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Replies to comments by Reviewer 1
General comments by Reviewer 1 (GC1)
GC1.1. Chau et al. present a exclusive approach using discrete ocean surface data of pCO2 and total alkalinity (TA) to obtain a new
monthly reconstruction for the period 1985 to 2021 with 0.25º resolution of the marine carbonate system variables. The reconstruction
is based on the use of a feed-forward neural network (FFNN) for pCO2. For TA they use locally interpolated alkalinity regression
(LIAR). The reconstruction is based on the CMEMS (Copernicus Marine Environment Monitoring Service) product, which provides
global reconstructions of sea surface temperature (SST) and surface salinity (SSS) for the same period, including chlorophyll and
other physical variables such as sea surface height. The authors start from a previous work where they published a similar database
made with a resolution of 1° where only pCO2 has been reconstructed. Here they expand the resolution by increasing it to 0.25º with
the inclusion of TA, and then using the thermodynamic equations of the marine carbonate system they obtain the variables: Dissolved
Inorganic Carbon (DIC), pH and degree of saturation of aragonite and calcite. In this way a product is generated that can be used to
evaluate the impact of ocean acidification by other users and stake-holders. The quality of the reconstruction is contrasted with values
observed at a series of oceanic and other coastal time stations. The authors provide two databases, one with 1ºC resolution and the
other with 0.25º resolution.

The motivation and idea behind the paper is not original in the sense that this has been done before on a seasonal climate
scale, but instead, here, the authors exploit the potential of CMEMS to obtain a reconstruction of all carbonate system variables on a
spatial scale that has not been achieved so far and that can certainly be very useful in the evaluation of biogeochemical models and
for the study of ocean acidification and in coastal regions of higher variability.

Authors:
We thank Reviewer 1 for highlighting potential use cases of our new CMEMS-LSCE datasets of surface ocean carbonate variables at
high resolution. The two key points that set this contribution apart from previous studies include (1) a model upgrade for monthly
pCO2 reconstructions in spatial resolution from 1º (Chau et al., 2022) to 0.25º (this study) and (2) an extension to provide
high-resolution datasets of AT, DIC, pH, and calcium carbonate saturation states covering the 37-year period. We hope the
CMEMS-LSCE data product will be explored in further analyses of fine-scale spatiotemporal variations in marine carbonate variables
complementary to previous contributions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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GC1.2. The article is well written and provides detailed information both in the formalization of the equations and in the graphical
information that is extended in the figures and equations of the appendix. However, it does not develop a specific discussion section of
this new database or a comparison with other climatologies of pCO2, DIC, AT and pH that would allow us to see the benefits,
improvements and qualities of the new product. The authors, instead, compare in the 'Conclusions and Discussion' section the
acidification rates with other observational results of other authors.

Authors:
We thank Reviewer 1 for appreciating the manuscript presentation. Our evaluation strategy is based on gridded SOCAT, GLODAP,
and various time series station data. As suggested by Reviewer 2 (comment GC2.2.) to gain reliability for our data evaluation, in this
revision, we have shown new results at additional 38 time series stations with pCO2 and pH measurements and 4 sites with AT and
DIC measurements. Our product assessment is now stretched across the tropics, the subpolar sector, and the Southern Ocean to
complement our previous data evaluation over the subtropical regions (See Figure A1b and statistics added in Tables A3 and A4 in the
revised manuscript). An intercomparison with 1°-climatological data reconstructions (e.g., Broullon et al., 2019, 2020; Keppler et al.,
2020) seems to us too outside the scope of our study given the importance of underlying methodological choices in such
intercomparisons: (1) the discrepancy in mapping methods, input data resource, and the ratio of training and validation datasets used
in model fitting, (2) uncertainty from post-processing applied for some products (e.g., filtering, smoothing, calibration), (3) the
normalization of different data covering periods, and (4) quality of evaluation (or reference) data; e.g., observation data paucity should
be one major concern to evaluate seasonal cycle reconstructions. The effect of such methodological choices calls into question the
interpretation of differences between products if the different data providers do not actively contribute with sensitivity studies.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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GC1.3. The source of information for the pCO2 reconstruction is the Surface Ocean CO2 Atlas version 2022 (SOCATv2022,
1985-2021) observations of CO2 fugacity (fCO2). This database provides not only fCO2 but the data are REQUIRED to be
accompanied by SST and SSS. The fCO2 data cannot be used independently of the SST and SSS with which it has been reported, since
the temperature in the observation of fCO2 has a high impact on the fCO2 value itself (a bias of 1°C generates a bias in pCO2 of
4.2%, ~18 µatm). The development of the pCO2 reconstruction expressed in equation (1) does not meet that requirement. The authors
mix the SOCAT observations with the SST and SSS reconstructions of the CMEMS product. This generates important errors as they
themselves show in the reconstruction at oceanic (Figure 7) and coastal (Figure 5) fixed stations. Similarly, with TA, the observations
used in LIAR also use temperature and salinity in Global Ocean Data Analysis Project bottle data version 2.2022 (GLODAPv2.2022,
Lauvset et al., 2022). GLODAPv2 does not report TA without temperature and salinity observations so neither should different data
sources be mixed when applying the LIAR methodology as is done in equation 2. Therefore, methodologically, the manuscript is
seriously flawed in its numerical approach. The process should be done in two stages, first obtaining a set of FFNNs trained with
fCO2, SST and SSS with the SOCAT data (and additionally the variables already included in equation 1), and then projecting that
FFNN onto CMENS' own reconstructions of SST and SSS. The same is true for TA and the use of LIAR. At least the SSS used in
equation 2 should include the GLODLAP SSS and not the CMEMS SSS. Better is to include the GLODAP SST, also. Then the
coefficients developed with LIAR are used on the CMENS reconstruction. This would greatly improve the reliability of the algorithms
by better reproducing both the oceanic and coastal time series, not to mention that the GLODAP reconstructions shown in Figure 8
will do so as well. All this allows us to have a better estimate of the quality of the obtained algorithms since we can apply them to both
oceanic and coastal time series with their own predictors and validate these algorithms. As currently performed in the manuscript,
this validation is strongly biased because the SST and SSS reconstructions of CMENS on these series clearly disagree when
comparing point data with monthly means as indicated in the manuscript itself in Figure A8. In addition, a simple linear regression of
TA versus salinity would report a better fit than the LIAR model applied in the manuscript.

￼As shown above, the monthly reconstruction proposed by the authors would be strongly improved if the two-step process is
applied. The current product shown has a very poor quality in terms of validity since its comparison with the fixed time-series station
used shows very high RMSD values (Figure 5, Table 7 and A3).

Authors:

● For pCO2: Our FFNNs formally link a specific pCO2 estimate (from the gridded SOCAT products) and specific estimates of
environmental conditions (from the datasets listed in Table 1(1)), as expressed in Equation 1. There is no flaw in this approach
that simply exploits the power of FFNNs (which are themselves non-linear regressors). The two-step approach proposed by the

1 Table 2 in the initial manuscript (Table 1 has been removed as suggested by Review 2, comment SC2.2.).
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reviewer unnecessarily complicates the reconstruction process. In addition, how the second step (“projecting that FFNN onto
CMENS’ own reconstructions of SST and SSS”) can be made is not obvious: it seems to us that it would lose all the benefit
gained by the first step.

Note that the bias between CMEMS SST and SOCAT data (or in situ observations) is relatively small (see Figures
GC1.3. and MC1.13. in this document and also Figure A10 in the manuscript). Besides, the quality control has not been done
for SOCAT salinity. There are some cruises in SOCAT with no salinity data and they have been replaced by SSS from the
World Ocean Atlas (WOA) to recalculate CO2 fugacity (see Pfeil et al, 2013). SOCAT SSS would not be used in data
reconstruction unless a critical quality control is performed. We have not changed the method.

Figure GC1.3. Scatter plot of SOCAT SST and CMEMS SST gridded data over the global ocean in the period 1985-2021. The two datasets well fit to
the bisector (red line) with no systematic bias, a RMSD of 0.17 and a r2 of 1.

● For AT: Reviewer 1’s comment (GC1.3.) quoted below does not reflect precisely our method application.
“Similarly, with TA, the observations used in LIAR also use temperature and salinity in Global Ocean Data Analysis Project
bottle data version 2.2022 (GLODAPv2.2022, Lauvset et al., 2022). GLODAPv2 does not report TA without temperature and
salinity observations so neither should different data sources be mixed when applying the LIAR methodology as is done in
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equation 2. Therefore, methodologically, the manuscript is seriously flawed in its numerical approach.”

LIAR coefficients were estimated with GLODAPv2 data (Olsen el al., 2016) of SSS, SST, AT,... (Carter et al., 2018). In this
study, we do not retrain LIAR models but use these existing coefficients to predict AT with CMEMS SSS and SST (see Lines
257-260(2) in the revision attached at the end of this document):

“Locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is an ensemble-based regression method
developed for the global reconstruction of total alkalinity (AT ). Regression coefficients were learned on GLODAPv2 data
(Olsen et al., 2016) binned within regular windows of 5◦ × 5◦. For prediction, the LIAR software interpolates between the
regression coefficients to arbitrary resolutions specified by the users.”

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Minor comments by Reviewer 1 (MC1)

Reviewer’s comments Replies from Authors Notes

MC1.1. Line 18
“reconstructions with
root-of-mean–square–deviation from
observations less than 8%, 4%, and 1%
relative to the global mean” The relative
percentage of RMSD over the mean is not
a good parameter to evaluated the
goodness of the results. For example, the
accuracy of AT is better than 0.1%, and
pCO2 is similar. The percentages of

Lines 17-19 (abstract): we quote the full sentence below.
“Product qualification with observation-based data confirms reliable
reconstructions with root-of-mean–square–deviation from observations less
than 8%, 4%, and 1% relative to the global mean of pCO2, AT (DIC), and
pH.”

We are surprised by this comment because normalizing the RMSD, for
instance over the mean, may simplify the interpretation of this statistical
quantity. In the quoted sentence of the abstract, it allows using the same
metric (the relative amplitude of the error) for the four variables. We have not
changed the sentence.

2 Lines 231-234 in the initial manuscript
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RMSD reported are about two orders of
magnitude higher.

Reviewer 1 mentions that “the accuracy of AT is better than 0.1%, and
pCO2 is similar”. These values likely correspond to analytical errors based on
measurement quality controls at each station/location, e.g., 4 μmol kg−1 for
GLODAPv2.2022 AT (Lauvset et al, 2022) and 2-5 µatm for SOCATv2.2022
pCO2 (Bakker et al, 2022). Unsurprisingly, our reconstruction RMSD is
substantially larger than analytical errors, which is only a minor source of
uncertainty in the reconstruction process.

Our reconstruction RMSD (e.g. 14.3 µatm, 22.1 µmol kg−1, 22.7 µmol
kg−1, 0.022 for pCO2, AT, DIC, and pH) is in line with those reported in the
previous studies (see our discussion in Lines 661-667* quoted below):
“For instance, Iida et al. (2021) calculated 1σ-uncertainty based on the
median absolute deviation of regression model fits from open-ocean
observations. Their approach yielded global σ-averages of 17.8 µatm, 11.5
µmol kg−1, 0.018, and 0.110 for pCO2, normalized DIC, pH, and Ωar,
respectively. In Gregor and Gruber (2021), the authors propagated the sum
squared errors (global RMSD and measurement uncertainties) of pCO2 (15
µatm) and AT (22 µmol kg−1 ) obtaining global uncertainty estimates of 19
µmol kg−1 in DIC and 0.022 in pH.”

*Lines 615-619 in
the initial manuscript

MC1.2. Line 20

“and 0.4% for pH” It is a bit odd to report
percentages of a logarithmic magnitude
such as pH.

In the statistical sense, we consider pH as a variable similar to pCO2 and other
carbonate system variables. All statistics are therefore reported with respect to
the reconstructed variable. As explained in the previous comment (MC1.1.),
with the intention of having a concise abstract, we choose to show the
percentage of errors against the global mean value of each variable. It is
noteworthy that percentages are also used in the scientific report SDG 14.3.1
(Table 1).
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MC1.3. Line 92
The associated uncertainty reported in the
article (σ) refers only to the uncertainty of
the 100 replicate FFNNs, but they do not
incorporate the uncertainty that each of the
FFNNs has with respect to the SOCAT
pCO2 values they are trying to replicate.
The paper is only assessing a part of the
uncertainty, by the way the smallest part
and therefore not evaluating the ability of
the FFNN set to reconstruct the input
values.

The CMEMS-LSCE-FFNN 100-ensemble approach subsamples the gridded
data of pCO2 and predictors to compose different training and test datasets,
i.e., 100 training datasets for 100 FFNN models. In practice, it would allow to
account for multiple sources of input data uncertainty from measurement
errors, data sampling bias, data post-processing, etc, which have been poorly
quantified in the input data products so far. In addition, the first layer of
FFNNs is also initialized randomly at each of the 100 iterations. Therefore,
our ensemble-based uncertainty includes the randomness in both subsampling
datasets of pCO2 and predictors and in FFNN initialization. In Chau et al.
(2022) (Section Methods), the authors described the ensemble approach
comprehensively. This study extends the model by Chau et al. (2022) and
thus recaps its principle.

We modify the text in Lines 239-241* and add another one (in green)
as follow for clarification:
“After excluding the data in the reconstruction month, the data within the
3-month window are randomly separated into FFNN training and validation
subsets with a ratio of 2 : 1. The subsampling process is repeated for each
100 FFNN runs that results in 100 different datasets for model fitting.”

*Lines 214-215 in
the initial manuscript
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MC1.4. Table 1, Table 2 and also Table
3 should include a value or an estimate of
the uncertainty of each of the variables,
either in their analytical determination or
that which each product or reconstruction
generates for each of the variables. This
helps the reader to evaluate the quality of
the reconstruction as a function of own
error in the determination of each of the
reconstructed variables.

Thank you. We have added the measurement errors with respect to each
variable in Tables 1 and 2* if they are available from input data resources. *Tables 2 and 3 in

the initial manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2)

MC1.5. Line 126

Table 3 is cited before Table 2 We have revised the manuscript and cited Tables/Figures in order.

MC1.6. Line 214

It is not sufficiently clear how to proceed
with the reconstruction. It talks about
excluding data in the month of
reconstruction. Therefore, it would appear
that for each month 100 FFNN
reconstructions are performed. If this is
correct, the RMSD for each month should
be included in the figure or table of the
SOCAT pCO2 reconstruction since that
data is not used in the month-specific
reconstruction.

We quote Lines 238-241* from the revised manuscript for a straightforward
response to Reviewer 1 (modification in green corresponding to our reply to
commentMC.1.3.):
“The datasets of SOCAT fCO2 and predictors are first reprocessed to match
model fitting requirements (Sect. 2.1). After excluding the data in the
reconstruction month, the data within the 3-month window are randomly
separated into FFNN training and validation subsets with a ratio of 2 : 1.
The subsampling process is repeated for each 100 FFNN runs that results
in 100 different datasets for model fitting. The excluded SOCATv2022
datasets are used in model evaluation.”

Here we specify the three independent datasets for FFNN training,
validation, and evaluation. In the fitting phase of FFNN, we do not use
SOCAT fCO2 in the month specified for reconstruction to train and validate

*Lines 213-215 in
the initial manuscript
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FFNN models. In the reconstruction step, predictors data are available over
the global ocean and FFNNs reconstruct fCO2 for the target months. This
exclusion strategy, called cross-validation, is widely used within machine
learning approaches to avoid overfitting.

MC1.7. Line 249

Fig A7 is not cited in order. Thank you. We have revised the manuscript and cited Tables/Figures in order.

MC1.8. Lines 285 and 210

How do you solve the discontinuities of
the variable 'longitude' around the prime
meridian 0°. This is usually solved using
the sine and cosine functions of longitude.
Any reason for not doing so? Does this
variable really bring any improvement in
the FFNN?

To preserve the continuity of longitude at 0°, we have applied both the sine
and cosine functions to that coordinate. Hence, our global maps of carbonate
variables (e.g. Figures 1, 6, 9) do not show discontinuity at the prime
meridian. The sine is also used to transform latitude. Data transformation of
predictor variables is explicitly presented in a sequence of preceding studies
for the CMEMS-LSCE-FFNN model development (Denvil-Sommer et al
2021, Chau et al 2022). In the first manuscript version, we avoided repeating
part of the data processing and model description from the previous studies.
As the readers would concern, we have called back this information in the
revision (Lines 162-164):
“The sine function is applied to convert latitude while both the sine and
cosine are used to transform longitude to conserve their periodical
behaviors.”

MC1.9. Table 4

First of all, it should be pointed out that
there is an excess of significant figures,
not only in this table but throughout the
text. Regarding the pCO2 results, the

The manuscript describes and evaluates long-term datasets of multiple
variables. A significant number of figures and tables corresponds to the
presentation of many results of these variables.

pCO2 errors (e.g. Bias, RMSD) have been reported with 1-2 decimals in
previous studies (Landschuter et al 2020; Denvil et al 2019, Gregor et al.

10



authors should remove all decimal places
since analytically its precision is 2 µatm as
described in the article. But more
importantly, once the superfluous decimal
places have been removed, what is
observed is that there is practically no
significant improvement between the
product 'r025' and 'r100'.

2019, 2021). In this revision, we reduce the decimals from 2 to 1 for pCO2,
AT, and DIC. The modification has been applied for Tables, Figures, and texts
involving these variables. Note that 2-5 µatm reported in the manuscript
represents the precision of measurement replications or analytical errors
based on measurement quality control at each station/location (Sutton et al.,
2019; Bakker et al., 2022).

Table 3* shows a marginal improvement from r100 to r025 in terms of
global evaluation metrics. For the open ocean, we expect to obtain similar
skill scores for both FFNN models as the spatial autocorrelation of
open-ocean pCO2 is estimated within 400±250 km (Jones et al., 2012) and the
SOCAT 1°-open-ocean dataset was used in model fitting. As also noted by
Chau et al., (2022), pCO2 over the coastal ocean is characterized by high
variability at small scales. For instance, pCO2 levels can vary with a
horizontal gradient as large as 470 μatm over a distance of less than 0.5 km
(Chavez et al., 2018; Feely et al., 2008). Probably, statistical models would
need a spatial resolution much finer than 0.25° (25 km) and a temporal
resolution higher than monthly in order to capture such high variability in
surface ocean pCO2 present in observations (see also Bakker et al., 2016;
Laruelle et al., 2017). In addition, measurement uncertainty of SOCAT
gridded data due to undersampling is possibly one of the major sources of the
irreducible model-data errors. Please refer to our reply to comment MC1.11.
for a discussion on the benefits of the higher resolution.

*Tables 4 in the
revied manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2)

MC1.10. Line 350

How is the regriding process performed?
What type of interpolation is performed?

All the 3-dimensional datasets provided in this study have been saved as
netCDF numerical files. To regrid these datasets, we use the Climate Data
Operators (CDO) remapping operator, namely “remap”. CDO remap supports
converting netCDF datasets from one horizontal grid to another. This operator

11



has been widely used in standard processing for numerical and statistical
model outputs.

We have revised the last sentence in Lines 374-377* to make it clear to
the readers.
“Table 43** also presents statistics for the monthly FFNN products of surface
ocean pCO2 at spatial resolutions of 0.25◦ (r025) and 1◦ (r100) together with
their variants (r100 → 025 and r025 → 100). The latter are respectively
extrapolation and interpolation versions of the original r100 and r025
datasets, i. e., . We used the Climate Data Operators (CDO) remap operator
to regrid FFNN model outputs (r100 and r025) regridded to a finer or
coarser spatial resolution.”

*Lines 348-350 in
the initial manuscript
**Table 4 in the
initial manuscript
(Table 1 has been
removed as
suggested by Review
2, comment SC2.2.)

MC1.11. Line 354

“The FFNN(r025) central to this study
yields a lower RMSD and a higher
correlation to the SOCAT data than the
FFNN(r100→ 025)”. Unfortunately, there
is no significant difference between the
two products. This statement is not correct.
Line 393. It seems a very marginal the 2%
improvement in pCO2 reconstruction
capability

Our statement is upheld even though the increment in global skill scores
relative to a low to high spatial resolution is not large. Here we do not
mention getting a significant improvement but still obtained higher scores in
RMSD and r2 when increasing the model spatial resolution. Please refer to
Table 3* for verifying the statistics with respect to FFNN(r025) and
FFNN(r100→r025) and our reply to commentMC.1.9. for analysis.

Apart from Table 3*, benefits by increasing model spatial resolution
from 1° to 0.25° are also demonstrated in Figures 2-4 with analyses shown in
Lines 414-420**:
“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart in reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental shelves
such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3), and thus

*Table 4 in the initial
manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)
**Lines 387-394 in
the initial manuscript

12



an increase in the number of data over the coastal domain. The increase in
spatial resolution allows a gain in prediction probability of pCO2 variations
on the order of roughly 2% over the Eastern Boundary Currents to 8% over
the Western South Atlantic (Figs. 2-3b).”

This study also points out temporal data sampling bias as a source of
uncertainty that would highly constrain model reconstruction skills. Based on
the assessment at station time series (Figure 5 and Table A3), we found that in
situ observations have been sampled with low frequency and the bias of
sampling date is about a week from a month center. With the low number of
observations and high variability of pCO2 (20.12 to 69.98 μatm) over these
stations, it would not be statistically sufficient to refer to their temporal mean
as a representative of monthly averages. A large model-data deviation would
be retained even if we increase spatial resolution (see text in Lines
434-447*** for further analysis).

