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Abstract: 20 

High-resolution mapping of tree cover is indispensable for effectively addressing tropical forest carbon loss, 21 

climate warming, biodiversity conservation, and sustainable development. However, the availability of 22 

precise high-resolution tree cover map products remains inadequate due to the inherent limitations of 23 

mapping techniques utilizing medium-to-coarse resolution satellite imagery, such as Landsat and Sentinel-2 24 

imagery. In this study, we have generated an annual tree cover map product at a resolution of 4.77 m for 25 

Southeast Asia (SEA) for the years 2016-2021 by integrating Planet-Norway’s International Climate & 26 

Forests Initiative (NICFI) imagery and Sentinel-1 Synthetic Aperture Radar data. We have also collected 27 

annual tree cover/non-tree cover samples to assess the accuracy of our Planet-NICFI tree cover map product. 28 

The results show that our Planet-NICFI tree cover map product during 2016-2021 achieve high accuracy, 29 

with an overall accuracy of 0.867±0.017 and a mean F1 score of 0.921, respectively. Furthermore, our tree 30 

cover map product exhibits high temporal consistency from 2016 to 2021. Compared to existing map products 31 

(FROM-GLC10, ESA WorldCover 2020 and 2021), our tree cover map product exhibits better performance, 32 

both statistically and visually. Yet, the imagery obtained from Planet-NICFI performs less in mapping tree 33 

cover in areas with diverse vegetation or complex landscapes due to insufficient spectral information. 34 

Nevertheless, we highlight the capability of Planet-NICFI imagery in providing quick and fine-scale tree 35 

cover mapping to a large extent. The consistent characterization of tree cover dynamics in SEA's tropical 36 

forests can be further applied in various disciplines. Our data from 2016 to 2021 at a 4.77 m resolution are 37 

publicly available at https://cstr.cn/31253.11.sciencedb.07173 (Yang and Zeng, 2023). 38 

 39 

1 Introduction 40 

Forests and tree-based systems outside forests play a crucial role in land-based carbon emissions or removals, 41 
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making them essential for supporting and monitoring the implementation of the Reducing Emissions from 42 

Deforestation and Forest Degradation (REDD+) and other land-based activities under the Paris Agreement 43 

(Skea et al., 2022; CoP26, 2021; FAO, 2020). However, current forest cover map products exhibit large errors 44 

in accurately estimating forest area and change, particularly in areas such as trees outside forests and forest 45 

edge landscapes (Mugabowindekwe et al., 2023; Reiner et al., 2023; Brandt et al., 2020). As a result, there is 46 

a growing demand for timely, high-quality, and high-resolution tree cover map products to accurately capture 47 

the dynamics and changes in forest cover. 48 

 49 

Many tree cover map products have been developed at medium-to-coarse resolutions (10-500 m), such as 50 

Finer Resolution Observation and Monitoring of Global Land Cover 10 m (FROM-GLC10; Gong et al., 51 

2019), Environmental Systems Research Institute (ESRI) Land Cover (2017-2021) (Karra et al., 2021), 52 

European Space Agency (ESA) WorldCover 2020 and 2021 (Zanaga et al., 2022; Zanaga et al., 2021), GFC 53 

(Hansen et al., 2013), Globeland30 (Chen et al., 2015), Copernicus Global Land Service (CGLS) Land Cover 54 

(Buchhorn et al., 2020), ESA Climate Change Initiative (CCI) (ESA, 2017) and the National Aeronautics and 55 

Space Administration (NASA) MCD12Q1 (Friedl and Sulla-Menashe, 2019). However, accurate high-56 

resolution tree cover map products at continental-to-global scales are still lacking due to mapping through 57 

medium-to-coarse resolution imagery (Zanaga et al., 2021; Hansen et al., 2010). Consequently, some 58 

uncertainties occur in acquiring global tree inventories and monitoring forest disturbances (deforestation and 59 

forest degradation). This is mainly due to isolated trees or long narrow forest cover removal (Reiner et al., 60 

2023; Wagner et al., 2023; Sexton et al., 2016; Hammer et al., 2014; Hsieh et al., 2001). 61 

