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Abstract.  

Despite recent advancements in cloud processing and modelling and the increasing availability of high spectral- and temporal- 

resolution satellite imagery, mapping the spatial distribution of crop types remains a challenging task. Here, we present 

CROPGRIDS – a comprehensive global, geo-referenced dataset providing information on areas for 173 crops circa the year 

2020, at a resolution of 0.05˚ (~5.55 km at the equator). It represents a major update of the Monfreda et al. (2008) dataset,  the 15 

most widely used geospatial dataset previously available, covering 175 crops with reference year 2000 at 10 km spatial 

resolution. CROPGRIDS updates Monfreda et al. (2008) through the careful evaluation of 26 published gridded datasets 

covering more recent crop information at regional, national, and global levels, largely over the period 2015 – 2020. The new 

product successfully updates the area extent for 80 of the 175 crops originally covered, representing an update to 1.2 billion 

hectares of crop area (i.e., 81% of the total cropland included in CROPGRIDS). CROPGRIDS carries forward the crop type 20 

maps originally in Monfreda et al. (2008) for 93 crops as more recent information for these crops is not available. We compared 

CROPGRIDS harvested area of individual crops against independent national and subnational data from 36 National Statistical 

Offices (NSOs), national-level crop area data for more than 180 countries and territories from FAOSTAT, as well as 

geospatially, against a newly available high-resolution (30 m) cropland agreement map (Tubiello et al., 2023). Results 

indicated robustness against the available independent information, with CROPGRIDS world total harvested and crop areas 25 

around 1.5 billion hectares. To the best of our knowledge, CROPGRIDS represents the most comprehensive update of previous 

work on the subject area, offering a new benchmark of global gridded harvested and crop area data for the year circa 2020. 

CROPGRIDS dataset can be downloaded at https://doi.org/10.6084/m9.figshare.22491997 (Tang et al., 2023). 

1 Introduction 

Detailed global geospatial information on the distribution of crop types over time is required to understand planetary 30 

boundaries and support decision-making at all scales, from land use and land use change dynamics to the impacts of agricultural 
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inputs use on the environment. Geo-referenced crop information is particularly valuable for improving reporting and 

monitoring progress at sub-national scales under the Sustainable Development Goals (SDG), in particular Goal 2 on food 

security, productivity and sustainability of agriculture (Tubiello et al., 2021). 

The most comprehensive geospatial product available today, covering 175 crops at a resolution of 10 km globally 35 

(Monfreda et al., 2008)—henceforth referred to herein as MFR, from the initials of the authors—has nonetheless become rather 

outdated, providing information limited to the year 2000, whereas significant changes in cropland extent have been 

documented over the past twenty years (Potapov et al., 2022; Tubiello et al., 2023). MRF was created by spatially 

disaggregating official national and sub-national harvested area information over a gridded cropland map derived from remote 

sensing. It has since been used in dozens of published studies, most notably for assessing planetary boundaries with respect to 40 

food and agriculture (Foley et al., 2011). Several crop type mapping efforts were made since the production of MRF (see Kim 

et al. (2021) for a comprehensive review). More recently, important initiatives such as those promoted by the European Space 

Agency (ESA) (Defourny et al., 2019; Franch et al., 2022) and by the USA National Aeronautics and Space Administration 

(NASA) were launched and are already contributing considerable progress (Lobell et al., 2018; Seifert et al., 2018; Azzari et 

al., 2019). However, none of these efforts matched yet MRF in the scope and crop type coverage, so much so that many global 45 

assessments of agricultural impacts have continued to use it as a standard (Beyer et al., 2022; Ortiz-Bobea et al., 2021; Tang 

et al., 2021; Proctor et al., 2022). 

To update the MRF information, we produced CROPGRIDS, providing new global gridded harvested and crop area 

data for 173 crops circa the year 2020. CROPGRIDS was produced using MRF data as starting point, updated through 

hybridisation of more recent information, i.e., merging the available, published gridded datasets for period more recent than 50 

2000 and using a set of endogenous and exogenous data quality indicators within a multi-criteria ranking scheme to determine 

best-fit data by crop type and country. The resulting CROPGRIDS is a collection of harvested and crop area maps for 173 

crops, at a global spatial resolution of 0.05º (approximately 5.55 km at the equator). Crop type name, harvested area and crop 

area definitions used in CROPGRIDS are aligned to the relevant FAO definitions (FAO, 2022). In particular, crop area refers 

to FAO land use classes ‘temporary’ or ‘permanent’ crops, depending on crop type. Unlike the harvested area, multiple cropped 55 

areas of temporary crops are counted only once for crop area (FAO, 2023).   

2 Methods 

2.1 Input data 

We conducted a search for published peer-reviewed datasets providing geo-referenced crop-specific information, 

including by grid cell: amount of harvested area (HA); amount of crop area (CA); fraction crop area (f, i.e., proportion of the 60 

cell occupied by crop area); or binary values (w) determining if a grid cell is cultivated or not. The following four minimum 

conditions were applied for inclusion: (1) reference year later than 2000; (2) at least one crop species also present in MRF; (3) 

geospatial coverage for at least one country (complete national extent); and (4) spatial resolution at least 0.083º (about 10 km 
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at the equator). Based on these criteria we created a library of 27 datasets, including 13 national, 8 multinational/continental, 

and 6 global datasets (Table 1). Amongst the selected datasets, two provided both HA and CA, two provided only HA, three 65 

provided only f, and 20 provided only w (see details in Table 1).  

