
Response to Reviewers’ comments on the manuscript:

CMEMS-LSCE: A global 0.25-degree, monthly reconstruction of
the surface ocean carbonate system

T. T. T. Chau, M. Gehlen, N. Metzl, F. Chevallier
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Replies to comments by Reviewer 1
General comments by Reviewer 1 (GC1)
GC1.1. Chau et al. present a exclusive approach using discrete ocean surface data of pCO2 and total alkalinity (TA) to obtain a new
monthly reconstruction for the period 1985 to 2021 with 0.25º resolution of the marine carbonate system variables. The reconstruction
is based on the use of a feed-forward neural network (FFNN) for pCO2. For TA they use locally interpolated alkalinity regression
(LIAR). The reconstruction is based on the CMEMS (Copernicus Marine Environment Monitoring Service) product, which provides
global reconstructions of sea surface temperature (SST) and surface salinity (SSS) for the same period, including chlorophyll and
other physical variables such as sea surface height. The authors start from a previous work where they published a similar database
made with a resolution of 1° where only pCO2 has been reconstructed. Here they expand the resolution by increasing it to 0.25º with
the inclusion of TA, and then using the thermodynamic equations of the marine carbonate system they obtain the variables: Dissolved
Inorganic Carbon (DIC), pH and degree of saturation of aragonite and calcite. In this way a product is generated that can be used to
evaluate the impact of ocean acidification by other users and stake-holders. The quality of the reconstruction is contrasted with values
observed at a series of oceanic and other coastal time stations. The authors provide two databases, one with 1ºC resolution and the
other with 0.25º resolution.

The motivation and idea behind the paper is not original in the sense that this has been done before on a seasonal climate
scale, but instead, here, the authors exploit the potential of CMEMS to obtain a reconstruction of all carbonate system variables on a
spatial scale that has not been achieved so far and that can certainly be very useful in the evaluation of biogeochemical models and
for the study of ocean acidification and in coastal regions of higher variability.

Authors:
We thank Reviewer 1 for highlighting potential use cases of our new CMEMS-LSCE datasets of surface ocean carbonate variables at
high resolution. The two key points that set this contribution apart from previous studies include (1) a model upgrade for monthly
pCO2 reconstructions in spatial resolution from 1º (Chau et al., 2022) to 0.25º (this study) and (2) an extension to provide
high-resolution datasets of AT, DIC, pH, and calcium carbonate saturation states covering the 37-year period. We hope the
CMEMS-LSCE data product will be explored in further analyses of fine-scale spatiotemporal variations in marine carbonate variables
complementary to previous contributions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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GC1.2. The article is well written and provides detailed information both in the formalization of the equations and in the graphical
information that is extended in the figures and equations of the appendix. However, it does not develop a specific discussion section of
this new database or a comparison with other climatologies of pCO2, DIC, AT and pH that would allow us to see the benefits,
improvements and qualities of the new product. The authors, instead, compare in the 'Conclusions and Discussion' section the
acidification rates with other observational results of other authors.

Authors:
We thank Reviewer 1 for appreciating the manuscript presentation. Our evaluation strategy is based on gridded SOCAT, GLODAP,
and various time series station data. As suggested by Reviewer 2 (comment GC2.2.) to gain reliability for our data evaluation, in this
revision, we have shown new results at additional 38 time series stations with pCO2 and pH measurements and 4 sites with AT and
DIC measurements. Our product assessment is now stretched across the tropics, the subpolar sector, and the Southern Ocean to
complement our previous data evaluation over the subtropical regions (See Figure A1b and statistics added in Tables A3 and A4 in the
revised manuscript). An intercomparison with 1°-climatological data reconstructions (e.g., Broullon et al., 2019, 2020; Keppler et al.,
2020) seems to us too outside the scope of our study given the importance of underlying methodological choices in such
intercomparisons: (1) the discrepancy in mapping methods, input data resource, and the ratio of training and validation datasets used
in model fitting, (2) uncertainty from post-processing applied for some products (e.g., filtering, smoothing, calibration), (3) the
normalization of different data covering periods, and (4) quality of evaluation (or reference) data; e.g., observation data paucity should
be one major concern to evaluate seasonal cycle reconstructions. The effect of such methodological choices calls into question the
interpretation of differences between products if the different data providers do not actively contribute with sensitivity studies.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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GC1.3. The source of information for the pCO2 reconstruction is the Surface Ocean CO2 Atlas version 2022 (SOCATv2022,
1985-2021) observations of CO2 fugacity (fCO2). This database provides not only fCO2 but the data are REQUIRED to be
accompanied by SST and SSS. The fCO2 data cannot be used independently of the SST and SSS with which it has been reported, since
the temperature in the observation of fCO2 has a high impact on the fCO2 value itself (a bias of 1°C generates a bias in pCO2 of
4.2%, ~18 µatm). The development of the pCO2 reconstruction expressed in equation (1) does not meet that requirement. The authors
mix the SOCAT observations with the SST and SSS reconstructions of the CMEMS product. This generates important errors as they
themselves show in the reconstruction at oceanic (Figure 7) and coastal (Figure 5) fixed stations. Similarly, with TA, the observations
used in LIAR also use temperature and salinity in Global Ocean Data Analysis Project bottle data version 2.2022 (GLODAPv2.2022,
Lauvset et al., 2022). GLODAPv2 does not report TA without temperature and salinity observations so neither should different data
sources be mixed when applying the LIAR methodology as is done in equation 2. Therefore, methodologically, the manuscript is
seriously flawed in its numerical approach. The process should be done in two stages, first obtaining a set of FFNNs trained with
fCO2, SST and SSS with the SOCAT data (and additionally the variables already included in equation 1), and then projecting that
FFNN onto CMENS' own reconstructions of SST and SSS. The same is true for TA and the use of LIAR. At least the SSS used in
equation 2 should include the GLODLAP SSS and not the CMEMS SSS. Better is to include the GLODAP SST, also. Then the
coefficients developed with LIAR are used on the CMENS reconstruction. This would greatly improve the reliability of the algorithms
by better reproducing both the oceanic and coastal time series, not to mention that the GLODAP reconstructions shown in Figure 8
will do so as well. All this allows us to have a better estimate of the quality of the obtained algorithms since we can apply them to both
oceanic and coastal time series with their own predictors and validate these algorithms. As currently performed in the manuscript,
this validation is strongly biased because the SST and SSS reconstructions of CMENS on these series clearly disagree when
comparing point data with monthly means as indicated in the manuscript itself in Figure A8. In addition, a simple linear regression of
TA versus salinity would report a better fit than the LIAR model applied in the manuscript.

￼As shown above, the monthly reconstruction proposed by the authors would be strongly improved if the two-step process is
applied. The current product shown has a very poor quality in terms of validity since its comparison with the fixed time-series station
used shows very high RMSD values (Figure 5, Table 7 and A3).

