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Abstract 16 

Trait-based approaches are of increasing concern in predicting vegetation changes and linking 17 

ecosystem structure to functions at large scales. However, a critical challenge for such approaches 18 

is acquiring spatially continuous plant functional trait distribution. Here, eight key plant functional 19 

traits were selected to represent two-dimensional spectrum of plant form and function, including 20 

leaf area (LA), leaf dry matter content (LDMC), leaf N concentration (LNC), leaf P concentration 21 

(LPC), plant height, seed mass (SM), specific leaf area (SLA) and wood density (WD). A total of 22 

52477 trait measurements of 4291 seed plant species were collected from 1541 sampling sites in 23 

China and were used to generate a spatial plant functional trait dataset (1 km), together with 24 

environmental variables and vegetation indices based on two machine learning models (random 25 

forest and boosted regression trees). The two models showed a good accuracy in estimating WD, 26 

LPC and SLA, with average R2 values ranging from 0.45 to 0.66. In contrast, both the two models 27 

had a weak performance in estimating SM and LDMC, with average R2 values below 0.25. 28 

Meanwhile, LA, SM and plant height showed considerable differences between two models in some 29 

regions. To obtain the optimal estimates, a weighted average algorithm was further applied to merge 30 

the predictions of the two models to derive the final spatial plant functional trait dataset. The optimal 31 

estimates showed that climatic effects were more important than those of edaphic factors in 32 

predicting the spatial distribution of plant functional traits. Estimates of plant functional traits in 33 

northeast China and the Qinghai-Tibet Plateau had relatively high uncertainties due to sparse 34 

samplings, implying a need of more observations in these regions in future. Our trait dataset could 35 

provide critical support for trait-based vegetation models and allows exploration into the 36 

relationships between vegetation characteristics and ecosystem functions at large scales. The eight 37 

plant functional traits datasets for China with 1 km spatial resolution are now available at 38 

https://figshare.com/s/c527c12d310cb8156ed2 (An et al., 2023).39 
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1 Introduction 40 

Climate change has been affecting vegetation distributions and biogeochemical cycling globally and 41 

altering their feedbacks to the climate system (Kirilenko et al., 2000; Finzi et al., 2011; Jónsdóttir et 42 

al., 2022). Dynamic global vegetation models (DGVMs) are powerful tools for predicting changes 43 

in vegetation and ecosystem-atmosphere exchanges (e.g., water, carbon, and nutrient cycling) in a 44 

changing climate (Foley et al., 1996; Peng, 2000). However, conventional DGVMs are still 45 

insufficient realistic, largely due to their dependence on the plant functional types (PFTs) assumption 46 

(Sitch et al., 2008; Yurova and Volodin, 2011; Scheiter et al., 2013). PFTs in conventional DGVMs 47 

commonly have fixed attributes (mostly trait values) (Van Bodegom et al., 2012; Wullschleger et 48 

al., 2014) that do not reflect plant adaptation to environments, limiting the quantification of carbon-49 

water-nutrient feedback between terrestrial ecosystems and the atmosphere (Zaehle and Friend, 50 

2010; Liu and Yin, 2013). Trait-based approaches can provide robust theoretical basis for developing 51 

the next generation of DGVMs (Van Bodegom et al., 2012; Sakschewski et al., 2015; Matheny et 52 

al., 2017). Plant functional traits, which are closely associated with ecosystem functions (Diaz et al., 53 

2004; Yan et al., 2023), can effectively reflect response and adaptation of plants to environmental 54 

conditions (Myers-Smith et al., 2019; Qiao et al., 2023). 55 

Attempts to predict spatially continuous trait data have been conducted at regional to global 56 

scales (Madani et al., 2018; Moreno-Martínez et al., 2018; Boonman et al., 2020; Loozen et al., 57 

2020). Webb et al. (2010) proposed that the environment creates a filtered trait distribution along an 58 

environmental gradient, and such trait-environment relationships offer fundamental supports to 59 

predict the spatial distribution of plant functional traits through extrapolating local trait 60 

measurements. Boonman et al. (2020) mapped the global patterns of specific leaf area (SLA), leaf 61 

N concentration (LNC), wood density (WD) and plant height based on a set of climate and soil 62 

variables. As the number of available global trait databases increase (Kattge et al., 2011; Wang et 63 

al., 2018), trait-environment relationships are becoming increasingly quantitative and accurate 64 

(Bruelheide et al., 2018; Myers-Smith et al., 2019). Alternatively, remote sensing approaches, such 65 

as empirical methods and physical radiative transfer models (e.g., partial least squares regression, 66 

PROPECT model), have been developed to estimate plant physiological, morphological, and 67 

chemical traits (e.g., leaf chlorophyll content, SLA, LNC and leaf dry matter content (LDMC)) 68 

(Darvishzadeh et al., 2008; Romero et al., 2012; Ali et al., 2016). Vegetation indices, such as the 69 

normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), have been 70 

successful in estimating plant functional traits of crops, grasslands and forests (Clevers and Gitelson, 71 

2013; Li et al., 2018; Loozen et al., 2018). Loozen et al. (2020) demonstrated that EVI was the most 72 

important predictor for mapping the spatial pattern of canopy nitrogen in European forests. 73 