Additionally, we used the following datasets for data processing: a cropland agreement map (CAM) at 30 m resolution 

(Tubiello et al., 2023); the FAO Global Administrative Unit Layers (GAUL) dataset (FAO, 2015); and FAOSTAT national 

statistics of harvested area (FAO, 2022), see also Section 2.2.4. 

 70 

Table 1. CROPGRIDS input datasets. 

 Acronym Description Reference 

1 MRF Global gridded HA [ha] for 175 crops at a resolution of 0.0833 degree (~ 10 km at the equator) 

in 2000.  

Monfreda et al. (2008) 

2 SPAM Global gridded HA and CA [ha] for 42 crops at a resolution of 0.0833 degree (~ 10 km at the 
equator) in 2010. Only 30 crops considered for this work. 

Yu et al. (2020) 

3 GAEZ+2015 Global gridded HA [ha] for 26 crops at a resolution of 0.0833 degree (~ 10 km at the equator) in 
2015. Only 20 crops considered. 

Grogan et al. (2022) 

4 GEOGLAM Global gridded f [%] for 4 crops at a resolution of 0.05 degree (~ 5.55 km at the equator) in 2020. Becker-Reshef et al. (2022) 

5 OIPA Global gridded w [-] for oil palm at a resolution of 0.0000898 degree (~ 0.01 km at the equator) 

in 2019. 

Descals et al. (2021) 

6 RAP Global gridded w [-] for rapeseed at a resolution of 0.0000898 degree (~ 0.01 km at the equator) 
in 2019. 

Han, et al. (2021) 

7 EU Gridded w [-] for 28 countries in EU for 18 crops at a resolution of 0.0000898 degree (~ 0.01 km 

at the equator) in 2018. Only 12 crops considered. 

d’Andrimont et al. (2021) 

8 SPAMAF Gridded HA and CA [ha] for Africa for 42 crops at a resolution of 0.0833 degree (~ 10 km at the 
equator) in 2017. Only 32 crops considered. 

IFPRI (2020) 

9 AFCAS Gridded f [ha km-2] for Africa for cassava at a resolution of 0.00833 degree (~ 1 km at the equator) 

in 2014. 

Szyniszewska (2020) 

10 SASOY Gridded w [-] for South America for soybean at a resolution of 0.00025 degree (~ 0.03 km at the 

equator) in 2018. 

Song et al. (2021) 

11 MYSTHA Gridded w [-] for Malaysia, Indonesia, and Thailand for oil palm at a resolution of 0.0002695 

degree (~ 0.03 km at the equator) in 2017. 

Danylo et al. (2021) 

12 ASIARICE Gridded w [-] and cropping intensity for 21 countries in Asian monsoon region for rice at a 
resolution of 0.0045 degree (~ 0.5 km at the equator) in 2020. 

Han et al. (2022) 

13 CIVGHA Gridded w [-] for Cote d’Ivoire and Ghana for cocoa at a resolution of 0.0000898 degree (~ 0.01 
km at the equator) in 2019. 

Abu et al. (2021) 

14 UZBTJK w [-] for Uzbekistan and Tajikistan for 38 crops distributed as shapefile at a resolution of 0.0001 

degree (~ 0.01 km at the equator) in 2015 to 2018. Only 20 crops considered. 

Remelgado et al. (2020) 

15 USA Gridded w [-] for USA for 105 crops at a resolution of 0.0000898 degree (~ 0.01 km at the 

equator) in 2021. Only 64 crops considered. 

Boryan et al. (2011) 

16 CA Gridded w [-] for Canada for 52 crops at a resolution of 0.00027 degree (~ 0.03 km at the equator) 

in 2021. Only 31 crops considered. 

Fisette et al. (2013) 

17 AFG Gridded w [-] for Afghanistan for 6 crops at a resolution of 0.0000898 degree (~ 0.01 km at the 
equator) in 2020. Only 3 crops considered. 

FAO (2021a) 

18 DEU Gridded w [-] for Germany for 24 crops at a resolution of 0.0000898 degree (~ 0.01 km at the 

equator) in 2019. Only 15 crops considered. 

Blickensdörfer et al. (2022) 

19 CHNWH Gridded w [-] for China for winter wheat at a resolution of 0.0003 degree (~ 0.03 km at the 

equator) for 2018. 

Dong et al. (2020) 

20 CHNMZ Gridded w [-] for China for maize at a resolution of 0.005 degree (~ 0.555 km at the equator) in 
2017. 

Qiu et al. (2018) 

21 CHNMZWH

RI 

Gridded w [-] of single, double, triple cropping for China for rice, maize, and wheat at a resolution 

of 0.005 degree (~ 0.555 km at the equator) in 2020. 

Qiu et al. (2022) 

22 BGDRICE Gridded w [-] of 3 growing seasons for Bangladesh for rice at a resolution of 0.0000898 degree 
(~ 0.01 km at the equator) in 2017. 