 62 

Only recently have two tree cover map products at <4.77 m been produced over Africa and the state of Mato 63 
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Grosso in Brazil using Planet-Norway’s International Climate & Forests Initiative (NICFI) imagery based on 64 

deep learning algorithms (Reiner et al., 2023; Wagner et al., 2023). However, these two maps have only 65 

limited temporal or spatial coverage that occurred. Since the early 21st century, agricultural expansion has 66 

created a new wave of drastic land use/land cover changes in Southeast Asia (SEA), leading the region to be 67 

one of the most deforested regions worldwide (Zeng et al., 2018a; Zeng et al., 2018b; Achard et al., 2014). 68 

Average elevations and slopes of forest loss sites have significantly increased in SEA, particularly in the 69 

2010s, geometrically irregular upland land use sites commonly occur (Velasco et al., 2022; Feng et al., 2021). 70 

However, existing tree cover map products have underestimated deforestation (25-116%) and upland 71 

agricultural expansion rates (9-113%), especially on the topographic boundaries in SEA (Zeng et al., 2018a). 72 

Thus, fine-resolution tree cover map products in SEA, with high spatial resolution and longer consistent time 73 

series, are urgently needed to accurately monitor tree cover loss and related illegal deforestation. In addition, 74 

combining high-resolution optical imagery and Synthetic Aperture Radar (SAR) data (e.g., Sentinel-1) to 75 

produce large-area tree cover map products is still in its early stage (Zanaga et al., 2022; Karra et al., 2021; 76 

Zanaga et al., 2021; Buchhorn et al., 2020; Hansen et at., 2010). 77 

 78 

Concurrently, advances in large-scale cloud computing (e.g., Google Earth Engine, GEE; Gorelick et al., 79 

2017) and available high-resolution satellite imagery (Roy et al., 2021) can facilitate the development of 80 

high-resolution and longer time-series tree cover map products at continental-to-global scales. In this paper, 81 

we generated a state-of-the-art fine-scale open-source tree cover map product for SEA during 2016-2021 82 

using Planet- NICFI imagery, Sentinel-1 SAR data, and the random forest (RF) method from a previous study 83 

(Yang et al., 2023). This dataset allows for extensive assessments of forest dynamics change, such as 84 

deforestation, forest degradation, and reforestation. In addition, our dataset can monitor trees outside forests 85 
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and long narrow forest cover removal, thus improving the accuracy of automated continental tree inventories, 86 

which helps optimize REDD+ under the Paris Agreement. 87 

 88 

2 Materials and methods 89 

2.1 Satellite imagery 90 

We utilized Planet-NICFI and Sentinel-1 imagery for the years 2016-2021 to generate a time series tree cover 91 

map product for SEA. The Planet-NICFI program provides high-resolution (4.77 m per pixel) optical 92 

PlanetScope surface reflectance mosaics specifically designed for the tropics. These mosaics offer accurate 93 

and reliable spatial data with minimized effects from atmosphere and sensor characteristics, making them an 94 

ideal 'ground truth' representation (Planet Team, 2017). The mosaics cover the best imagery to represent every 95 

part of the coverage area during leaf-on periods from June to November based on cloud cover and acutance 96 

(image sharpness). The Planet-NICFI imageries consist of four bands: red, green, blue, and near-infrared, and 97 

cover a time period from 2015 to 2020 at bi-annual resolution for the archive, and from 2020 to 2023 at 98 

monthly resolution for monitoring purposes. We accessed and utilized these products in the GEE platform by 99 

authorizing our NICFI account to the GEE account. 100 

 101 

We utilized Sentinel-1 on the GEE platform, specifically the 10 m resolution dual-polarization Ground Range 102 

Detected (GRD) scenes (VV + VH). We chose Sentinel-1 SAR imagery to correct cases of overestimation 103 

caused by confusion with herbaceous vegetation, or underestimation due to optical satellite observations 104 

omitting deciduous or semi-deciduous characteristics (Shimada et al., 2014). The SAR imagery, available 105 

every 12 days for a single satellite or 6 days for a dual-satellite constellation from October 2014 to the present, 106 

was pre-processed with the Sentinel-1 Toolbox for thermal noise removal, radiometric calibration, and terrain 107 
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correction. 108 

 109 

2.2 Validation dataset collection 110 

We collected time series validation datasets to assess the tree cover map product during 2016-2021, except 111 

for 2019 as it has been provided by Yang et al. (2023). Our mapping approach has been comprehensively 112 

assessed after being developed in 2019 (Yang et al., 2023). However, despite the advancements in the Land 113 