Authors:

● For pCO2: Our FFNNs formally link a specific pCO2 estimate (from the gridded SOCAT products) and specific estimates of
environmental conditions (from the datasets listed in Table 1(1)), as expressed in Equation 1. There is no flaw in this approach
that simply exploits the power of FFNNs (which are themselves non-linear regressors). The two-step approach proposed by the

1 Table 2 in the initial manuscript (Table 1 has been removed as suggested by Review 2, comment SC2.2.).
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reviewer unnecessarily complicates the reconstruction process. In addition, how the second step (“projecting that FFNN onto
CMENS’ own reconstructions of SST and SSS”) can be made is not obvious: it seems to us that it would lose all the benefit
gained by the first step.

Note that the bias between CMEMS SST and SOCAT data (or in situ observations) is relatively small (see Figures
GC1.3. and MC1.13. in this document and also Figure A10 in the manuscript). Besides, the quality control has not been done
for SOCAT salinity. There are some cruises in SOCAT with no salinity data and they have been replaced by SSS from the
World Ocean Atlas (WOA) to recalculate CO2 fugacity (see Pfeil et al, 2013). SOCAT SSS would not be used in data
reconstruction unless a critical quality control is performed. We have not changed the method.

Figure GC1.3. Scatter plot of SOCAT SST and CMEMS SST gridded data over the global ocean in the period 1985-2021. The two datasets well fit to
the bisector (red line) with no systematic bias, a RMSD of 0.17 and a r2 of 1.

● For AT: Reviewer 1’s comment (GC1.3.) quoted below does not reflect precisely our method application.
“Similarly, with TA, the observations used in LIAR also use temperature and salinity in Global Ocean Data Analysis Project
bottle data version 2.2022 (GLODAPv2.2022, Lauvset et al., 2022). GLODAPv2 does not report TA without temperature and
salinity observations so neither should different data sources be mixed when applying the LIAR methodology as is done in
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equation 2. Therefore, methodologically, the manuscript is seriously flawed in its numerical approach.”

LIAR coefficients were estimated with GLODAPv2 data (Olsen el al., 2016) of SSS, SST, AT,... (Carter et al., 2018). In this
study, we do not retrain LIAR models but use these existing coefficients to predict AT with CMEMS SSS and SST (see Lines
257-260(2) in the revision attached at the end of this document):

“Locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is an ensemble-based regression method
developed for the global reconstruction of total alkalinity (AT ). Regression coefficients were learned on GLODAPv2 data
(Olsen et al., 2016) binned within regular windows of 5◦ × 5◦. For prediction, the LIAR software interpolates between the
regression coefficients to arbitrary resolutions specified by the users.”

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Minor comments by Reviewer 1 (MC1)

Reviewer’s comments Replies from Authors Notes

MC1.1. Line 18
“reconstructions with
root-of-mean–square–deviation from
observations less than 8%, 4%, and 1%
relative to the global mean” The relative
percentage of RMSD over the mean is not
a good parameter to evaluated the
goodness of the results. For example, the
accuracy of AT is better than 0.1%, and
pCO2 is similar. The percentages of

Lines 17-19 (abstract): we quote the full sentence below.
“Product qualification with observation-based data confirms reliable
reconstructions with root-of-mean–square–deviation from observations less
than 8%, 4%, and 1% relative to the global mean of pCO2, AT (DIC), and
pH.”

We are surprised by this comment because normalizing the RMSD, for
instance over the mean, may simplify the interpretation of this statistical
quantity. In the quoted sentence of the abstract, it allows using the same
metric (the relative amplitude of the error) for the four variables. We have not
changed the sentence.

2 Lines 231-234 in the initial manuscript
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RMSD reported are about two orders of
magnitude higher.

Reviewer 1 mentions that “the accuracy of AT is better than 0.1%, and
pCO2 is similar”. These values likely correspond to analytical errors based on
measurement quality controls at each station/location, e.g., 4 μmol kg−1 for
GLODAPv2.2022 AT (Lauvset et al, 2022) and 2-5 µatm for SOCATv2.2022
pCO2 (Bakker et al, 2022). Unsurprisingly, our reconstruction RMSD is
substantially larger than analytical errors, which is only a minor source of
uncertainty in the reconstruction process.

Our reconstruction RMSD (e.g. 14.3 µatm, 22.1 µmol kg−1, 22.7 µmol
kg−1, 0.022 for pCO2, AT, DIC, and pH) is in line with those reported in the
previous studies (see our discussion in Lines 661-667* quoted below):
“For instance, Iida et al. (2021) calculated 1σ-uncertainty based on the
median absolute deviation of regression model fits from open-ocean
observations. Their approach yielded global σ-averages of 17.8 µatm, 11.5
µmol kg−1, 0.018, and 0.110 for pCO2, normalized DIC, pH, and Ωar,
respectively. In Gregor and Gruber (2021), the authors propagated the sum
squared errors (global RMSD and measurement uncertainties) of pCO2 (15
µatm) and AT (22 µmol kg−1 ) obtaining global uncertainty estimates of 19
µmol kg−1 in DIC and 0.022 in pH.”

*Lines 615-619 in
the initial manuscript

MC1.2. Line 20

“and 0.4% for pH” It is a bit odd to report
percentages of a logarithmic magnitude
such as pH.

In the statistical sense, we consider pH as a variable similar to pCO2 and other
carbonate system variables. All statistics are therefore reported with respect to
the reconstructed variable. As explained in the previous comment (MC1.1.),
with the intention of having a concise abstract, we choose to show the
percentage of errors against the global mean value of each variable. It is
noteworthy that percentages are also used in the scientific report SDG 14.3.1
(Table 1).
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MC1.3. Line 92
The associated uncertainty reported in the
article (σ) refers only to the uncertainty of
the 100 replicate FFNNs, but they do not
incorporate the uncertainty that each of the
FFNNs has with respect to the SOCAT
pCO2 values they are trying to replicate.
The paper is only assessing a part of the
uncertainty, by the way the smallest part
and therefore not evaluating the ability of
the FFNN set to reconstruct the input
values.

The CMEMS-LSCE-FFNN 100-ensemble approach subsamples the gridded
data of pCO2 and predictors to compose different training and test datasets,
i.e., 100 training datasets for 100 FFNN models. In practice, it would allow to
account for multiple sources of input data uncertainty from measurement
errors, data sampling bias, data post-processing, etc, which have been poorly
quantified in the input data products so far. In addition, the first layer of
FFNNs is also initialized randomly at each of the 100 iterations. Therefore,
our ensemble-based uncertainty includes the randomness in both subsampling
datasets of pCO2 and predictors and in FFNN initialization. In Chau et al.
(2022) (Section Methods), the authors described the ensemble approach
comprehensively. This study extends the model by Chau et al. (2022) and
thus recaps its principle.