Singha et al. (2019) 
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23 BRA Gridded w [-] for Brazil for sugarcane at a resolution of 0.0003 degree (~ 0.03 km at the equator) 

in 2019. 

Zheng et al. (2022) 

24 SEN Gridded w [-] for Senegal for 22 crops at a resolution of 0.00009 degree (~ 0.01 km at the equator) 
in 2018. Only 17 crops considered. 

FAO (2021b) 

25 AU Gridded f [-] for Australia for 25 crops at a resolution of 0.0833 degree (~ 10 km at the equator) 

in 2015. Only 6 crops considered. 

ABARES (2022) 

26 FR Gridded w [-] for France for 11 crops at a resolution of 0.0001 degree (~ 0.01 km at the equator) 

in 2021. Only 5 crops considered. 

Thierion et al. (2022) 

27 JP Gridded w [-] for Japan for rice at a resolution of 0.0000833 degree (~ 0.01 km at the equator) in 
2020.  

JAXA EORC, (2021) 

  

2.2 Development of CROPGRIDS 

In order to build CROPGRIDS, four steps were carried out either sequentially or in parallel (Figure 1), as follows: Step 1) 

Input data harmonization; Step 2) Endogenous data quality indicators; Step 3) Exogenous data quality indicators; and Step 4) 75 

Assemblage of global maps. These steps are described in detail in the next sections. In general, the last step was achieved 

through a multi-criteria ranking scheme we designed using seven endogenous and two exogenous data quality indicators 

needed to select, for countries and territories for which data were available from multiple input datasets, the one dataset best 

describing a specific crop. The information collected to build CROPGRIDS spanned the period 2000-2021, with 24 out of the 

27 input datasets referring to the period 2015-2021, hence, collectively referred hereafter as circa 2020.  80 

 

 

Figure 1. Workflow of the development of CROPGRIDS.  

https://doi.org/10.5194/essd-2023-130
Preprint. Discussion started: 20 April 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

2.2.1 Step 1. Input data harmonization 

The selected input datasets (Table 1) were harmonized to a common spatial resolution of 0.05º (approximately 5.55 

km at the equator) using the imresize function in Matlab and pychnophylactic methods to ensure areal conservation 85 

(MathWorks, 2021); and a bounding box of -180˚ to 180˚ longitude and -90˚ to 90˚ latitude using the WGS-84 coordinate 

system (World Geodetic System 1984).    

Prior to harmonization, we gap-filled missing HA and CA data as follows. For given HA data, we imputed CA = 

min{HA, GA}, with GA being the grid cell area. When only f was provided, we calculated crop area as CA = f × GA and 

imputed HA = CA. When only w was provided, we first derived corresponding f values and then made the same imputations 90 

as above. Specifically, since datasets providing w for individual crops had typically high spatial resolution (ranging 10 – 550 

m at the equator), we performed pixel counting of w values to derive aggregate f values at the required 5.5 km resolution. 

Additionally, for datasets providing w values over multiple growing seasons s, the annual CA was computed as CA = max{CA1, 

CA2, …, CAs} across the season s; while HA was computed as 𝐻𝐴 = ∑ 𝐶𝐴𝑖
𝑠
𝑖=1 . Alternatively, when the geo-referenced 

cropping intensity CI was provided (i.e., ASIARICE, Table 1), HA = CA × CI. Finally, we set a threshold for CA and HA 95 

values, i.e., both were set to zero whenever CA < 1 m2. Consistency diagnostics checked that CA ≤ HA, CA ≤ GA, and CI ≤ 3 

(i.e., CI commonly less than 3, Zhang et al., 2021) were satisfied in all grid cells. In building CROPGRIDS, we harmonized 

crop names in the input datasets, including performing aggregations where needed, to correspond to the crop names in MRF, 

thus ensuring internal consistency and alignment with FAO crop classifications (Supplementary Table 1). 

2.2.2 Step 2. Endogenous data quality indicators 100 

Endogenous data quality indicators assessed both measurable and non-measurable features of a dataset that do not 

depend on external information. Endogenous features considered in CROPGRIDS development included: synchrony (Q
y
), 

administration (Q
a
), data source (Q

s
), validation (Q

v
), resolution (Q

r
), maturity (Q

m
), and type of dispatch (Q

d
). All 

endogenous features were assigned an indicator value ranging 0–1, with the end points corresponding to the lowest and highest 

quality, respectively. Endogenous features were not expressed as geo-referenced maps, but rather we used them to tag 105 

individual input datasets regardless of crop type. 

Q
y
 described the level of synchrony between the year of reference Yr  of a dataset and the year of reference of 

CROPGRIDS, which was set to circa 2020 (2015-2020). Specifically, datasets with Yr  outside of the range 2015-2020 were 

assigned a lower rank than those within the reference range:  

Q
y
= {

Yr−2000

2015 − 2000
       if Yr < 2015             

    1                    if 2015 ≤ Yr ≤ 2020  

1−
Yr−2020

2035−2020
 if Yr >  2020.        

                                                                 (1) 110 
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 Q
a
 described the administrative domain of a dataset (i.e., national to global). A national dataset was assigned 

a higher Q
a
 value than global datasets, under our assumption that national datasets are constructed using better information 

from direct local knowledge. Q
a
was defined as: 

Q
a
= {

1 if national or regional  
0.5 if global.                           