Cover Land Use Change (LCLUC) community, a notable gap remains the absence of publicly available high-114 

resolution (e.g., ≤10 m) tree cover/non-tree cover labels. The existing coarse-resolution labels for tree 115 

cover/non-tree cover can introduce considerable uncertainties when evaluating high-resolution tree cover 116 

maps. As a result, our ability to delve deeper into the accuracy of time-series tree cover map datasets was 117 

hindered. 118 

 119 

Following the methodology established by Yang et al. (2023), we undertook a rigorous process to generate a 120 

robust validation dataset for our study. Firstly, we randomly generated 1,515 points to ensure a representative 121 

sample of collected visual data, as illustrated in Fig. 1. Next, to classify these points as trees or non-trees, we 122 

enlisted four human interpreters and employed Planet Explorer within QGIS. Our approach involved visually 123 

identifying tree cover/non-tree cover pixels in the true color composite of Planet-NICFI imagery where the 124 

points were located. To ensure accuracy, we superimposed the 10 m tree height data, previously developed 125 

by Lang et al. (2022), onto the Planet-NICFI imagery. This step ensured that the labels adhered to the specified 126 

tree height criteria (i.e., ≥5 m). Subsequently, we thoroughly evaluated and refined the labels using Google 127 

Earth. To make time series tree cover/non-tree cover labels, we maintained the geographic location of the 128 

1,515 points and changed the year of the Planet-NICFI imagery. The resulting labels encompassed data from 129 
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the years 2016, 2017, 2018, 2020, and 2021. Detailed information about the validation dataset can be 130 

presented in Table 1. 131 

 132 

Figure 1. Spatial distribution of randomly generated 1,515 validation dataset points. 133 

 134 

Table 1 Information of the mapped validation dataset for evaluating the generated tree cover map product. 135 

Period 
Count of sample points 

Tree cover Non-tree cover Total 

2016 1,086 429 1,515 

2017 1,026 489 1,515 

2018 977 538 1,515 

2020 1,093 422 1,515 

2021 952 563 1,515 

 136 
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2.3 Methods 137 

We integrated Planet-NICFI and Sentinel-1 SAR imagery to generate a high-resolution (4.77 m) annual tree 138 

cover map product for SEA covering the years 2015-2021. Our framework involved several key steps, 139 

including defining mapped objects, preprocessing of imagery, and generation of time-series tree cover map 140 

product. The detailed workflow is illustrated in Fig. 2. 141 

 142 

Figure 2. Workflow of generating tree cover map product for 2016-2021, including imagery preprocessing, 143 

generation of tree cover map product, and accuracy validation. 144 

 145 

2.3.1 Definition of mapped tree cover 146 

Traditionally, forests are considered to meet specific criteria (tree cover and height). The Food and Agriculture 147 

Organization (FAO) of the United Nations defines forests as land spanning more than 0.5 hectares with trees 148 

higher than 5 m and a canopy cover above 10% (FAO, 2020). According to the United Nations Framework 149 

Convention on Climate Change (UNFCCC), forests are defined as areas with a minimum canopy cover of 150 

10-30%, minimum tree height of 2-5 m, and a minimum area of 0.1 ha (Parker et al., 2008).  151 
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 152 

In this study, tree cover is defined as any geographic area dominated by trees without a percentage of tree 153 

coverage at the pixel level (Zanaga et al., 2020; Hansen et al., 2013). This is attributed to the fact that the 154 

resolution of the Planet pixel (4.77 m) is closer to the size of trees in tropical areas. Next, we utilized Planet-155 

NICFI imagery to generate only a prototype tree cover map with a resolution of 4.77 m and trees higher than 156 

5 m. Our tree cover map product serves as baseline data for forest cover analysis. Upon further development 157 

of the map to include trees higher than 5/2-5 m, it can be utilized for deriving forest cover maps for various 158 

functions, such as those provided by FAO and UNFCCC. 159 

 160 

2.3.2 Preprocessing of imagery 161 

We utilized the GEE platform to preprocess Planet-NICFI imagery and Sentinel-1 SAR data for generating 162 

tree cover maps for the years 2016-2021 (Fig. 2). Specifically, following the methodology of Yang et al. 163 

(2023), we first employed the ee.ImageCollection.mosaic() function to merge and assemble overlapping 164 