***Lines 403-414 in
the initial manuscript

MC1.12. Line 375 and 393

Line 375. The differences in RMSD
between the regridded r100 and r025
products are very small, or even in some as
in Canary Current System it is larger
(strange?). There is no significant
improvement in the coastal regions
between the two products.

Thank you for pointing this out. We have revised Figures 2-4. In the previous
version, we made a technical error in co-locating the two model outputs to
coastal SOCAT grid cells so statistics were not precise enough. The revision
slightly modifies RMSD and r2 values over all regions but does change our
conclusion.

MC1.13. Lines 404-423
“Analyzing the eight station time series, we
have found that data have been sampled
within a few days with an average offset of
about a week from the month center. At

We have demonstrated the better performance of FFNNr025 in terms of
intra-seasonal to interannual variability of coastal sites (Sutton et al., 2019).
By increasing the model resolution by 16-fold, this study partly resolves the
spatial sampling bias from pCO2 observations (lower RMSD and higher r2 for
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these coastal sites, the temporal standard
deviation from monthly averages of pCO2
(σtpCO2) exceeds measurement errors (2
μatm, Sutton et al., 2019). σtpCO2 ranges
from 20.12 μatm at GREYREFF to values
as large as 65.6 μatm at CAPEARAGO or
69.98 μatm at FIRSTLANDING. The
monthly average of pCO2 might not be
adequately represented by discreet
samples at sites with a large temporal
standard deviation of pCO2. The misfit
between the monthly reconstruction and
discreet observations is exacerbated in
dynamical coastal environments and might
explain in part the large RMSD of
reconstructions of monthly coastal pCO2
(e.g., GREYREEF: 38.34 μatm,
CAPEARAGO: 79.86 μatm,
FIRSTLANDING: 77.32 μatm) for the
r025 reconstruction. The RMSD is mostly
lower for the FFNN reconstruction at
0.25º resolution compared to the FFNN at
1º resolution by 2.11 μatm (CCE2) to
23.32 μatm (COASTALMS). Similarly, r2
increases between 7%-23% at higher
resolution. Overall, seasonal to
interannual variations of coastal-ocean
pCO2 are better reproduced in the

the higher resolution) although large model-observation mismatches still
persist. As replied to comments MC1.9. and MC1.11., the sparsity of data
samples (biases from observation locations to the grid cell center about 0.34°
± 0.14° as reported in Sabine et al., 2013) and high variability of coastal pCO2

(e.g., 470 μatm in a distance of 0.5km; see in Chavez et al., 2018 and Feely et
al., 2008) would draw the conclusion that much higher resolution or
extensions of observing system are necessary to fully capture coastal pCO2.

Temporal data sampling bias should be considered as a great source of
uncertainty contributing to large model-observation mismatch even though
model spatial resolution is getting finer. We illustrate this through Figure 5
with the corresponding analysis being in the paragraph (Lines 437-439*)
quoted by Review 1.
The key discussion we found is as follows
“Analyzing the eight station time series, we have found that data have been
sampled within a few days with an average offset of about a week from the
month center. At these coastal sites, the temporal standard deviation from
monthly averages of pCO2 (σtpCO2) exceeds measurementanalytical errors (2
μatm, Sutton et al., 2019)”.

With the low number of observations and high variability of pCO2 over
these stations, it would not be statistically sufficient to refer to the temporal
mean of instantaneous observations as a representation of monthly averages.
We then provide evidence that the large values σtpCO2 at time series stations
(e.g., GREYREEF: 20.12 μatm, CAPEARAGO: 65.6 μatm,
FIRSTLANDING: 69.98 μatm) correspond to high RMSDs (e.g.,
GREYREEF: 38.34 μatm, CAPEARAGO: 79.86 μatm, FIRSTLANDING:
77.32 μatm).

About the effect of model-observation bias of SST on the reconstruction
skills of pCO2, we refer to our reply to the general comment GC1.3 above.

*Lines 403-405 in
the initial manuscript
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reconstruction at 0.25º resolution (Fig.
5).”

Here, it becomes evident that comparing
monthly reconstructions with point values
in coastal areas of high variability results
in very low predictive ability on the part of
the product produced. As indicated in the
general comment, this should be evaluated
considering the variability of SST and SSS
in the study area because in this way the
biases that the CMENS product has to
reproduce point values from monthly mean
values are being transferred to pCO2. The
aforementioned increases in r2 are
relatively small if we consider the
important biases involved, which in some
products even increase as the resolution
improves, as in FIRSTLANDING or
CHEECAROCKS.

Also illustrated in Figure MC.1.13., the bias between SSTCMEMS and in situ
SST from Sutton et al’s time series is always lower than 0.5°C for many
stations. A bias in SST would not be the dominant source of high
reconstruction errors at these stations.

Figure MC1.13. Time series of surface ocean SST (°C) at coastal observing stations**:
CMEMS SST estimate (curve), associated 1σ-uncertainty (envelope), and monthly average of
in situ observations (point). CMEMS reanalysis data at 0.25◦ (r025) resolutions are
co-located to in situ observations provided by Sutton et al. (2019). Statistics include number
of months with observations (N), Bias, RMSD, and r2. σtSST stands for temporal standard
deviation from monthly averages of SST observations.

** See Table A2 and Fig.
A1b in the manuscript.
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MC1.14. Lines 437-438
"The largest model uncertainty (σ > 30
μmol kg-1) is computed nearshore and
surrounding oceanic islands, a feature
inherited from input uncertainty associated
with the CMEMS salinity product (Fig.
A8a)." This described here is very
relevant. In fact, it would be necessary to
show graphically the correlation between
the uncertainty in TA and SSS in the
CMEMS product in both the coastal and
oceanic domains. Possibly it shows a very
relevant correlation. A similar should be
done with the uncertainties of pCO2 and
SST in the CMEMS product.

Total alkalinity (AT) is predominantly controlled by the processes that govern
sea surface salinity (SSS) (Broecker and Peng, 1982; Millero et al, 1998).
The typical relationship between these two variables is linear and can be
estimated at a high precision (Lee et al, 2006; Carter et al, 2018; Broullon et
al, 2019). From the statistical point of view, the distribution of AT uncertainty
is generally driven by SSS uncertainty: AT uncertainty increases as SSS
uncertainty increases (see FigureMC1.17.).

To the contrary, pCO2 is characterized by multiple physical, biological, and
chemical processes. Uncertainties from many input data products thus
contribute to pCO2 uncertainty estimates. Drivers of pCO2 uncertainty are not
analyzed as input uncertainty has not been fully quantified or published so far
for many environmental variables.

MC1.15. Lines 451-465
“The reconstruction of AT distributions
relies on LIAR coefficients fit with
GLODAPv2 data (Olsen et al., 2016)
covering the years before 2015. These data
are also part of the latest version
GLODAPv2.2022 (Lauvset et al., 2022).
They do therefore not correspond to an
independent dataset for the evaluation
data of the CMEMS-LSCE reconstruction.
To overcome this limitation,
reconstructions of AT and DIC are

First of all, Lines 488-496* quoted by Reviewer 1 describes the evaluation of
our data product of AT and DIC and time series of in situ observations. This
complements the assessment with GLODAP data. As opposed to the
interpretation by Reviewer 1, these lines do not contain any analysis about
“how a large part of the discrepancies between the TA and DIC
reconstruction is due to the discrepancies in SSS and SST of the CMEMS
product and observations”. But we have revised the following sentence to
have a better sense (other modifications follow the revisions according
comment GC2.2.)
“To overcome this limitation accomplish a cross-validation, reconstructions
of AT and DIC are compared to observations for Eulerian eight time series

*Lines 451-465 in
the initial manuscript
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compared to observations for Eulerian
time series stations: BATS, DYFAMED,
ESTOC, and HOT (see Table 3 and Fig.
A1b for data sources and station
locations). Figure 7 illustrates the
comparison between monthly time series of
AT and DIC extracted from the
CMEMS-LSCE datasets and
measurements at these long-term
monitoring sites”. These lines and Figure 7
show again how a large part of the
discrepancies between the TA and DIC
reconstruction is due to the discrepancies
in SSS and SST of the CMEMS product,
indicating that the reconstruction is not
well done. In the case of the DYFAMED
station it is very noticeable and contrasts
that other products such as climatologies
like those cited in the article (Lauvset et al.
2016; Broullón et al. 2019) do not show
bias as high as the reconstruction
performed here.

stations: AWIPEV, BATS, DYFAMED, ESTOC, and HOT, ICELAND,
IRMINGER, and KERFIX (see Table 3 and Fig. A1b for data sources and
station locations).”

In Figure 7 we illustrate both the relatively good and poor
reconstructions at long-term time series of observations. Note that, Lauvet et
al, (2016) and Broullon et al, (2019) provided climatologies of AT and DIC
and associated mapping errors. As the climatology is smoother than the
monthly fields (with intra- to interannual variability) proposed in this study,
the errors reported in the previous studies are evidently smaller than those
presented here. Their magnitudes are not comparable. In addition, Lauvet et
al, (2016) and Broullon et al, (2019) did not evaluate the reconstruction at
DYFAMED as mentioned by Reviewer 1. Please kindly refer to our reply to
SC2.14. for a profound analysis of high model-data mismatch of AT at
DYFAMED.

MC1.16. Line 473
“The lowest prediction skill of temporal
variability is obtained for ESTOC.
Particularly, seasonality to multiyear
variations in DIC are predicted at r2=0.47

We thank the reviewer for highlighting our good estimates of AT and DIC at
ESTOC in terms of RMSD. We skipped this element in the initial manuscript.
We have added it in Lines 515-520*: *Line 473-476 in the

initial manuscript
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for ESTOC compared to r2 > 0.7 for BATS
and HOT.” This is not correct. The
regression coefficient is not the only
criterion for assessing predictive ability. In
this case the variability observed at
ESTOC is lower than at BATS and HOT,
so a lower r2 does not mean lower skill. In
fact, the RMSD at is the lowest of all the
stations evaluated in TA. In terms of DIC
the three stations show similar RMSD.

“Despite showing good estimates of AT and DIC in RMSD at ESTOC,
temporal variability of observations are reconstructed at the lowest r2.The
lowest prediction skill of temporal variability is obtained for ESTOC.
Particularly, seasonality to multi-year variations in DIC are predicted at r2 =
0.47 for ESTOC compared to r2 > 0.7 for AWIPEV, ICELAND, IRMINGER,
BATS and HOT. Over all the stations, the model underestimates temporal
changes of AT (Fig. 7a; BATS: r2 = 0.33, DYFAMED: r2 = 0.12, ESTOC: r2 =
0.03, HOT: r2 = 0.32) which can be attributed to the large discrepancy in
variability between in situ measurements and the CMEMS time series of
salinity (Fig. A10a; BATS: r2 = 0.33, DYFAMED: r2 = 0.19, ESTOC: r2 =
0.03, HOT: r2 = 0.35).”

We indeed analyze both RMSD and r2 throughout the manuscript. To be
precise, r2 is not ‘regression coefficient’ but the determination coefficient.
This metric allows evaluating the model predictive ability in temporal
variations of the variables of interest. As shown in Eq (11) in the manuscript,
r2 is the model-data covariance normalized with the temporal variability of
AT and DIC reproduced by FFNN and observed at each station. Therefore, r2

values at BATS and HOTs are comparable to the one at ESTOC even though
the two former stations show higher temporal variability of AT and DIC. Our
analysis in Lines 515-520* holds true.

MC1.17. Line 478
“Model uncertainty (1σ-envelop) of
monthly AT and DIC estimates (Fig. 7a) is
also inflated somewhat proportional to the
CMEMS salinity product uncertainty (Fig.
A10a).” Evidently. A figure showing that
would be useful. That is why including
this product in the LIAR training phase for

We include here Figure MC2.17 showing the relationship of AT and SSS
uncertainty. It is indeed well-known that SSS is the dominant driver of AT and
same for their uncertainty. Please refer to our replies to comments MC1.14.
and GC.1.3. for a further analysis.
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TA does not help to obtain the best
possible reconstruction.

Figure MC2.17. Scatter plot of monthly uncertainty values of a) CMEMS-LSCE AT (Figure
7) against CMEMS SSS (Figure A10) at four stations.

MC1.18. Line 527
“The reconstructed pH time series
reproduce measurement variability with
relatively high correlation, r2 in
[0.21,0.69], that reinforces the reliability
of CMEMS-LSCE pH”.
It does not seem that the level of
correlation obtained with this
reconstruction is significant with such low
levels of r2. Additionally, the fact that
there is no discussion in the article where
these levels are compared with other
products even if they are only climatic
such as those of Takahashi et al. 2014, or
others cited in the article for AT and DIC.

Similar to pCO2, measurements of pH are subject to undersampling (see also
our reply to comment MC1.11.). The data density is even lower for pH (see
Figures 8 and A3 and Table A3). Remember that the comparison is between
monthly mean estimates of pH and the mean of observations which are
normally available within some days to a week. Temporal data sampling bias
should be considered as a great source of uncertainty attributed to large
model-observation mismatch (and thus moderate values of r2) even with a
finer model spatial resolution. We show that through Table A3 and an
analysis is given in the paragraph (Lines 558-576*).
Please note that the published data cited by Reviewer 1 are climatology.
Strictly speaking, statistical evaluations between the climatological product
and in situ observation data (sampled with very low frequency) is not robust
(see also our reply to the general comment GC1.2.)

*Lines 514-530 in
the initial manuscript
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MC1.19. Line 576
“Conclusions and Discussion” It should be
"Discussion and Conclusions" But on the
other hand the discussion is made not in
terms of the assessment of the quality of
the reconstruction of the product but in
terms of the results in terms of ocean
acidification.

Thank you for your suggestion. We have changed Section “Conclusions and
Discussion” to “Summary” as proposed by Reviewer 2 (comment SC2.16.).

MC1.20. Line 594
“In comparison to CMEMS-LSCE at
monthly and 1º resolutions (Chau et al.,
2022b), the reconstructions over coastal
areas are improved at higher resolution
(Figs. 2-4).” This is not demonstrated in
the article. The reduction in RMSD
between the two products is very small or
marginal.

We modify the sentences below (Lines 640-643*) to better summarize our
results:
“In comparison to CMEMS-LSCE at monthly and 1◦ resolutions (Chau
et al., 2022b), the reconstructions over coastal areas are improved at higher
resolution (Figs. 2-4). Furthermore,. tThe monthly, 0.25◦ reconstruction
outperforms its 1◦ counterpart in reproducing horizontal and temporal
gradients of pCO2 over a variety of oceanic regions as well as at nearshore
time series stations (Figs. 2-5).”
The improvement in terms of global metrics is marginal but we still gain
advantages when increasing model spatial resolution from 1° to 0.25° (e.g.
better capturing horizontal and temporal gradients). In this manuscript, we
also try to address the question why increasing the spatial resolution by
16-fold does not impressively reduce model-observation discrepancy. Please
kindly refer to our reply to comments MC1.9. and MC1.11. for a
comprehensive explanation.

*Lines 594-597 in
the initial manuscript

MC1.21. Line 609
Line 609 “The spatial distribution of
long-term mean 1σ-uncertainty estimates

The reviewer is correct, but, as discussed in Chau et al (2022b), the ensemble
spread is a good proxy for the reconstruction uncertainty.
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(Figs. 1b, 6cd, and 9cd) indicates higher
confidence levels for open-ocean estimates
than over the coastal sector”. This is very
unrepresentative of product quality since it
represents there producibility of the 100
FFNN but does not evaluate the RMSD
between input and reconstructed data.

MC1.22. Table 7
Both pCO2, AT and DIC quantities should
not have decimal places (mean, RMSD).

pCO2, AT, DIC, and their reconstruction errors/uncertainty have been reported
with 1-2 decimals in the previous studies (Landschuter et al 2013, 2020;
Denvil et al 2019, Gregor et al. 2019, 2021, Chau et al. 2022b).
In this revision, we reduce the decimals from 2 to 1 for pCO2, AT, and DIC.
The modification has been applied for Tables, Figures, and texts involving
these variables.

MC1.23. Line 655
No comparisons with other reconstructions
like MODO-DIC of Keppler et al. 2020, or
AT from Broullon et al. 2019 or Lee et al.
2006.

Please see our answer to comments GC1.2. andMC1.15.
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Replies to comments by Reviewer 2

General comments by Reviewer 2 (GC2)

GC2.1. The authors reconstructed 0.25-degree monthly full carbonate system variables during the period 1985-2021 based on
surface ocean observation data. Distributions of pCO2 were reconstructed based on the machine learning method established by the
authors (Trang-Chau et al. 2022) and those of TA were based on the LIAR method (Carter et al. 2016; 2018). While few
reconstructions of full carbonate system variables are available at this moment, a comprehensive understanding of global surface
ocean pH distributions is essential for monitoring ocean acidification, which is related to the SDG indicator 14.3.1. This study can
enhance researches on the global carbon cycle as well as provide critical information to policymakers and stakeholders. I think this
study has sufficient value to be published in this journal, but major concerns listed below should be addressed appropriately. I would
like to encourage the authors to improve the study and revise the manuscript for better understanding.

Authors:
We are grateful for Reviewer 2’s positive evaluation and constructive comments which help us to improve our manuscript. Please
kindly find our replies to address his/her concerns below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.2. The concept of this study itself is not novel, and the assessment of uncertainty in the reconstructed fields and the validation of
the method become important. The authors derived uncertainty distributions in reconstructed parameters from the spread of 100
model ensemble. They also demonstrated the validity of the method by comparing the result of this study with observation data that
were not used for learning and those of time-series points. The time-series used in this study are biasedly located in the subtropical
region, so comparing their data with the results of this study does not seem a good indicator of uncertainty. For validation of this
method, the authors must take a comparison with other reconstruction(s) into account, if needed.

Authors:
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Further to the reviewer’s suggestion, we have added comparisons to 38 time series stations located outside the subtropics (the
tropics, the subpolar sector, and the Southern Ocean). The results appear in Figure A1b, Tables A3 and A4. They confirm the
reliability of CMEMS-LSCE datasets (see our analysis in Lines 421-447, 488-522, 558-576 in the revised manuscript attached at the
end of this document).

Figure GC2.2. Revised Figure A1b (right): b) Location of time series stations recording in situ observations used in data evaluation (Table 2): blue
stars for ocean acidification (Bates et al., 2014), black stars for AT and DIC (Metzl et Lo Monaco, 1998; Coppola et al., 2021; Gattuso et al., 2023), and other
coloured scattered objects for pCO2 and pH (Sutton et al., 2019). Asterisk (*) marks the two stations with AT and DIC observations (Olafsson et al., 2010)
available for assessments.

Suggestions from the two reviewers about an intercomparison with other products are interesting but would bring us well
outside the scope of our study if we take them carefully enough. Such intercomparison between data products deserve proper
investigations on (1) the discrepancy in mapping methods, input data resource, and the ratio of training and validation datasets used in
model fit, (2) uncertainty from post-processing applied for some products (e.g., filtering, smoothing, calibration), (3) the normalization
of different data covering periods, and (4) quality of evaluation (or reference) data; e.g., data paucity should be one major concern to
evaluate seasonal cycle reconstructions. For pCO2, the evaluation of multiple products including CMEMS-LSCE at 1°, monthly
resolutions (Chau et al., 2022) was done in the previous studies (Hauck et al., 2020; Gregor et al., 2021; Friedlingstein et al., 2022),
and it is well confirmed that the quality of CMEMS-LSCE is in line with the others. This manuscript investigates an upgrade of
multi-year reconstructions of pCO2 and other carbonate system variables by increasing spatial resolution from 1° to 0.25°, that has not
been done in the previous studies.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.3. The authors use external SST and SSS instead of those incorporated in the datasets in the learning process. This seems
unusual because the oceanographic condition represented by temperature and salinity considerably affects the ocean biogeochemistry
in the observed area. If the authors think the use of external SST/SSS to be essential, they must demonstrate that the impact of
differences between external SST/SSS and those in the datasets is negligible.

Authors:
Our reconstructions require gridded SST and SSS datasets without any gaps, which is not available from SOCAT. We therefore use
other data sources. Based on statistical assessments, the difference between CMEMS SST and SOCAT SST (or in situ observations) is
relatively small (see Figures GC1.3. and MC1.13. in this document and also Figure A10 in the manuscript). Besides, no quality
control has been done for SOCAT salinity. There are some cruises in SOCAT with no salinity data and SOCAT has alternatively used
SSS from the World Ocean Atlas (WOA) to recalculate CO2 fugacity (see Pfeil et al, 2013). We have not changed the method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GC2.4. In addition, the manuscript seems to contain unnecessary sentences and be lengthened. Shortening the manuscript will
increase readability.

Authors:
Thank you. We have shortened the manuscript, in particular based on the reviewer’s specific comments.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Specific comments by Reviewer 2 (SC2)

Reviewer’s comments Replies from Authors Notes

SC2.1. Introduction
This section seems too long and needs to
be shortened.

We have revised the manuscript and removed part of the unnecessary sentences.

SC2.2. L71
not only “extrapolate” but also
“interpolate”.

Thank you. “interpolate” was added.

SC2.3. L91 Table 1 and Appendix A
Table 1 only shows six carbonate system
variables and is not necessary. Reference
to them in the text is enough. In the same
context, Appendix A is also unnecessary
because it only contains general
explanations of carbonate system variables
as written in, e.g., Dickson et al. 2007.

We removed both Table 1 and Appendix A.
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SC2.4. L95-131
All or a part of these explanations had
better be transferred to the beginning of
the “3 Reconstruction method” section.

These lines were modified accordingly.

SC2.5. L135
Which were used, sea surface height
anomaly (SLA) or sea surface dynamic
height (SLA+MDT)? Please clarify.