We modify the text in Lines 239-241* and add another one (in green)
as follow for clarification:
“After excluding the data in the reconstruction month, the data within the
3-month window are randomly separated into FFNN training and validation
subsets with a ratio of 2 : 1. The subsampling process is repeated for each
100 FFNN runs that results in 100 different datasets for model fitting.”

*Lines 214-215 in
the initial manuscript
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MC1.4. Table 1, Table 2 and also Table
3 should include a value or an estimate of
the uncertainty of each of the variables,
either in their analytical determination or
that which each product or reconstruction
generates for each of the variables. This
helps the reader to evaluate the quality of
the reconstruction as a function of own
error in the determination of each of the
reconstructed variables.

Thank you. We have added the measurement errors with respect to each
variable in Tables 1 and 2* if they are available from input data resources. *Tables 2 and 3 in

the initial manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2)

MC1.5. Line 126

Table 3 is cited before Table 2 We have revised the manuscript and cited Tables/Figures in order.

MC1.6. Line 214

It is not sufficiently clear how to proceed
with the reconstruction. It talks about
excluding data in the month of
reconstruction. Therefore, it would appear
that for each month 100 FFNN
reconstructions are performed. If this is
correct, the RMSD for each month should
be included in the figure or table of the
SOCAT pCO2 reconstruction since that
data is not used in the month-specific
reconstruction.

We quote Lines 238-241* from the revised manuscript for a straightforward
response to Reviewer 1 (modification in green corresponding to our reply to
commentMC.1.3.):
“The datasets of SOCAT fCO2 and predictors are first reprocessed to match
model fitting requirements (Sect. 2.1). After excluding the data in the
reconstruction month, the data within the 3-month window are randomly
separated into FFNN training and validation subsets with a ratio of 2 : 1.
The subsampling process is repeated for each 100 FFNN runs that results
in 100 different datasets for model fitting. The excluded SOCATv2022
datasets are used in model evaluation.”

Here we specify the three independent datasets for FFNN training,
validation, and evaluation. In the fitting phase of FFNN, we do not use
SOCAT fCO2 in the month specified for reconstruction to train and validate

*Lines 213-215 in
the initial manuscript
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FFNN models. In the reconstruction step, predictors data are available over
the global ocean and FFNNs reconstruct fCO2 for the target months. This
exclusion strategy, called cross-validation, is widely used within machine
learning approaches to avoid overfitting.

MC1.7. Line 249

Fig A7 is not cited in order. Thank you. We have revised the manuscript and cited Tables/Figures in order.

MC1.8. Lines 285 and 210

How do you solve the discontinuities of
the variable 'longitude' around the prime
meridian 0°. This is usually solved using
the sine and cosine functions of longitude.
Any reason for not doing so? Does this
variable really bring any improvement in
the FFNN?

To preserve the continuity of longitude at 0°, we have applied both the sine
and cosine functions to that coordinate. Hence, our global maps of carbonate
variables (e.g. Figures 1, 6, 9) do not show discontinuity at the prime
meridian. The sine is also used to transform latitude. Data transformation of
predictor variables is explicitly presented in a sequence of preceding studies
for the CMEMS-LSCE-FFNN model development (Denvil-Sommer et al
2021, Chau et al 2022). In the first manuscript version, we avoided repeating
part of the data processing and model description from the previous studies.
As the readers would concern, we have called back this information in the
revision (Lines 162-164):
“The sine function is applied to convert latitude while both the sine and
cosine are used to transform longitude to conserve their periodical
behaviors.”

MC1.9. Table 4

First of all, it should be pointed out that
there is an excess of significant figures,
not only in this table but throughout the
text. Regarding the pCO2 results, the

The manuscript describes and evaluates long-term datasets of multiple
variables. A significant number of figures and tables corresponds to the
presentation of many results of these variables.

pCO2 errors (e.g. Bias, RMSD) have been reported with 1-2 decimals in
previous studies (Landschuter et al 2020; Denvil et al 2019, Gregor et al.

10



authors should remove all decimal places
since analytically its precision is 2 µatm as
described in the article. But more
importantly, once the superfluous decimal
places have been removed, what is
observed is that there is practically no
significant improvement between the
product 'r025' and 'r100'.

2019, 2021). In this revision, we reduce the decimals from 2 to 1 for pCO2,
AT, and DIC. The modification has been applied for Tables, Figures, and texts
involving these variables. Note that 2-5 µatm reported in the manuscript
represents the precision of measurement replications or analytical errors
based on measurement quality control at each station/location (Sutton et al.,
2019; Bakker et al., 2022).

Table 3* shows a marginal improvement from r100 to r025 in terms of
global evaluation metrics. For the open ocean, we expect to obtain similar
skill scores for both FFNN models as the spatial autocorrelation of
open-ocean pCO2 is estimated within 400±250 km (Jones et al., 2012) and the
SOCAT 1°-open-ocean dataset was used in model fitting. As also noted by
Chau et al., (2022), pCO2 over the coastal ocean is characterized by high
variability at small scales. For instance, pCO2 levels can vary with a
horizontal gradient as large as 470 μatm over a distance of less than 0.5 km
(Chavez et al., 2018; Feely et al., 2008). Probably, statistical models would
need a spatial resolution much finer than 0.25° (25 km) and a temporal
resolution higher than monthly in order to capture such high variability in
surface ocean pCO2 present in observations (see also Bakker et al., 2016;
Laruelle et al., 2017). In addition, measurement uncertainty of SOCAT
gridded data due to undersampling is possibly one of the major sources of the
irreducible model-data errors. Please refer to our reply to comment MC1.11.
for a discussion on the benefits of the higher resolution.

*Tables 4 in the
revied manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2)

MC1.10. Line 350

How is the regriding process performed?
What type of interpolation is performed?

All the 3-dimensional datasets provided in this study have been saved as
netCDF numerical files. To regrid these datasets, we use the Climate Data
Operators (CDO) remapping operator, namely “remap”. CDO remap supports
converting netCDF datasets from one horizontal grid to another. This operator
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has been widely used in standard processing for numerical and statistical
model outputs.

We have revised the last sentence in Lines 374-377* to make it clear to
the readers.
“Table 43** also presents statistics for the monthly FFNN products of surface
ocean pCO2 at spatial resolutions of 0.25◦ (r025) and 1◦ (r100) together with
their variants (r100 → 025 and r025 → 100). The latter are respectively
extrapolation and interpolation versions of the original r100 and r025
datasets, i. e., . We used the Climate Data Operators (CDO) remap operator
to regrid FFNN model outputs (r100 and r025) regridded to a finer or
coarser spatial resolution.”

*Lines 348-350 in
the initial manuscript
**Table 4 in the
initial manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2.)