                                                                                (2) 115 

Q
s
 described the primary data source used to develop a dataset. We assumed that datasets developed using survey 

data (i.e., field survey and censuses) have higher quality than those based on satellite imagery, with datasets constructed using 

modelling techniques having the lowest quality. We used Q
s
 to also account for hybrid methods, assigning in such cases 

intermediate quality scores, as follows:  

Q
s
=

{
 
 
 

 
 
 

1 survey, satellite, model integration  
0.8 survey and satellite integration         
0.7                     survey and model integration             

 

0.5     satellite and model integration             
0.5                                   survey only                                

0.3                                   satellite only                               
0.2                                   model only                                 

                                         (3) 120 

Q
v
 was used to rank the level of validation of a dataset, against ground truth, users’ feedback, statistical data, satellite 

images or other sources. We ranked the validation level from high to low based on the presence of field observations, the 

number of sources used for validation, and the separation between calibration and validation sets. Q
v
 was defined as:  

Q
v
= {

   1        if validated using point-scale field data with sound statistical approaches
0.5     if validated some spatial coverage with national or subnational statistics  
0.25   if qualitative comparison or no attempt of validation.                                         

                                           (4) 

 125 

Q
r
 described the spatial resolution r of a dataset. A higher rank was given to a dataset with finer resolution: 

Q
r
= 1−

r−rmin

rmax−rmin
,                                                                                              (5) 

where rmin = 0.0000833 degree and rmax = 0.0833 degree were the finest and coarsest resolutions across input datasets. 

Q
m

 was used to assess the level of maturity of a dataset, depending on the frequency of revisions, updates, or releases: 

Q
m
= {

1       if annual                   
0.5     if every some years  
0       if never.                      

                                                                               (6) 130 

Q
d
 was used to assess the level of officiality, i.e., whether a dataset was the result of an official government or non-

government dispatch, assuming that official government dispatches have higher reliability than those conducted by non-

government entities. It was defined as 
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Q
d
= {

1 if government         
0.5 if non-government.

                                                                                (7) 

All endogenous data quality indicators values are reported in Table 2 below. 135 

 

Table 2: Endogenous dataset quality indicators of all input datasets.  

Dataset 
Synchrony  

Qy 

Administration 

Qa 

Source 

Qs 

Validation 

Qv 

Resolution 

Qr 

Maturity 

Qm 

Dispatch  

Qd 

MRF 0 0.5 0.5 0.5 0 0 0.5 

SPAM 0.667 0.5 0.7 0.5 0 0.5 0.5 

GAEZ+2015 1 0.5 0.5 0.5 0 0 0.5 

GEOGLAM    0.867 0.5 0.5 0.5 0.400 0 0.5 

OIPA      1 0.5 0.5 1 1.000 0 0.5 

RAP     1 0.5 0.3 1 1.000 0 0.5 

EU 1 1 0.8 1 1.000 0 0.5 

SPAMAF 1 1 0.7 0.5 0.004 0.5 0.5 

AFCAS   0.933 1 0.5 0.5 0.901 0 0.5 

SASOY   0.933 1 0.8 1 0.998 0 0.5 

MYSTHA  1 1 0.3 0.5 0.998 0 0.5 

ASIARICE  1 1 0.3 1 0.947 0 0.5 

CIVGHA  1 1 0.8 1 1.000 0 0.5 

UZBTJK  1 1 0.5 0.5 1.000 0 0.5 

USA 0.933 1 0.8 1 0.998 1 1 

CA 1 1 0.8 1 0.998 1 1 

AFG 1 1 0.8 1 1.000 0 0.5 

DEU 1 1 1 1 1.000 0 0.5 

CHNWH   1 1 0.8 1 0.997 0 0.5 

CHNMZ   1 1 0.3 1 0.937 0 0.5 

CHNMZWHRI  1 1 0.3 1 0.941 0 0.5 

BGDRICE   1 1 0.8 1 1.000 0 0.5 

BRASUG    1 1 0.8 1 0.998 0 0.5 

SEN     1 1 0.8 1 1.000 0 0.5 

AU      0.733 1 0.7 0.25 0.975 0.5 1 

FR 0.933 1 0.3 0.25 1.000 1 0.5 

JP 1 1 0.8 1 1.000 0.5 1 

 

2.2.3 Step 3. Exogenous data quality indicators 

Exogenous data quality indicators were defined to describe the quality of a dataset against independent external 140 

information. They included QCAM , comparison against the cropland agreement map (CAM) (Tubiello et al., 2023), and QFAO, 

comparison against FAOSTAT harvested area (FAO, 2022), average for the period 2015–2020. Unlike the endogenous 

indicators, exogenous data quality indicators were evaluated for each input dataset by crop and country. 

QCAM was used to measure the level of agreement of the crop spatial distribution in a dataset against the FAO CAM. 

We first converted the CA maps of each dataset and the cropland area map of CAM into binary maps, where a grid cell was 145 

assigned a value of one for non-zero crop area and zero otherwise. We then calculated QCAM as:  

Q
CAM,i,j

=
𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑖,𝑗)

𝑁𝐶𝐴(𝑖,𝑗)
,                                                                                 (8) 
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where 𝑁𝐶𝐴(𝑖, 𝑗) is the number of grid cells identified as crop i in country j in a given dataset and 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the number of grid 

cells where both CAM and the given dataset have non-zero values. 