As defined by data providers of CMEMS SSH, we revised the text as follows:
“sea surface height above geoid”.

SC2.6. L155
SOCAT’s full name was already
mentioned in L66.

We replaced the full name with its abbreviation.

SC2.7. L160-165
Using global 0.25 deg binned data derived
from SOCAT cruise data is a usual way,
even though using 1 deg binned data does
not significantly affect the result.

Using a global 0.25° dataset gridded from SOCAT underway measurements
for FFNN model training is indeed our ultimate goal. We have contacted
SOCAT experts to investigate further how to grid measurements into 0.25°
open-ocean datasets knowing that quality control of measurements is critical.

SC2.8. L213
It should be clarified how you dealt with
longitude and latitude parameters.

To preserve the continuity of longitude at 0°, we have applied the sine and
cosine functions to that coordinate. Hence, our global maps of carbonate
variables (e.g. Figures 1, 6, 9) do not show discontinuity at the prime
meridian. The sine is also used to transform latitude. Data transformation of
predictor variables is explicitly presented in a sequence of preceding studies
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for the CMEMS-LSCE-FFNN model development (Denvil-Sommer et al,.
2021, Chau et al,. 2022). In the first manuscript version, we avoided repeating
part of the data processing and model description from the previous studies.
As the readers would concern, we have called back this information in the
revision (Lines 162-164):
“The sine function is applied to convert latitude while both the sine and
cosine are used to transform longitude to conserve their periodical
behaviors.”

SC2.9. Table 4
This table contains RMSDs and
coefficients of determination, and the
name “skill score” is not appropriate.
RMSDs of r025 are not significantly
different from those of r100 according to
Table 4, and therefore the authors should
not emphasize an improvement of the
prediction skill. The results only show that
a fine-scale reconstruction was achieved
with no adverse effect.

We have changed “Skill scores” to “Evaluation statistics” in the Table
caption.

Table 3* shows a marginal improvement from r100 to r025 in terms of
global evaluation metrics. For the open ocean, we expect to obtain similar
skill scores for both FFNN models as the spatial autocorrelation of
open-ocean pCO2 is estimated within 400±250 km (Jones et al., 2012) and the
same SOCAT 1°-open-ocean dataset was used in model fitting. As also
reviewed in Chau et al., (2022), pCO2 over the coastal ocean is characterized
with high variability at small scales. For instance, pCO2 levels can vary with a
horizontal gradient as large as 470 μatm over a distance of less than 0.5 km
(Chavez et al., 2018; Feely et al., 2008). Statistical models would need a
spatial resolution much finer than 0.25° (25 km) and a temporal resolution
higher than monthly in order to capture such high variability in surface ocean
pCO2 present in observations (see also Bakker et al., 2016; Laruelle et al.,
2017) (see our discussion in Section Summary**).

Apart from Table 3*, benefits of increasing the model spatial resolution
from 1° to 0.25° are also demonstrated in Figures 2-4 with analyses shown in
Lines 414-420***

*Table 4 in the initial
manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)

** Section
Conclusion and
Discussions in the
initial manuscript
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“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart in reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental shelves
such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3), and thus
an increase in the number of data over the coastal domain. The increase in
spatial resolution allows a gain in prediction probability of pCO2 variations
on the order of roughly 2% over the Eastern Boundary Currents to 8% over
the Western South Atlantic (Figs. 2-3b).”

This study also points out temporal data sampling bias as a source of
uncertainty that would highly constrain model reconstruction skills. Based on
the assessment at station time series (Figure 5 and Table A3), we found that in
situ observations have been sampled with low frequency and the bias of
sampling date is about a week from a month center. With the low number of
observations and high variability of pCO2 (20.12 to 69.98 μatm) over these
stations, it would not be statistically sufficient to refer to their temporal mean
as a representative of monthly averages. A large model-data deviation would
be retained even if we increase spatial resolution (see text in Lines 421-447
for further analysis).

***Lines 387-394 in
the initial manuscript

SC2.10. Fig 2-4
The results from the two methods, r100
and r025, have almost the same structure.
Please explain the reason why the authors
focused on the comparison of them.

As expressed in Line 384-393*, the motivation for a comparison between
r100 and r025 in Figures 2-4 to show improvements of horizontal gradients in
the higher resolution over different oceanic conditions. The three figures
respectively present results in:

*Line 358-367 in the
previous version
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permanent Eastern Boundary current upwelling systems with
relatively high pCO2,
regions characterized by low pCO2 values driven by cold water
temperatures and strong biological production,
other regions either under the influence of strong river runoff or
monsoon-driven upwelling.

It is expected that the two models with different resolutions share the same
large-scale structure described above. In Line 413-420** (below), we further
analyse the benefits obtained with the higher resolution.
“The two FFNN reconstructions (r025 and r100) share similarities in overall
structures of pCO2 over the coastal-open-ocean continuum (Figs. 2-4).
However, the higher spatial resolution outperforms its lower resolution
counterpart is reproducing fine-scale features of pCO2 in the transition from
nearshore regions to the adjacent open ocean. The increase in model spatial
resolution translates into a greater spatial coverage of the continental
shelves such as Labrador Sea, Northern Europe, and Sea of Japan (Fig. 3),
and thus an increase in the number of data over the coastal domain.”

**Line 387-391 in
the previous version

SC2.11. L374 Fig. 3
RMSD for the Sea of Japan is suppressed
by using data in the subtropical regions
(Tsushima warm current area and
Kuroshio area) which generally can be
estimated more easily. The RMSD must be
calculated from data restricted north of the
subtropical front.

Thank you for the comment. However, we should use all the available
SOCAT data over the Sea of Japan to evaluate RMSD setting the assessment
consistent with the other coastal regions. The evaluation over specific
sub-basins can be considered in a regional study of pCO2 variability.
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SC2.12. L403-414
The discrepancy between the estimated
and observed pCO2 not only originated
from the timescale but also from the
method itself. The method cannot express
short-term phenomena inherently because
it used external SST and SSS instead of
those incorporated in the datasets in the
learning process.

We agree with the reviewer. As explained above (replies to comments GC1.3.
and GC2.3.), the use of gridded SST and SSS is a necessity for the
reconstruction and there is no significant descrepancy between SOCAT (or in
situ) data and CMEMS gridded data.

SC2.13. 5.2 Total alkalinity and
dissolved inorganic carbon
In the method of this study, discrepancies
in estimated and observed DIC were
initially derived from pCO2 and TA
estimation and propagated via carbonate
system calculations. The discussion on
uncertainty should be written along with
such a concept.

Thank you for this point. We have added the discussion in the revised
manuscript (see Lines 471-474*):
“The largest model uncertainty DIC uncertainty is computed through
CO2SYS error propagation with reconstruction uncertainties of pCO2 and
AT set as inputs. The largest values model uncertainty (σ > 30 μmol kg−1)
appear is computed nearshore and surrounding oceanic islands (Fig. 6d). A
similar feature is found on the field of AT (Fig. 6c), a feature inherited from
input uncertainty associated with the CMEMS salinity product (Fig. A8a).”

*Lines 437-438 in
the initial manuscript

SC2.14. L467-469
The authors attributed a large σ of
DYFAMED estimates to a limited number
of observations in the Mediterranean, but
GLODAPv2 includes alkalinity
measurement data in the Mediterranean.
Schneider et al. 2007 successfully derived

There exists indeed a few observations over the surface Mediterranean Sea in
GLODAPv2.2022 (Lauvset et al., 2022) used for model evaluation (see f.i.
Figure 8 in the manuscript), and even lower data density in GLODAPv2
(Olsen et al., 2016) used for LIAR coefficients fits (Carter et al. 2018). As
illustrated in Figure SC2.14., the bias between CMEMS SSS and observations
is tiny compared to that of LIAR AT and observations. The paucity of

30



the salinity-alkalinity relationship. The
discrepancy in DYFAMED seems to be
attributable to salinity discrepancy only.

GLODAPv2 data over the Mediterranean Sea and the distinction in AT-SSS
relationship over this region from other basins would lead to a biased LIAR
estimate of AT (-145.1 μmol kg−1). Schneider et al., (2007) derived the
estimates of AT-SSS relationship by using local observations, but the
estimated AT is also subject to a large error range (±114.94 μmol kg−1), see Eq
1 quoted below:

Figure SC2.14. Monthly time series of AT (Figure 7) and SSS (Figure A10) at DYFAMED.

We have added one sentence in Lines 508-510* for clarification.
“Although the bias between reanalysed SSS and observations (Fig. A10) is
relatively small (-0.15 μmol kg−1), LIAR (Carter et al., 2018) was trained on
GLODAPv2 (Olsen et al., 2016) including a only few observations in this
area. The distinct relationship between alkalinity and salinity prevailing in

*Lines 467-469 in
the initial manuscript
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the Mediterranean Sea is likely not reproduced by LIAR leading to an
underestimation of AT and a systematic bias to DIC at DYFAMED (Fig. 7).”

SC2.15. L539-540
I think that SDG indicator 14.3.1,
“Average marine acidity (pH) measured at
agreed suite of representative sampling
stations”, is worth mentioning here. Global
mean pH based on observation can be a
proxy for the indicator. In addition, it is
also valuable information that the global
mean pH becomes 8.0 with one decimal
place, not 8.1 often said.

Thank you. In lines 686-689, we have mentioned the SDG 14.3.1 indicator
for ocean acidification.
“The global maps of CMEMS-LSCE pH, Ω, and their trend estimates
would be potential indicators for ocean acidification along with the SDG
14.3.1 - "Average marine acidity (pH) measured at agreed suite of
representative sampling stations" (https://sdgs.un.org/goals/goal14: last
access 31/07/2023).”
However, the global mean CMEMS pH over 1985-2022 is about 8.082 (Table
6*). With one decimal, it becomes 8.1, the same value as reported previously. *Table 7 in the initial

manuscript (Table 1
has been removed as
suggested by Review
2, comment SC2.2.)

SC2.16. 6. Conclusion and discussion
This section had better be titled
“Summary”. It does not seem to include
discussion.

Thank you. We have modified the section title as suggested.
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Other changes:
● Data repository: the following sentence is added at the end of the Introduction (Lines 136-138) to make data repository visible to the users (details of data

access can be found in Section Data availability):
“The high-resolution data product described in this manuscript (netCDF format) can be accessed via repository under data DOI:
10.14768/a2f0891b-763a-49e9-af1b-78ed78b16982.”

● Contribution of GLODAP for this study: we add one sentence in Acknowledgement.
“The Global Ocean Data Analysis Project (GLODAP, www.glodap.info, last access: 21 August 2023) provides access to ocean
surface-to-bottom quality controlled data of carbonate system variables collected through international cruises.”

● Typo errors / references: they are corrected / updated in the revised manuscript.
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Abstract. Observation-based data reconstructions of global surface ocean carbonate system variables play an essential role in

monitoring the recent status of ocean carbon uptake and ocean acidification as well as their impacts on marine organisms and

ecosystems. So far ongoing efforts are directed towards exploring new approaches to describe the complete marine carbon-

ate system and to better recover its fine-scale features. In this respect, our research activities within the Copernicus Marine

Environment Monitoring Service (CMEMS) aim at developing a sustainable production chain of observation-derived global5

ocean carbonate system datasets at high space-time resolution. As the start of the long-term objective, this study introduces

a new global 0.25◦ monthly reconstruction, namely CMEMS-LSCE, for the period 1985-2021. The CMEMS-LSCE recon-

struction derives datasets of six carbonate system variables including surface ocean partial pressure of CO2 (pCO2), total

alkalinity (AT), total dissolved inorganic carbon (DIC), surface ocean pH, and saturation states with respect to aragonite (Ωar)

and calcite (Ωca). Reconstructing pCO2 relies on an ensemble of neural network models mapping gridded observation-based10

data provided by the Surface Ocean CO2 ATlas (SOCAT). Surface ocean AT is estimated with a multiple linear regression

approach, and the remaining carbonate variables are resolved by CO2 system speciation given the reconstructed pCO2 and

AT. 1σ-uncertainty associated with these estimates is also provided. Here, σ stands for either ensemble standard deviation of

pCO2 estimates or total uncertainty for each of the five other variables propagated through the processing chain with input data

uncertainty. We demonstrate that the 0.25◦-resolution pCO2 product outperforms a coarser spatial resolution (1◦) thanks to a15

higher data coverage nearshore and a better description of horizontal and temporal variations in pCO2 across diverse ocean

basins, particularly in the coastal-open-ocean continuum. Product qualification with observation-based data confirms reliable

reconstructions with root-of-mean–square–deviation from observations less than 8%, 4%, and 1% relative to the global mean

of pCO2, AT (DIC), and pH. The global average 1σ-uncertainty is below 5% and 8% for pCO2 and Ωar (Ωca), 2% for AT

and DIC, and 0.4% for pH relative to their global mean values. Both model-observation misfit and model uncertainty indicate20

that coastal data reproduction still needs further improvement, wherein high temporal and horizontal gradients of carbonate

variables and representative uncertainty from data sampling would be taken into account in priority. This study also presents a

potential use case of the CMEMS-LSCE carbonate data product in tracking the recent state of ocean acidification.

1



1 Introduction

Between 1750 and 2019, the ocean took up an estimated 25% (or 170±20 PgC) of total cumulated anthropogenic CO2 (685±7525

PgC) emitted to the atmosphere (IPCC AR6 - the Sixth Assessment Report of the United Nations Intergovernmental Panel on

Climate Change, Canadell et al., 2021). While the uptake of anthropogenic CO2 mitigates global warming it also profoundly

modifies seawater chemistry in a suite of well-understood reactions (Orr et al., 2005) leading to an increase in hydrogen ion

concentration ([H+]), as well as a decrease in carbonate ion concentration ([CO2−
3 ]) and in the saturation state of seawater (Ω)

with respect to calcium carbonate minerals (CaCO3). The increase in hydrogen ion concentration ([H+]) is commonly reported30

as a decrease in pH (pH = - log[H+]) and referred to as ocean acidification.

Changes in carbonate chemistry impact calcifying plankton and benthos as a direct result of decreasing seawater saturation

state with respect to CaCO3 (Fabry et al., 2008; Thomsen et al., 2015). Ocean acidification also modifies the production

of marine trace gases exchanged at the air-sea interface (Hopkins et al., 2020), the availability of nutrients fueling primary

production (Doney et al., 2009), as well as the speciation of pollutants (Millero et al., 2009; Hoffmann et al., 2012). These35

chemical changes interact with warming and ocean deoxygenation to drive major changes in marine ecosystems (Doney et al.,

2020) and to alter global biogeochemical cycles with the potential for feeding back on radiative forcing (Gehlen et al., 2011;

Hopkins et al., 2020). The likelihood for major disruptive impacts of ocean acidification on marine ecosystems, if future

CO2 emissions were to go unabated, is reflected by the Sustainable Development Goal 14.3 (SDG 14.3) - "Reduce Ocean

Acidification: minimize and address impacts of ocean acidification" (https://www.globalgoals.org/14-life-below-water, last40

access: 20/03/2023). Albeit not specifically mentioned, moving towards SDG 14.3 implies the understanding of historical and

contemporary carbonate chemistry, its mean state, trends and variability.

Earth system models have been widely used to track changes in ocean pH over the historical period and to project its future

evolution under different CO2 emission pathways (Bopp et al., 2013; Gattuso et al., 2015; Kwiatkowski et al., 2020; Cooley et al., 2022; Jiang et al., 2023)

. The present-day global surface ocean pH is roughly 0.1 pH units less than at the beginning of the industrial era (Gattuso et al., 2015; Jiang et al., 2019)45

corresponding to an increase in hydrogen ion concentration of 26% (Doney, 2010). By the end of the 21st century, the

pH is projected to decrease by 0.16± 0.002 pH units in response to the IPCC AR6 low emission scenario (SSP1-2.6),

respectively by 0.44± 0.005 pH units in response to the IPCC AR6 high emission pathway (SSP5-8.5) relative to 1870–1899

(Kwiatkowski et al., 2020). Understanding impacts on marine biota requires to move towards finer spatial and temporal scales

than resolved by the current generation of Earth system models (Torres et al., 2021), as well as to expand the analysis from50

pH to other carbonate system variables such as the saturation state with respect to calcium carbonate minerals and the buffer

capacity. The development and implementation of environmental management strategies equally rely on understanding and

attributing the variability of the carbonate system from diurnal to decadal time scales to underlying physical-chemical-biological

processes.

In situ time series have played an important role in monitoring ocean acidification over the last decades (Bates et al., 2014;55

Lauvset et al., 2015; Sutton et al., 2019; Pérez et al., 2021; Leseurre et al., 2022; Skjelvan et al., 2022). At these sites, seawater

pH (Ω) has been either directly measured or calculated from measurements of other carbonate system variables. These variables

2
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include surface ocean partial pressure of CO2 (pCO2), total alkalinity (AT), and dissolved inorganic carbon (DIC). While

changes in time series of carbonate system variables well reflect impacts of enhanced anthropogenic CO2 uptake on ocean

chemistry at a local scale (Steinberg et al., 2001; González-Dávila and Santana-Casiano, 2009; Dore et al., 2009; Bates et al.,60

2014; Pérez et al., 2021), the reliable upscaling to large ocean regions or entire basins requires a significant extension of the

existing observing network (Lauvset et al., 2015; Bakker et al., 2016; Sutton et al., 2019; Lauvset et al., 2022a).

Time series data are completed by bottle data from international cruises. These data are synthesized by the Global Ocean Data

Analysis Project v2.2022 (GLODAPv2.2022) and include about 1.4 million measurements of surface-to-interior ocean pH, AT,

DIC, and other parameters (Lauvset et al., 2022a, https://www.glodap.info/, last access: 30/9/2022)(Lauvset et al., 2022b, https://www.glodap.info/, last access: 30/9/2022)65

. Likewise, underway measurements of near-surface CO2 fugacity, i.e., pCO2 corrected for non-ideal gas behavior, are com-

piled in the Surface Ocean CO2 Atlas (SOCAT) since its first release in 2011 (Pfeil et al., 2013). That latest version SO-

CATv2022 yields approximately 33.7 million high-quality controlled data (Bakker et al., 2022, http://www.socat.info/, last

access: 17/6/2022). Despite millions of observations available, data coverage is still modest, e.g., CO2 fugacity samples over

the global ocean cover less than 2% of its surface for each month in the last three decades (Bakker et al., 2016; Hauck et al.,70

2020). Mapping methods have thus become an essential tool in ocean carbon cycle research allowing to interpolate or extrapo-

late these sparse measurements into space-time varying fields of carbonate system variables(e.g., Rödenbeck et al., 2015) and

used for global carbon budget estimates (Friedlingstein et al., 2022). .

Recent years have seen the rapid development of machine learning approaches to map global surface ocean pCO2 (see

Rödenbeck et al., 2013; Landschützer et al., 2016; Denvil-Sommer et al., 2019; Gregor et al., 2019; Chau et al., 2022b,75

for instance). Thanks to these efforts, the carbon cycle community can now draw on an ensemble of reconstructions for the

observation-based assessment of the ocean carbon sink (Friedlingstein et al., 2022). However, only a few global observation-

based reconstructions are available for pH, AT, DIC, and Ω with respect to calcite and aragonite (see Gregor and Gruber,

2021, for a review). The reconstruction of global distributions of these variables is hampered by an insufficient amount of

direct measurements (Bakker et al., 2016; Lauvset et al., 2022a). Alternatively, the complete carbonate system can be obtained80

by speciation given the information of any couple of pCO2, pH, AT or DIC together with chemical (e.g., phosphate, silicate,

nitrate) and physical variables (e.g., temperature, salinity), as well as corresponding dissociation constants (Park, 1969; Lewis

and Wallace, 1998; Dickson et al., 2007).

Regardless of the developments in different observation-based estimation methods, Takahashi et al. (2014), Iida et al. (2021),

and Gregor and Gruber (2021) propose global climatologies or monthly varying fields of all variables of the carbonate system,85

i.e., pCO2, pH, AT, DIC, and Ω. These data products have a spatial resolution of 1◦ (∼ 100km× 100km) or even coarser.

Nevertheless, the variations of carbonate system variables over the coastal regions where their instantaneous gradients are

driven by smaller-scale features like ocean upwelling, wind turbulence, eddies, water runoff, and sharp biological productivity

(Jones et al., 2012; Bakker et al., 2016; Laruelle et al., 2017) are poorly described at such spatial resolutions. Here we improve

on existing studies by providing a global 0.25◦, monthly observation-based surface ocean carbonate system product consisting90

of datasets of six core surface ocean carbonate system variables of the marine carbonate system (see Table 1 and Appendix

A for definitions) and their associated 1σ-uncertainty. This high-resolution data product covers the years from 1985 to 2021.
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Laboratoire des Sciences du Climat et de l’Environnement (LSCE) is in charge of the product within the European Copernicus

Marine Environment Monitoring Service (CMEMS). Our product is referred to as CMEMS-LSCE hereafter.

The reconstruction of surface ocean carbonate system variables starts with the reconstruction of surface ocean pCO2 and AT95

in each regular grid of 1month×0.25◦×0.25◦ in the period 1985-2021 (444 months in total). Next, variables pH, DIC, and Ω

are derived by speciation. Advantages of the combination of pCO2 and AT over others for the speciation of the carbonate system

are: (1) pCO2 is the most extensively measured parameter, (2) AT can be accurately predicted from salinity, temperature, and

nutrient concentrations, and (3) the combination of these two prior variables results in the slightest uncertainty of pH estimates

(Zeebe and Wolf-Gladrow, 2001; Lauvset and Gruber, 2014; Takahashi et al., 2014; Orr et al., 2018). The three main successive100

modules used in the CMEMS-LSCE production chain are summarized as follows.