Admittedly, recent studies have suggested that combining environmental variables and vegetation 74 

indices can improve the predictive accuracy of canopy N compared to those based on vegetation 75 

indices alone (Loozen et al., 2020). 76 
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Although there have been reports on plant functional trait distribution in China in some global 77 

or regional research (Yang et al., 2016; Butler et al., 2017; Madani et al., 2018; Moreno-Martínez et 78 

al., 2018; Boonman et al., 2020), they are still of large uncertainties in characterizing the spatial 79 

distribution of plant functional traits in China. First, global studies generally have relatively few, 80 

unevenly distributed sampling sites in China (Butler et al., 2017; Madani et al., 2018; Boonman et 81 

al., 2020), impeding our understanding of the true spatial characteristics of trait variability. Second, 82 

these studies are usually inconsistent. For example, Moreno-Martínez et al. (2018) and Madani et 83 

al. (2018) demonstrated that SLA values were low in the southeast areas but high in the southwest 84 

areas of China, whereas Boonman et al. (2020) found the opposite. Third, most studies mainly 85 

focused on leaf traits (Yang et al., 2016; Loozen et al., 2018; Moreno-Martínez et al., 2018), whereas 86 

traits associated with the whole-plant and reproductive strategies, such as WD and seed mass (SM), 87 

were ignored. Therefore, mapping and verifying the spatial patterns of key functional traits that 88 

reflect the whole plant economics spectrum in China is a top priority. 89 

In this study, our main objective was to generate a spatial dataset for several key plant 90 

functional traits, through combining field measurements, environmental variables and vegetation 91 

indices. To achieve this goal, we used a processing routine to predict the spatial distribution of plant 92 

functional traits. First, eight plant functional traits (i.e., SLA, LDMC, LNC, LPC, LA, plant height, 93 

WD and SM) were selected because they reflect plant adaptation to environment constraints and 94 

trade-offs between plant form and function (Reich and Cornelissen, 2014; Diaz et al., 2016). Second, 95 

we used random forest and boosted regression trees to predict the spatial patterns of plant functional 96 

traits by training the relationships between plant functional traits and environmental variables and 97 

vegetation indices. To obtain the optimal estimates, an ensemble model (i.e., weighted average 98 

algorithm) was further applied to merge the predictions of the two models. Finally, plant species 99 

were aggregated to PFTs, and the spatial abundance of PFTs at 1 km resolution was calculated using 100 

land cover map (100 m). We derived the spatial trait datasets via calculating community-weighted 101 

trait values within grid cells (1 km) based on these abundances of each PFT and predicted trait 102 

values. 103 

2 Materials and Methods 104 

2.1 Plant functional trait collection and data processing 105 

Westoby (1998) proposed the ‘leaf-height-seed’ (LHS) strategy scheme that describes three 106 

functionally different strategy axes in relation to SLA, plant height and SM, which are also included 107 

in our study. As key leaf economics traits, LNC, LPC and LDMC were selected because they are 108 

closely linked to plant growth rate, resource acquisition, and ecosystem function (Wright et al., 109 

2004). LA is indicative of the trade-off between carbon assimilation and water-use efficiency 110 

(Wright et al., 2017), and WD reflects the trade-off between growth rate and support cost, with a 111 

higher WD linked to a lower growth rate but a higher biomass support cost (King et al., 2006). The 112 
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information on the eight plant functional traits and their ecological meanings are described in Table 113 

1. 114 

Plant trait data was obtained and collected via two main sources. The first source was public 115 

trait databases, including the TRY database (Kattge et al., 2020) and the China Plant Trait Database 116 

(Wang et al., 2018). The second source was from literature (listed in Appendix A). To ensure data 117 

quality and comparability, we only included trait observations that met the following five criteria: 118 

1) Measurements must be obtained from natural terrestrial fields in order to minimize the influences 119 

of management disturbance, and observations from cropland, aquatic habitat, control experiments 120 

or gardens were excluded; 2) According to the mass ratio hypothesis, the effect of plant species on 121 

ecosystem functioning is determined to an overwhelming extent by the traits and functional diversity 122 

of the dominant species and is relatively insensitive to the richness of subordinate species (Grime, 123 

1998). Thus, we only included studies that measured plant trait observations from all species or 124 

dominant species within a community; 3) In order to account for the trait variation within and 125 

between communities, we only considered real measurements of traits from individual plants, and 126 

not species-level averages (Jung et al., 2010; Siefert et al., 2015); 4) Plant trait observations must 127 

be made on mature and healthy plant individuals, so some specific growth stages (e.g., seedling) 128 

and size classes (e.g., sapling) were excluded to reduce the confounding effect of ontogeny (Thomas, 129 

2010); 5) We only included studies with clear geographical coordinates to ensure alignment with 130 

predictor variables. The sampling location and sample time information from the original studies 131 

were also included in the dataset. 132 

Plant functional traits must be sampled and measured according to standardized measurement 133 

procedures (Perez-Harguindeguy et al., 2013) to reduce the variation and uncertainty among 134 

different data sources. In this study, we included SLA measurements on both sun-leaves and shade-135 

leaves, WD measurements on both heartwood and sapwood of tree species, SM measurements on 136 

both seeds and fruits, and plant height measurements on both vegetative and generative organs.137 
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Table 1 Description of plant functional traits selected in this study and their relevant ecosystem 138 

functions. 139 

Trait Abbreviation Description Relevant ecosystem functions 

Specific leaf 

area 

SLA As a core leaf economics trait (Wright et al., 

2004), it is related to trade-off between leaf 

lifespan and C acquisition as well as light 

competition (Reich et al., 1991) 

Productivity, litter decomposition, 

competitive ability (Bakker et al., 2011; 

Smart et al., 2017) 

Leaf dry matter 

content 

LDMC Strongly related to resource availability and 

potential growth rate (Hodgson et al., 2011) 

Productivity, litter decomposition, herbivore 

resistance, and drought tolerance (Bakker et 

al., 2011; Smart et al., 2017; Blumenthal et 

al., 2020) 

Leaf N 

concentration 

LNC As a core leaf economics trait, it is strongly 

related to photosynthetic capacity (Wright et 

al., 2004) 

Productivity, nutrient cycling, litter 

decomposition (LeBauer and Treseder, 

2008; Bakker et al., 2011) 

Leaf P 

concentration 

LPC As a core leaf economics trait, it is strongly 

related to photosynthetic capacity (Wright et 

al., 2004) 