Sentinel-1 SAR data over the specified time period into a seamless, continuous imagery. Subsequently, we 165 

performed bilinear resampling on the SAR imagery, specifically the VV and VH bands, to match the spatial 166 

resolution of Planet-NICFI imagery with a spatial resolution of 4.77 m. 167 

 168 

Planet-NICFI offers imagery at two different temporal frequencies spanning from 2016 to 2021. This includes 169 

semi-annual imagery from 2016 to 2019 and monthly data from 2020 to 2021. To create a coherent and 170 

consistent dataset for 2020 and 2021, we synthesized the selected time window of monthly imagery into 171 

single imagery for each band, namely red, green, blue, and near-infrared bands. Specifically, we utilized the 172 

ee.ImageCollection.min() function on each monthly imagery to extract the minimum monthly imagery, which 173 
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was then used to generate the second semi-annual imagery for 2020 and 2021. This approach was employed 174 

to minimize the impact of cloud pollution on Planet-NICFI imagery (Oishi et al, 2018). 175 

 176 

2.3.3 Generation of time-series tree cover map product 177 

In addition to applying the RF approach in our tree cover mapping (Yang et al., 2023), RF-based methods 178 

have been widely employed to develop global LCLUC products and show good performance (Zanaga et al., 179 

2022; Zanaga et al., 2021; Buchhorn et al., 2020). To acquire the time-series tree cover map dataset, our 180 

methodology involved a two-step process. Initially, we integrated our custom RF approach, implemented on 181 

Google Earth Engine (GEE), with a cloud-based machine learning platform. This combination enabled us to 182 

obtain semi-annual Planet-NICFI and Sentinel-1 imageries spanning the years 2016 to 2021, as illustrated in 183 

Fig. 2. Following data acquisition, we performed several post-processing steps to generate accurate tree cover 184 

map product for the SEA region. These steps included downloading the acquired data from the cloud platform 185 

to a local location, conducting mosaic operations, clipping relevant areas, applying projection transformations, 186 

and performing correlation statistics. By employing this approach, we produced a high-resolution tree cover 187 

map product. 188 

 189 

2.3.4 Statistical accuracy assessment 190 

We used two methods to assess the statistical accuracy of our tree cover map product. The generated tree 191 

cover map product was compared pixel by pixel with the tree cover/non-tree cover labels. We then obtained 192 

a confusion matrix, including true tree cover (TP), true non-tree cover (TN), false tree cover (FP), and false 193 

non-tree cover (FN). These four values were used to calculate the user’s accuracy, producer’s accuracy, and 194 

overall accuracy at a 95% confidence level (Olofsson et al., 2014) and the F1 score based on Eqs. (1)-(4), 195 

respectively. Note that we opted against utilizing the Kappa coefficient for accuracy assessment due to its 196 
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unsuitability for mapping error evaluation (Pontius Jr et al., 2011; Allouche et al., 2006). 197 

User’s accuracy (UA) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Producer’s accuracy (PA) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

Overall accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

F1 score =
2 × 𝑈𝐴 × 𝑃𝐴

𝑈𝐴 + 𝑃𝐴
 (4) 

 198 

In addition, following Tsendbazar et al. (2021), we used a stability index based on the user’s and producer’s 199 

accuracy to evaluate the time-series accuracy consistency of the tree cover map product. The stability index 200 

used to evaluate tree cover accuracy is expressed as 201 

𝑆𝐼𝑡1 =
|𝑇𝐶𝑡1 − 𝑇𝐶𝑡1−1|

𝑇𝐶𝑡1−1
× 100 (5) 

where 𝑆𝐼𝑡1 is the stability index that indicates the accuracy of tree cover maps (user’s or producer’s accuracy) 202 

at time t1, 𝑇𝐶𝑡1 is tree cover accuracy at time t1 and 𝑇𝐶𝑡1−1 is tree cover accuracy at the previous time (t0 203 

or the reference year). We also used the maximum and average stability index for two consecutive years to 204 

assess the stability of our tree cover map product over a long period. 205 

 206 

3 Results 207 

We employed two approaches to assess the performance of our Planet-NICFI 2016-2021 tree cover map 208 

product. Firstly, we estimated the accuracy of our tree cover map product for each year to gain insights into 209 

their accuracy and consistency, based on the method developed by Tsendbazar et al. (2021). Additionally, we 210 

presented illustrative time series tree cover maps and documented the dynamics in tree cover area changes 211 

during the 2016-2021 period. Secondly, we compared our tree cover map product to widely used global tree 212 

cover map products at 10 m resolution, including FROM-GLC10 in 2017 (Gong et al., 2019), as well as ESA 213 
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WorldCover 2020 and 2021 (Zanaga et al., 2022; Zanaga et al., 2021). 214 