Table 1. CMEMS-LSCE carbonate system variables.

Standard names Notations Units

1. Partial pressure of CO2 in surface seawater pCO2 µatm

2. Total alkalinity in surface seawater AT µmol kg−1

3. Surface ocean dissolved inorganic carbon DIC µmol kg−1

4. Surface seawater pH reported on total scale pH -

5. Saturation state for surface seawater with respect to aragonite Ωar -

6. Saturation state for surface seawater with respect to calcite Ωca -

i) Reconstruction of pCO2 (Sect. 3.1): a modified version of the CMEMS-LSCE-FFNN ensemble-based approach (Chau

et al., 2022b) is applied modified to map gridded datasets of SOCATv2022 CO2 fugacity and predictors in order to re-

construct pCO2 at a spatial finer spatial scale resolution of 0.25◦ for every month in the period 1985-2021 (444 months in

total). The CMEMS-LSCE-FFNN works on an ensemble of 100 spatial resolution of new feed-forward neural networks105

(FFNNs) is 16-fold higher than the original. By design, 100-member ensemble model outputs allow the ensemble of

model outputs allows to yield the best model estimate (i.e., ensemble mean) and model uncertainty (i.e., ensemble stan-

dard deviation) for surface ocean pCO2 in each grid at each 0.25◦-grid cell and each month. The primary modification

of this study’s version and the original CMEMS-LSCE-FFNN (Chau et al., 2022b) is an increase of 16-fold in model

spatial resolution. Global monthly reconstructions of pCO2 proposed by this study complement the previous climatolog-110

ical product by Landschützer et al. (2020), i.e., a combination of the two existing datasets covering respectively the open

ocean at 1◦ (Landschützer et al., 2016) and the coastal sector at 0.25◦ (Laruelle et al., 2017).

ii) Reconstruction of AT (Sect. 3.2): locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is chosen

to estimate total alkalinity on regular grids of 1month× 0.25◦ × 0.25◦ monthly total alkalinity over the global surface

oceanfor the years 1985-2021. LIAR works with multiple linear regression models, each representing a combination115

of predictor variables. The best linear model, which has the lowest prediction error among the others, is retained for

the final estimation of AT. Various reconstruction methods for AT exist (see Carter et al., 2016; Broullón et al., 2019;

Gregor and Gruber, 2021, for a review), but we choose LIAR due to its global applicability, simplicity in setting, and

4



accuracy compared to other published approaches (Carter et al., 2018; Gregor and Gruber, 2021). Importantly, LIAR

allows determining reconstruction uncertainty propagated from multiple sources of input uncertainties at desired model120

resolutions.

iii) Reconstruction of pH, DIC, and saturation states with respect to aragonite (Ωar) and calcite (Ωca) (Sect. 3.3): CO2SYS

(Lewis and Wallace, 1998; Van Heuven et al., 2011) is a standard software used for the speciation of carbonate parameters

in the marine CO2 system (see Olsen et al., 2016; Bresnahan et al., 2021; Gregor and Gruber, 2021; Woosley, 2021, for

a few). The CO2SYS speciation is built on a set of equilibrium equations (Dickson et al., 2007; Dickson, 2010). Given125

the reconstructed pCO2 and AT, non-CO2 acid-base constituents, physical variables, and equilibrium constants, this

method allows solving pH, DIC, Ωar, and Ωca at the same input resolutions. A complementary of the CO2SYS software

developed by Orr et al. (2018) is used to quantify the uncertainty associated with these carbonate system variables. All

the input data uncertainties are propagated through the CO2SYS processing chain.

The global monthly, 0.25◦-resolution datasets of pCO2, AT, pH, DIC, Ωar, and Ωca surface carbonate variables are inten-130

sively evaluated against different observation-based products independent from our model fitting at a global scale to in situ

locations(Table 2). In Section 4, multiple metrics are proposed for product analyzes analyses and assessments. Results are

presented in section 5 with emphasis on the evaluation of the best reconstruction and associated model uncertainty for each

variable (Sect. 5). This section also highlights the advantages obtained with an increase in spatial resolution and presents an

application of the CMEMS-LSCE product in tracking ocean acidification over the last three decades. Section 6 summarizes135

key results, discusses the potential for future model upgrades, and introduces possible product use cases. The high-resolution

data product described in this manuscript (netCDF format) can be accessed via repository under data DOI: 10.14768/a2f0891b-

763a-49e9-af1b-78ed78b16982.

2 Data used and reprocessing

2.1 Input data products for surface ocean carbonate system reconstructions140

Many observation-based products are used as predictors of our target carbonate system variables (Table 1). Global ocean

maps of sea surface temperature (SST), sea surface salinity (SSS), height sea surface height above geoid (SSH), chlorophyll-

a (Chl-a) come from the Copernicus Marine Environment Monitoring Service (CMEMS: Good et al., 2020; Nardelli et al.,

2016; Droghei et al., 2018; Maritorena et al., 2010). Mixed layer depth (MLD) fields belong to Estimating the Circulation

and Climate of the Ocean project Phase II (ECCO2, Menemenlis et al., 2008). CO2 mole fractions (xCO2) are derived from145

the CO2 atmospheric inversion of the Copernicus Atmosphere Monitoring Service (CAMS, Chevallier et al., 2005, 2010;

Chevallier, 2013). Surface ocean concentrations of nitrate (NO3), silicate (SiO2), and phosphate (PO4) are extracted from the

World Ocean Atlas 2018 (WOA18, Garcia et al., 2019). The climatological pCO2 (pCOclim
2 ) product is provided by Lamont

Doherty Earth Observatory (LDEO, Takahashi et al., 2009). Details of these products including resource access, data coverage,

and resolutions are presented in Table 1.150
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Table 1. Input data used in the reconstructions of CMEMS-LSCE carbonate system variables over the global ocean in 1985-2021.

Variables Notations Units Products Resolutions References

1. CO2 fugacity fCO2 µatm Surface Ocean CO2 Atlas version 2022 (SOCATv2022, 1985-2021)

monthly, 1◦

(open ocean) and

0.25◦ (coastal

ocean)

Bakker et al.

(2022)

2. Sea surface

temperature
SST ◦C

CMEMS SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 and

SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 (1985-2021)
daily, 0.05◦

Good et al.

(2020)

3.

Sea surface salinity
SSS PSU

CMEMS MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013 (1993-

2021)
monthly, 0.25◦

Nardelli et al.

(2016); Droghei

et al. (2018)

4.

Sea surface height
SSH m

CMEMS SEALEVEL_GLO_PHY_L4_MY_008_047 and

SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046 (1993-2021)
daily, 0.25◦

CLS-

TOULOUSE

5. Mixed layer

depth
MLD m

Estimating the Circulation and Climate of the Ocean project Phase II (ECCO2,

1992-2021)
daily, 0.25◦

Menemenlis et al.

(2008)

6. Chlorophyll-a CHL-a mgm−3

CMEMS OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082

and OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033

(1998-2021)

daily, 0.25◦
GLOCOLOUR,

Maritorena et al.

(2010)

7. CO2 mole

fraction
xCO2 ppm

CO2 atmospheric inversion from the Copernicus Atmosphere Monitoring Service

(CAMS, 1985-2021)

3-hourly, 1.9◦ ×
3.75◦

Chevallier et al.

(2005, 2010);

Chevallier (2013)

8. pCO2 clima-

tology
pCOclim

2 µatm Lamont Doherty Earth Observatory (LDEO, climatology) monthly, 4◦×5◦
Takahashi et al.

(2009)

9. Nitrate NO3

µmol kg−1 World Ocean Atlas 2018 (WOA18, climatologies) monthly, 1◦ Garcia et al. (2019)10. Silicate SiO2

11. Phosphate PO4

* Last access was on 15/4/2022 for all input databases except for SOCATv2022 data (17/6/2022) and WOA18 data (30/7/2022).

** Data products 1-8 are used in the pCO2 reconstruction. Products 2-3 and 9-11 are used to compute AT, DIC, pH, Ωar , and Ωca.

*** Global values of product uncertainty (data† or analysis errors expressed as σ) have been reported for fCO†
2 (< 5 µatm), SST (0.15 ◦C), SSS (0.2 PSU), SSH (0.02 m),

MLD (-), CHL-a (0.03mgm−3), xCO2 (-), pCOclim
2 (10 µatm), NO3 (1.8 µmol kg−1), SiO2 (3.6 µmol kg−1), PO4 (0.12 µmol kg−1).

With the exception of xCO2, nutrient concentrations, and pCOclim
2 , these input data products have original resolutions

equivalent to or even finer than a spatial resolution of 0.25◦ and a temporal resolution of monthly. When mismatches in data

resolutions appear, input data products are interpolated to fit the pre-defined model resolutions. The datasets of SST and xCO2

- the two key variables driving global pCO2 changes (Bates et al., 2014; Gruber et al., 2019; Landschützer et al., 2019; Chau

et al., 2022b; Friedlingstein et al., 2022) - cover the full learning period and the whole globe as expected. The other predictor155

data are not available before the 1990s, when new types of satellite measurements started, and one of them (i.e., Chl-a) does

not cover the high latitudes of the winter hemisphere. We therefore gap-fill the time series in an ad hoc manner, as in previous

studies (Landschützer et al., 2016; Gregor et al., 2019; Chau et al., 2022b). Monthly climatologies of SSS, Chl-a, and MLD

computed on the available data are used for each missing year. Likewise, climatologies plus linear trends of SSH following

global warming effects serve for the pre-1993 period. Missing Chl-a data in the high latitudes of the winter hemisphere are160

replaced by the minimum concentration of Chl-a over the available data for the same grid cell (∼0.01 mgm−3). WOA18

nutrients and LDEO pCOclim
2 are already climatolgies per se and we apply them for all the analysis years 1985-2021. The
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sine function is applied to convert latitude while both the sine and cosine are used to transform longitude to conserve their

periodical behaviors.

CO2 fugacity from Surface Ocean CO2 ATlas version 2022 (SOCATv2022, Bakker et al., 2022) SOCATv2022 (Bakker et al., 2022)165

is used as the target data in our monthly pCO2 reconstructions. The SOCAT project collects and qualifies underway observa-

tions via international vessels, moorings, or autonomous platforms. It grids the observations at spatial resolutions of 1◦ or 0.25◦

resulting in the two major SOCAT gridded data products. The temporal resolution of these two products is monthly. While the

1◦-data product (SOCATv2022r100) covers the global ocean, the 0.25◦ covers solely the coastal regions. The SOCAT coastal

areas is within 400 km from the shoreline (Sabine et al., 2013; Bakker et al., 2016); see Fig. A1a for an illustration. To merge170

the two resolutions, we first duplicate the 1◦-open-ocean SOCATv2022 data (∼ 2×105 data points) over its sixteen 0.25◦ sub-

cells. This 0.25◦-open-ocean data are then combined with the 0.25◦-coastal-ocean SOCATv2022 data (∼ 4× 105 data points)

to generate a global monthly 0.25◦ ocean data product fed to our reconstruction model of pCO2 (Sect. 3.1). The merged SO-

CATv2022 product at monthly, 0.25◦ resolutions is referred to as SOCATv2022r025 hereafter. The assumption of open-ocean

data homogeneity of pCO2 within 1◦-grid boxes (∼ 100 km×100 km) does not degrade the reconstruction skill over the global175

open ocean (see Sect. 5 for results) where pCO2 observations are spatially auto-correlated within a global median distance of

400± 250 km (Jones et al., 2012). The data distribution of SOCATv2022 CO2 fugacity before and after combining is shown

in Fig. A2 and Table 3.

2.2 Product qualification and comparison

The monthly, 0.25◦-resolution reconstructions of carbonate system variables are qualified with gridded observation-based180

datasets and in-situ time series which are not used in our model fitting (Table 2).

• The SOCAT data in each reconstruction month are excluded from the model fitting, which avoids overfitting and ensures

fairness in the model evaluation (Chau et al., 2022b). The global monthly, 0.25◦-resolution CMEMS-LSCE-FFNN pCO2

fields at a spatial resolution of 0.25◦ can therefore be evaluated against the pCO2 data converted from SOCATv2022 CO2

fugacity (Eq. A2) (Körtzinger, 1999) at the same resolution. Doing this, CMEMS-LSCE-FFNN pCO2 is assessed with185

more than 32×105 open-ocean data and 4×105 coastal-ocean data (Table 3). The SOCATv2022 measurements data have

low random uncertainty (2-5 µatm) but the spatio-temporal sampling bias from the month and grid centers is significant

(Bakker et al., 2016). The 0.25◦-data reconstruction is also compared to its previous version with a spatial resolution of

1◦ (Chau et al., 2022a, b).

• The monthly, 0.25◦ reconstructions of AT, DIC, and pH are qualified based on Global Ocean Data Analysis Project bottle190

data version 2.2022 (GLODAPv2.2022, Lauvset et al., 2022a)GLODAPv2.2022 data (Lauvset et al., 2022b). GLODAP

provides non-gridded datasets of ocean carbon variables which have been compiled and bias-corrected from water sam-

ples taken at various depths. The measurement uncertainty is 4 µmol kg−1 in AT and DIC and between 0.01− 0.02 in

pH (Lauvset et al., 2022a). Only direct measurements at depths shallower than 10 m and with a flag of 2 (best quality

control) are selected for this evaluation. Measurements in each box of 1month× 10m× 0.25◦ × 0.25◦ are averaged to195
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obtain representative data of surface AT, DIC, and pH at 0.25◦-grid cells for months in the period 1985-2021. This results

in roughly 16× 103 data points for AT and DIC over the global ocean (Table 4). Only half of that amount stems from

direct pH measurements. Another half, referred to as indirect measurements (i.e., pH calculated with AT and DIC), is

excluded from this data evaluation. Over 30% of these GLODAP data are distributed along the coasts. The number of

the GLODAPv2.2022 gridded data (Table 4) is much less than the SOCATv2022 gridded data (Table 3).200

• In situ time series of direct measurements of carbonate system variables (pCO2, AT, DIC, and pH) are used to qualify

our product at local scale (Table 2).

a) Sutton et al. (2019) present data over multiple sites equipped with autonomous moorings measuring surface

ocean pCO2 and pH from the open ocean to the continental shelves since 2004. These time series were used

to qualify the CMEMS-LSCE-FFNN reconstruction in Chau et al. (2022b). This study only revisits eight coastal205

sites (Table A2)where both stations cover a wide range of oceanic conditions from the tropics to high latitudes

(Fig. A1b). More than half of 42 stations distribute over the continental shelves, and many of them observe pCO2

and pH have been measured and the 1◦-reconstruction poorly constrains most of these measurements (see later in

Sect. 3.1). The eight stations are located along the US coast, the Gulf of Mexico, and in a Caribbean coral reef

(Fig. A1b and Table A2 in the regime of coral reefs (Tables A2 and A3). Measurement uncertainty is up to 2 µatm210

reported for pCO2 and 0.02 for pH.

b) For AT and DIC, we consider four time series : (1) eight time series accessible to provide insights into changes in the

surface ocean carbonate system over the recent decades (Bates et al., 2014; Coppola et al., 2020; Gregor and Gruber, 2021; Pérez et al., 2021; Leseurre et al., 2022)

. Two of them belong to the biogeochemical observing systems located in the subtropical Atlantic: Bermuda At-

lantic Time Series (BATS, Michaels and Knap, 1996; Steinberg et al., 2001) , (2) Atmospheric Flux Dynamics215

Time Series in the Mediterranean (DYFAMED, Coppola et al., 2021), (3) and European Station for Time-Series

in the Ocean Canary islands (ESTOC, González-Dávila and Santana-Casiano, 2009), and (4) Hawaii Ocean . The

other two provide direct measurements in the same ocean basin but in the subpolar region: Irminger Sea and

Iceland Sea (IRMINGER and ICELAND, Olafsson et al., 2010). Further mentions time series distributed in spe-

cific conditions including a high-Arctic fjord in Svalbard (AWIPEV, Fischer et al., 2017; Gattuso et al., 2023) and220

the Mediterranean basin (DYFAMED, Coppola et al., 2021). Hawaii Ocean Time-series (HOT, Dore et al., 2009)

. The first three stations are in the North Atlantic while the latter is located in in the subtropical North Pacific

(HOT, Dore et al., 2009) and OISO time series in the North Pacific (Fig. A1b). These long-term time series provide

insights into changes in the surface ocean carbonate system over the recent decades (Bates et al., 2014; Coppola et al., 2020; Gregor and Gruber, 2021; Pérez et al., 2021)

. The subpolar Southern Ocean (KERFIX, Metzl and Lo Monaco, 1998) allow to complete the reconstruction qual-225

ification in different ocean basins. Measurement uncertainty (f.i., from replication experiments) reported at these

sites is below 3 µmolkg−1. Except for HOT and ESTOC stations provide surface ocean observations of AT and

DIC, and BATS and DYFAMED data (surface ocean measurements), data over all the stations are extracted at
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seawater depth shallower than 10 m. A monthly average is applied for all the mentioned time series in order to be

compatible with output from the CMEMS-LSCE chain of models.230

Table 2. Data sources used in product evaluation and comparison. Values in brackets of each variable present measurement-based data

uncertainty or analysis‡ uncertainty.

Product Data type Evaluation variables Reference

Global ocean
1. Surface Ocean CO2 Atlas version 2022 (SOCATv2022, 1985-2021),

last access: 17/6/2022

observation-based

gridding, resolution:

1◦ (global ocean)

and 0.25◦ (coastal

ocean), monthly

pCO2 (< 5 µatm) Bakker et al. (2022)

2. CMEMS global ocean surface carbon product (MULTI-

OBS_GLO_BIO_CARBON_SURFACE_REP_015_008, 1985-2021),

last access: 05/12/2022

SOCAT-based

reconstruction,

resolution: 1◦,

monthly

pCO‡
2 (8 µatm)

Chau et al.

(2022a, b)

3. Global Ocean Data Analysis Project bottle data version 2.2022

(GLODAPv2.2022, 1985-2021), last access: 30/9/2022
observation

AT (4 µmol kg−1)

DIC (4 µmol kg−1)

pH (0.01− 0.02)

Lauvset et al.

(2022a, b)

Time series stations
4. Autonomous time series from surface buoys since 2004 (see details

in Table A2), last access: 15/10/2022
observation

pCO2 (2 µatm)

pH (0.02)
Sutton et al. (2019)

5. Bermuda Atlantic Time Series (BATS: 31.7◦N-64.2◦W, 1988-

2021), last access: 30/10/2022
observation

AT (3 µmol kg−1)

DIC (1 µmol kg−1)

Michaels and Knap

(1996); Steinberg

et al. (2001)

6. Atmospheric Flux Dynamics Time Series in the Mediterranean (DY-

FAMED: 43.5◦N-7.9◦E, 1998-2017), last access: 23/03/2023
observation AT, DIC

Coppola et al.

(2020, 2021)

7. European Station for Time-Series in the Ocean Canary islands (ES-

TOC: 29.2◦N-15.5◦W, 1995-2009), last access: 30/10/2022
observation AT, DIC

González-Dávila

and Santana-

Casiano (2009)

8. Hawaii Ocean Time-series (HOT: 22.5◦N-158.1◦W, 1988-2020),

last access: 30/10/2022
observation AT, DIC Dore et al. (2009)

9. Underwater observatory in Spitsbergen (Svalbard) (AWIPEV:

78.93◦N-11.92◦E, 2015-2020), last access: 20/07/2023
observation

AT (2.6 µmol kg−1)

DIC (3 µmol kg−1)

Fischer et al.

(2017); Gattuso

et al. (2023)

10. Irminger Sea and the Iceland Sea time series (IRMINGER:

64.33◦N-28.00◦W, 2014-2021; ICELAND: 68.00◦N-12.67◦W,

2014-2021), last access: 20/07/2023

observation
AT (-)

DIC (2 µmol kg−1)

Olafsson et al.

(2010)

11. Southern Ocean time series under the OISO project (KERFIX:

50.67◦S-68.42◦E, 1992-2018), last access: 20/07/2023
observation

AT (3 µmol kg−1)

DIC (3 µmol kg−1)

Metzl and

Lo Monaco (1998)
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3 Reconstruction methods

3.1 Ensemble pCO2 mapping feed-forward neural networks

The CMEMS-LSCE-FFNN (Chau et al., 2022b) is based on an ensemble of 100 feed-forward neural network (FFNN) models

mapping SOCAT CO2 fugacity (fCO2) and predictor variables (Eq. 1).

fCO2 = FFNN (SST,SSS,SSH,Chl− a,MLD,xCO2,fCO
clim
2 , latitude, longitude) (1)235

The predictors of fCO2 include sea surface temperature (SST), salinity (SSS), surface height (SSH), chlorophyll-a (Chl-a),

mixed layer depth (MLD), CO2 mole fraction (xCO2), fCO2 climatologies (fCOclim
2 ), and the geographical coordinates

(latitude and longitude). The datasets of SOCAT fCO2 and predictors are first reprocessed to match model fitting requirements

(Sect. 2.1). After excluding the data in the reconstruction month, the data within the 3-month window are randomly separated

into FFNN training and validation subsets with a ratio of 2 : 1. The subsampling process is repeated for each 100 FFNN runs240

that results in 100 different datasets for model fitting.The excluded SOCATv2022 datasets are used in model evaluation. The

CMEMS-LSCE-FFNN approach was originally developed for pCO2 reconstructions at monthly, 1◦ resolutions where pCO2 is

converted from fCO2 following the formulation by Körtzinger (1999). The model best estimate and its uncertainty are defined

as the ensemble mean (µ) and ensemble spread (σ) of 100 model outputs of pCO2.