Productivity, nutrient cycling, litter 

decomposition (LeBauer and Treseder, 

2008; Bakker et al., 2011) 

Leaf area LA Trade-off between C assimilation and water 

use efficiency, it is related to energy balance 

(Wright et al., 2017) 

Productivity (Li et al., 2020) 

Plant height / A major determinant of a plant’s ability to 

compete for light (Moles et al., 2009) 

C storage, animal diversity (Conti et al., 

2013; Roll et al., 2015) 

Wood density WD A measure of carbon investment, representing 

the trade-off between growth and mechanical 

support (Martínez-Vilalta et al., 2010) 

Drought tolerance, productivity (Hoeber et 

al., 2014; Liang et al., 2021)  

Seed mass SM Closely related to seed dispersal and seed 

predation, as well as seedling establishment, 

growth, and survival (Leishman et al., 2000) 

Competitive ability (Zepeda and Martorell, 

2019) 

The plant trait data was checked for possible errors and corrected as per three steps as follows. 140 

First, species name and taxonomic nomenclature were corrected and standardized according to the 141 

Plant List (http://www.theplantlist.org/) using the “plantlist” package. Second, illogical values, 142 

repeated values and outliers were removed, which were defined by observations exceeding 1.5 143 

standard deviations of the mean trait value for a given species (Kattge et al., 2011). Third, we 144 

appended information on plant growth form (tree, shrub, and herb), leaf type (broadleaved and 145 

needle-leaved) and leaf phenology (evergreen and deciduous) from the TRY categorical traits 146 

database (https://www.try-db.org/TryWeb/Data.php#3) and Flora Reipublicae Popularis Sinicae 147 

(http://www.iplant.cn/frps). After these treatments, we collected a total of 52477 trait measurements 148 

from 1541 sampling sites for our database, representing 4291 species from 212 families and 1230 149 

genera (Fig. 1). Information on the statistics for the eight plant functional traits collected in this 150 

study is shown in Table B1 in Appendix B. 151 
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 152 
Figure 1. Location distribution and land cover map in China. 153 

2.2 Environmental data 154 

2.2.1 Climate data 155 

Twenty-one climate variables were used in this study, including 19 bioclimate variables, solar 156 

radiation (RAD), and AI (Table B2 in Appendix B). The 19 bioclimate variables and RAD were 157 

obtained from the WorldClim dataset (version 2.1) for the period from 1970 to 2000 158 

(https://www.worldclim.org/data/worldclim21.html). The AI data was extracted from the CGIAR 159 

Consortium of Spatial Information (CGIAR-CSI) website for the period from 1950 to 2000 160 

(http://www.csi.cgiar.org) (Trabucco and Zomer, 2018). The spatial resolution of climate data was 161 

1 km. 162 

2.2.2 Soil data 163 

Twelve soil variables were included in this study, representing the different aspects of soil properties, 164 

i.e. soil texture, bulk density (BD), pH, and soil nutrients (Table B2 in Appendix B). All soil 165 

variables were extracted from the Soil Database of China for Land Surface Modeling 166 

(http://globalchange.bnu.edu.cn/research/soil2) (Shangguan et al., 2013). Given the importance of 167 

topsoil properties on community composition (Bohner, 2005), the soil data was averaged to 168 

represent the top 30 cm of soil in our study. The spatial resolution was 1 km. 169 

2.2.3 Topography 170 

The topographic variable was elevation. Elevation data was extracted from the STRM 90m dataset 171 

in China, based on the SRTM V4.1 database (https://www.resdc.cn/data.aspx?DATAID=123). The 172 

spatial resolution was 1 km. 173 

Given the collinearity among climate and soil variables, we reduced the number of 174 

environmental predictors based on Pearson’s correlation coefficient (r) (Figs. B1 and B2 in 175 

Appendix B). Among a set of highly correlated variables (r > 0.75), only one variable was retained 176 

in subsequent analysis to ensure a combination of different environmental variables. The final 177 

selection of environment predictors included nineteen variables: mean annual temperature (MAT), 178 
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mean diurnal range (MDR), min temperature of coldest quarter (Tmin), max temperature of coldest 179 

quarter (Tmax), temperature seasonality (TS), mean annual precipitation (MAP), precipitation 180 

seasonality (PS), precipitation of wettest quarter (PEQ), precipitation of driest quarter (PDQ), AI, 181 

RAD, elevation, soil sand content (SAND), pH, BD, soil total N (STN), soil total P (STP), soil 182 

alkali-hydrolysable N (SAN), and cation exchange capacity (CEC). 183 

2.3 Vegetation indices 184 

Three categories of vegetation indices were included in this study (Table B2 in Appendix B). The 185 

first selected was EVI, which was extracted from the MOD13A3 V006 product 186 

(https://lpdaac.usgs.gov/products/mod13a3v006/). This product is available as a monthly average 187 

with spatial resolution of 1 km, ranging from January 2000 to December 2018. Second, MODIS 188 

reflectance data was also extracted from the MOD13A3 V006 product. This included MIR 189 

reflectance, NIR reflectance, red reflectance, and blue reflectance. Third, the MERIS terrestrial 190 

chlorophyll index (MTCI) was extracted from the Natural Environment Research Council Earth 191 

Observation Data Centre (NERC-NEODC, 2005) (https://data.ceda.ac.uk/). MTCI data is available 192 

globally as a monthly average at 4.63 km spatial resolution, and ranges from June 2002 to December 193 

2011. It is noted that valid MTCI values should be greater than 1, so our study deleted any values 194 

less than 1. 195 

To avoid collinearity, we also reduced the number of vegetation indices based on Pearson’s 196 

correlation coefficient (r) (Figs. B3 in Appendix B). Furthermore, given that most plant functional 197 

traits were measured during the growing season, the variables related to the growing season were 198 

determined to be important predictors. The final selection included 36 variables: annual EVI, EVI 199 