 215 

3.1 Assessment of tree cover map product 216 

We reported the annual accuracy of the time-series Planet-NICFI tree cover map product in Table 2 with a 217 

95% confidence level. The tree cover accuracy results for 2019 were provided by Yang et al. (2023). The 218 

overall accuracy of the tree cover map product ranged between 0.867-0.907 ± 0.015 from 2016 to 2021, with 219 

the highest accuracy of 0.907±0.014 in 2021 and the lowest accuracy of 0.867±0.017 in 2016 (Table 2). This 220 

discrepancy may be due to poor data in the Planet-NICFI imagery during 2016 (Roy et al., 2021). The F1 221 

score showed a similar trend from 2016 to 2021, with an average of approximately 0.921. The user's accuracy 222 

consistently exceeded 0.901±0.017 over the six years, except for 2016 when it was 0.862±0.021. The 223 

producer's accuracies were all higher than 0.912±0.014 (Table 2). Nevertheless, the mapping results of our 224 

time-series Planet-NICFI tree cover maps were highly consistent. Additionally, compared to the tree cover, 225 

the non-tree cover showed lower user's accuracy, producer's accuracy, and F1 score (i.e., approximately 226 

0.856±0.027, 0.852±0.025, and 0.853, respectively), likely due to the complex composition of non-tree cover 227 

types, such as shrubland and herbaceous wetland. 228 

 229 

Table 2 User’s accuracies, producer’s accuracies, F1 score, and overall accuracies of the Planet-NICFI V1.0 230 

2016-2021 tree cover map product for SEA at a 95% confidence level. The accuracy evaluation results in 231 

2019 were provided by Yang et al. (2023). 232 

Year Classification User’s accuracy Producer's accuracy F1 score Overall accuracy 

2016 
Tree cover 0.862±0.021 0.925±0.018 0.892  

0.867±0.017 
Non-tree cover 0.876±0.031 0.783±0.026 0.827  

2017 
Tree cover 0.901±0.017 0.935±0.016 0.917  

0.892±0.016 
Non-tree cover 0.874±0.033 0.814±0.027 0.843  

2018 
Tree cover 0.929±0.016 0.912±0.014 0.920  

0.892±0.015 
Non-tree cover 0.816±0.033 0.85±0.030 0.832  

2019 
Tree cover 0.913±0.012 0.933±0.010 0.923  

0.895±0.011 
Non-tree cover 0.857±0.022 0.819±0.021 0.837  
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2020 
Tree cover 0.944±0.014 0.927±0.011 0.935  

0.900±0.014 
Non-tree cover 0.754±0.041 0.803±0.040 0.778  

2021 
Tree cover 0.947±0.014 0.934±0.011 0.940  

0.907±0.014 
Non-tree cover 0.778±0.038 0.816±0.039 0.796  

 233 

We also estimated the stability of our Planet-NICFI tree cover maps accuracy over 2016-2021 (Fig. 3). The 234 

results show that the user’s and producer’s stability indexes were low than 4.5% and 2.5%, respectively, 235 

indicating the good stability of our mapped Planet-NICFI tree cover maps for the six years (2016-2021). 236 

 237 
Figure 3. Stability index estimates for the Planet-NICFI tree cover map product 2016-2021: the stability 238 

index for (a) the user’s accuracy and (b) the producer’s accuracy. 239 

 240 

We further visually compared our time-series tree cover map product with the original Planet-NICFI imagery 241 

during 2016-2019 (Figures 4-5). Note that we have not shown the years 2020 and 2021 due to inconvenient 242 

visualization for monthly resolution Planet-NICFI imagery collected from QGIS. In comparison, our tree 243 

cover map product showed better consistencies with Planet-NICFI imagery, such as roads, the spatial 244 

distribution pattern of tree cover, and non-tree cover. However, our tree cover product potentially exhibited 245 

a "salt and pepper" phenomenon in some years (i.e., 2017 and 2018) due to the employment of the RF 246 

approach. In practical applications, we need to pay attention to this phenomenon. In addition, we counted the 247 

time series of the area estimates of tree cover maps during 2016-2021 and showed a slight increase trend 248 
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from 2016 to 2021, which is in line with the area estimates of ESA tree cover for the years 2020 and 2021. 249 