This study slightly modifies the CMEMS-LSCE-FFNN ensemble approach by Chau et al. (2022b) to achieve pCO2 recon-245

structions at monthly, 0.25◦ resolutions. Some of the input datasets presented here (Table 1) are different from those presented

in Chau et al. (2022b) (Table S1). The up-to-date input datasets have higher resolutions and a better coverage over the coastal

ocean as well as in the high latitudes. Furthermore, the new CMEMS data resources offer space-time varying uncertainty fields

which are important in quantifying carbonate system variable uncertainties.

For comparable evaluations in this study, we execute 100-member ensembles of FFNN models at spatial resolutions of both250

1◦ (FFNNr100) and 0.25◦ (FFNNr025) using the same lot of input data resources (Table 1). Remind that the training data of

fCO2 is extracted from the SOCATv2022r100 product for FFNNr100 while it comes from the SOCATv2022r025 product (i.e.,

the merged product of the 1◦-open-ocean dataset and the 0.25◦-coastal-ocean dataset) for FFNNr025. All input datasets are

reprocessed with respect to each model resolution (Sect. 2.1). Sect. 3.1 compares these two CMEMS-LSCE-FFNN versions

and highlights the skill of the finer resolution data product.255

3.2 Locally interpolated alkalinity regression

Locally interpolated alkalinity regression (LIAR; Carter et al., 2016, 2018) is an ensemble-based regression method devel-

oped for the global reconstruction of total alkalinity (AT). Regression coefficients were learned on GLODAPv2 data (Olsen

et al., 2016) binned within regular windows of 5◦ × 5◦. For prediction, the LIAR software interpolates between the regression

coefficients to arbitrary resolutions specified by the users. This study employs eight LIAR models (Carter et al., 2018, Table 2)260

for calculating AT at monthly, 0.25◦ resolutions. Each model represents a combination of predictor variables (see the full
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presentation in Eq. 2),

AT = LIAR (SSS,SST,NO3,SiO2). (2)

The eight regression models include salinity (SSS) - the predominant predictor of AT - and some combinations of temperature

(SST), nitrate (NO3), and silicate (SiO2). The model which has the smallest propagation uncertainty is chosen to provide the265

best estimate of AT.

Global monthly total alkalinity and 1σ-uncertainty are estimated with given input data from the monthly CMEMS SSS

and SST fields and from the WOA18 datasets of nutrient concentrations (Table 1). Uncertainty of the AT field is estimated

systematically through input uncertainty propagation along the processing chain (Carter et al., 2018). Here we define the input

uncertainty of predictors in terms of standard deviations (1σ). Input uncertainty fields associated to the monthly CMEMS270

SSS and SST are products’ analysis errors (see e.g., Fig. A7) while uncertainties of the WOA18 NO3 and SiO2 climatologies

are set to 15% of data values per cell. The 15% quantity refers to the median percentage of standard analysis errors against

climatological means of nutrient concentrations (see product standard errors in Table 6, Garcia et al., 2019). The WOA18

standard analysis errors are defined as misfits between their interpolated data and GLODAPv2 bottle data (Olsen et al., 2016).

Spatial distribution of the error percentage of the WOA18 nutrient concentrations at the ocean surface is illustrated in Fig. A8.275

3.3 Carbonate system speciation

The CO2SYS speciation software was first developed by Lewis and Wallace (1998) to determine carbonate system parameters

in the marine CO2 system based on a set of equilibrium equations (Dickson et al., 2007). Here we use the speciation program

written by Van Heuven et al. (2011) and its extension with uncertainty propagation proposed by Orr et al. (2018). To obtain a

complete description of the ocean carbonate system, the CO2SYS initialization requires the following input conditions:280

i) values of any couple of the parameters pCO2, AT, DIC, and pH,

ii) temperature and pressure,

iii) total concentrations of all the non-CO2 acid-base systems,

iv) equilibrium constants used to describe seawater acid-base chemistry.

The (iii)-condition involves total concentrations of both conservative and non-conservative constituents in the non-CO2 acid-285

base systems. The amount of conservative constituents such as borate, fluoride, and sulfate in surface seawater is estimated with

salinity. The total concentration of non-conservative constituents (nutrients) is computed approximately with silicate (SiO2),

and phosphate (PO4). Further information of the carbonate system speciation can be found in Dickson et al. (2007) and Dickson

(2010).

With the reconstructions of pCO2 and AT (Sects 3.1 and 3.2), the CO2SYS speciation software is used to derive pH, DIC,290

Ωar, and Ωca, and determine their uncertainty over the ocean surface at a resolution of 0.25◦. Equation 3 expresses all input-

output variables of CO2SYS for this study. Note that the estimates for other carbonate system variables such as hydrogen ion
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(H+) concentration and Revelle Factor (RF) - a measure of the carbonate buffer capacity- are also available (Figs. A4 and A6)

but beyond the scope of our data evaluation.

pH, DIC, Ωar, Ωca = CO2SYS (pCO2,AT,SST,SSS,P,SiO2,PO4,constants) (3)295

The FFNN best estimate (ensemble mean) of pCO2 reconstructions (Sect. 3.1) and the LIAR outputs of AT (Sect. 3.2) are used

as the prior inputs of the CO2SYS at each grid cell for every month in the period 1985-2021. We take the same data products

of SST, SSS, and nutrient concentrations as for the previous reconstructions (Table 1). Pressure (P) is assumed to be 0 dbar at

the ocean surface. For equilibrium constants, we choose the best empirical values recommended by Dickson et al. (2007) and

Dickson (2010). These settings include (1) the dissociation constants K1 and K2 from Lueker et al. (2000) and KHSO4 from300

Dickson (1990) in combination with the total boron-ratio-salinity formulation by Uppstrom (1974).

The uncertainty of the CO2SYS variables is estimated by error propagation (Orr et al., 2018). Inputs for the CO2SYS

error propagation include the reconstruction uncertainty of pCO2 (FFNN ensemble standard deviation) and of AT (LIAR error

propagation). The uncertainty of SST, SSS, and nutrient concentrations are set to the same values as in the previous section

(Sect. 3.2). Equilibrium constants’ standard errors are default values (see Table 1, Orr et al., 2018). As for FFNN and LIAR,305

uncertainty values of each carbonate system variable are computed for each month in 1985-2021 and at each 0.25◦-grid box

over the global surface ocean.

4 Evaluation metrics

4.1 Model best estimate and uncertainty quantification

The 100 FFNN models result in an ensemble of 100 estimates of global monthly, 0.25◦ surface ocean pCO2 fields (Sect. 3.1).310

Specify any t= 1 : 444 (month), i= 1 : 180 (latitude), and j = 1 : 360 (longitude), the best estimate (µtij) and uncertainty

(σtij) at time t and grid cell ij are deduced from 100 FFNN pCO2 estimates (X(t, i, j,m))
m=100
m=1 as follows.

µtij =

∑m=100
m=1 X(t, i, j,m)

100
, (4a)

σtij =

√∑m=100
m=1 [X(t, i, j,m)−µtij ]

2

100
. (4b)

For pH, AT, DIC, Ωar, and Ωca, the best estimates and associated uncertainties (µtij and σtij) are obtained directly from the315

LIAR and CO2SYS speciation tools and their error propagation (Sects. 3.2 and 3.3).

To assign representatives of µ and σ estimates for carbonate system variables at a specific space-time window, we define

statistics with respect to each of the three following cases:
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i) a representative over a period of time (T months)

µij =

∑
tµtij

T
, (5a)320

σij =

√∑
tσ

2
tij

T
. (5b)

ii) a representative over a region (e.g., ocean basins and sub-basins, the global ocean)

µt =

∑
ij µtij ×Aij∑

ijAij
, (6a)

σt =

√∑
ij σ

2
tij ×Aij∑
ijAij

. (6b)

iii) a representative over a period of time and a region325

µ=

∑
t,ij µtij ×Aij

T ×
∑

ijAij
, (7a)

σ =

√∑
t,ij σ

2
tij ×Aij

T ×
∑

ijAij
. (7b)

where t is in a time period with length T and Aij is the area of each grid cell in a desired region. It is noteworthy that the

statistics in Eqs. (5b)-(7b) are not the standard deviation associated to the mean quantities in Eqs. (5a)-(7a), but they stand for

the best representative of uncertainty estimates over an ocean basin and/or time period. These statistics also support for the330

comparison with model-observation deviation (e.g., Eq. 10) which is typically used in the calculation of standard uncertainty

proposed in the previous studies (Jiang et al., 2019; Iida et al., 2021; Gregor and Gruber, 2021). Subscripts in the notations of

the best model estimates (µ) and model uncertainties (σ) in Eqs. (4)-(7) are dropped out for general situations.

The best model estimate (µ) is assessed against model uncertainty (σ) through σ-to-µ ratio (%)

R(µ,σ) = 100%
σ

|µ|
. (8)335

The σ-to-µ ratio allows evaluating the significance of the model estimate. Model estimates of carbonate variables are reliable

with R(σ,µ) values less than 20% (Rose, 2013).

4.2 Model performance in comparison with evaluation data

Assume that µtij and Otij are the best model estimate and an observation (or its gridded data) available at time t and grid cell

ij, and µ and O are respectively their means over the total number of evaluation data (N ). Model skills are assessed against340

observation data (Table 2) with the following metrics:

• mean model-observation differences (Bias)

Bias =

∑
t,ij (µtij −Otij)

N
, (9)
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• root-of-mean-square-deviation (RMSD)

RMSD=

√∑
t,ij (µtij −Otij)

2

N
, (10)345

• coefficient of determination (r2)

r2 =

[∑
t,ij (µtij −µ)× (Otij −O)

]2
∑

t,ij (µtij −µ)
2 ×

∑
t,ij (Otij −O)

2 . (11)

5 Results

5.1 Surface ocean pCO2

This section presents the reconstruction of surface ocean pCO2 at monthly and 0.25◦ resolutions. The reconstruction skill is350

evaluated against SOCATv2022 data from global to ocean basin scale and at the level of grid cells (Sect. 2.2). We compare the

novel reconstruction at a higher spatial resolution to the one at a coarser spatial resolution (Chau et al., 2022b). Emphasis is put

on the skill to reproduce spatial and temporal variations of pCO2 across a variety of coastal regions and time series stations.

Figure 1. CMEMS-LSCE-FFNN pCO2 over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate

and 1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).
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Table 3. Skill scores Evaluation statistics for monthly CMEMS-LSCE-FFNN reconstructions of pCO2 at 1◦ (r100) and 0.25◦ (r025) spatial

resolutions computed over the period 1985-2021. r100→ 025 and r025→ 100 are referred to the versions upscaled or downscaled or

upscaled from the original CMEMS-LSCE-FFNN pCO2 at 1◦ and 0.25◦ resolutions. SOCATv2022 gridded data independent from CMEMS-

LSCE-FFNN training are used as benchmarks for model evaluation (see text for details). Statistics including total numbers of data, RMSD

(Eq. 10), and r2 (Eq. 11) are reported for both the open ocean (O) and coastal region (C). ∗ marks results with respect to the primary product

proposed in this study.

Basins
Number of data RMSD [µatm] r2

r100 r025* r100 r025 → 100 r025* r100 → 025 r100 r025 → 100 r025* r100 → 025

0. Globe
(O) 207174 3317273 14.32 14.3 14.08 14.1 14.29 14.3 14.38 14.4 0.83 0.83 0.83 0.83

(C) 101007 431758 26.61 26.6 26.48 26.5 27.55 27.6 28.50 28.5 0.72 0.72 0.74 0.72

1. Arctic
(O) 537 8589 27.93 27.9 27.43 27.4 28.04 28.0 28.06 28.1 0.69 0.69 0.67 0.67

(C) 5897 25844 38.74 38.7 38.56 38.6 41.46 41.5 43.17 43.2 0.55 0.56 0.55 0.52

2. Atlantic
(O) 54797 876116 13.76 13.8 13.57 13.6 13.69 13.7 13.78 13.8 0.81 0.81 0.81 0.81

(C) 49770 227665 24.99 25.0 24.78 24.8 25.17 25.2 26.05 26.1 0.76 0.76 0.77 0.77

3. Pacific
(O) 120604 1932981 14.59 14.6 14.30 14.3 14.54 14.5 14.67 14.7 0.85 0.85 0.85 0.85

(C) 26847 104269 26.79 26.8 26.90 26.9 28.46 28.5 28.95 29.0 0.71 0.71 0.69 0.67

4. Indian Ocean
(O) 4485 71719 10.34 10.3 10.17 10.2 10.26 10.3 10.34 10.3 0.88 0.88 0.88 0.88

(C) 1522 6187 23.50 23.5 22.82 22.8 25.40 25.4 26.51 26.5 0.69 0.71 0.69 0.69

5. Southern Ocean
(O) 26751 427868 14.42 14.4 14.29 14.3 14.52 14.5 14.43 14.4 0.69 0.69 0.69 0.69

(C) 16971 67793 26.01 26.0 25.80 25.8 27.35 27.4 28.80 28.8 0.61 0.61 0.64 0.59

Figure 1 presents global maps at 0.25◦-resolution of long-term averages of pCO2 and corresponding uncertainty estimates.

Reconstructed pCO2 distributions reveal well documented large scale structures. Values are high over upwelling regions (e.g.,355

Equatorial Pacific, California Boundary Current, Western Arabian Sea). Low pCO2 is associated with increased CO2 solubility

in cold high latitudes seawater (e.g., Arctic), strong biological production (e.g., China Sea), or the combination of both (e.g.,

subpolar Northern Atlantic, Southern Ocean between 35−50◦S). Spatial structures appear coherent from small to large spatial

scales, both along the coast and moving towards the open ocean (see also in Figs. 2-4). The combination of a down-scaled

version of open-ocean and higher-resolution coastal SOCATv2022 data (Sect. 2.1) yields pCO2 distributions without disconti-360

nuities. The uncertainty map (Fig 1b) represents the confidence level in surface ocean pCO2 estimates (Fig 1a). Predominantly

low uncertainty estimates (σ < 5 µatm) indicate the global stability of the ensemble reconstruction. Exceptions are found in

many coastal regions, open-ocean areas with sparse data coverage (e.g., Southern Pacific, Indian Ocean), or regions with sub-

stantially high or low surface ocean pCO2 (e.g., Arctic, eastern equatorial Pacific). However, pCO2 is reconstructed with a high

degree of confidence over most of the global ocean with a σ-to-µ ratio (Eq. 8) below 10% (Fig. A9a).365

Skill scores of the monthly, 0.25◦-resolution reconstruction are presented in Table 3 (columns marked by an asterisk). The

global RMSD (Eq. 10) between the best reconstruction and SOCATv2022r025 pCO2 over the entire period is 14.2914.3 µatm

for the open ocean and 27.5527.6 µatm for the coastal ocean. These two model errors are lower than 4% and 8% of the global

mean pCO2 (Table 6). Moreover, variability present in observation-based data is reproduced by the CMEMS-LSCE-FFNN

with high values of r2 (open ocean: 0.83, coast: 0.74). The reconstruction quality is similar among major ocean basins. Spatial370

distributions of SOCATv2022 data, bias, and RMSD are shown in Figs. A2-bd and A3-bdfh. Estimation skills are low in the
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ocean basins with sparse data coverage and significant space-time variability of pCO2 (e.g., Arctic, eastern Equatorial Pacific,

land-ocean continuum).

Table 3 also presents statistics for the monthly FFNN products of surface ocean pCO2 at spatial resolutions of 0.25◦ (r025)

and 1◦ (r100) together with their variants (r100→ 025 and r025→ 100). The latter are respectively extrapolation and interpo-375

lation versions of the original r100 and r025 datasets, i. e., . We used the Climate Data Operators (CDO) remap operator to

regrid FFNN model outputs regridded to a finer or coarser spatial resolution. For compatibility, we compare statistics between:

i) FFNN(r025) and FFNN(r100→ 025) by using SOCATv2022r025 as evaluation data,

ii) FFNN(r025→ 100) and FFNN(r100) by using SOCATv2022r100 as evaluation data.

The FFNN(r025) central to this study yields a lower RMSD and a higher correlation to the SOCAT data than the FFNN(r100→380

025). As expected, the improvement in reconstruction skill with higher model resolution is larger over coastal regions than in

the open ocean. The FFNN(r025) product after interpolating to a coarser resolution, i.e., FFNN(r025→ 100), agrees with the

original 1◦-resolution data product over all the ocean.

The motivation to increase the spatial resolution of the reconstruction is to improve the representation of horizontal gradients

of pCO2 at fine scales. Figures 2-4 exemplify spatial distributions for the two reconstructions (r025 and r100) over the coastal-385

open-ocean continuum. Ten distinct oceanic regions are considered (see Fig. A1a and Table A1 for the ten locations), which

can be classified into three groups:

• permanent Eastern Boundary current upwelling systems with relatively high pCO2 (California Current System - CCS,

Humboldt Current System - HCS, Canary Current System - CnCS, and Benguela Current System - BCS),

• regions characterized by low pCO2 values driven by cold water temperatures and strong biological production (Labrador390

Sea, Western South Atlantic, Northern Europe, and Sea of Japan),

• other regions either under the influence of strong river runoff (Amazon mountmouth) or monsoon-driven upwelling

(Western Arabian Sea).

The legend of Figs 2-4 includes regional RMSD and r2 computed between the best estimates of two models and coastal-ocean

SOCATv2022r025 data. The coarser spatial resolution product is co-located at the same 0.25◦-grid cells for this analysis. These395

figures illustrate important discrepancies in pCO2 data density between coastal regions with poorly monitored regions (e.g.,

HCS, BCS, Amazon mountmouth) contrasting with areas with higher data coverage (e.g., Northern Europe, Sea of Japan).

Over 7 out of the 10 analysed regions the reconstruction at monthly, 0.25◦ resolutions yields RMSDs below 10% of the

global mean of coastal-ocean pCO2 estimates (Table 6) and r2 values higher than 0.3; e.g., Northern Europe (RMSD= 33.90

RMSD= 32.4 µatm, r2 = 0.80r2 = 0.81), Sea of Japan (RMSD= 20.84 RMSD= 20.8 µatm, r2 = 0.70r2 = 0.71), and400

CnCS (RMSD= 30.36 RMSD= 28.8 µatm, r2 = 0.35r2 = 0.4). The CMEMS-LSCE-FFNN model projections of pCO2 lack

skill over the HCS (RMSD= 54.54 RMSD= 50.0 µatm, r2 = 0.29r2 = 0.33), the region under influence of the Amazon river

(RMSD= 45.93 RMSD= 45.7 µatm, r2 = 0.37r2 = 0.38), and the Western Arabian Sea (RMSD= 45.31 RMSD= 44.8
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Figure 2. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over 4 permanent upwelling

regions associated with the Eastern Boundary Currents (California, PeruHumboldt, Canary, and Benguela; see Figure A1-ABGH for geo-

graphical locations). For each region, spatial distributions of pCO2 (µ) and uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2

averaged over 1985-2021 (Eqs. 5 and 10) are shown. Metrics presented in the legend for each of the 3rd row include the number of coastal-

ocean SOCATv2022 data (N ), regional RMSD (Eq. 10) and r2 (Eq. 11).
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Figure 3. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over 4 regions characterized with

low pCO2 values (Labrador, Western South AmericaAtlantic, Northern Europe, and Japan; see Figure A1-CEFJ for geographical locations).

For each region, spatial distributions of pCO2 (µ) and uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2 averaged over 1985-

2021 (Eqs. 5 and 10) are showed. Metrics present in the legend for each of the 3rd row include the number of coastal-ocean SOCATv2022

data (N ), regional RMSD (Eq. 10) and r2 (Eq. 11).

µatm, r2 = 0.47r2 = 0.49). In nearshore sectors of these coastal areas, pCO2 estimates are also subject to a substantial amount

of uncertainty (σ > 20 µatm). The lack of model skill reflects the combination of low data density and strong pCO2 gradients405

18



Figure 4. Comparison of CMEMS-LSCE-FFNN mapping pCO2 at 1◦ (r100) and 0.25◦ (r025) resolutions over the mouth of the river

Amazon and the Western Arabian Sea (see Fig. A1-DI for geographical locations). For each region, spatial distributions of pCO2 (µ) and

uncertainty (σ) estimates, and coastal-ocean RMSD of pCO2 averaged over 1985-2021 (Eqs. 5 and 10) are showed. Metrics present in the

legend for each of the 3rd row include the number of coastal-ocean SOCATv2022 data (N ), regional RMSD (Eq. 10) and r2 (Eq. 11).

driven by multiple underlying physical and biogeochemical processes. The HCS, for instance, is characterized by the highest

pCO2 levels (Fig. 2) among the four Eastern Boundary Current Systems, with interannual variability amplified with the El

Niño–Southern Oscillation (ENSO) events (Feely et al., 1999; Landschützer et al., 2016). Similarly, high pCO2 levels with

substantial seasonal variability are observed over the Western Arabian Sea (Fig. 4b), the key driver being monsoonal upwelling

(Sabine et al., 2002; Sarma et al., 2013)(Sabine et al., 2002; Sarma et al., 2013, 2023). In contrast to the two aforementioned410

coastal regions, high CO2 undersaturation as well as strong pCO2 gradients (Fig. 4a) are found in the area under the influence

of Amazon river discharge (Olivier et al., 2022). Extreme values and large variability of pCO2 challenge any approach to

estimate pCO2 data over these regions (Ibánhez et al., 2015; Bakker et al., 2016; Landschützer et al., 2020).

