conservation strategies. 

Policymakers can rely on this repository to support evidence-based policy development related to water quality 

standards and regulations. Health officials can use this data to monitor the safety of water sources and assess 380 

potential health risks associated with waterborne contaminants. The high intensity of coastal/oceanic water quality 

data can be used to indicate coastal/oceanic water environment for food web (i.e., living conditions of plankton). For 

instance, phytoplankton and zooplankton communities are sensitive to the changes in water quality, and respond to 

low DO levels, high nutrient levels (i.e., DIN), and toxic contaminants (i.e., TPH). Therefore, such spatial 

continuous coastal/oceanic water quality dataset is helpful for characterizing the patterns of spatial-temporal 385 

distributions of plankton, assessing the status and trends of biodiversity, and predicting the population succession in 

the changing ocean world.  
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Certain studies have previously utilized specific segments of the original dataset. For instance, researchers have 

employed the weekly water quality data to examine the characteristics, trends, and seasonality of water quality in the 

Yangtze River (Di et al., 2019; Duan et al., 2018). It should be noted, however, that the complete dataset presented 390 

in this study has not been employed in any research thus far, which may limit the reliability of the dataset. In future, 

we plan to employ this dataset in upcoming research projects, where we will rigorously test its reliability.  

5 Data availability 

All data records can be found via the temporary link https://doi.org/10.6084/m9.figshare.22584742.v1 (Lin et al., 

2023).  395 

6 Conclusions 

This water quality dataset was developed to meet the huge demand for Chinese water quality data, to boost national 

water data sharing, and to advance global water-related research and applications. It provided a clean, editable, and 

sharable national water quality dataset within China, compiling three publicly available (sub)datasets from GRQA, 

CNEMC, and NMEMC. The current dataset included water quality data at 2384 sites for daily at 244 sites, weekly 400 

at 149 sites, and monthly at 1991 sites in the period of 1980-2022, with over 330,000 observations for 18 indicators 

across both inland and coastal/oceanic domains. The predominant share of observations, comprising approximately 

98.9%, originates from the CNEMC and NMEMC, significantly expanding the global water quality dataset with a 

notable emphasis on the Asian region. 

This database will be particularly useful and important for researchers and decision-makers in the fields of 405 

hydrology, environmental management, and oceanography for advancing the assessment, modeling, and projection 

of water quality, ocean biomass, and biodiversity in China. Considering the extensive coverage of oceanic 

monitoring sites within this dataset, it has made a substantial contribution to the dissemination of coastal/oceanic 

water quality data, offering a comprehensive depiction of the aquatic environment, and facilitating researchers in 

conducting in-depth investigations into ocean ecosystem. Due to its comprehensive temporal coverage of riverine 410 

water quality data, this dataset presented a valuable adjunct for research that demands substantial datasets and 

continuous information, particularly watershed modeling (e.g., water pollutants modeling and projection). 

This water quality dataset will be regularly updated to incorporate any new publicly released government data in 

China, ensuring prompt availability to the community for their immediate use. In light of the existing absence of 

biological parameters within the global water quality dataset, we have the intention to proactively incorporate 415 

relevant biological parameters in the event of new government data releases. This dataset also introduces the 

metadata framework for forthcoming national datasets, a comprehensive collection of water-related data throughout 

China that aims at providing free, clean, non-sensitive, coherent, and reliable water data within China for global 

researchers to support the national water resources management and further promote Asian water data sharing in the 

future. 420 
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