(May, June, July, August and September), MTCI, MIR, NIR, red and blue (all for January, June, 200 

July, August and September). 201 

Both environmental variables and vegetation indices variables were resampled to a consistent 202 

spatial resolution of 1 km using the nearest neighborhood method. 203 

PFT is also an important factor in influencing the variation of plant functional traits (Verheijen 204 

et al., 2016; Loozen et al., 2020), thus PFT was included as a predictor in this analysis. We used the 205 

2015 land cover map at a 100 m spatial resolution from the Copernicus Global Land Service (CGLS-206 

LC100, Version 3) (https://land.copernicus.eu/global/products/lc) (Buchhorn et al., 2020). We 207 

focused on natural terrestrial vegetation, so all artificial or crop areas were thus eliminated in our 208 

dataset. Seven categories were included: evergreen needleleaf forest (ENF), evergreen broadleaf 209 

forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), shrubland 210 

(SHL), grassland (GRL) and bare/sparse vegetation. Furthermore, in order to match species names 211 

to PFTs, we associated each species (i.e., plant growth form, leaf type and leaf phenology) with a 212 

corresponding PFT. For example, the information on Salix matsudana is: tree, deciduous and 213 

broadleaf, thus, we were able to associate the PFT of deciduous broadleaf forest (DBF) to this 214 

species. The species that did not correspond to any PFT were discarded. 215 
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2.4 Model fitting and validation 216 

To predict spatial patterns of plant functional traits, we used two machine learning models, i.e., 217 

random forest and boosted regression trees. 218 

Random forest is an ensemble machine learning method based on classification and regression 219 

trees using collections of regression trees to classify observations according to a set of predictive 220 

variables (Breiman, 2001). This method repeatedly constructs a set of trees from random samples 221 

of training data, and the final prediction is produced by integrating the results of all individual trees, 222 

which makes it a robust method. The models are controlled by two main parameters: the number of 223 

sampled variables (mtry) and the number of trees (ntree). The parameter mtry was set to range from 224 

1 to 57 (at an interval of 1), and the ntree was set as 500, 1000, 2000, 5000 and 10000 in subsequent 225 

runs. This analysis was performed using the ‘randomForest’ function in the ‘randomForest’ package 226 

(Liaw and Wiener, 2002). 227 

Boosted regression trees is a machine learning method based on generalized boosted regression 228 

models, and using a boosting algorithm to combine many sample tree models to optimize predictive 229 

performance (Elith et al., 2006). There is no need for prior data transformation or the elimination of 230 

outliers, and this method can fit complex non-linear relationships while automatically handling 231 

interaction effects between predictors (Elith et al., 2008). The four parameters to optimize in these 232 

models are the number of trees, interaction depth, learning rate and bag fractions. We varied the 233 

parameter settings to find the optimal parameter combination that achieves minimum predictive 234 

error. The number of trees was set to 3000, the interaction depth varied from 1 to 7 (at an interval 235 

of 1), the learning rate was set to 0.001, 0.01, 0.05 and 0.1, and the bag fraction was set to 0.5, 0.6, 236 

0.7 and 0.75. PFT was used as a dummy variable in the boosted regression trees models. This 237 

analysis was conducted using the ‘gbm’ function in the ‘gbm’ package (Ridgeway, 2006). 238 

We used a 10-fold cross validation to select the optimal parameter combination and to evaluate 239 

the final model performance for each trait. We spilt the data into two parts: 80% of the trait data was 240 

used to train the models, and the remaining 20% was used to assess model’s performance. The fitting 241 

performances of the random forest and boosted regression trees methods were evaluated using 242 

determinate coefficient (R2), root-mean-square error (RMSE), and mean absolution error (MAE). 243 

These scores are calculated following Eq. (1), Eq. (2) and Eq. (3): 244 

𝑅2 = 1 −
∑ (𝑝𝑖−𝑜𝑖)2𝑛

𝑖=1

∑ (𝑝𝑖−𝑜𝑖̂)2𝑛
𝑖=1

                                                         (1) 245 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑝𝑖 − 𝑜𝑖)2𝑛

𝑖=1                                                    (2) 246 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑝𝑖|𝑛

𝑖=1                                                       (3) 247 

where 𝑝𝑖 and 𝑜𝑖 are the predictive values and observed values, respectively, 𝑜𝑖̂ is the mean of 248 

the observed values. 249 

To quantify the relative importance of each predictor consistently across the two models, we 250 
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used the method proposed by Thuiller et al. (2009). The correlations between fitted values and 251 

predictions were calculated using permuted values for the predictor of concern. This step was 252 

repeated a user-defined number of times for each predictor, and the mean correlation coefficient 253 

over runs was recorded. Then the relative importance of each predictor was quantified as one minus 254 

the Spearman rank correlation coefficient (see Boonman et al. 2020). In addition, we used 255 

generalized additive models to fit the relationships between plant functional traits and the most 256 

important variables using the ‘gam’ function in the ‘mgcv’ package. 257 

2.5 Generation of plant functional trait maps and model performance 258 

To calculate community weighted mean trait values, the abundance of individual PFT within 1 km 259 

grid cell was estimated using a land cover map with a spatial resolution of 100 m. The final 260 

community weighted mean trait values were calculated according to the predicted trait values and 261 

corresponding abundance of each PFT. To obtain the optimal estimates, the ensemble model was 262 

further applied to merge the predictions of random forest and boosted regression trees according to 263 

their cross-validated R2 values. The accuracy of the ensemble model was calculated by regressing 264 

the 20% of cross-validation data used for testing against the observed trait values. 265 