The two FFNN reconstructions (r025 and r100) share similarities in overall structures of pCO2 over the coastal-open-ocean

continuum (Figs. 2-4). However, the higher spatial resolution outperforms its lower resolution counterpart is reproducing fine-415

scale features of pCO2 in the transition from nearshore regions to the adjacent open ocean. The increase in model spatial

resolution translates into a greater spatial coverage of the continental shelves such as Labrador Sea, Northern Europe, and Sea

of Japan (Fig. 3), and thus an increase in the number of data over the coastal domain. The increase in spatial resolution allows
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Figure 5. Time series of surface ocean pCO2 (µatm) at coastal observing stations (Table A2 and Fig. A1b): model best estimate (curve), 1σ-

uncertainty (envelope), and monthly average of in situ observations (point). The reconstructed data at 1◦ (r100) and 0.25◦ (r025) resolutions

are co-located to in situ observations provided by Sutton et al. (2019). Means of the best estimate and 1σ-uncertainty (µ±σ) calculated over

the observing time span are shown in brackets. Statistics include number of months with observations (N ), Bias, RMSD, and r2 computed

for the two reconstructions. σt
pCO2

stands for temporal standard deviation from monthly averages of pCO2 observations.

a gain in prediction probability of pCO2 variations on the order of roughly 2% over the Eastern Boundary Currents to 8% 7%

over the Western South Atlantic (Figs. 2-3b).420

Reconstruction skill of seasonal to inter-annual variability of At local scale, the reconstruction of in situ pCO2 is further

assessed at eight coastal monitoring sites (Sutton et al., 2019) and illustrated in (Sutton et al., 2019) over the open ocean is at
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the high order of confidence (Table A3). Low RMSD (between 7.8 and 23.5 µatm) and sustainably high r2 (from 0.45 to 0.98)

dominate evaluation statistics over the 18 open-ocean stations. Obviously, CMEMS-LSCE-FFNN has less skill in the coastal

sector and model-observation deviation varies depending on a wide range of pCO2 conditions. However, coastal-ocean RMSD425

can be smaller than 10% of station climatology (e.g., KILONALU, KANEOHE, ALAWAI) and the reproduction availability

of temporal variations of pCO2 possibly exceeds 70% (e.g., SEAK, KODIAK, DABOB). Through Fig. 5(see Sect. 2.2 , we

further assess seasonal to inter-annual variability reproduced at the eight coastal sites (see Fig. A1b and Table A2 for data

description and Fig. A1b for station locations) station location) where measurements are available for both pCO2 and pH

(analyzed in Section 5.3) and they are poorly constrained by the 1◦-reconstruction (Chau et al., 2022b). The temporal variability430

of pCO2 reported for these time series sites reflects a combination of processes (Sutton et al., 2019), e.g., California Current

System (CAPEARAGO and CCE2), western coastal upwelling (CAPEELIZABETH), eutrophication enhancing respiration of

CO2 (FIRSTLANDING), and multiple stressors on coral reef environments (CHEECAROCKS, GREYREEF). Results from

reconstructions at two spatial resolutions are compared: 1◦ (100, black curve) and 0.25◦ (r025, color curve). As shown in Fig. 5

(scattered points for observations) time series of coastal pCO2 are still short. The longest time series covers 127 months of435

pCO2 monitoring since 2010 (CCE2) while the shortest one contributes 17 months with observations (FIRSTLANDING).

Analyzing the eight station time series, we have found that data have been sampled within a few days with an average offset

of about a week from the month center. At these coastal sites, the temporal standard deviation from monthly averages of pCO2

(σt
pCO2

) exceeds measurement analytical errors (2 µatm, Sutton et al., 2019). σt
pCO2

ranges from 20.1220.1 µatm at GREYR-

EFF to values as large as 65.6 µatm at CAPEARAGO or 69.9870 µatm at FIRSTLANDING. The monthly average of pCO2440

might not be adequately represented by discreet samples at sites with a large temporal standard deviation of pCO2. The misfit

between the monthly reconstruction and discreet observations is exacerbated in dynamical coastal environments and might

explain in part the large RMSD of reconstructions of monthly coastal pCO2 (e.g., GREYREEF: 38.3438.3 µatm, CAPEAR-

AGO: 79.8679.9 µatm, FIRSTLANDING: 77.3277.3 µatm) for the r025 reconstruction. The RMSD is mostly lower for the

FFNN reconstruction at 0.25◦ resolution compared to the FFNN at 1◦ resolution by 2.112.2 µatm (CCE2) to 23.3223.2 µatm445

(COASTALMS). Similarly, r2 increases between 7%-23% at higher resolution. Overall, seasonal to interannual variations of

coastal-ocean pCO2 are better reproduced in the reconstruction at 0.25◦ resolution (Fig. 5).

5.2 Total alkalinity and dissolved inorganic carbon

This section presents and analyzes analyses global ocean surface reconstructions of total alkalinity (AT) and dissolved inorganic

carbon (DIC) at monthly, 0.25◦ resolutions over 1985-2021. GLODAPv2.2022 bottle data (Sect. 2.2) serve as reference data450

for model evaluation. Model reconstruction skill is further assessed at the four eight Eulerian time series sites: AWIPEV, BATS,

DYFAMED, ESTOC, and HOTS HOT, ICELAND, IRMINGER, and KERFIX (Table 2).

Figure 6 shows spatial distributions of the climatological mean and uncertainty (Eq. 5) for AT and DIC. Despite being in part

influenced by common biological and physical processes, both properties have contrasting distributions due to the strong cor-

relation between surface ocean AT and salinity (Lee et al., 2006; Broullón et al., 2019), as well as the contribution of air-sea gas455

exchange and biological productivity on surface ocean DIC levels (Feely et al., 2001; Takahashi et al., 2014). Over subtropical
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Figure 6. CMEMS-LSCE AT and DIC over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

Atlantic gyres and the Mediterranean Sea, oceanic areas with net evaporation, AT exceeds 2400 µmol kg−1. Total alkalinity

falls below 2150 µmol kg−1 in regions where precipitation, river freshwater runoff, or seasonal sea-ice melting dilute surface

water salinity (e.g., subpolar North Pacific, Arctic, and equatorial river outflows). The distribution of DIC is relatively uniform

between the Atlantic, Pacific, and Indian Ocean basins, but shows pronounced latitudinal gradients. High concentrations of460

DIC are found throughout the Southern Ocean (DIC > 2100 µmol kg−1) where strong upwelling brings up subsurface water

enriched in CO2 and nutrients. The inefficient utilization of nutrients in this high nutrient low chlorophyll region limits the

biological drawdown of DIC allowing the massive DIC input to be spread horizontally by westerlies (Key et al., 2004; Men-

viel et al., 2018). Levels of DIC below 1900 µmol kg−1 are reconstructed over the Equatorial Pacific, the Equatorial Eastern

Atlantic, the Eastern Indian Ocean, and coastal areas on the Arctic Ocean. While low DIC levels associated with Equatorial up-465

welling reflect gas exchanges across the air-sea interface and enhanced biological production, the interaction between physical

and biogeochemical processes at work in the Indian Ocean are less well understood (Takahashi et al., 2014). Low DIC levels

found close to river mouths reflect outgassing of CO2 across the salinity gradient, as well as enhanced biological uptake fueled

by river nutrient inputs. Representation uncertainty (Fig. 6-cd) associated with monthly alkalinity and DIC reconstructions is

lower than 20 µmol kg−1 throughout the open ocean. The open-ocean σ-to-µ ratio (Eq. 8) ranges between 0.5−1.5% which is470

relatively small (Fig. A9-cd). The largest model uncertainty DIC uncertainty is computed through CO2SYS error propagation

with reconstruction uncertainties of pCO2 and AT set as inputs. The largest values (σ > 30 µmol kg−1) is computed appear
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nearshore and surrounding oceanic islands , a feature (Fig. 6d). A similar feature is found on the field of AT (Fig. 6c) inherited

from input uncertainty associated with the CMEMS salinity product (Fig. A7a).

Figure 7. Monthly time series of AT and DIC at BATS, DYFAMED, ESTOC and HOT stations (Table 2 and Fig. A1b): model best estimate

(curve), 1σ-uncertainty (envelope), and monthly average of surface (0-10 m) observations (point). Means of the best estimate and 1σ-

uncertainty (µ±σ) calculated over the observing time span are shown in brackets if accessible. Statistics include number of months with

observations (N ), Bias, RMSD, and r2. σt
AT

[σt
DIC] stands for temporal standard deviation from monthly averages of AT [DIC] observations.

We qualify monthly, 0.25◦ reconstructions of AT and DIC with measurements from GLODAPv2.2022 data (Lauvset et al.,475

2022a) for the 37-year period (Table 4 and Fig. 8). The global open-ocean reconstruction scores a RMSD of 22.0922.1 µmol kg−1

and a r2 of 0.9 in AT. Similar numbers are found for DIC (RMSD= 22.67= 22.7 µmol kg−1 and r2 = 0.9). The model scores

the good fit in the open Indian Ocean with RMSD smaller than 15.5 µmol kg−1 and r2 above 0.92 for both variables. The

reconstruction deviates from GLODAP data in the western North Atlantic, subpolar North Pacific, tropics, and nearby major

rivers (Fig. 8-abcd).480
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Figure 8. Spatial distribution of reconstruction skills for AT, DIC, and pH over 1985-2021. Mean model-data difference (Bias) and root-of-

mean square-deviation (RMSD) between the reconstruction and GLODAPv2.2022 surface data (0-10 m) at a spatial resolution of 0.25◦. The

size of grid cells is scaled upon a better visualization.

AT and DIC are underestimated in the continental shelves of north Alaska and the northeastern Atlantic, the Mediterranean

Sea, South China Sea, and nearby river plumes (Fig. 8-ac). The Arctic yields the poorest estimations among all the ocean basins

with a global RMSD over 100 µmol kg−1 (Table 4). The prediction probability of variability in AT [DIC] is relatively large for

the open ocean 79% [71%], but rather unsatisfying over the coastal ocean (46% [40%]). Extrapolating these carbonate variables

towards the shore remains challenging with much higher errors and uncertainty estimates obtained over the continental shelf485

compared to the open-ocean reconstruction (Table 4, Figs. 6-cd and . 8-abcd). The coastal-ocean errors are on the order of 10%

of the global mean values of AT and DIC (Table 6).

The reconstruction of AT distributions relies on LIAR coefficients fit with GLODAPv2 data (Olsen et al., 2016) covering

the years before 2015. These data are also part of the latest version GLODAPv2.2022 (Lauvset et al., 2022a). They do there-

fore not correspond to an independent dataset for the evaluation data of the CMEMS-LSCE reconstruction. To overcome this490
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Table 4. Skill scores computed between CMEMS-LSCE and GLODAPv2.v2022 in AT, DIC, and pH over the period 1985-2021. Total

numbers of data, RMSD (Eq. 10), and r2 (Eq. 11) are reported for both the open ocean (O) and coastal region (C). Basin identification is

shown in Fig. A1.

Basins Number of data
AT [µmol kg−1] DIC [µmol kg−1] pH [-]

AT-DIC (pH) RMSD r2 RMSD r2 RMSD r2

0. Globe
(O) 10269 (5411) 22.09 22.1 0.90 22.67 22.7 0.90 0.022 0.70

(C) 6309 (2080) 82.01 82.0 0.72 72.39 72.4 0.62 0.060 0.45

1. Arctic
(O) 103 (26) 107.09 107.1 0.79 113.28 113.3 0.71 0.106 0.32

(C) 1635 (300) 148.71 148.7 0.46 126.77 126.8 0.4 0.107 0.48

2. Atlantic
(O) 2785 (932) 30.10 30.1 0.74 28.66 28.7 0.72 0.028 0.58

(C) 2422 (941) 44.50 44.5 0.71 39.09 39.1 0.69 0.046 0.45

3. Pacific
(O) 4539 (3222) 13.61 13.6 0.92 15.95 16.0 0.92 0.019 0.74

(C) 1380 (639) 28.43 28.4 0.76 44.36 44.4 0.45 0.057 0.34

4. Indian Ocean
(O) 1177 (551) 15.05 15.1 0.92 13.79 13.8 0.96 0.012 0.90

(C) 328 (62) 16.56 16.6 0.92 21.97 22.0 0.90 0.013 0.82

5. Southern Ocean
(O) 1665 (680) 10.96 11.0 0.64 13.21 13.2 0.92 0.019 0.68

(C) 544 (138) 22.53 22.5 0.50 24.48 24.5 0.77 0.023 0.65

limitationaccomplish a cross-validation, reconstructions of AT and DIC are compared to observations for Eulerian eight time

series stations: AWIPEV, BATS, DYFAMED, ESTOC, and HOTHOT, ICELAND, IRMINGER, and KERFIX (see Table 2 and

Fig. A1b for data sources and station locations). Table A4 presents the evaluation statistics for all the stations and Figure 7

illustrates the comparison between monthly time series of AT and DIC extracted from the CMEMS-LSCE datasets and mea-

surements at these long-term monitoring sites. The four stations stand out as the four sustained long-term observation time495

series for carbonate system variablesmonitoring sites. More than 270 [80] months in the years 1988-2021 [1995-2009 and

1998-2017] include measurements of AT and DIC at BATS and HOT [ESTOC and DYFAMED]. As shown in Table A4, the

Arctic site (AWIPEV) provides 52-month data in 2015-2020 while the three other stations sparsely observed AT and DIC at

the surface layer resulting in fewer than 30 monthly mean data in 2014-2021 (IRMINGER and ICELAND) and 1992-2018

(KERFIX). The reconstructed time series fit monthly averages of in situ measurements well. Mean estimates of AT [DIC]500

over the observing period are about 2305 2283 [1983] µmol kg−1 at HOT KERFIX [HOT] to 2420 [21292219] µmol kg−1 at

DYFAMED [AWIPEV]. At all the stations (DYFAMED and AWIPEV excepted) and for the two variables, model-observation

misfit is small (Bias < 10< 11 µmol kg−1, RMSD < 13< 14 µmol kg−1) relative to the aforementioned mean estimates (Ta-

ble A4). The highest offset between the CMEMS-LSCE estimation and observations for all the stations is found at DYFAMED

(AT: −145.1 µmol kg−1, DIC: −124.69−124.7 µmol kg−1). DYFAMED provides long-term time series of AT and DIC mea-505

surements in the Northwestern Mediterranean Sea (Fig. A1b). Salinity and alkalinity have substantial values due to the net

evaporation (Coppola et al., 2020). The average of AT in the Mediterranean Sea exceeds that for the global ocean by 10%
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(Palmiéri et al., 2015). These characteristics set the Mediterranean Sea aside from the ocean basins. Although the bias between

reanalysed SSS and observations (Fig. A10) is relatively small, LIAR (Carter et al., 2018) was trained on GLODAPv2 (Olsen

et al., 2016) including a only few observations in this area. The distinct relationship between alkalinity and salinity prevailing510

in the Mediterranean Sea is likely not reproduced by LIAR leading to an underestimation of AT and a systematic bias to DIC

at DYFAMED (Fig. 7). ESTOC is located close to the North Atlantic east coast and under the influence of the Canary Current

System (CCS, Fig. A1). Spatial gradients and temporal variability are higher in the CCS (Fig. 2c) compared to BATS and HOT

which are both located in the center of subtropical gyres. The lowest prediction skill of temporal variability is obtained for

ESTOCDespite showing good estimates of AT and DIC in RMSD at ESTOC, temporal variability of observations are recon-515

structed with the lowest r2 (Table A4). Particularly, seasonality to multi-year variations in DIC are predicted at r2 = 0.47 for

ESTOC compared to r2 > 0.7 for AWIPEV, ICELAND, IRMINGER, BATS and HOT. Over all the stations, the model under-

estimates temporal changes of AT (Fig. 7a; BATS: r2 = 0.33, DYFAMED: r2 = 0.12, ESTOC: r2 = 0.03, HOT: r2 = 0.32)

which can be attributed to the large discrepancy in variability between in situ measurements and the CMEMS time series of

salinity (Fig. A10a; BATS: r2 = 0.33, DYFAMED: r2 = 0.19, ESTOC: r2 = 0.03, HOT: r2 = 0.35). Model uncertainty (1σ-520

envelop) of monthly AT and DIC estimates (Fig. 7a) is also inflated somewhat proportional to the CMEMS salinity product

uncertainty (Fig. A10a).

5.3 Surface ocean pH and saturation state with respect to carbonate minerals

Surface ocean pH and saturation states with respect to aragonite (Ωar) and calcite (Ωca) are critical indicators used to measure

ocean acidification. This section first presents an overall evaluation of these variables. We then introduce estimates involved525

in the monitoring of ocean acidification in 1985-2021 as an essential application of the CMEMS-LSCE surface ocean carbon

product.

5.3.1 General analysis and evaluation

The spatial distribution of surface ocean pH reported on total hydrogen ion (H+) scale is shown in Fig. 9 (the corresponding

figure for H+, Fig. A4, is included in the supplementary). Both temporal means of the best model estimate and 1σ-uncertainty530

of pH share spatial patterns with pCO2 (Fig. 1). Variables pH and pCO2 correlate closely through equilibrium relationships of

dissolved CO2 in seawater: an increase in pCO2 generally corresponds to a decrease in pH. The distribution of the climatolog-

ical mean of pH displays a gradient with latitude between 8.03 and 8.11 pH units across most of the basins (Fig. 9a). Values

of pH below 8 are associated with the upwelling of CO2-rich waters (e.g., Eastern Equatorial Pacific, Western Arabian Sea).

pH exceeds 8.15 in sub- and polar cold surface water and in the regions with high biological productivity (e.g. Labrador Sea,535

Nordic Seas, Southern Ocean between 35◦S-50◦S).

The saturation state of surface ocean waters with respect to calcium carbonate minerals aragonite and calcite is defined as the

ratio of the product of the concentrations of calcium ions (Ca2+) and carbonate ions (CO2−
3 ) to the solubility of the respective

calcium carbonate mineral (CaCO3) in surface seawater(Eq. ??). Aragonite being the more soluble polymorph, its degree of

saturation (Ωar) is smaller than that of calcite (Ωca) (Mucci, 1983). With the exception of this offset, the spatial distributions540
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Figure 9. CMEMS-LSCE pH and Ωar over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

of their climatological means share common spatial patterns over the global ocean (Figs. 9b and A5a). Surface seawater is

generally supersaturated, i.e., Ωar and Ωca greater than 1. The magnitude of surface ocean calcium carbonate saturation state

varies with latitude. Values as large as 3.7-4.5 [5-7] for aragonite [calcite] are reconstructed in subtropical and tropical regions.

Ωar and Ωca decrease toward the poles. In the Southern Ocean, surface seawater enriched in CO2 from vertical mixing has

Ωar [Ωca] values in the range of 1.5-2.1 [2-3.4]. Low saturation states are also computed in the Arctic and for waters of545

upwelling regimes (Fig. 9b). Locally Ωar drops below 1.3, and even fall under the CaCO3 dissolution threshold of 1 (Gattuso

and Hansson, 2011) in the Arctic water runoff and Baltic sea.

The uncertainty (1σ) of pH, Ωar, and Ωca propagated the speciation of the CO2 system takes into account the ensemble

spread of pCO2 estimates and analysis errors of other variables (Sect. 3.3). Monthly pH uncertainty estimates fall in the 95%

confidence interval of [0.008,0.036] with a global mean value of 0.011. These estimates are in close agreement with the global550

uncertainty between 0.01-0.022 pH units calculated by Jiang et al. (2019), Iida et al. (2021), and Gregor and Gruber (2021). pH

uncertainty is typically larger than 0.03 in the Arctic and in coastal regions (Figs. 9c). In contrast, the reconstructions of Ωar

and Ωca are subject to high uncertainty (σ > 0.175) between 30◦S-30◦N (Fig. 9d and A5b). Regarding the σ-to-µ ratio, mean

uncertainty estimates per cell for the saturation states in the (sub-) tropical band are relatively small compared to the mean

of the best monthly estimates (Figs. A9-ef). The Arctic and the coastal oceans remain the regions with largest reconstruction555

uncertainties for Ωar and Ωca, as well as for pCO2 and pH (Figs. A9-ab). Excluding these regions, R(σ,µ) (Eq. 8) is less than

0.3% for pH and 8% for Ωar and Ωca.
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The monthly CMEMS-LSCE reconstruction at 0.25◦ resolution is assessed against pH measurements from GLODAPv2.2022

bottle data (Table 2). For the period 1985-2021, the global RMSD amounts to 0.022 [0.060] pH units and r2 scores at 0.70

[0.45] over the open [coastal] ocean (Table 4). Model bias lies within [−0.01,0.01] pH units and RMSD is below 0.02 pH560

units over the open ocean, except for high latitudes over 60◦ (Figs. 8-ef). At local scale, the eight coastal time series from

Sutton et al. (2019) are used for further evaluation (Tables A2 and A3). There exists much less fewer evaluation data for pH

than for pCO2, e.g., only 2 months of monitoring pH at COASTALLA and FIRSTLANDING (Table A3). Monthly time series

of CMEMS-LSCE or devoid of pH are coherent with these measurements at equatorial observing systems. CMEMS-LSCE

reconstructs pH measurements (Tables A2 and A3). Measurement uncertainty of pH at these coastal sites is reported to be565

around 0.02 over the open ocean with rather high scores, e.g., at BOBOA (RMSD = 0.011 and r2 = 0.71) and KEO (RMSD

= 0.014 and r2 = 0.86). Referring to the eight coastal sites evaluated for pH units. CO2 in Section 5.1, RMSD can be as small

as 0.035 and 0.04 pH units at CCE2 and GRAYSREEF while it is over 0.05 pH units at the other stations (e.g., COASTALLA:

0.068, CAPEARAGO: 0.069). Similar to the pCO2 time series (Fig. 5, Sect. 5.1), pH has been monitored with low sampling

frequency (roughly a few days in the tracking month) and the temporal sampling deviation of instantaneous observations from570

monthly averages (σt
pH) is significant. This temporal sampling uncertainty of pH contributes to the mismatch between model

estimates and observations. For example, σt
pH amounts to 0.048 pH units at CCE2 and 0.020 pH units at GRAYSREEF, and

reaches highest values of 0.078 pH units at COASTALLA and 0.086 pH units at CAPEARAGO. Although model-observation

misfit and model uncertainty remain high over the coastal sector (see also Figs. 8-ef and 9c), their estimates do not surpass

1% of the global mean pH (8.082). The reconstructed pH time series reproduce measurement variability with relatively high575

correlation, r2 in [0.21,0.69][0.21,0.94], that reinforces the reliability of CMEMS-LSCE pH data.