MC1.11. Line 354

“The FFNN(r025) central to this study
yields a lower RMSD and a higher
correlation to the SOCAT data than the
FFNN(r100→ 025)”. Unfortunately, there
is no significant difference between the
two products. This statement is not correct.
Line 393. It seems a very marginal the 2%
improvement in pCO2 reconstruction
capability

Our statement is upheld even though the increment in global skill scores
relative to a low to high spatial resolution is not large. Here we do not
mention getting a significant improvement but still obtained higher scores in
RMSD and r2 when increasing the model spatial resolution. Please refer to
Table 3* for verifying the statistics with respect to FFNN(r025) and
FFNN(r100→r025) and our reply to commentMC.1.9. for analysis.

Apart from Table 3*, benefits by increasing model spatial resolution
from 1° to 0.25° are also demonstrated in Figures 2-4 with analyses shown in
Lines 414-420**:
“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart in reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental shelves
such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3), and thus

*Table 4 in the initial
manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)
**Lines 387-394 in
the initial manuscript
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an increase in the number of data over the coastal domain. The increase in
spatial resolution allows a gain in prediction probability of pCO2 variations
on the order of roughly 2% over the Eastern Boundary Currents to 8% over
the Western South Atlantic (Figs. 2-3b).”

This study also points out temporal data sampling bias as a source of
uncertainty that would highly constrain model reconstruction skills. Based on
the assessment at station time series (Figure 5 and Table A3), we found that in
situ observations have been sampled with low frequency and the bias of
sampling date is about a week from a month center. With the low number of
observations and high variability of pCO2 (20.12 to 69.98 μatm) over these
stations, it would not be statistically sufficient to refer to their temporal mean
as a representative of monthly averages. A large model-data deviation would
be retained even if we increase spatial resolution (see text in Lines
434-447*** for further analysis).

***Lines 403-414 in
the initial manuscript

MC1.12. Line 375 and 393

Line 375. The differences in RMSD
between the regridded r100 and r025
products are very small, or even in some as
in Canary Current System it is larger
(strange?). There is no significant
improvement in the coastal regions
between the two products.

Thank you for pointing this out. We have revised Figures 2-4. In the previous
version, we made a technical error in co-locating the two model outputs to
coastal SOCAT grid cells so statistics were not precise enough. The revision
slightly modifies RMSD and r2 values over all regions but does change our
conclusion.

MC1.13. Lines 404-423
“Analyzing the eight station time series, we
have found that data have been sampled
within a few days with an average offset of
about a week from the month center. At

We have demonstrated the better performance of FFNNr025 in terms of
intra-seasonal to interannual variability of coastal sites (Sutton et al., 2019).
By increasing the model resolution by 16-fold, this study partly resolves the
spatial sampling bias from pCO2 observations (lower RMSD and higher r2 for
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these coastal sites, the temporal standard
deviation from monthly averages of pCO2
(σtpCO2) exceeds measurement errors (2
μatm, Sutton et al., 2019). σtpCO2 ranges
from 20.12 μatm at GREYREFF to values
as large as 65.6 μatm at CAPEARAGO or
69.98 μatm at FIRSTLANDING. The
monthly average of pCO2 might not be
adequately represented by discreet
samples at sites with a large temporal
standard deviation of pCO2. The misfit
between the monthly reconstruction and
discreet observations is exacerbated in
dynamical coastal environments and might
explain in part the large RMSD of
reconstructions of monthly coastal pCO2
(e.g., GREYREEF: 38.34 μatm,
CAPEARAGO: 79.86 μatm,
FIRSTLANDING: 77.32 μatm) for the
r025 reconstruction. The RMSD is mostly
lower for the FFNN reconstruction at
0.25º resolution compared to the FFNN at
1º resolution by 2.11 μatm (CCE2) to
23.32 μatm (COASTALMS). Similarly, r2
increases between 7%-23% at higher
resolution. Overall, seasonal to
interannual variations of coastal-ocean
pCO2 are better reproduced in the

the higher resolution) although large model-observation mismatches still
persist. As replied to comments MC1.9. and MC1.11., the sparsity of data
samples (biases from observation locations to the grid cell center about 0.34°
± 0.14° as reported in Sabine et al., 2013) and high variability of coastal pCO2

(e.g., 470 μatm in a distance of 0.5km; see in Chavez et al., 2018 and Feely et
al., 2008) would draw the conclusion that much higher resolution or
extensions of observing system are necessary to fully capture coastal pCO2.

Temporal data sampling bias should be considered as a great source of
uncertainty contributing to large model-observation mismatch even though
model spatial resolution is getting finer. We illustrate this through Figure 5
with the corresponding analysis being in the paragraph (Lines 437-439*)
quoted by Review 1.
The key discussion we found is as follows
“Analyzing the eight station time series, we have found that data have been
sampled within a few days with an average offset of about a week from the
month center. At these coastal sites, the temporal standard deviation from
monthly averages of pCO2 (σtpCO2) exceeds measurementanalytical errors (2
μatm, Sutton et al., 2019)”.

With the low number of observations and high variability of pCO2 over
these stations, it would not be statistically sufficient to refer to the temporal
mean of instantaneous observations as a representation of monthly averages.
We then provide evidence that the large values σtpCO2 at time series stations
(e.g., GREYREEF: 20.12 μatm, CAPEARAGO: 65.6 μatm,
FIRSTLANDING: 69.98 μatm) correspond to high RMSDs (e.g.,
GREYREEF: 38.34 μatm, CAPEARAGO: 79.86 μatm, FIRSTLANDING:
77.32 μatm).

About the effect of model-observation bias of SST on the reconstruction
skills of pCO2, we refer to our reply to the general comment GC1.3 above.

*Lines 403-405 in
the initial manuscript
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reconstruction at 0.25º resolution (Fig.
5).”

Here, it becomes evident that comparing
monthly reconstructions with point values
in coastal areas of high variability results
in very low predictive ability on the part of
the product produced. As indicated in the
general comment, this should be evaluated
considering the variability of SST and SSS
in the study area because in this way the
biases that the CMENS product has to
reproduce point values from monthly mean
values are being transferred to pCO2. The
aforementioned increases in r2 are
relatively small if we consider the
important biases involved, which in some
products even increase as the resolution
improves, as in FIRSTLANDING or
CHEECAROCKS.

Also illustrated in Figure MC.1.13., the bias between SSTCMEMS and in situ
SST from Sutton et al’s time series is always lower than 0.5°C for many
stations. A bias in SST would not be the dominant source of high
reconstruction errors at these stations.

Figure MC1.13. Time series of surface ocean SST (°C) at coastal observing stations**:
CMEMS SST estimate (curve), associated 1σ-uncertainty (envelope), and monthly average of
in situ observations (point). CMEMS reanalysis data at 0.25◦ (r025) resolutions are
co-located to in situ observations provided by Sutton et al. (2019). Statistics include number
of months with observations (N), Bias, RMSD, and r2. σtSST stands for temporal standard
deviation from monthly averages of SST observations.