This may be due to forest restoration after the 2015 El Niño phenomenon (Wigneron et al., 2020), as well as 250 

the impact of expanded plantations (Xu et al., 2020). 251 
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 252 

Figure 4. Comparison of the time series of the derived tree cover maps (left column) and Planet-NICFI 253 

imagery (right column) for the selected mainland SEA area (100.301°-100.322°E, 18.400°-18.409°N). (a) 254 

and (b), (c) and (d), (e) and (f), and (g) and (h) indicate 2019, 2018, 2017, and 2017, respectively. 255 
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 256 

Figure 5. Comparison of the time series of the derived tree cover maps (left column) and Planet-NICFI 257 

imagery (right column) for the selected maritime SEA area (111.789°-111.806°E, 2.032°-2.040°N). (a) and 258 

(b), (c) and (d), (e) and (f), and (g) and (h) indicate 2019, 2018, 2017, and 2017, respectively. 259 

 260 
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 261 

Figure 6. Area dynamics change of tree cover maps for Planet-NICFI and ESA from 2016 to 2021. 262 

 263 

3.2 Comparison with existing tree cover map products 264 

We compared our mapped Planet-NICFI tree cover maps with FROM-GLC10, ESA WorldCover 2020 and 265 

2021 regarding statistical accuracy (Fig. 4). The results show that our tree cover maps outperformed FROM-266 

GLC10 in user’s accuracy, producer’s accuracy, and overall accuracy. The user’s accuracy and overall 267 

accuracy of our tree cover maps exceeded 0.083. ESA WorldCover 2020 and 2021 showed similar 268 

performances to our Planet-NICFI tree cover maps. Particularly, the user’s accuracy, producer’s accuracy, 269 

and overall accuracy of ESA WorldCover 2020 decreased by 0.020, 0.008, and 0.017, respectively (Fig. 4). 270 

This may be because we all used the SAR imagery as input and applied the RF-based machine learning 271 

method to classify our tree cover. 272 
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 273 

Figure 7. Accuracy comparison between existing tree cover maps and the generated Planet-NICFI tree cover 274 

maps at a 95% confidence level: (a) user’s accuracy, (b) producer’s accuracy, and (c) overall accuracy. 275 

 276 

We selected six locations (three mainland SEA areas and three maritime SEA areas) to visually compare our 277 

Planet-NICFI tree cover maps with three other 10-meter products, namely, FROM-GLC10, ESA WorldCover 278 

2020 and 2021 (Figs. 8-10). In comparison, it is easier for FROM-GLC10 to classify all mixed tree and non-279 

tree areas into non-tree cover maps (Fig. 8a). This may be because FROM-GLC10 cannot apply SAR imagery 280 

to tree cover mapping. However, ESA WorldCover 2020 and 2021 can capture tree cover landscapes at a 281 

higher level of detail than FROM-GLC, such as long narrow roads, croplands, and built-up areas (Figs. 9-282 

10a). It should be noted that ESA WorldCover 2020 and 2021 omitted some long narrow non-tree cover 283 

landscapes and small isolated tree cover and non-tree cover landscapes due to the limitation of the imagery 284 

resolution (10 m). 285 
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 286 

Figure 8. Comparison of FROM-GLC10 (a) and (d), Planet-NICFI tree cover (b) and (e), and Planet-NICFI 287 

imagery (c) and (f) for mainland SEA area (101.594°-101.651°E, 19.254°-19.294°N; top row) and maritime 288 

SEA area (101.925°-103.296°E, -2.096°-1.145°S; bottom row). Green and gray 20% indicate tree cover and 289 

non-tree cover, respectively. 290 

 291 

 292 

Figure 9. Comparison of ESA WorldCover 2020 (a) and (d), Planet-NICFI tree cover (b) and (e), and Planet-293 