5.3.2 Ocean acidification: key features from global to local scales

The monthly, 0.25◦ CMEMS-LSCE datasets of pH, Ωar, and Ωca are at the basis of of two CMEMS ocean indicators moni-

toring surface ocean acidification from 1985 to 2021: (1) annual global means and (2) global trend maps.

In Fig. 10, we present annual global means of surface ocean pH and saturation states for aragonite (Ωar). An illustration of580

calcite (Ωca) is provided in the Appendix (Fig. A13a). For each variable, the calculation of annual global area-weighted means

of best estimates (line) and 1σ-uncertainties (envelope) follows Eq. (7). The trends reported in the legend result from linear

least-squares regression on annual global means of 100-ensembles of the carbonate system variables. These ensembles are

generated with Gaussian distribution having the mean and variance as best model estimate µ and squared uncertainty (σ2) at

monthly time steps and 0.25◦-grid cells, respectively. pH decreases from 8.110± 0.017 in 1985 to 8.049± 0.014 in 2021 with585

a descend rate of −0.017± 0.004 decade−1. Similar trends are found for the surface ocean saturation states with respect to

calcium carbonate minerals. The global mean estimates of Ωar [Ωca] amount to 3.141±0.198 [4.807±0.302] and 2.862±0.174

[4.372±0.266] for the open and coastal oceans. The saturation state declines at a rate of −0.080±0.029 decade−1 with respect

to aragonite while the reduction is steeper for calcite (−0.114± 0.045 decade−1).

Global trend maps of surface ocean pH, Ωar, and Ωca over the entire period are illustrated in Figs. 11 and A13b. Linear least-590

squares regression is used to estimate secular trends at every 0.25◦-grid cell. The linear fits of each variable against time rely on
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Figure 10. Yearly global area-weighted mean of surface seawater pH reported on total scale (a) and surface ocean saturation states with

respect to aragonite (b). Global means of the best estimate (µ, plain line) and of uncertainty (σ, envelop) are computed with Eq. (7a). Trend

and uncertainty in the legend are computed with linear regressions on the 100-member ensemble of yearly global means for each variable.

Figure 11. Global trend maps of surface seawater pH reported on total scale (a) and surface ocean saturation states with respect to aragonite

(b). Linear trend of CMEMS-LSCE pH and Ωar is estimated per 0.25◦-grid cell over 1985-2021. Cross-hatching covers the regions where

with uncertainty over 10% [20%] of pH [Ωar] trend estimates.

the 100-member ensemble generated with the best estimates and propagated uncertainties of pH, Ωar, and Ωca (see Figs. A14

for examples). Regression slope and residual standard deviation estimates are defined as linear trend and uncertainty of pH, Ωar,

and Ωca. Hatched area represents pH [Ωar and Ωca] trend estimates (µ) with highest uncertainties (σ), i.e., σ-to-µ ratio (Eq. 8)

above 10% [20%]. These regions include a portion of the Arctic, Antarctic, equatorial Pacific, and coastal ocean (Figs. 11,595

A11, and A12). 95% of pH trend estimates over the global ocean is in the range of [−0.022,−0.012] decade−1 (Fig. 11a).

In the broad open ocean of the tropics and subtropics, pH has been declining around −0.018 decade−1 to −0.012 decade−1.

Faster decrease rates are found in the Indian Ocean and Southern Ocean with values between −0.022 and −0.018 decade−1.

Fastest reductions are computed for the eastern equatorial Pacific and the Arctic with rates exceeding −0.025 decade−1. A

similar magnitude of pH trends over these regions is also found in (Lauvset et al., 2015; Leseurre et al., 2022; Ma et al.,600
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2023). The spatial distribution of saturation states with respect to calcium carbonate minerals generally shows the opposite

latitudinal pattern (Figs. 11b and A13b). The magnitude of Ωar [Ωca] trends over the 30◦S-30◦N band can be as large as

−0.086 decade−1 [−0.134 decade−1] to the greatest extent of −0.186 decade−1 [−0.275 decade−1] (e.g., eastern equatorial

Pacific). Trends of Ωar and Ωca computed in polar and subpolar northern hemisphere regions are not significant.

Table 5. Secular trend estimates of pH and Ωar at seven time-series stations (Bates et al., 2014). Trend and uncertainty estimates are reported

as µ±σ. Monthly time series in the CMEMS-LSCE datasets are extracted at the grid box nearest to each station location (Fig. A1b). For the

first three stations, this study calculates linear trends starting in the year 1985. Brackets show values computed over the full period 1985-2021.

Stations Coordinates Time span
pH trend [decade−1] Ωar trend [decade−1]

Bates et al. (2014) This sudy Bates et al. (2014) This sudy

1. Iceland Sea
68.00◦N

1983-2012
−0.014± 0.005 −0.010± 0.001 −0.018± 0.027 −0.013± 0.011

12.66◦W (−0.014± 0.001) (−0.025± 0.008)

2. Irminger Sea
64.30◦N

1983-2012
−0.026± 0.006 −0.014± 0.001 −0.080± 0.040 −0.006± 0.011

28.00◦W (−0.016± 0.001) (−0.039± 0.009)

3. BATS
32.00◦N

1983-2012
−0.017± 0.001 −0.014± 0.001 −0.095± 0.007 −0.079± 0.016

64.00◦W (−0.016± 0.001) (−0.074± 0.010)

4. ESTOC
29.04◦N

1995-2012
−0.018± 0.002 −0.018± 0.002 −0.115± 0.023 −0.103± 0.031

15.50◦W (−0.019± 0.001) (−0.089± 0.011)

5. HOT*
22.75◦N

1988-2012
−0.016± 0.001 −0.016± 0.001 −0.084± 0.011 −0.100± 0.020

158.00◦W (−0.019± 0.001) (−0.102± 0.011)

6. CARIACO*
10.50◦N

1995-2012
−0.025± 0.004 −0.017± 0.003 −0.066± 0.028 −0.059± 0.053

64.66◦W (−0.018± 0.001) (−0.099± 0.018)

7. Munida
45.70◦S

1998-2012
−0.013± 0.003 −0.017± 0.002 −0.085± 0.026 −0.088± 0.032

171.50◦E (−0.017± 0.001) (−0.070± 0.009)

*Stations with direct observations of pH.

Trend estimates derived from reconstructions of pH and Ωar are evaluated at seven time series stations (Bates et al., 2014)605

in Table 5. Time series locations are shown in Fig. A1b. With the exception of CARIACO and HOT excepted for which pH

measurements are available, long-term trend estimates by Bates et al. (2014) rely on time series of pH and Ωar calculated

via speciation from measurements of AT and DIC. A 100-member ensemble ensembles of monthly time series of pH and

Ωar are extracted from the 0.25◦-grid box nearest to each monitoring station. Linear least-squares regression is then used

to infer estimates of their secular trends and associated uncertainties (see Fig. A14 for illustration). Trend estimates derived610

from CMEMS-LSCE reconstructions at HOT, BATS, ESTOC, and Munida are in line with previous studies for both pH

and Ωar (Dore et al., 2009; González-Dávila and Santana-Casiano, 2009; Bates et al., 2014). The magnitude of the trend

estimate at Irminger Sea for 1985-2012 (pH: −0.014± 0.001 decade−1, Ωar: −0.006± 0.011 decade−1) is smaller than that

determined by Bates et al. (2014). However, the CMEMS-LSCE pH trend is consistent with the estimate by Pérez et al. (2021)
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(−0.017± 0.002 decade−1). Moreover, 1σ-uncertainty reported for both pH and Ωar trend estimates by Bates et al. (2014) is615

large at this station (pH: −0.025± 0.006 decade−1, Ωar: −0.080± 0.040 decade−1) highlighting the associated uncertainty.

Long-term trends of pH and Ωar are also under-estimated at the Iceland Sea monitoring site, but the bias is not as large as at

Irminger Sea (Table 5). Low data sampling frequency at these two stations (Table 1, Bates et al., 2014) could be on account of

trend estimate deviation. At CARIACO, the CMEMS-LSCE time series yields a decrease in Ωar of −0.059±0.053 decade−1,

relatively close to Bates et al. (2014) (−0.066±0.028 decade−1). The decrease in pH derived from CMEMS-LSCE is, however,620

larger than in Bates et al. (2014).

6 Summary Conclusions and Discussion

This study presents the CMEMS-LSCE product, a dataset of six carbonate system variables (Table ??6) covering the global

surface ocean at a spatial resolution of 0.25◦ for every month in the period 1985-2021 (444 months). Datasets of individual

carbonate system variables are built on the combination of the three methods. First, we adapt an ensemble of 100 feed-forward625

neural network models (CMEMS-LSCE-FFNN, Chau et al., 2022b) to estimate surface ocean partial pressure of CO2 (pCO2)

at the pre-defined data resolution. Second, the high-resolution total alkalinity (AT) reconstruction is obtained by using locally

interpolated alkalinity regression (LIAR, Carter et al., 2016, 2018). Finally, surface ocean pH, total dissolved inorganic car-

bon (DIC), and saturation states with respect to aragonite (Ωar) and calcite (Ωca) are calculated with the carbonate system

speciation software (CO2SYS, Lewis and Wallace, 1998; Van Heuven et al., 2011; Orr et al., 2018), given the global monthly630

reconstructions of pCO2 and AT and other environmental input data (Sect. 3). Results are 2D-fields of the best estimate and

associated uncertainty (1σ) of carbonate system variables available at each grid box of 1month×0.25◦×0.25◦. 1σ-uncertainty

is referred to as the ensemble standard deviation of 100 FFNN outputs for pCO2 while it is propagated through the processing

chain of LIAR and CO2SYS taking into account different uncertainty sources of input parameters for other variables.

Multiple observation-based datasets, which are not used for the CMEMS-LSCE reconstructions at monthly and 0.25◦ resolu-635

tions, serve as benchmarks in the assessments of product quality from global to local scales (e.g., Tables 3, 4, and A3; Figs. 2-5

and 7-8). A summary of the primary statistics for all the six carbonate variables is presented Table 6. Over the full period

1985-2021, CMEMS-LSCE yields global RMSDs of 14.2914.3 µatm and 27.5527.6 µatm in comparison with SOCATv2022

pCO2 for the open and coastal oceans, respectively. Temporal variability of observation-based data is well reproduced with r2

of 0.83 for the open ocean and 0.74 for the coastal domain. In comparison to CMEMS-LSCE at monthly and 1◦ resolutions640

(Chau et al., 2022b), the reconstructions over coastal areas are improved at higher resolution(Figs. 2-4). Furthermore, the . The

monthly, 0.25◦ reconstruction outperforms its 1◦ counterpart in reproducing horizontal and temporal gradients of pCO2 over a

variety of oceanic regions as well as at nearshore time series stations (Figs. 2-5). Evaluations with GLODAPv2022 bottle data

and time series stations results in good reconstruction skills for AT, DIC, and pH at monthly and 0.25◦ resolutions (Tables 4

and A3, Figs. 7 and 8). At the global scale, the open-ocean reconstruction scores a RMSD smaller than 23 µmol kg−1 and a645

r2 of 0.9 in AT and DIC. The model-observation deviation is higher in the coastal zone. However, it does not exceed 5% of

the global mean values and r2 is above 0.6 for both coastal AT and DIC. Regarding pH, the CMEMS-LSCE reconstruction
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provides estimates with RMSD= 0.022 [0.060] and r2 = 0.7 [0.45] over the open [coastal] ocean. From the statistics in Ta-

bles 3 and 4, the Indian Ocean and the Southern Ocean have poor data density (Fig. A2) but generally show the best global

reconstruction among the ocean basins. Thus, model evaluation with different numbers of observation data might not reflect650

a fair comparison of skill scores (e.g., RMSD and r2) between regions. Data density is much higher in the Arctic, Atlantic,

and Pacific than in the Indian and Southern Oceans. The increased data density reveals stronger spatio-temporal variability, for

instance, related to coastal dynamics or upwelling than resolved in the two latter basins. RMSD and r2 computed on the lower

data variability result in better model scores.

The spatial distribution of long-term mean 1σ-uncertainty estimates (Figs. 1b, 6cd, and 9cd) indicates higher confidence655

levels for open-ocean estimates than over the coastal sector. The evaluation of temporal mean 1σ-uncertainty estimates relative

to climatological mean values µ (Figs. 1a, 6ab, and 9ab) results in σ-to-µ ratio (Eq. 8) below 5% and 8% for pCO2 and Ωar,

2% for AT and DIC, and 0.4% for pH over the open ocean (Fig. A9). The σ-to-µ ratio reaches values as high as 10% to 20%

for pCO2 and Ωar in the coastal domain. The global mean of open-ocean 1σ-uncertainty estimates (Eq. 7a) for CMEMS-

LSCE pCO2 (8.488.5 µatm), AT (16.6616.7 µmol kg−1), DIC (15.7515.8 µmol kg−1), pH (0.011), and Ωar (0.180) are in660

line with those reported by previous studies despite being derived from different statistics. For instance, Iida et al. (2021)

calculated 1σ-uncertainty based on the median absolute deviation of regression model fits from open-ocean observations. Their

approach yielded global σ-averages of 17.8 µatm, 11.5 µmol kg−1, 0.018, and 0.110 for pCO2, normalized DIC, pH, and Ωar,

respectively. In Gregor and Gruber (2021), the authors propagated the sum squared errors (global RMSD and measurement

uncertainties) of pCO2 (15 µatm) and AT (22 µmol kg−1) obtaining global uncertainty estimates of 19 µmol kg−1 in DIC and665

0.022 in pH. Mean uncertainty estimates over the coastal region are on the order of twofold that computed for the open ocean

for these four variables (Table 6), corroborating results by Gregor and Gruber (2021) (Fig. 7).

Table 6. Summary in global evaluation statistics for CMEMS-LSCE surface ocean carbonate system datasets at monthly, 0.25◦ resolutions

over the period 1985-2021. µ and σ stand for the global area-weighted means of monthly best estimates and 1σ-uncertainties for each

variable (Eq. 7). RMSD (Eq. 10) and r2 (Eq. 11) are computed with SOCATv2022 for pCO2 and GLODAPv2.2022 for pH, AT, and DIC.

The division between the coastal (C) and open (O) oceans is at 400 km on a distance from the shore line (Fig. A1a).

Variables Standard names Units Sector µ σ RMSD r2

1. pCO2 Partial pressure of CO2 in surface seawater µatm
(O) 364.48364.5 8.48 8.5 14.29 14.3 0.83

(C) 359.35359.4 17.1017.1 27.55 27.6 0.74

2. AT Total alkalinity in surface seawater µmol kg−1
(O) 2305.782305.8 16.66 16.7 22.09 22.1 0.90

(C) 2263.022263.0 38.36 38.4 82.01 82.0 0.72

3. DIC Surface ocean dissolved inorganic carbon µmol kg−1
(O) 2031.122031.1 15.75 15.8 22.67 22.7 0.90

(C) 2008.652008.7 33.40 33.4 72.39 72.4 0.62

4. pH Surface seawater pH reported on total scale -
(O) 8.082 0.011 0.022 0.70

(C) 8.082 0.021 0.060 0.45

5. Ωar Saturation state for surface seawater with respect to aragonite -
(O) 3.059 0.180

- -
(C) 2.864 0.206

6. Ωca Saturation state for surface seawater with respect to calcite -
(O) 4.674 0.275

- -
(C) 4.384 0.314
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Our high-resolution carbon data product opens the door to various analyses of the marine carbonate system from global to lo-

cal scale. This study exemplifies an application of the data for monitoring ocean acidification over recent years. The monitoring

indicators derived from the monthly, 0.25◦ surface ocean CMEMS-LSCE product consist of (1) yearly global means of surface670

ocean pH and saturation states with respect aragonite Ωar and calcite Ωca and (2) global maps of multi-annual trends of surface

ocean pH, Ωar, and Ωca (Figs. 10, 11, and A13). In 1985, the global mean surface ocean pH was 8.110±0.017. It was 8.049±
0.014 in 2021 (Fig. 10a). Over the same 37-year time period, Ωar decreased from 3.141± 0.198 to 2.862± 0.174 (Fig. 10b).

The rate of decline of surface ocean pH and Ωar was respectively −0.017± 0.004 decade−1 and −0.080± 0.029 decade−1

since 1985 (see also results for Ωca in Sect. 5.3.2). Estimates of pH trend lie between [−0.022,−0.012] decade−1 across most675

of the open ocean (Fig. 11a). In general, surface ocean pH decreased more rapidly in the Indian Ocean and Southern Ocean

than the tropics and subtropics. These findings are in close agreement with the suggestions by Lauvset et al. (2015) and Ma

et al. (2023) but future studies would need to include analyses of underlying drivers to provide insight into regional differences

in pH changes. By contrast, the greatest reduction in surface ocean saturation states (Fig. 11b) was computed for the two latter

regions. The global trend maps of pH and Ωar highlight the Eastern Equatorial Pacific as one of the vulnerable regions with680

respect to ocean acidification. In this area, the decline rate of pH exceeds −0.025 decade−1 and −0.186 decade−1 for Ωar.

The comparison of multi-annual trends of pH and Ωar at time series stations (Table 5 and Fig. A14) highlighted the consistency

between CMEMS-LSCE estimates and previous studies (Dore et al., 2009; González-Dávila and Santana-Casiano, 2009; Bates

et al., 2014; Pérez et al., 2021). For most of these sites, the trends evaluated for 1985-2021 are greater than those relative to the

sub-period before the year 2012. The faster rate of ocean acidification over the full period compared to the pre-2012 probably685

reflects a steeper acceleration in ocean uptake of anthropogenic CO2 in the last decade. The global maps of CMEMS-LSCE

pH, Ω, and their trend estimates would be potential indicators for ocean acidification along with the SDG 14.3.1 - "Average

marine acidity (pH) measured at agreed suite of representative sampling stations" (https://sdgs.un.org/goals/goal14: last access

31/07/2023).

The production chain of CMEMS-LSCE carbonate system variables will be maintained and further improvements with690

the aim to reduce model-observation misfit and improve the quantification of model uncertainty are on the way forward.

Being at the core of the chain, model upgrades of CMEMS-LSCE-FFNN will be tackled first. At the time, SOCAT does not

provide open-ocean data of CO2 fugacity gridded at monthly, 0.25◦ resolutions. Our ensemble-based approach draws thus

on two SOCATv2022 data sources: a "downscaled" version of the 1◦-open-ocean data and the 0.25◦-coastal-ocean data (see

Sect. 2.1). Open-ocean SOCAT datasets gridded at finer regular resolutions (if accessible) will be updated to gain more accuracy695

in our model fitting. Selections of data products for predictors needed for model input are equally important. For instance, the

CMEMS SSS product used here results in a globally good reconstruction of total alkalinity (Table 4). However, the temporal

variability in CMEMS SSS data does not match that in observations (Fig. A10) and this feature is retained in time series of total

alkalinity (Fig. 7). Despite best efforts in determining overall product uncertainty in estimates of carbonate system variables,

part of input uncertainty is still not taken into account or only partially quantified due to lack of time-space varying uncertainty700

fields associated with predictor variables (e.g. SSH, Chl-a, MLD, nutrient concentrations). Moreover, temporal sampling bias

in pCO2 and pH is likely to contribute to deviations between observations and model output (Fig. 5 and Table A3). The
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total measurement analytical error uncertainty should be considered with great care during reconstruction and model output

evaluation.

The CMEMS-LSCE approach leads as the first series of long-term reconstructions of pCO2, pH, AT, DIC, Ωca and Ωar ex-705

tending seamlessly from the global open ocean to coastal regions at monthly, 0.25◦ resolutions. Future use cases recommended

for this high-resolution product include (1) estimation of monthly to interannual variations, long-term trends of carbonate sys-

tem variables, as well as of air-sea CO2 exchanges at the surface layer from local scale to large ocean basins, (2) analyses

in interactions between these variables and effects of other physical and biogeochemical factors on ocean acidification and

changes in the marine carbonate system, (3) assessments of horizontal and temporal gradients of carbonate system variables710

in the coastal-open ocean continuum, (4) evaluation or combination with other model- or observation-based products (e.g.,

Biogeochemistry Argo, Southern Ocean Carbon and Climate Observations and Modeling), and (5) improvements in coastal

reconstructions based on observation system simulation experiments (e.g., with finer spatio-temporal model resolutions). The

CMEMS-FFNN surface ocean carbon product at monthly, 0.25◦ resolutions will be accessible through the CMEMS data portal

(see Sect. 7).715

7 Data availability

The CMEMS-LSCE datasets (netCDF format) of six carbonate system variables have been delivered to the European Coperni-

cus Marine Environment Monitoring Service (CMEMS, Product ID: MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_015_008,

DOI: 10.48670/moi-00047). Since November 2022, the product with monthly and 1◦ resolutions is available at the CMEMS

portal (Chau et al., 2022a, b). The CMEMS-LSCE data product at monthly and 0.25◦ resolutions proposed in this study will720

replace its coarser resolution version in due course. For the time being, the high-resolution data product described in this

manuscript can be accessed via repository under data DOI: 10.14768/a2f0891b-763a-49e9-af1b-78ed78b16982 (Chau et al.,

2023).