** See Table A2 and Fig.
A1b in the manuscript.
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MC1.14. Lines 437-438
"The largest model uncertainty (σ > 30
μmol kg-1) is computed nearshore and
surrounding oceanic islands, a feature
inherited from input uncertainty associated
with the CMEMS salinity product (Fig.
A8a)." This described here is very
relevant. In fact, it would be necessary to
show graphically the correlation between
the uncertainty in TA and SSS in the
CMEMS product in both the coastal and
oceanic domains. Possibly it shows a very
relevant correlation. A similar should be
done with the uncertainties of pCO2 and
SST in the CMEMS product.

Total alkalinity (AT) is predominantly controlled by the processes that govern
sea surface salinity (SSS) (Broecker and Peng, 1982; Millero et al, 1998).
The typical relationship between these two variables is linear and can be
estimated at a high precision (Lee et al, 2006; Carter et al, 2018; Broullon et
al, 2019). From the statistical point of view, the distribution of AT uncertainty
is generally driven by SSS uncertainty: AT uncertainty increases as SSS
uncertainty increases (see FigureMC1.17.).

To the contrary, pCO2 is characterized by multiple physical, biological, and
chemical processes. Uncertainties from many input data products thus
contribute to pCO2 uncertainty estimates. Drivers of pCO2 uncertainty are not
analyzed as input uncertainty has not been fully quantified or published so far
for many environmental variables.

MC1.15. Lines 451-465
“The reconstruction of AT distributions
relies on LIAR coefficients fit with
GLODAPv2 data (Olsen et al., 2016)
covering the years before 2015. These data
are also part of the latest version
GLODAPv2.2022 (Lauvset et al., 2022).
They do therefore not correspond to an
independent dataset for the evaluation
data of the CMEMS-LSCE reconstruction.
To overcome this limitation,
reconstructions of AT and DIC are

First of all, Lines 488-496* quoted by Reviewer 1 describes the evaluation of
our data product of AT and DIC and time series of in situ observations. This
complements the assessment with GLODAP data. As opposed to the
interpretation by Reviewer 1, these lines do not contain any analysis about
“how a large part of the discrepancies between the TA and DIC
reconstruction is due to the discrepancies in SSS and SST of the CMEMS
product and observations”. But we have revised the following sentence to
have a better sense (other modifications follow the revisions according
comment GC2.2.)
“To overcome this limitation accomplish a cross-validation, reconstructions
of AT and DIC are compared to observations for Eulerian eight time series

*Lines 451-465 in
the initial manuscript
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compared to observations for Eulerian
time series stations: BATS, DYFAMED,
ESTOC, and HOT (see Table 3 and Fig.
A1b for data sources and station
locations). Figure 7 illustrates the
comparison between monthly time series of
AT and DIC extracted from the
CMEMS-LSCE datasets and
measurements at these long-term
monitoring sites”. These lines and Figure 7
show again how a large part of the
discrepancies between the TA and DIC
reconstruction is due to the discrepancies
in SSS and SST of the CMEMS product,
indicating that the reconstruction is not
well done. In the case of the DYFAMED
station it is very noticeable and contrasts
that other products such as climatologies
like those cited in the article (Lauvset et al.
2016; Broullón et al. 2019) do not show
bias as high as the reconstruction
performed here.

stations: AWIPEV, BATS, DYFAMED, ESTOC, and HOT, ICELAND,
IRMINGER, and KERFIX (see Table 3 and Fig. A1b for data sources and
station locations).”

In Figure 7 we illustrate both the relatively good and poor
reconstructions at long-term time series of observations. Note that, Lauvet et
al, (2016) and Broullon et al, (2019) provided climatologies of AT and DIC
and associated mapping errors. As the climatology is smoother than the
monthly fields (with intra- to interannual variability) proposed in this study,
the errors reported in the previous studies are evidently smaller than those
presented here. Their magnitudes are not comparable. In addition, Lauvet et
al, (2016) and Broullon et al, (2019) did not evaluate the reconstruction at
DYFAMED as mentioned by Reviewer 1. Please kindly refer to our reply to
SC2.14. for a profound analysis of high model-data mismatch of AT at
DYFAMED.

MC1.16. Line 473
“The lowest prediction skill of temporal
variability is obtained for ESTOC.
Particularly, seasonality to multiyear
variations in DIC are predicted at r2=0.47

We thank the reviewer for highlighting our good estimates of AT and DIC at
ESTOC in terms of RMSD. We skipped this element in the initial manuscript.
We have added it in Lines 515-520*: *Line 473-476 in the

initial manuscript
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for ESTOC compared to r2 > 0.7 for BATS
and HOT.” This is not correct. The
regression coefficient is not the only
criterion for assessing predictive ability. In
this case the variability observed at
ESTOC is lower than at BATS and HOT,
so a lower r2 does not mean lower skill. In
fact, the RMSD at is the lowest of all the
stations evaluated in TA. In terms of DIC
the three stations show similar RMSD.

“Despite showing good estimates of AT and DIC in RMSD at ESTOC,
temporal variability of observations are reconstructed at the lowest r2.The
lowest prediction skill of temporal variability is obtained for ESTOC.
Particularly, seasonality to multi-year variations in DIC are predicted at r2 =
0.47 for ESTOC compared to r2 > 0.7 for AWIPEV, ICELAND, IRMINGER,
BATS and HOT. Over all the stations, the model underestimates temporal
changes of AT (Fig. 7a; BATS: r2 = 0.33, DYFAMED: r2 = 0.12, ESTOC: r2 =
0.03, HOT: r2 = 0.32) which can be attributed to the large discrepancy in
variability between in situ measurements and the CMEMS time series of
salinity (Fig. A10a; BATS: r2 = 0.33, DYFAMED: r2 = 0.19, ESTOC: r2 =
0.03, HOT: r2 = 0.35).”

We indeed analyze both RMSD and r2 throughout the manuscript. To be
precise, r2 is not ‘regression coefficient’ but the determination coefficient.
This metric allows evaluating the model predictive ability in temporal
variations of the variables of interest. As shown in Eq (11) in the manuscript,
r2 is the model-data covariance normalized with the temporal variability of
AT and DIC reproduced by FFNN and observed at each station. Therefore, r2

values at BATS and HOTs are comparable to the one at ESTOC even though
the two former stations show higher temporal variability of AT and DIC. Our
analysis in Lines 515-520* holds true.

MC1.17. Line 478
“Model uncertainty (1σ-envelop) of
monthly AT and DIC estimates (Fig. 7a) is
also inflated somewhat proportional to the
CMEMS salinity product uncertainty (Fig.
A10a).” Evidently. A figure showing that
would be useful. That is why including
this product in the LIAR training phase for

We include here Figure MC2.17 showing the relationship of AT and SSS
uncertainty. It is indeed well-known that SSS is the dominant driver of AT and
same for their uncertainty. Please refer to our replies to comments MC1.14.
and GC.1.3. for a further analysis.
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TA does not help to obtain the best
possible reconstruction.