To evaluate the model performance (i.e. the variability in the prediction across models), the 266 

coefficient of variation (CV) was calculated as the difference between the predictions of random 267 

forest and boosted regression trees methods and the ensemble prediction weighted by the predictive 268 

performance of each of the models. CV is calculated following Eq. (4): 269 

𝐶𝑉𝑡 =

√∑ (𝑝𝑟𝑒𝑑𝑚,𝑡−𝑜𝑏𝑠𝑡)22
𝑚=1

 
∗𝑟𝑚,𝑡

2

∑ 𝑟𝑚,𝑡
22

𝑚=1

𝑜𝑏𝑠𝑡
                                                 (4) 270 

where 𝑝𝑟𝑒𝑑𝑚,𝑡 is the predictive values of t trait in m model, 𝑜𝑏𝑠𝑡 is the values of t trait in the 271 

ensemble model, 𝑟𝑚,𝑡
2  is the cross-validated R2 of t trait in m model. 272 

2.6 Uncertainty assessments 273 

Multivariate environmental similarity surface analysis (MESS) was used to identify the range of the 274 

extrapolated predictor values across the locations in the plant trait dataset (Elith et al., 2010). This 275 

method is often used to evaluate the extent of extrapolation and the applicability domain. If the 276 

values are negative, this indicates that at a given grid cell, at least one predictor variable is outside 277 

the extent of referenced predictor layer. This analysis was conducted using the ‘mess’ function in 278 

the ‘dismo’ package. 279 

All analyses were performed in R 4.0.2 (R Core Team, 2020). 280 

3 Results 281 

3.1 Performances of prediction models 282 

Cross-validation showed that the performance of the predictive models differed greatly among the plant 283 
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functional traits (Table 2). WD had the best performance in all three models, with R2 values of 0.64, 0.68 284 

and 0.67 for random forest, boosted regression trees and ensemble model, respectively. LPC, height and 285 

SLA had R2 values greater than 0.45, while SM and LDMC performed the worst, with R2 values 286 

below 0.25. In addition, the ensemble model performed better than the random forest and boosted 287 

regression trees alone (Tables C1 and C2 in Appendix C). 288 

Table 2 Results of plant functional traits for cross-validated R2, RMSE and MAE for random 289 

forest, boosted regression trees, and ensemble model. 290 

 Random forest Boosted regression trees Ensemble model 

Traits R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

SLA 0.48 7.02 5.10 0.48 6.99 5.08 0.49 6.98 5.07 

LDMC 0.23 0.10 0.07 0.28 0.09 0.07 0.24 0.09 0.07 

LNC 0.33 6.64 4.92 0.34 6.52 4.85 0.34 6.54 4.85 

LPC 0.51 0.80 0.53 0.51 0.80 0.53 0.51 0.80 0.53 

LA 0.37 68.94 26.76 0.39 67.69 27.47 0.40 67.28 26.59 

SM 0.24 4547.22 1228.07 0.26 4478.88 1183.61 0.25 4499.67 1201.83 

Height 0.49 2.89 2.09 0.49 2.89 2.10 0.49 2.89 2.10 

WD 0.64 0.13 0.10 0.68 0.12 0.10 0.67 0.13 0.10 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P 291 

concertation; LA, leaf area; WD, wood density; SM, seed mass. 292 

3.2 Spatial patterns of predicted plant functional traits 293 

There were relatively consistent spatial patterns for SLA, LNC and LPC, with high values in the 294 

northeastern and northwestern regions and the southeastern Qinghai-Tibet Plateau, and low values 295 

in southwestern China (Figs. 2a, 2c and 2d, Figs. D1, D2 in Appendix D). SLA and LPC increased 296 

with latitude, while LNC did not vary significantly along the latitudinal gradient. For SLA, LNC 297 

and LPC, the variability was low among the random forest, boosted regression trees and ensemble 298 

model, with an overall CV less than 0.3 (Figs. 3a, 3c, and 3d). LDMC values were relatively high 299 

in most regions of China, and the low values were mainly located in eastern Yunnan and the Loess 300 

Plateau (Fig. 2b, Figs. D1, D2 in Appendix D). LA and SM showed consistent spatial patterns, with 301 

high values in the northeastern and southern regions (except for the Sichuan Basin), and the 302 

southeastern Qinghai-Tibet Plateau (Figs. 2e and 2f, Figs. D1, D2 in Appendix D). The strong 303 

latitudinal gradients were observed in LA and SM, where values decreased with latitude. 304 

The CV values of LPC and SM decreased with latitude, but other traits did not show latitudinal 305 

patterns (Figs. 3). The CV values were relatively high, especially in the northwestern region, the 306 

Inner Mongolia Plateau-Loess Plateau region (only for LA) and Yunnan province (only for SM) 307 

(Figs. 3e and 3f). Plant height and WD had consistent spatial patterns, with high values in the 308 

northeastern and southern regions (Figs. 2g and 2h, Figs. D1, D2 in Appendix D). The CV values 309 

across models for plant height were higher in northwestern China and Inner Mongolia Plateau-Loess 310 

Plateau region, while CV values for WD in China were low throughout China (Figs. 3g and 3h). 311 
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 312 
Figure 2. Spatial patterns of predicted plant functional traits in China based on the ensemble 313 

model. The grey curves to the right of the maps display trait distribution along with latitude. RF, 314 

random forest; BRT, boosted regression trees; ensemble, ensemble model; SLA, specific leaf area; 315 

LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, leaf area; 316 

WD, wood density; SM, seed mass. 317 

   318 
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 319 

Figure 3. The variability in plant functional trait predictions among random forest, boosted 320 

regression trees and ensemble model. The grey curves to the right of the maps display coefficient of 321 

variation along with latitude. SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N 322 

concertation; LPC, leaf P concertation; LA, leaf area; WD, wood density; SM, seed mass. 323 