Appendix A: Definitions of ocean carbonate system variables

Chemical reactions of dissolved CO2 in seawater follow a series of the following equilibria,725

CO2(g) ⇌ CO2(aq),

CO2(aq)+H2O ⇌H+(aq)+HCO−
3 (aq),

HCO−
3 (aq) ⇌H+(aq)+CO2−

3 (aq),

where (g) and (aq) stand for a gas or the species in an aqueous solution. CO2(aq) refers to the combination of aqueous CO2

and its weak acid H2CO3. HCO−
3 and CO2−

3 are bicarbonate and carbonate ions.730

Definitions of the essential variables involved in the carbonate system equilibria are on the list below (see in Dickson et al., 2007; Dickson, 2010; Gattuso and Hansson, 2011, for further details)

.
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i) Surface ocean pCO2 is partial pressure of CO2 in air which is in equilibrium with that in water sample. It is not the same

as surface ocean fugacity of CO2 (fCO2). pCO2 can be converted from fCO2 via

pCO2 = fCO2 exp

(
−P

B+2δ

RT ∗

)
.735

where P is total atmospheric pressure at surface water, T ∗ is absolute temperature, R is the gas constant, and B and δ

are cross-virial coefficients (Körtzinger, 1999).

ii) Seawater pH is a negative logarithmic scale of total concentration of hydrogen ions (H+) in aqueous solution. Total H+

is the sum of concentrations of free H+ and HSO4 ions. The pH scale typically ranges from 0 to 14. pH= 7 is the

threshold specifying whether a water sample is in acidic (i.e., pH< 7) or basic (i.e., pH> 7) conditions.740

iii) Total alkalinity (AT) measures the capacity of seawater against acidification. By definition, AT is total concentration of

dissolved alkaline substances corresponding to the ability in H+ attracting over H+ releasing. The major contributions

to alkalinity includes bicarbonate (HCO−
3 ), carbonate (CO2−

3 ), and hydroxide (OH−) ions. Total alkalinity can be

approximated with

AT =[HCO−
3 ]+2[CO2−

3 ]+[OH−]−[H+].745

iv) Total dissolved inorganic carbon (DIC) is the sum in concentrations of the three primary aqueous species in seawater,

DIC =[HCO−
3 ]+[CO2−

3 ]+[CO2(aq)].

v) Calcium carbonate saturation state (Ω) is defined as follows,

Ω=
[Ca2+][CO2−

3 ]

Ksp
,

where [Ca2+] is the concentration of dissolved calcium ions and Ksp is the solubility of calcium carbonate in seawater.750

CaCO3 has two principal minerals: aragonite and calcite. Aragonite, which is more soluble than calcite (Ωar < Ωca),

is produced by many marine shells and skeletons including corals, pteropods, clams, and mussels. A Ωar value greater

than 1, i.e., preferable conditions in shell formation, indicates supersaturated seawater with respect to aragonite, and vice

versa.

vi) Revelle factor (RF) measures the buffer capacity for the carbonate system in seawater that decreases as pH increases.755

Revelle factor is expressed by the ratio between instantaneous changes of dissolved CO2

(
[∆CO2(aq)]
[CO2(aq)]

)
and of DIC(

[∆DIC]
[DIC]

)
in seawater,

RF =
[∆CO2(aq)]

[CO2(aq)]

(
[∆DIC]

[DIC]

)−1

.

35



Author contributions. TTTC, FC, and MG developed the CMEMS-LSCE-FFNN model at a quarter-degree resolution. TTTC has prepared

script codes and executed the experiments with support from FC in setting and running the model at the HPC resources of TGCC. TTTC,760

MG, NM, and FC shaped the first manuscript version. All the authors contribute to the manuscript revision.

Competing interests. The author and co-authors have declared that they have no competing interests.

Acknowledgements. This research has been supported by the MOB TAC project of the European Copernicus Marine Environment Moni-

toring Service (CMEMS) (https://marine.copernicus.eu/about/producers/mob-tac, last access: 14 March 2023). It was granted access to the

HPC resources of TGCC under the allocation A0110102201 made by GENCI. The Surface Ocean CO2 Atlas (SOCAT, www.socat.info, last765

access: 20 March 2023) is an international effort , endorsed by the International Ocean Carbon Coordination Project (IOCCP), the Surface

Ocean Lower Atmosphere Study (SOLAS) and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER), to de-

liver a uniformly quality-controlled surface ocean CO2 database. The Global Ocean Data Analysis Project (GLODAP, www.glodap.info, last

access: 21 August 2023) provides access to ocean surface-to-bottom quality controlled data of carbonate system variables collected through

international cruises. We thank Anna Conchon for her help in testing and wrapping LIAR and CO2SYS Matlab toolboxes. We are grateful770

for constructive comments from two anonymous reviews to refine the manuscript.

36

https://marine.copernicus.eu/about/producers/mob-tac
www.socat.info
www.glodap.info


Appendix

Figure A1. a) Ocean basins (https://github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data/regions, last access:

11/7/2022): coastal mask (grey, approximately 400 km from the shore lineshoreline), feature regions analyzed analysed in this

study (cyan box, Table A1); b) Location of time series stations recording in situ observations used in data evaluation (Ta-

ble 2): blue stars (Bates et al., 2014)for ocean acidification (Bates et al., 2014), black star (Coppola et al., 2021)stars for AT and DIC

(Metzl and Lo Monaco, 1998; Coppola et al., 2021; Gattuso et al., 2023), and other coloured scattered objects (Sutton et al., 2019)for pCO2

and pH (Sutton et al., 2019). Asterisk (*) marks the two stations with also AT and DIC observations (Olafsson et al., 2010) available for

assessments.

Table A1. Information of feature regions analyzed analysed in this study (Fig. A1a - cyan boxes).

Notations Regions
Coordinates

Latitude Longitude

A California Current System 25◦N-45◦N 130◦W-110◦W

B Humboldt Current System 30◦S-0◦ 90◦W-70◦W

C Labrador Sea 45◦N-65◦N 70◦W-45◦W

D Amazon river mouth 5◦S-15◦N 60◦W-40◦W

E Western South Atlantic 60◦S-40◦S 70◦W-50◦W

F Northern Europe 50◦N-70◦N 10◦W-25◦E

G Canary Current System 5◦N-30◦N 30◦W-10◦W

H Benguela Current System 35◦S-15◦S 5◦E-20◦E

I Western Arabian Sea 5◦N-24◦N 45◦E-65◦E

J Sea of Japan 30◦N-50◦N 120◦E-150◦E
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Figure A2. Spatial distribution of total months in 1985-2021 containing SOCATv2022 gridded data. Left: 1◦-data product (r100), right:

0.25◦-data product (r025). Open-ocean data (O) in each 0.25◦-grid box is created by setting conservatively the open-ocean SOCATv2022

data at the 1◦-grid box containing it. The coastal-ocean SOCATv2022 data (C) are assigned within 400 km from the shoreline (Fig. A1a).
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Figure A3. Global maps of mean model-data difference (Bias, abcd) and root-of-mean-square-deviation (RMSD, efgh) between the recon-

struction and SOCATv2022 pCO2 [µ atm] over 1985-2021. Left: CMEM-LSCE-FFNN with a resolution of 1◦ (r100), right: CMEM-LSCE-

FFNN with a resolution of 0.25◦ (r025). Open-ocean data (O) in each 0.25◦-grid box used for evaluation is created by setting conservatively

the open-ocean SOCATv2022 data value at the 1◦-grid box containing it. Coastal-ocean data (C) are extracted from each of the two SO-

CATv2022 gridded data products.
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Figure A4. CMEMS-LSCE H+ over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).
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Figure A5. CMEMS-LSCE Ωca over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best estimate and

1σ-uncertainty per grid cell over 1985-2021 are calculated by using Eq. (5).

Figure A6. CMEMS-LSCE Revelle Factor (RF) over the global ocean at a spatial resolution of 0.25◦. Temporal means of the model best

estimate per grid cell over 1985-2021 are calculated by using Eq. (5).
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Figure A7. Spatial distribution of CMEMS SSS and SST product uncertainty over the global ocean at a spatial resolution of 0.25◦. 1σ-

uncertainty is computed per grid cell by using Eq. (5) over 1985-2021.

Figure A8. Median percentage of analysis error uncertainty against of climatological mean of surface WOA18 nutrient data: phosphate

(PO4), nitrate (NO3), and silicate (SiO2).
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Figure A9. Spatial distribution of R(σ,µ) [%] (Eq 8), i.e., the ratio of model uncertainty (σ) against model best estimate (µ).
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Figure A10. Monthly time series of SSS and SST at BATS, DYFAMED, ESTOC, and HOT stations (Table 2 and Fig. A1b): model best

estimate CMEMS data (curve), 1σ-uncertainty (envelope), and monthly average of observations (point). Means of the best estimate CMEMS

data and 1σ-uncertainty (µ±σ) calculated over the observing time span are shown in brackets if accessible. Statistics include the number of

months with observations (N ), Bias, RMSD, and r2. σt
SSS [σt

SST] stands for temporal standard deviation from monthly averages of SSS and

SST observations. Temporal variations in SSS observations are poorly described in the CMEMS SSS time series (Table 1) used in CMEMS-

LSCE reconstructions.
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Figure A11. a) Global surface seawater pH trend over the period 1985-2021, b) 1σ-uncertainties associated to trend estimates, c) σ-to-

µ ratio R(σ,µ)[%] (Eq. 8) between uncertainty estimates (b) and the best trend estimates (a), d) mask applied over the regions where

R(µ,σ)> 10%.

Figure A12. a) Global surface seawater Ωar trend over the period 1985-2021, b) 1σ-uncertainties associated to trend estimates, c) σ-to-

µ ratio R(σ,µ)[%] (Eq. 8) between uncertainty estimates (b) and the best trend estimates (a), d) mask applied over the regions where

R(µ,σ)> 20%.
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Figure A13. a) Yearly global area-weighted mean of surface ocean saturation states with respect to calcite (Ωca): Global means of the best

estimate (µ, plain line) and uncertainty (σ, envelop) are computed with Eq. (7a). b) Global trend maps of Ωca over 1985-2021: Cross-hatching

covers the regions where with uncertainty of a trend estimate over 20% of the trend value.
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Figure A14. Linear trend estimates learned on 100-member ensemble (grey points) of yearly mean time series of pH and Ωar at different

stations (Bates et al., 2014). µ±σ present linear slope and residual standard deviation. Black or blue lines stand for linear fits over the full

or sub-period in 1985-2021 (see Table 5 for comparison).
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Table A2. Information of moored time series of coastal-surface-ocean surface-ocean pCO2 and pH observations (Sutton et al., 2019).

Stations Abbreviations Coordinates Date range

Ala Wai Water Quality Buoy Pacific island ALAWAI 21.3◦N, 157.9◦W 06/2008-12/2020

Bay of Bengal Ocean Indian Ocean BOBOA 15.0◦N, 90.0◦W 11/2013-12/2017

Bermuda Testbed Mooring BTM 31.5◦N, 64.2◦W 10/2005f-12/2006

Cape Arago CAPEARAGO 43.3◦N, 124.5◦W 06/2017-12/2020

Cape Elizabeth CAPEELIZABETH 47.4◦N, 124.7◦W 06/2006-05/2020

California Current Ecosystem 2 CCE2 34.3◦N, 120.8◦W 01/2010-06/2021

Chá b˘a Buoy in the Northwest Enhanced Moored Observatory and Olympic Coast NMS CHABA 47.9◦N, 126◦W 07/2010-09/2020

Chuuk Lagoon Ocean Acidification Mooring CHUUK 7.5◦N, 151.9◦E 11/2011-12/2017

Cheeca Rocks Ocean Acidification Mooring in Florida Keys National Marine Sanctuary CHEECAROCKS 24.9◦N, 80.6◦W 12/2011-12/2021

Coastal Louisiana buoy COASTALLA 28.5◦N, 90.3◦W 07/2017-08/2020

Central Gulf of Mexico Ocean Observing System Station 01 COASTALMS 30.0◦N, 88.6◦W 05/2009-05/2017

Crescent Reef Bermuda Buoy CRESCENTREEF 32.4◦N, 64.8◦W 11/2010-12/2014

Coral Reef Instrumented Monitoring Platform 1 CRIMP1 21.4◦N, 157.8◦W 12/2005-12/2007

Coral Reef Instrumented Monitoring Platform 2 CRIMP2 21.5◦N, 157.8◦W 06/2008-12/2019

Chesapeake Bay Interpretive Buoy System Ocean Acidification Buoy at First Landing FIRSTLANDING 37.0◦N, 76.1◦W 04/2018-09/2020

NANOOS ORCA buoy in Dabob Bay DABOB 47.8◦N, 122.8◦W 06/2011-01/2016

Gulf of Alaska Ocean Acidification Mooring GAKOA 59.9◦N, 149.4◦W 05/2011-12/2017

NDBC Buoy 41008 in Gray’s Reef National Marine Sanctuary GRAYSREEF 31.4◦N, 80.9◦W 07/2006-08/2018

Coastal Western Gulf of Maine Mooring GULFOFMAINE 43.0◦N, 70.5◦W 07/2006-06/2021

Hog Reef Bermuda Buoy HOGREEF 32.5◦N, 64.8◦W 12/2010-12/2017

North Atlantic Ocean Acidification Mooring ICELAND 68.0◦N, 12.7◦W 08/2013-06/2017

Kaneohe Bay Ocean Acidification Offshore Observatory KANEOHE 21.5◦N, 157.8◦W 09/2011-12/2019

Kuroshio Extension Observatory KEO 32.3◦N, 144.6◦E 09/2007-12/2019

Kilo Nalu Water Quality Buoy at South Shore Oahu KILONALU 21.3◦N,157.9◦W 08/2008-12/2018

Kodiak Alaska Ocean Acidification Mooring KODIAK 57.7◦N,152.3◦W 03/2013-12/2015

La Parguera Ocean Acidification Mooring LAPARGUERA 18.0◦N, 67.1◦W 01/2009-12/2018

Southeastern Bering Sea Mooring Site 2 M2 56.5◦N,164.0◦W 05/2013-09/2017

Newport Hydrographic Line Station 10 Ocean Acidification Mooring NH10 44.9◦N, 124.8◦W 04/2014-12/2016

Ocean Station Papa PAPA 50.1◦N, 144.8◦W 06/2007-12/2019

Southeast Alaska Ocean Acidification Mooring SEAK 56.3◦N, 134.7◦W 03/2013-12/2015

Southern Ocean Flux Station SOFS 46.8◦S, 142.0◦E 11/2011-12/2020

Stratus STRATUS 19.7◦S, 85.6◦W 10/2006-12/2017

National Data Buoy Center (NDBC) Tropical Atmosphere Ocean TAO110W 0.0◦N, 110.0◦W 09/2009-12/2018

NDBC Tropical Atmosphere Ocean TAO125W 0.0◦N, 125.0◦W 05/2004-12/2020

NDBC Tropical Atmosphere Ocean TAO140W 0.0◦N, 140.0◦W 05/2004-4/2019

NDBC Tropical Atmosphere Ocean TAO155W 0.0◦N, 155.0◦W 01/2010-07/2020

NDBC Tropical Atmosphere Ocean TAO165E 0.0◦N, 165.0◦E 02/2010-12/2019

NDBC Tropical Atmosphere Ocean TAO170W 0.0◦N, 170.0◦W 07/2005-12/2017

NDBC Tropical Atmosphere Ocean TAO8S165E 8.0◦S, 165.0◦E 06/2009-11/2011

ORCA buoy at Twanoh in Hood Canal TWANOH 47.4◦N,123.0◦W 08/2009-12/2020

Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station WHOTS 22.7◦N, 158.0◦W 12/2004-12/2018
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Table A3. Statistics computed between CMEMS-LSCE datasets (0.25◦) and time series of pCO2 and pH measurements (Sutton et al., 2019)

at open-ocean (O) and coastal stations (C): total numbers of monthly mean observations (N), temporal standard deviation of observations

from their monthly averages (σt), RMSD (Eq. 10), and r2 (Eq. 11). See Table A2 and Fig. A1b for stations’ information and locations.

Stations
pCO2 [µatm] pH [-]

N σt RMSD r2 N σt RMSD r2

1. O1. BOBOA 42 9.9 9.6 0.69 19 0.010 0.011 0.71

O2. BTM 15 7.2 11.4 0.98 0 − − −
O3. CHUUK 66 10.9 23.5 0.60 33 0.014 0.033 0.78

O5. CRESCENTREEF 41 13.6 45.0 0.93 0 − − −
O5. HOGREEF 60 23.3 47.8 0.85 0 − − −
O6. ICELAND 24 8.1 16.9 0.68 4 0.007 0.092 0.94

O7. KEO 130 9.0 10.1 0.92 48 0.010 0.014 0.86

O8. PAPA 135 5.7 8.7 0.60 103 0.007 0.017 0.40

O9. SOFS 61 7.1 7.8 0.81 0 − − −
O10. STRATUS 116 6.3 9.2 0.80 10 0.004 0.042 0.43

O11. TAO110W 67 22.8 17.7 0.79 0 − − −
O12. TAO125W 124 16.5 16.0 0.43 0 − − −
O13. TAO140W 92 11.4 12.0 0.44 0 − − −
O14. TAO155W 45 11.3 12.2 0.75 0 − − −
O15. TAO165E 39 9.1 19.8 0.76 0 − − −
O16. TAO170W 87 9.0 17.9 0.45 0 − − −
O17. TAO8S165E 29 7.1 10.5 0.49 0 − − −
O18. WHOTS 143 4.7 8.0 0.80 23 0.004 0.01 0.57

C1. ALAWAI 112 20.3 22.8 0.32 0 − − −
C2. CAPEARAGO 33 65.60 65.6 79.8679.9 0.19 31 0.086 0.069 0.22

2. C3. CAPEELIZABETH 92 42.54 42.5 41.44 41.4 0.52 11 0.061 0.057 0.69

3. C4. CCE2 127 45.31 45.3 32.44 32.4 0.16 58 0.048 0.035 0.24

4. C5. CHABA 75 51.2 65.3 0.44 42 0.056 0.064 0.58

C6. CHEECAROCKS 73 44.05 44.1 62.42 62.4 0.25 40 0.038 0.066 0.21

5. C7. COASTALLA 22 59.15 59.2 57.41 57.4 0.52 2 0.078 0.068 - −
6. C8. COASTALMS 41 43.04 43.0 42.5042.5 0.51 15 0.062 0.065 0.25

7. C9. CRIMP1 23 26.4 95.6 0.62 0 − − −
C10. CRIMP2 119 85.4 90.7 0.58 0 − − −
C11. DABOB 24 55.0 89.3 0.74 0 − − −
C12. FIRSTLANDING 17 69.98 70.0 77.32 77.3 0.49 2 0.061 0.042 - −
8. C13. GAKOA 64 20.3 66.0 0.73 0 − − −
C14. GRAYSREEF 96 20.12 20.1 38.34 38.3 0.65 49 0.020 0.040 0.66

C15. GULFOFMAINE 144 26.7 31.2 0.54 77 0.029 0.042 0.27

C16. KANEOHE 49 20.9 23.5 0.36 35 0.025 0.034 0.25

C17. KILONALU 69 14.3 11.6 0.56 0 − − −
C18. KODIAK 34 31.7 62.1 0.78 0 − − −
C19. LAPARGUERA 103 12.9 41.6 0.41 48 0.012 0.038 0.33

C20. M2 23 25.4 55.8 0.24 0 − − −
C21. NH10 25 64.6 31.4 0.46 15 0.058 0.048 0.42

C22. SEAK 31 53.4 141.3 0.82 0 − − −
C23. TWANOH 57 126.2 199.9 0.33 0 − − −
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Table A4. Statistics computed between CMEMS-LSCE datasets (0.25◦) and time series of AT and DIC measurements (0−10 m depth): total

numbers of monthly mean observations (N), temporal standard deviation of observations from their monthly averages (σt), RMSD (Eq. 10),

and r2 (Eq. 11). See Table 2 and Fig. A1b for stations’ information and locations.

Stations
AT [µmol kg−1] DIC [µmol kg−1]

N σt RMSD r2 N σt RMSD r2

1. AWIPEV 52 15.8 32.0 0.33 52 17.7 29.6 0.71

2. BATS 303 2.4 9.6 0.34 351 1.9 8.2 0.82

3. DYFAMED 84 1.3 145.7 0.12 84 2.0 124.7 0.61

4. ESTOC 298 1.3 8.3 0.03 108 1.4 11.2 0.47

5. HOT 298 0.8 12.5 0.32 298 0.6 10.6 0.70

6. ICELAND 27 2.5 13.4 0.24 27 0.8 13.7 0.79

7. IRMINGER 29 1.8 8.4 0.30 23 1.7 14.6 0.84

8. KERFIX 23 1.0 7.4 0.22 23 3.4 14.0 0.52
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