Figure MC2.17. Scatter plot of monthly uncertainty values of a) CMEMS-LSCE AT (Figure
7) against CMEMS SSS (Figure A10) at four stations.

MC1.18. Line 527
“The reconstructed pH time series
reproduce measurement variability with
relatively high correlation, r2 in
[0.21,0.69], that reinforces the reliability
of CMEMS-LSCE pH”.
It does not seem that the level of
correlation obtained with this
reconstruction is significant with such low
levels of r2. Additionally, the fact that
there is no discussion in the article where
these levels are compared with other
products even if they are only climatic
such as those of Takahashi et al. 2014, or
others cited in the article for AT and DIC.

Similar to pCO2, measurements of pH are subject to undersampling (see also
our reply to comment MC1.11.). The data density is even lower for pH (see
Figures 8 and A3 and Table A3). Remember that the comparison is between
monthly mean estimates of pH and the mean of observations which are
normally available within some days to a week. Temporal data sampling bias
should be considered as a great source of uncertainty attributed to large
model-observation mismatch (and thus moderate values of r2) even with a
finer model spatial resolution. We show that through Table A3 and an
analysis is given in the paragraph (Lines 558-576*).
Please note that the published data cited by Reviewer 1 are climatology.
Strictly speaking, statistical evaluations between the climatological product
and in situ observation data (sampled with very low frequency) is not robust
(see also our reply to the general comment GC1.2.)

*Lines 514-530 in
the initial manuscript
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MC1.19. Line 576
“Conclusions and Discussion” It should be
"Discussion and Conclusions" But on the
other hand the discussion is made not in
terms of the assessment of the quality of
the reconstruction of the product but in
terms of the results in terms of ocean
acidification.

Thank you for your suggestion. We have changed Section “Conclusions and
Discussion” to “Summary” as proposed by Reviewer 2 (comment SC2.16.).

MC1.20. Line 594
“In comparison to CMEMS-LSCE at
monthly and 1º resolutions (Chau et al.,
2022b), the reconstructions over coastal
areas are improved at higher resolution
(Figs. 2-4).” This is not demonstrated in
the article. The reduction in RMSD
between the two products is very small or
marginal.

We modify the sentences below (Lines 640-643*) to better summarize our
results:
“In comparison to CMEMS-LSCE at monthly and 1◦ resolutions (Chau
et al., 2022b), the reconstructions over coastal areas are improved at higher
resolution (Figs. 2-4). Furthermore,. tThe monthly, 0.25◦ reconstruction
outperforms its 1◦ counterpart in reproducing horizontal and temporal
gradients of pCO2 over a variety of oceanic regions as well as at nearshore
time series stations (Figs. 2-5).”
The improvement in terms of global metrics is marginal but we still gain
advantages when increasing model spatial resolution from 1° to 0.25° (e.g.
better capturing horizontal and temporal gradients). In this manuscript, we
also try to address the question why increasing the spatial resolution by
16-fold does not impressively reduce model-observation discrepancy. Please
kindly refer to our reply to comments MC1.9. and MC1.11. for a
comprehensive explanation.

*Lines 594-597 in
the initial manuscript

MC1.21. Line 609
Line 609 “The spatial distribution of
long-term mean 1σ-uncertainty estimates

The reviewer is correct, but, as discussed in Chau et al (2022b), the ensemble
spread is a good proxy for the reconstruction uncertainty.
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(Figs. 1b, 6cd, and 9cd) indicates higher
confidence levels for open-ocean estimates
than over the coastal sector”. This is very
unrepresentative of product quality since it
represents there producibility of the 100
FFNN but does not evaluate the RMSD
between input and reconstructed data.

MC1.22. Table 7
Both pCO2, AT and DIC quantities should
not have decimal places (mean, RMSD).

pCO2, AT, DIC, and their reconstruction errors/uncertainty have been reported
with 1-2 decimals in the previous studies (Landschuter et al 2013, 2020;
Denvil et al 2019, Gregor et al. 2019, 2021, Chau et al. 2022b).
In this revision, we reduce the decimals from 2 to 1 for pCO2, AT, and DIC.
The modification has been applied for Tables, Figures, and texts involving
these variables.

MC1.23. Line 655
No comparisons with other reconstructions
like MODO-DIC of Keppler et al. 2020, or
AT from Broullon et al. 2019 or Lee et al.
2006.

Please see our answer to comments GC1.2. andMC1.15.
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Replies to comments by Reviewer 2

General comments by Reviewer 2 (GC2)

GC2.1. The authors reconstructed 0.25-degree monthly full carbonate system variables during the period 1985-2021 based on
surface ocean observation data. Distributions of pCO2 were reconstructed based on the machine learning method established by the
authors (Trang-Chau et al. 2022) and those of TA were based on the LIAR method (Carter et al. 2016; 2018). While few
reconstructions of full carbonate system variables are available at this moment, a comprehensive understanding of global surface
ocean pH distributions is essential for monitoring ocean acidification, which is related to the SDG indicator 14.3.1. This study can
enhance researches on the global carbon cycle as well as provide critical information to policymakers and stakeholders. I think this
study has sufficient value to be published in this journal, but major concerns listed below should be addressed appropriately. I would
like to encourage the authors to improve the study and revise the manuscript for better understanding.

Authors:
We are grateful for Reviewer 2’s positive evaluation and constructive comments which help us to improve our manuscript. Please
kindly find our replies to address his/her concerns below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.2. The concept of this study itself is not novel, and the assessment of uncertainty in the reconstructed fields and the validation of
the method become important. The authors derived uncertainty distributions in reconstructed parameters from the spread of 100
model ensemble. They also demonstrated the validity of the method by comparing the result of this study with observation data that
were not used for learning and those of time-series points. The time-series used in this study are biasedly located in the subtropical
region, so comparing their data with the results of this study does not seem a good indicator of uncertainty. For validation of this
method, the authors must take a comparison with other reconstruction(s) into account, if needed.

Authors:
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Further to the reviewer’s suggestion, we have added comparisons to 38 time series stations located outside the subtropics (the
tropics, the subpolar sector, and the Southern Ocean). The results appear in Figure A1b, Tables A3 and A4. They confirm the
reliability of CMEMS-LSCE datasets (see our analysis in Lines 421-447, 488-522, 558-576 in the revised manuscript attached at the
end of this document).

Figure GC2.2. Revised Figure A1b (right): b) Location of time series stations recording in situ observations used in data evaluation (Table 2): blue
stars for ocean acidification (Bates et al., 2014), black stars for AT and DIC (Metzl et Lo Monaco, 1998; Coppola et al., 2021; Gattuso et al., 2023), and other
coloured scattered objects for pCO2 and pH (Sutton et al., 2019). Asterisk (*) marks the two stations with AT and DIC observations (Olafsson et al., 2010)
available for assessments.