QFAO was used to measure the relative error of the input dataset crop harvested area against FAOSTAT (FAO, 2022). 150 

For crop i in country j, QFAO,i,j was defined as:    

Q
FAO,i,j

= 1−min { 1,
|HA(i,j)− HAFAO(i,j)|

HAFAO(i,j)
}.                                                           (9) 

 

where HA(i,j) is the total harvested area of crop i in country j in a dataset, and HAFAO is the corresponding 2015–2020 average 

FAOSTAT value. QFAO ranges between 0 and 1, with QF  = 1 representing a perfect match against FAOSTAT. For countries 155 

not included in FAOSTAT, we set QFAO = 0. 

2.2.4 Step 4. Assemblage of global harvested and crop area maps 

Assemblage of geo-referenced harvested and crop area maps for individual crops and countries was conducted along 

two alternative pathways of availability: (1) only MRF data available; or (2) multiple input datasets available. In the first case, 

we simply repeated the MRF information. In the latter, we used the multi-criteria ranking scheme based on endogenous and 160 

exogenous data quality indicators described above to select and use data from the dataset with the highest combined quality 

scores, Q
k,i,j

 , defined in relation to input dataset k for crop i in country j as: 

Q
k,i,j

=
1

3
×
(Qy+Qa+Qs+Qv+Qr+Qm+Qd)k,i,j

  

7
+

 QCAMk,i,j

3
+

 QFAOk,i,j

3
 .     (10) 

 

The best-fit datasets kbest for crop i in country j are provided in Supplementary Table 2. For each crop, we then compiled a 165 

mosaic of HA and CA from best-fit datasets into one global map including all countries. The result of the multi-criteria analysis 

was that 26 out of the 27 geo-referenced datasets (excluding MYSTHA) were included in CROPGRIDS. Section 5 below 

provides further details on the CROPGRIDS dissemination of maps of HA and CA, as well as maps of best-fit datasets and 

their overall quality by crop and country.  

2.3 Quantifying uncertainty in the multi-criteria selection ranking 170 

 The endogenous and exogenous data quality indicators used in the multi-criteria selection were assigned meaningful 

but arbitrary values. We conducted a Monte-Carlo analysis to quantify the uncertainty associated to such arbitrary choices, by 

introducing random weights, in the range 0–1, to each data quality indicator, that is: {wc, wa, ws, wv, wr, wm, wd} for endogenous 

and {wC, wF} for exogenous indicators—whereas we implicitly had used unity weights in Eq. (10). We extracted 10,000 values 

of each of the nine weights from independent Gaussian probability distribution functions with a mean equal to 1 and a standard 175 

deviation equal to 0.1 and we limited their values within the range between 0.7 and 1.3, that is three times the standard 

deviation. We next counted the frequency of occurrence of a selected dataset different from when using the default weight 
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values. This uncertainty analysis was only conducted for combinations of countries and crops where more than one dataset 

was available. 

2.4 CROPGRIDS validation 180 

We evaluated data on HA and CA in CROPGRIDS against official national and subnational statistics of crop-specific 

harvested area (Supplementary Table 3); FAOSTAT land areas under temporary and permanent crops by country (FAO, 2022); 

the pixel-level cropland areas calculated from FAO CAM (Tubiello et al., 2023).   

We compiled a library of independent datasets, i.e., not used in the construction of CROPGRIDS, of national and 

subnational harvested area by crop from 36 National Statistical Offices (NSOs) (Supplementary Table 3), covering 69 countries 185 

and territories and 833 subnational units. Of these, national data covered 30 countries and territories and 36 reported more than 

20 crops each. In total, evaluations of 121 crop data were conducted against independent crop statistics from NSOs. We 

matched and aggregated crop types in each NSO dataset to match those reported in CROPGRIDS. We then calculated 2015–

2020 averages. We used the GAUL dataset (level 1) to identify subnational units and perform relevant aggregations from pixel 

level to administrative level 1. The calculations were conducted for 121 crops and were quantified using the coefficient of 190 

determination R2 and normalized root mean squared errors (NRMSE) as  

𝑅𝑖
2 = 1 −

∑ [HA(i,j)− HANSO(i,j)]
2

(j)

∑ [HA(i,j)−HA(i)̅̅ ̅̅ ̅̅ ̅]
2

(j)

   ,                                                                  (11) 

NRMSE𝑖 =

√∑ [HA(i,j)− HANSO(i,j)]
2

(j)

𝑛

[HANSO,max(i)−HANSO,min(i)]
 ,                                                                   (12) 

 

where HA(i,j) and HANSO(i,j) are the harvested area of crop i in administrative unit j reported by in CROPGRIDS and NSOs, 195 

respectively, HA̅̅ ̅̅  is the average of all CROPGRIDS data points, HANSO,max and HANSO,min are the corresponding maximum and 

minimum crop harvested areas of NSOs, and n is the number of data points.  