3.3 Relative importance of predictive variables 324 

The dominant factors explaining spatial variation differed greatly among the eight plant functional 325 
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traits (Table 3). Overall, climate variables were more important for predicting plant functional traits 326 

than were soil variables. Temperature variables (i.e., MAT, MDR and TS) showed close 327 

relationships with SLA, LDMC, LPC and WD, while precipitation variables (i.e., PS, PEQ, MAP 328 

and PDQ) were more important for predicting the spatial patterns of LNC, LPC, LA and plant height. 329 

RAD was the fourth most dominant factor in predicting the spatial patterns of SLA, SM, WD and 330 

plant height. Elevation also play an important role in the LDMC and LPC predictions. Within soil 331 

variables, soil nutrients [i.e., pH and soil available P (SAP)] showed close associations with SLA, 332 

LNC and SM. In addition to the environmental variables, MTCI emerged as an important predictor 333 

for explaining SLA, LDMC, LA and plant height. Finally, EVI was the most important predictor for 334 

LA and SM, and MIR in January and May were the primary predictors of WD. The relationships 335 

between plant functional traits and the most important variables were shown in Figs. E1 and E2 in 336 

Appendix E. 337 

Table 3 List of the eight most important variables for plant functional trait predictions. 338 

Rank SLA LDMC LNC LPC LA SM Height WD 

1 SAP MAT PS MDR EVI5 EVI8 PEQ MIR1 

2 TS Elevation SAP PDQ PEQ SAP EVI6 TS 

3 blue9 MTCI5 pH Elevation MTCI9 MAT MTCI6 MIR5 

4 RAD blue8 MDR MIR8 NIR9 RAD RAD RAD 

5 MTCI4 MTCI4 MAP Tmax AI NIR1 pH MIR6 

6 MTCI6 MTCI6 PEQ MTCI6 MTCI6 NIR8 MAP pH 

7 Elevation NIR1 MIR1 MIR7 MAP SAND red9 red5 

8 MTCI7 CEC Tmax MIR9 red5 BD red5 PS 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf 339 

P concertation; LA, leaf area; WD, wood density; SM, seed mass; SAP, soil available P; TS, 340 

temperature seasonality; blue, blue reflectance; RAD, solar radiation; MTCI, MERIS terrestrial 341 

chlorophyll index; MAT, mean annual temperature; NIR, near-infrared reflectance; CEC, cation 342 

exchange capacity; PS, precipitation seasonality; MDR, mean diurnal range; MAP, mean annual 343 

precipitation; PEQ, precipitation of wettest quarter of a year; MIR, middle infrared reflectance; 344 

Tmax, max temperature of warmest month of a year; PDQ, precipitation of driest quarter of a year; 345 

EVI, enhanced vegetation index; AI, aridity index; red, red reflectance; SAND, soil sand content; 346 

BD, bulk density. 347 

3.4 Model performance 348 

The distributions of the predictive trait values based on random forest, boosted regression trees, and 349 

ensemble model were consistent with the original trait observations, especially the peak values (Fig. 350 

4). Except for SM, the mean values of trait observations were relatively higher than those of the 351 

predictive values. 352 

 353 
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 354 

Figure 4. Comparison of trait distribution between observations and predictive values in each 355 

of the different models. Each panel depicts the distribution of observations in solid red, of the 356 

random forest (RF) model in yellow, of the boosted regression trees (BRT) model in blue, and of 357 

the ensemble model in green. The dashed vertical lines indicate mean values. SLA, specific leaf 358 

area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, leaf 359 

area; WD, wood density; SM, seed mass. 360 

3.5 Uncertainty assessments 361 

The MESS values of five leaf traits and WD were positive in most regions, indicating a wide 362 

applicability domain of our models (Fig. 5). Nevertheless, trait predictions should be interpreted 363 

carefully for northeastern China and the Qinghai-Tibet Plateau due to the sparse samplings in these 364 

regions. In addition, spatial predictions for SM and plant height were extrapolated to a larger extent 365 

than were the other plant functional traits. 366 
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 367 

 368 

Figure 5. Multivariate environmental similarity surface (MESS) assessments for the eight 369 

plant functional traits. The black dots represented the locations of trait observations. More intense 370 

shades indicate greater similarity (blue) or difference (red) in environmental conditions of the 371 

location compared to the predictive factors covered by the training dataset. SLA, specific leaf area; 372 

LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, leaf area; WD, 373 

wood density; SM, seed mass. 374 

4 Discussion 375 

4.1 Comparison with previous work 376 

Our study predicted the spatial patterns of eight key plant functional traits across China using 377 
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machine learning methods and identified the applicability domain of the models. WD had the 378 

highest precision with an R2 of 0.66, which was higher than the global WD prediction (Boonman et 379 

al., 2020). This improvement in precision may be attributed to the large number and dense 380 

occurrence of sample sites as well as the inclusion of vegetation indices in our study. In addition, 381 

SLA and LPC showed good accuracy with R2 values of 0.50, which was higher than that of 382 

Boonman et al. (2020) and consistent with that of Martínez et al. (2018). Our study also predicted 383 

the spatial pattern of SM with an R2 of 0.24, which was lower than in the global study of Madani et 384 

al. (2018) in which environmental variables explained 45.5% of SM variation. The low precision of 385 

SM may be explained in two ways. First, with few sampling sites included in our study, the 386 

environmental gradients were narrow. Second, previous studies and our unpublished study have 387 

suggested that SM variation is primarily controlled by a phylogenetic effect, whereas the 388 

environmental effect is weak (Moles et al., 2006). Therefore, phylogenetic relatedness among 389 

species should be considered to improve the predictive precision of the spatial pattern of SM in 390 

further work. 391 

There was no consensus in the spatial patterns of plant functional traits among the global 392 

studies. Thus, we compared our results to the other studies focused on China. Yang et al. (2016) 393 

predicted the spatial distribution of leaf mass per area (1/SLA) and LNC based on trait-environment 394 

relationships in China and had an R2 of 0.13-0.16. The lower predictive precision may be because 395 