Suggestions from the two reviewers about an intercomparison with other products are interesting but would bring us well
outside the scope of our study if we take them carefully enough. Such intercomparison between data products deserve proper
investigations on (1) the discrepancy in mapping methods, input data resource, and the ratio of training and validation datasets used in
model fit, (2) uncertainty from post-processing applied for some products (e.g., filtering, smoothing, calibration), (3) the normalization
of different data covering periods, and (4) quality of evaluation (or reference) data; e.g., data paucity should be one major concern to
evaluate seasonal cycle reconstructions. For pCO2, the evaluation of multiple products including CMEMS-LSCE at 1°, monthly
resolutions (Chau et al., 2022) was done in the previous studies (Hauck et al., 2020; Gregor et al., 2021; Friedlingstein et al., 2022),
and it is well confirmed that the quality of CMEMS-LSCE is in line with the others. This manuscript investigates an upgrade of
multi-year reconstructions of pCO2 and other carbonate system variables by increasing spatial resolution from 1° to 0.25°, that has not
been done in the previous studies.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.3. The authors use external SST and SSS instead of those incorporated in the datasets in the learning process. This seems
unusual because the oceanographic condition represented by temperature and salinity considerably affects the ocean biogeochemistry
in the observed area. If the authors think the use of external SST/SSS to be essential, they must demonstrate that the impact of
differences between external SST/SSS and those in the datasets is negligible.

Authors:
Our reconstructions require gridded SST and SSS datasets without any gaps, which is not available from SOCAT. We therefore use
other data sources. Based on statistical assessments, the difference between CMEMS SST and SOCAT SST (or in situ observations) is
relatively small (see Figures GC1.3. and MC1.13. in this document and also Figure A10 in the manuscript). Besides, no quality
control has been done for SOCAT salinity. There are some cruises in SOCAT with no salinity data and SOCAT has alternatively used
SSS from the World Ocean Atlas (WOA) to recalculate CO2 fugacity (see Pfeil et al, 2013). We have not changed the method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.4. In addition, the manuscript seems to contain unnecessary sentences and be lengthened. Shortening the manuscript will
increase readability.

Authors:
Thank you. We have shortened the manuscript, in particular based on the reviewer’s specific comments.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Specific comments by Reviewer 2 (SC2)

Reviewer’s comments Replies from Authors Notes

SC2.1. Introduction
This section seems too long and needs to
be shortened.

We have revised the manuscript and removed part of the unnecessary sentences.

SC2.2. L71
not only “extrapolate” but also
“interpolate”.

Thank you. “interpolate” was added.

SC2.3. L91 Table 1 and Appendix A
Table 1 only shows six carbonate system
variables and is not necessary. Reference
to them in the text is enough. In the same
context, Appendix A is also unnecessary
because it only contains general
explanations of carbonate system variables
as written in, e.g., Dickson et al. 2007.

We removed both Table 1 and Appendix A.
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SC2.4. L95-131
All or a part of these explanations had
better be transferred to the beginning of
the “3 Reconstruction method” section.

These lines were modified accordingly.

SC2.5. L135
Which were used, sea surface height
anomaly (SLA) or sea surface dynamic
height (SLA+MDT)? Please clarify.

As defined by data providers of CMEMS SSH, we revised the text as follows:
“sea surface height above geoid”.

SC2.6. L155
SOCAT’s full name was already
mentioned in L66.

We replaced the full name with its abbreviation.

SC2.7. L160-165
Using global 0.25 deg binned data derived
from SOCAT cruise data is a usual way,
even though using 1 deg binned data does
not significantly affect the result.

Using a global 0.25° dataset gridded from SOCAT underway measurements
for FFNN model training is indeed our ultimate goal. We have contacted
SOCAT experts to investigate further how to grid measurements into 0.25°
open-ocean datasets knowing that quality control of measurements is critical.

SC2.8. L213
It should be clarified how you dealt with
longitude and latitude parameters.

To preserve the continuity of longitude at 0°, we have applied the sine and
cosine functions to that coordinate. Hence, our global maps of carbonate
variables (e.g. Figures 1, 6, 9) do not show discontinuity at the prime
meridian. The sine is also used to transform latitude. Data transformation of
predictor variables is explicitly presented in a sequence of preceding studies
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for the CMEMS-LSCE-FFNN model development (Denvil-Sommer et al,.
2021, Chau et al,. 2022). In the first manuscript version, we avoided repeating
part of the data processing and model description from the previous studies.
As the readers would concern, we have called back this information in the
revision (Lines 162-164):
“The sine function is applied to convert latitude while both the sine and
cosine are used to transform longitude to conserve their periodical
behaviors.”

SC2.9. Table 4
This table contains RMSDs and
coefficients of determination, and the
name “skill score” is not appropriate.
RMSDs of r025 are not significantly
different from those of r100 according to
Table 4, and therefore the authors should
not emphasize an improvement of the
prediction skill. The results only show that
a fine-scale reconstruction was achieved
with no adverse effect.

We have changed “Skill scores” to “Evaluation statistics” in the Table
caption.

Table 3* shows a marginal improvement from r100 to r025 in terms of
global evaluation metrics. For the open ocean, we expect to obtain similar
skill scores for both FFNN models as the spatial autocorrelation of
open-ocean pCO2 is estimated within 400±250 km (Jones et al., 2012) and the
same SOCAT 1°-open-ocean dataset was used in model fitting. As also
reviewed in Chau et al., (2022), pCO2 over the coastal ocean is characterized
with high variability at small scales. For instance, pCO2 levels can vary with a
horizontal gradient as large as 470 μatm over a distance of less than 0.5 km
(Chavez et al., 2018; Feely et al., 2008). Statistical models would need a
spatial resolution much finer than 0.25° (25 km) and a temporal resolution
higher than monthly in order to capture such high variability in surface ocean
pCO2 present in observations (see also Bakker et al., 2016; Laruelle et al.,
2017) (see our discussion in Section Summary**).

Apart from Table 3*, benefits of increasing the model spatial resolution
from 1° to 0.25° are also demonstrated in Figures 2-4 with analyses shown in
Lines 414-420***

*Table 4 in the initial
manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)

** Section
Conclusion and
Discussions in the
initial manuscript
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“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart in reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental shelves
such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3), and thus
an increase in the number of data over the coastal domain. The increase in
spatial resolution allows a gain in prediction probability of pCO2 variations
on the order of roughly 2% over the Eastern Boundary Currents to 8% over
the Western South Atlantic (Figs. 2-3b).”