The crop area in CROPGRIDS was compared with FAOSTAT land areas under temporary and permanent crops for 

2020 in more than 180 countries. We first classified the 173 crop types included in CROPGRIDS into temporary and permanent 

crops (see Supplementary Table 2 for details). We used the GAUL dataset (level 0) to identify country boundaries and perform 200 

relevant aggregations from pixel level to national level. The goodness of comparison was evaluated in terms of relative percent 

differences, :  

𝑖,𝑗 =
CA(i,j)− CAFAO(i,j)

CAFAO(i,j)
 × 100                                                                                      (14) 

where CA(i,j) and CAFAO(𝑖, 𝑗) are the crop area in country j in CROPGRIDS and FAOSTAT, respectively, with i being either 

temporary or permanent crops.   205 
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We next validated the CA of all crops included in CROPGRIDS geo-spatially against the cropland area in CAM. 

Firstly, we calculated the sum of the CA of all crops in each grid cell g in CROPGRIDS, CAtotal,CROPGRIDS(g). Next, for each 

grid cell, we calculated the percent difference as:  

∆𝐶𝐴(𝑔) =
𝐶𝐴𝑡𝑜𝑡𝑎𝑙,𝐶𝑅𝑂𝑃𝐺𝑅𝐼𝐷𝑆(𝑔)− 𝐶𝐴𝐶𝐴𝑀(𝑔)

𝐺𝐴(𝑔)
× 100,                                                          (15) 

where CACAM is cropland area in CAM (Tubiello et al., 2023).   210 

3. Results 

3.1 Key features of CROPGRIDS  

CROPGRIDS provides updates on the spatial distribution of 80 crops out of the 173 crops in MRF across more than 

180 countries for the year 2020. In total, CROPGRIDS updated about 1.2 billion hectares of crop area, corresponding to 81% 

of the total crop areas included in CROPGIRDS. The updates included 32 crops with more than 50% updated grid cells (Table 215 

3 and Supplementary Table 2). Major crops featured greater than 90% updated grid cells compared to MRF, with soybean, 

rapeseed, and oil palm having the greatest percent update (Table 3). A total of 13 among the world top 15 crops in terms of 

harvested area were updated in more than 100 countries.  

The information updated in CROPGRIDS indicates that in 2020 the world total harvested area (i.e., the sum across 

all 173 crops) was 1.54 billion ha, while world total crop area was 1.48 billion ha. These figures overestimated the 220 

corresponding FAO data for 2020, respectively by 7% for harvested area (FAOSTAT: 1.44 billion ha) and by 20% for crop 

area (FAOSTAT: 1.23 billion ha, i.e., the sum of land area under temporary and permanent crops). Specifically, the global 

crop-specific harvested area in CROPGRIDS matched well with those reported in FAOSTAT with an R2 = 0.99 (Figure 2, red 

markers), with 48 crops having a difference less than ±10% (Supplementary Figure 2). Comparison of CROPGRIDS against 

national-level crop-specific harvested areas of FAOSTAT also shows good matching with an R2 = 0.97 (Figure 2, grey 225 

markers). CROPGRIDS generally overestimated HA for crops and countries that have a harvested area less than 100 ha in 

FAOSTAT. About 40% of data points (out of a total of 8,678 pairs) had differences less than ±30%, while only less than 11% 

had a difference greater than ±100%.  

We next estimated 2000–2020 change in world harvested area by crop by comparing MRF to CROPGRIDS data and 

compared results with FAOSTAT. Results were in good agreement for 13 major crops, except for sorghum (Table 3). For 230 

instance, we estimated an increase of 23 million ha for oil palm since 2000, a 146% increase since 2000, which compared well 

with the 175% increase estimated with FAOSTAT (Table 3). Likewise, we estimated a 69% increase in harvested area of 

cassava vs. 62% by FAOSTAT, or +7% for rice vs. 6% in FAOSTAT. Conversely, we estimated a 22% increase in the 

harvested area of sorghum while FAOSTAT indicates a 4% decrease.  

We presented examples of harvested area maps for the top four crops experiencing major changes since 2000, i.e., oil 235 

palm, soybean, cassava, and maize (Figure 3), and the corresponding best-fit datasets (Figure 4).  
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Table 3. Percent of grid cells and countries being updated with spatial data more recent than 2000 for the top 15 crops with the 

largest global harvested area. % grid cells updated is defined as the number of grid cells identified as a specific crop (i.e., HA in 

CROPGRIDS > 0) with data sourced from datasets more recent than 2000 over the total number of grid cells identified as that specific crop. 240 
% countries updated refers to the number of countries being updated with spatial data more recent than 2000 over the total number of 

countries producing that specific crop. ∆HAGrid refers to the change in the world’s harvested area between 2000 and 2020 estimated based 

on georeferenced maps in MRF and CROPGRIDS. ∆HAFAO refers to the change in the world’s harvested area between 2000 and 2020 

estimated using FAOSTAT database. 