Yang et al. (2016) only used MAT, MAP, and RAD as predictors in estimating the spatial patterns 396 

of leaf mass per area and LNC, which likely led to poor performance and low heterogeneity. These 397 

results also demonstrate the advantage of our methods in mapping the spatial patterns of plant 398 

functional traits at a regional scale. 399 

4.2 Spatial patterns of plant functional traits in China 400 

Our study revealed the spatial patterns of different plant functional traits across China, and the 401 

variability among the two machine learning methods was relatively low. In some regions, there were 402 

consistent patterns in plant functional traits between our study and the previous studies. For example, 403 

our study showed high SLA in the southeastern Qinghai-Tibet Plateau, which concurred with the 404 

global study of Boonman et al. (2020). Consistent with the global pattern (Wright et al., 2017), LA 405 

was larger in southern regions than in northern regions and showed a decreasing trend along a 406 

latitudinal gradient. Potapov et al. (2021) mapped global forest canopy height at a spatial resolution 407 

of 30 m by integrating GEDI and Landsat data, and their resulting spatial pattern of plant height in 408 

China was consistent with our study. This confirms the accuracy and reliability of predicting plant 409 

height through spatial extrapolation as in our study. However, in some regions there were 410 

contradictory patterns in the plant functional traits between our study and previous ones. Our study 411 

showed high LNC values in the northern Inner Mongolia Plateau-Loess Plateau-eastern Qinghai-412 

Tibet Plateau and high heterogeneity in southern China, whereas Yang et al. (2016) predicted high 413 

LNC values in northeastern and northwestern China, northern Inner Mongolia Plateau, and the entire 414 
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Qinghai-Tibet Plateau, but low heterogeneity overall. In addition, Yang et al. (2016) predicted low 415 

SLA variability in China, especially in the Qinghai-Tibet Plateau. These discrepancies may be 416 

attributed to spatial extrapolation based on trait-climate relationships with a low predictive precision. 417 

Moreover, our study also identified the applicability domain of our models for predicting the 418 

spatial patterns of plant functional traits across China. Five leaf traits and WD appeared to have poor 419 

applicability in northeastern China and the Qinghai-Tibet Plateau, primarily due to sparse samplings. 420 

Although the predictions of plant height and SM were obtained in most regions through spatial 421 

extrapolation, the results were consistent with previous studies. This demonstrates the reliability of 422 

our methods. Future studies predicting plant functional traits across a large scale through remote 423 

sensing observations or other supplementary data will be needed to re-evaluate our results. 424 

4.3 The role of predictive variables 425 

Our study indicates that environmental variables are important for predicting the spatial patterns of 426 

plant functional traits, especially climate variables. Temperature variables were primary predictors 427 

for SLA, LDMC, LPC and WD. The relationships between leaf traits and temperature have been 428 

widely discussed in global and regional studies (Reich and Oleksyn, 2004; Bruelheide et al., 2018). 429 

The positive linkage between WD and temperature may be driven by changes in the viscosity of 430 

water. Plants can adapt to the low water viscosity at high temperatures by reducing the diameter and 431 

density of their vessels and by thickening cell walls (Roderick and Berry, 2002; Thomas et al., 2004). 432 

Precipitation variables were important predictors for leaf nutrient traits, LA, and plant height. Water 433 

availability emerged as the primary predictor of plant height, which may be explained by the 434 

hydraulic limitation hypothesis. Relative to shorter plants, taller plants tend to be at a higher risk of 435 

embolisms due to their increased xylem length and conduit width. Thus, tall plants may be forced 436 

to close their stomata and reduce the amount of photosynthesis (Renninger et al., 2009; Wang et al., 437 

2019). Although the effects of soil on trait predictions were relatively weak, we found that SAP and 438 

pH played key roles in SLA, LNC and SM predictions. These results were similar with the previous 439 

studies that reported that soil pH was an important driver of trait variation at the global scale and in 440 

tundra regions (Kemppinen et al., 2021; Maire et al., 2015). Additionally, from the perspective of 441 

cost-efficient theory, the strong effects of SAP reflected that high SLA and small seeds may be an 442 

adaptation for facilitating soil exploration more efficiently in fertile soils (Freschet et al., 2010). 443 

Vegetation indices have recently been proposed as important predictors of spatial patterns of 444 

plant functional traits (Loozen et al., 2018). Our results corroborate these findings and further 445 

suggest that EVI, MTCI and MIR reflectance are important predictors in models. Here, the 446 

underlying mechanisms between vegetation indices and plant functional traits are not further 447 

discussed due to their complexity and uncertainty. However, our results indicated that vegetation 448 

indices and NIR reflectance are not key predictors of LNC estimation, which contrasts the findings 449 

from global and regional studies (Loozen et al., 2018; Moreno-Martínez et al., 2018; Wang et al., 450 

2016). This may be related to the multitude of factors that influence the relationship between LNC 451 
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and vegetation indices and NIR reflectance, such as forest type and canopy structure (Dahlin et al., 452 