NICFI imagery (c) and (f) for mainland SEA area (98.310°-98.392°E, 17.102°-17.166°N; top row) and 294 

maritime SEA area (99.983°-100.064°E, 1.387°-1.442°N; bottom row). Green and gray 20% indicate tree 295 

cover and non-tree cover, respectively. 296 

 297 
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 298 

Figure 10. Comparison of ESA WorldCover 2021 (a) and (d), Planet-NICFI tree cover (b) and (e), and Planet-299 

NICFI imagery (c) and (f) for Mainland SEA area (102.179°-102.249°E, 18.676°-18.726°N; top row) and 300 

maritime SEA area (99.951°-100.063°E, 1.892°-1.967°E; bottom row). Green and gray 20% indicate tree 301 

cover and non-tree cover, respectively. 302 

 303 

4 Discussion 304 

Our time-series Planet-NICFI tree cover map product was mapped twice a year to mitigate the impact of 305 

smog, light, cloud, and topographic effects in tropical areas (Roy et al., 2021; Marta et al., 2018). This high-306 

resolution tree cover map product meets the minimum tree height requirement of ≥ 5 m for further generating 307 

forest data. However, it should be noted that we cannot guarantee 100% tree cover for each higher-resolution 308 

pixel, which may introduce some uncertainties when using the higher-resolution tree cover maps. Despite 309 

excluding plantations during sample point labeling, some plantations, such as oil palm, may still be mixed 310 

into our tree cover map product due to similarities in anomalies (Mugabowindekwe et al., 2023; Zanaga et 311 

al., 2022; Zanaga et al., 2021). As a result, caution should be exercised when using our Planet-NICFI tree 312 

cover map product for certain purposes. 313 

 314 

To generate a high-resolution time series tree cover map product at a continental scale, we utilized advanced 315 
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random forests-based machine learning algorithms on the GEE platform. However, for fine-scale tree cover 316 

mapping, deep learning-based segmentation methods, such as U-net (Falk et al., 2019), are necessary, 317 

particularly when using limited bands (Mugabowindekwe et al., 2023; Wagner et al., 2023; Zanaga et al., 318 

2022; Zanaga et al., 2021; Brandt et al., 2020). As a result, our tree cover map product still has some 319 

uncertainty due to limitations in the optical PlanetScope imagery. Additionally, our tree cover map product 320 

has the potential to display a salt and pepper phenomenon in certain locations and years, attributed to the 321 

utilization of the RF method. To improve our tree cover mapping product with higher accuracy, we need to 322 

consider adding more bands or utilizing advanced deep learning algorithms in the future. 323 

 324 

5 Data availability 325 

The high-resolution Planet-NICFI V1.0 time-series tree cover product is now available at 326 

https://cstr.cn/31253.11.sciencedb.07173 (Yang and Zeng, 2023). This product is provided in the Mollweide 327 

projection and the World Geodetic System 1984 (WGS1984) datum and geographic coordinate system. Tree 328 

cover and non-tree cover are denoted as 0 and 1, respectively, in each yearly file, and are stored as UINT8 in 329 

GeoTIFF format. The GeoTIFF files are named Planet-FC_SEA_<YEAR>_prj.tif, for example, Planet-330 

FC_SEA_16_prj.tif. 331 

 332 

6 Conclusions 333 

We have successfully generated the first accurate and high-resolution time-series tree cover map product for 334 

SEA by combining optical and SAR satellite observations, utilizing advanced random forests machine 335 

learning algorithms on the GEE platform. Our Planet-NICFI tree cover map product exhibits excellent 336 

accuracy and consistency over six years (2016-2021). The baseline tree cover map product, with a resolution 337 
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of 4.77 m, can be easily converted to forest cover maps at different resolutions to cater to the diverse needs 338 

of users. Moreover, our tree cover map product has the unique ability to address rounding errors in forest 339 

cover mapping by accurately capturing isolated trees and monitoring the removal of long, narrow forest cover. 340 

These cutting-edge fine-scale time-series tree cover maps represent a milestone in forest monitoring and offer 341 

unprecedented opportunities for users across diverse disciplines. 342 

 343 

Code Availability 344 

The scripts used to generate all Planet-NICFI v1.0 tree cover 2016-2021 are provided in JavaScript 345 

(https://code.earthengine.google.com/?scriptPath=users%2Fyftaurus%2Fcodes%3APlanet_RF-LC_rac). 346 

The maps can be automatically generated by running the codes. The scripts are also available on request from 347 

Z. Zeng. 348 
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