Crops % grid cells 
updated 

Number of 
countries 
updated 

% of all producing 
countries 

∆HAGrid 
(%) 

∆HAFAO 
(%) 

barley 98 122 90 -11 -3 

bean 95 153 93 25 44 

cassava 96 111 90 69 62 

cotton 94 116 89 14 2 

groundnut 96 132 91 25 31 

maize 98 184 97 50 46 

millet 92 110 85 -6 -16 

oil palm 98 66 80 146 175 

rapeseed 99 87 85 43 32 

rice 98 155 96 7 6 

sorghum 98 137 86 22 -4 

soybean 100 142 95 75 71 

sugarcane 93 114 86 35 37 

sunflower 91 103 82 25 31 

wheat 96 137 90 6 1 

 245 

 

Figure 2. Comparison of crop harvested area in CROPGRIDS against FAOSTAT. In total, there were 8,678 pairs of 

comparisons at national-level and 153 pairs for global crop-specific harvested areas across. 
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Figure 3. Harvested area maps in CROPGRIDS for the top four crops experiencing the largest expansion since 2000. (a) 

Soybean, (b) maize, (c) oil palm, and (d) cassava. 

  

(a) (b)

(c) (d)
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3.2 Validation of CROPGRIDS against FAOSTAT land area under temporary and permanent crops 

In CROPGRIDS, temporary crops covered 1.34 billion ha of global cropland area, overestimated by approximately 250 

28% the temporary crop area reported in FAOSTAT for 2020, which is 1.06 billion ha. The comparison of temporary crop 

areas at national-level showed a relatively good match to FAOSTAT data, with differences between ±40% in 114 countries 

out of 188 countries compared (Supplementary Figure 1a). CROPGRIDS indicated about 45% more temporary crop area than 

FAOSTAT in South America (mainly Brazil and Peru) and Asia (mainly China) (Table 4, Supplementary Figure 1a).  

Additionally, the 2020 world total permanent crop area in CROPGRIDS was 140 million ha, consistent with but lower 255 

than the 170 million ha estimated by FAOSTAT. Underestimation by CROPGRIDS of permanent crops area compared to 

FAOSTAT was evident in Asia (mainly Mongolia, Afghanistan, Vietnam, Cambodia), South and Central America (mainly 

Peru, Guatemala and Nicaragua) and the Caribbean (Table 4, Supplementary Figure 1b). 

 

 260 

 

 

 

Figure 4. Datasets used to assemble harvested and crop area maps in CROPGRIDS for soybean, maize, oil palm and 

cassava. 
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Table 4: The comparison of land area used for cultivating temporary and permanent crops in different regions in 2020, using data 

from CROPGRIDS and FAOSTAT. The classification of temporary and permanent crops was reported in Supplementary Table 2.  265 

Region 

Crop area (million hectares) 

Temporary crops Permanent crops 

CROPGRIDS FAOSTAT CROPGRIDS FAOSTAT 

Africa 203 193 31.5 36.3 

Northern America 176 178 2.8 2.9 

Central America 18.9 17.3 4.1 5.5 

Caribbean 3.2 3.1 1.1 1.5 

South America 137 86.9 12.2 17.9 

Asia 535 363 70.7 93.4 

Europe 238 194 14.9 15.6 

Oceania 26.4 26.5 1.3 1.5 

World 1337 1061 139 175 

 

3.3 Comparison of CROPGRIDS crop area with cropland map 

All grid cells identified as cropland (i.e., total CA across all crops in a grid cell > 0) in CROPGRIDS were also 

identified as cropland in CAM. Globally, CAM estimated a cropland area of about 1.56 billion ha fully consistent with the 

1.48 billion ha of crop area estimated in CROPGRIDS. Among all grid cells identified as cropland in CROPGRIDS, the 270 

majority (about 71%) had a discrepancy between ± 10% of the grid cell area (Figure 5). However, in approximately 2% of the 

grid cells, CROPGRIDS found a much larger cropland extent than CAM, particularly in Africa (e.g., Nigeria and Guinea) and 

Asia (e.g., India and China). 
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 275 

3.4 Validation of CROPGRIDS with official national and subnational data 

We assessed CROPGRIDS against independent data sourced from National Statistical Offices (NSOs). Among the 

121 crops suitable for comparison, the harvested area of 71 crops in CROPGRIDS agreed relatively well with data from NSOs 

(R2 > 0.5, NRMSE < 0.1, Figure 6 and Supplementary Figure 3). Specifically, the comparisons for important crops such as 

wheat, maize, rice, soybean, barley, rapeseed, cassava, sunflower, sugarcane, and oil palm had R2 > 0.91 and NRMSE ≤ 0.05, 280 

showing very good agreement with officially reported national and subnational statistics (Figure 6). We found that for the 

major crops, the largest discrepancies between CROPGRIDS and national data were largely due to the GAEZ+15 dataset.  

Figure 5. Validation of the total crop area of all crops included in CROPGRIDS against the cropland area in CAM by 

Tubiello et al. (2023). All grid cells in CROPGRIDS that have a crop area greater than zero were identified as cropland in CAM. 

∆ CA was calculated as the difference of crop area as a percent of grid area (see Eq. 15). 
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Figure 6. Validation of crop harvested areas in CROPGRIDS against data from National Statistical Offices at national and 

subnational levels. The % updated shows the percentage of grid cells for a specific crop in CROPGRIDS being updated with 

spatial data more recent than 2000. The colours of the markers refer to the georeferenced datasets selected to use in CROPGRIDS. 