This study also points out temporal data sampling bias as a source of
uncertainty that would highly constrain model reconstruction skills. Based on
the assessment at station time series (Figure 5 and Table A3), we found that in
situ observations have been sampled with low frequency and the bias of
sampling date is about a week from a month center. With the low number of
observations and high variability of pCO2 (20.12 to 69.98 μatm) over these
stations, it would not be statistically sufficient to refer to their temporal mean
as a representative of monthly averages. A large model-data deviation would
be retained even if we increase spatial resolution (see text in Lines 421-447
for further analysis).

***Lines 387-394 in
the initial manuscript

SC2.10. Fig 2-4
The results from the two methods, r100
and r025, have almost the same structure.
Please explain the reason why the authors
focused on the comparison of them.

As expressed in Line 384-393*, the motivation for a comparison between
r100 and r025 in Figures 2-4 to show improvements of horizontal gradients in
the higher resolution over different oceanic conditions. The three figures
respectively present results in:

*Line 358-367 in the
previous version
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permanent Eastern Boundary current upwelling systems with
relatively high pCO2,
regions characterized by low pCO2 values driven by cold water
temperatures and strong biological production,
other regions either under the influence of strong river runoff or
monsoon-driven upwelling.

It is expected that the two models with different resolutions share the same
large-scale structure described above. In Line 413-420** (below), we further
analyse the benefits obtained with the higher resolution.
“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart is reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental
shelves such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3),
and thus an increase in the number of data over the coastal domain.”

**Line 387-391 in
the previous version

SC2.11. L374 Fig. 3
RMSD for the Sea of Japan is suppressed
by using data in the subtropical regions
(Tsushima warm current area and
Kuroshio area) which generally can be
estimated more easily. The RMSD must be
calculated from data restricted north of the
subtropical front.

Thank you for the comment. However, we should use all the available
SOCAT data over the Sea of Japan to evaluate RMSD setting the assessment
consistent with the other coastal regions. The evaluation over specific
sub-basins can be considered in a regional study of pCO2 variability.
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SC2.12. L403-414
The discrepancy between the estimated
and observed pCO2 not only originated
from the timescale but also from the
method itself. The method cannot express
short-term phenomena inherently because
it used external SST and SSS instead of
those incorporated in the datasets in the
learning process.

We agree with the reviewer. As explained above (replies to comments GC1.3.
and GC2.3.), the use of gridded SST and SSS is a necessity for the
reconstruction and there is no significant descrepancy between SOCAT (or in
situ) data and CMEMS gridded data.

SC2.13. 5.2 Total alkalinity and
dissolved inorganic carbon
In the method of this study, discrepancies
in estimated and observed DIC were
initially derived from pCO2 and TA
estimation and propagated via carbonate
system calculations. The discussion on
uncertainty should be written along with
such a concept.

Thank you for this point. We have added the discussion in the revised
manuscript (see Lines 471-474*):
“The largest model uncertainty DIC uncertainty is computed through
CO2SYS error propagation with reconstruction uncertainties of pCO2 and
AT set as inputs. The largest values model uncertainty (σ > 30 μmol kg−1)
appear is computed nearshore and surrounding oceanic islands (Fig. 6d). A
similar feature is found on the field of AT (Fig. 6c), a feature inherited from
input uncertainty associated with the CMEMS salinity product (Fig. A8a).”

*Lines 437-438 in
the initial manuscript

SC2.14. L467-469
The authors attributed a large σ of
DYFAMED estimates to a limited number
of observations in the Mediterranean, but
GLODAPv2 includes alkalinity
measurement data in the Mediterranean.
Schneider et al. 2007 successfully derived

There exists indeed a few observations over the surface Mediterranean Sea in
GLODAPv2.2022 (Lauvset et al., 2022) used for model evaluation (see f.i.
Figure 8 in the manuscript), and even lower data density in GLODAPv2
(Olsen et al., 2016) used for LIAR coefficients fits (Carter et al. 2018). As
illustrated in Figure SC2.14., the bias between CMEMS SSS and observations
is tiny compared to that of LIAR AT and observations. The paucity of

30



the salinity-alkalinity relationship. The
discrepancy in DYFAMED seems to be
attributable to salinity discrepancy only.

GLODAPv2 data over the Mediterranean Sea and the distinction in AT-SSS
relationship over this region from other basins would lead to a biased LIAR
estimate of AT (-145.1 μmol kg−1). Schneider et al., (2007) derived the
estimates of AT-SSS relationship by using local observations, but the
estimated AT is also subject to a large error range (±114.94 μmol kg−1), see Eq
1 quoted below:

Figure SC2.14. Monthly time series of AT (Figure 7) and SSS (Figure A10) at DYFAMED.

We have added one sentence in Lines 508-510* for clarification.
“Although the bias between reanalysed SSS and observations (Fig. A10) is
relatively small (-0.15 μmol kg−1), LIAR (Carter et al., 2018) was trained on
GLODAPv2 (Olsen et al., 2016) including a only few observations in this
area. The distinct relationship between alkalinity and salinity prevailing in

*Lines 467-469 in
the initial manuscript
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the Mediterranean Sea is likely not reproduced by LIAR leading to an
underestimation of AT and a systematic bias to DIC at DYFAMED (Fig. 7).”

SC2.15. L539-540
I think that SDG indicator 14.3.1,
“Average marine acidity (pH) measured at
agreed suite of representative sampling
stations”, is worth mentioning here. Global
mean pH based on observation can be a
proxy for the indicator. In addition, it is
also valuable information that the global
mean pH becomes 8.0 with one decimal
place, not 8.1 often said.

Thank you. In lines 686-689, we have mentioned the SDG 14.3.1 indicator
for ocean acidification.
“The global maps of CMEMS-LSCE pH, Ω, and their trend estimates
would be potential indicators for ocean acidification along with the SDG
14.3.1 - "Average marine acidity (pH) measured at agreed suite of
representative sampling stations" (https://sdgs.un.org/goals/goal14: last
access 31/07/2023).”
However, the global mean CMEMS pH over 1985-2022 is about 8.082 (Table
6*). With one decimal, it becomes 8.1, the same value as reported previously. *Table 7 in the initial

manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)

SC2.16. 6. Conclusion and discussion
This section had better be titled
“Summary”. It does not seem to include
discussion.

Thank you. We have modified the section title as suggested.
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Other changes:
● Data repository: the following sentence is added at the end of the Introduction (Lines 136-138) to make data repository visible to the users (details of data

access can be found in Section Data availability):
“The high-resolution data product described in this manuscript (netCDF format) can be accessed via repository under data DOI:
10.14768/a2f0891b-763a-49e9-af1b-78ed78b16982.”

● Contribution of GLODAP for this study: we add one sentence in Acknowledgement.
“The Global Ocean Data Analysis Project (GLODAP, www.glodap.info, last access: 21 August 2023) provides access to ocean
surface-to-bottom quality controlled data of carbonate system variables collected through international cruises.”

● Typo errors / references: they are corrected / updated in the revised manuscript.
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