This figure shows only the validation for the top 15 crops with the largest global harvested area. The validations for the other 115 

crops are shown in Supplementary Figure 3.   
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3.5 Uncertainty of dataset selection 

Results of the Monte-Carlo analysis on the endogenous and exogenous characteristics of the multi-criteria selection 285 

ranking scheme suggested that the method of best-fit dataset selection was highly robust. Specifically, for the 78 crops and 

187 countries with multiple datasets, the probability that the selection of the best-fit dataset would change with randomized 

characteristics was highly unlikely (white tiles in Supplementary Figure 4). In a minor fraction of crops and countries, the 

probability was greater than 0.1, with only 41 out of 3346 assessed pairs of crops and countries having a probability ≥ 40% 

and only 6 pairs having a probability ≥ 50% (Supplementary Figure 4).  290 

4. Discussion on limitations and uncertainties 

CROPGRIDS inherits uncertainties and errors embedded in the input datasets and these uncertainties can stem from 

a variety of sources. Datasets constructed based on censuses surveys (e.g., MRF and SPAM) can have uncertainties stemming 

from the methods used to spatialize crop area statistics at administrative-level 2 and the imperfection in statistical reporting of 

crop area. Datasets constructed using remote sensing approaches can suffer from the inherent uncertainties in remote sensing 295 

data, such as, atmospheric interference and limitations in spatial resolution. More generally, these datasets also carry forward 

uncertainties underlying in the cropland layer maps used as their input and can be limited by the availability of ground truth 

data in certain regions for validation purposes. These uncertainties can propagate through the mapping process and affect the 

accuracy of the resulting crop area estimates in CROPGRIDS. 

In addition to inherited uncertainties, the construction of CROPGRIDS also suffers from known limitations. While 300 

we have accounted for cropping intensities greater than 1 for crops with multiple harvests (e.g., rice), we have neglected dual 

and multi-layered cropping systems when more than one crop are grown in the same cultivated area. Information about dual 

cropping systems across the available datasets is limited, with only the datasets for USA and Canada providing this 

information. Information on multi-layered cropping systems (e.g., barley below olive trees in some Mediterranean systems) is 

entirely lacking. This may lead to both underestimations and overestimations in HA and CA for some countries and some crops, 305 

leaving a knowledge gap that may be filled in in future releases of CROPGRIDS.   

At a spatial resolution of 0.05˚, a grid cell has a size of approximately 5.5 km × 5.5 km, corresponding to about 3000 

ha. This leads to uncertainties in the estimated harvested and crop areas for some crops typically cultivated at smaller scales 

except under intensively managed systems, often monocultures. It furthermore creates uncertainty at the border between two 

countries and affects in particularly the calculation of the exogenous data quality indicator QFAO that compares a dataset against 310 

national-level crop harvested area reported by FAOSTAT. This border effect impacts estimates mostly in small countries in 

two ways. The first is when a country has zero harvested and crop areas for a crop across all datasets because border grid cells 

fall in the neighbouring country, whereas FAOSTAT reports non-zero values. In this case, no selection is performed. The 

second is when, in contrast, a country has a harvested area greater than zero when grid cells of other neighbour countries fall 

within a country and FAOSTAT returns zero value. In this case, datasets will still be ranked and the best-fit will be selected 315 
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according to other quality indicators. This known bias is difficult to detect and correct, especially for small countries, because 

whether a border grid cell belongs to one or another country cannot be estimated correctly at the given resolution. Specifically, 

this bias is scale-dependent and its occurrence decreases with increasing resolution and data quality, including of the layer of 

administrative boundaries used to extract country statistics.  

 Due to constraint in spatial resolution, CROPGRIDS excludes a few small countries or territories (i.e., Falkland, 320 

Faroe Islands, French S.A.T., Heart Island, Isle of Man, Kingman Reef, Kiribati, Ma'tan al-Sarra, Mayotte, Nether. Antilles, 

Palau, Réunion, Saint Pierre, South Georgia, Svalbard, Virgin Islands). Greenland is also excluded, considering the small area 

of cultivated land. The harvested and crop areas of these countries were marked as “No data” in CROPGRIDS.  

5. Data availability 

The CROPGRIDS data are available via figshare at https://doi.org/10.6084/m9.figshare.22491997 (Tang, et al., 325 

2023). The dataset includes georeferenced cultivated area, harvested area and data quality maps for 173 individual crops, and 

tables reporting the crop harvested and cultivated areas in each country.  

6. Conclusions.  

CROPGRIDS is a dataset of globally georeferenced harvested and crop area maps for 173 crops circa 2020. By 

assimilating and harmonizing multiple peer-reviewed datasets, CROPGRIDS provides a significant update to the maps of 330 

Monfreda et al. (2008), which represented until now the most comprehensive dataset of crop area information circa the year 

2000. CROPGRIDS was evaluated using multiple data sources, including a newly developed cropland agreement map 

(Tubiello et al., 2023), national data for temporary and permanent crop areas in more than 180 countries and territories as 

reported by FAOSTAT, and both national and subnational data for 121 crops from 36 National Statistical Offices. The 

CROPGRIDS dataset will facilitate global-scale assessments in various disciplines, including agriculture and resource 335 

management, food systems, environmental impact and sustainability analyses, agroeconomics, inter-region trading, and 

international policy and strategies establishment. 
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