2013). 453 

4.4 Uncertainties 454 

Although our study mapped the spatial patterns of key functional traits of seed plants in China 455 

through large-scale field investigations and compared the predictions with previous studies 456 

performed at global and regional scales, there persist some uncertainties in the interpretation of these 457 

results. First, the predictive ability of machine learning methods was relatively worse for certain 458 

traits, especially for SM and LDMC. Beyond the environmental effects, the variation in plant 459 

functional traits is also regulated by phylogenetic structure among plant species (e.g., family, order 460 

and phylogenetic clade) (Li et al., 2017). Consequently, incorporating the phylogenetic information 461 

will be a promising avenue in future studies for further improving the accuracy of spatial predictions 462 

of plant functional traits (Butler et al., 2017). A second potential issue is sampling bias; there were 463 

major spatial gaps in field investigation in both the northeastern China and the Qinghai-Tibet Plateau, 464 

especially for SM and plant height. There are an increasing number of available datasets and studies 465 

on SM and plant height, but many did not provide the corresponding geographic coordinates, thus 466 

rendering the data unusable. In addition, due to the challenges of measurements for small shrubs 467 

and low vegetation, WD data is mainly confined to eastern forests (Perez-Harguindeguy et al., 2013), 468 

and the overall quantity of WD data was much lower than that of leaf and reproductive traits, even 469 

in the TRY database, which is the largest trait database in the world (Kattge et al., 2020). Finally, 470 

additional key challenges in data availability must be resolved to scale up from the species to the 471 

community levels, in particular with data surrounding species co-occurrence and their relative cover 472 

or abundance in ecological communities (He et al., 2023). Global biodiversity data (e.g., sPlot and 473 

Global Biodiversity Information Agency databases) that contains information on species occurrence 474 

or the proportion of species in a community has the potential for enabling the calculation of 475 

community-weighted trait values and the re-evaluation of our results in future work (Telenius, 2011; 476 

Bruelheide et al., 2019). In addition, integrating satellite remote sensing monitoring methods with 477 

in situ data collection can also provide an effective way to estimate and assess the species diversity 478 

at a large scale (Cavender-Bares et al., 2022). 479 

4.5 Potential applications 480 

Maps of these key functional traits of seed plants highlighted large-scale variability in space, which 481 

will significantly advance ecological analyses and future interdisciplinary research. First, using the 482 

spatially continuous trait datasets, one can optimize and develop trait-flexible vegetation models, 483 

which allows for the exploration of the community assembly rules based on how plants with 484 

different trait combinations perform under a given set of environmental conditions (Berzaghi et al., 485 

2020). When trait-flexible vegetation models are available, incorporating trait maps into models 486 

will bridge the gap for vegetation classifications and predictions of vegetation distribution under 487 
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global change, which is not feasible in conventional vegetation models (Van Bodegom et al., 2012; 488 

Yang et al., 2019). Second, the assessments of China’s terrestrial ecosystem carbon sink have had 489 

large uncertainties so far (Piao et al., 2022), but the spatial continuous trait datasets will provide an 490 

effective way to link ecosystem characteristics to ecosystem carbon sink estimates in China (Madani 491 

et al., 2018; Šímová et al., 2019). These analyses will help shed light on the mechanisms underlying 492 

plant functional traits and terrestrial ecosystem carbon storage at a large scale. 493 

5 Data availability 494 

The original eight plant functional traits dataset collected in this study that were used for machine 495 

learning models (named by Data file used for machine learning models.csv) and final maps of eight 496 

plant functional traits in terrestrial ecosystems in a GeoTIFF format across China (named by plant 497 

functional trait category) are now available for the private link 498 

https://figshare.com/s/c527c12d310cb8156ed2 (An et al., 2023). Once the article is accepted, we 499 

will publicly publish these datasets at the figshare website. 500 

6 Conclusions 501 

We created a set of spatial continuous trait datasets at a 1-km spatial resolution using machine 502 

learning methods in combination with field measurements, environmental variables and vegetation 503 

indices. Models for leaf traits (except for LDMC), WD and plant height showed good accuracy and 504 

robustness, whereas models of SM and LDMC had relatively poor precision and robustness. 505 

Temperature variables were the most important predictors for leaf traits (except for LA) and WD, 506 

and precipitation variables were the most important predictors for leaf nutrient traits, LA and plant 507 

height. We caution that plant functional trait predictions should be interpreted carefully for 508 

northeastern China and the Qinghai-Tibet Plateau. The spatial continuous trait datasets generated in 509 

our study are complementary to current terrestrial in-situ observations and offer new avenues for 510 

predicting large-scale changes in vegetation and ecosystem function under climate scenarios in 511 

China. 512 
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Appendix B 830 

Table B1 Summary of statistics in plant functional traits, environmental variables and geographical 831 

distribution in China. 832 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, 833 

leaf area; WD, wood density; SM, seed mass; MAT, mean annual temperature; MAP, mean annual precipitation. 834 

Trait Unit Range Mean CV (%) 
No. of 

species 
Entries Sites 

SLA m2 kg-1 0.06–81.68 17.88 54.96 2463 8851 1032 

LDMC g g-1 0.06–0.95 0.34 100.00 1582 3549 193 

LNC mg g-1 3.41–66.02 21.52 37.44 2335 7060 567 

LPC mg g-1 0.09–9.70 1.83 62.19 2074 5968 515 

LA cm2 0.0033–2553.33 36.16 259.64 1838 5899 691 

Height m 0.01–35.00 5.99 67.58 1171 16324 636 

WD g cm-3 0.25–1.37 0.68 33.16 768 1476 639 

SM mg 0.10–201300.00 1185.59 562.32 1163 3080 134 

Altitude m -144–5454     1541 

MAT °C -12.07–24.32     1541 

MAP mm 15–2982     1541 

Soil total N g kg-1 0.11–10.25     1541 

Bulk density g cm-3 0.83–1.45     1541 
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Table B2 List of all the predictors including environment and remote sensing variables used in this study. 835 

Type of variables Variable name Abbreviations Units Time periods Spatial 

resolution 

Source 

Climate Mean annual temperature MAT °C 1970-2000 1 km WorldClim version 2.1 

 Mean diurnal range MDR °C 1970-2000 1 km WorldClim version 2.1 

 Temperature seasonality TS °C 1970-2000 1 km WorldClim version 2.1 

 Max temperature of 

warmest month 

Tmin °C 1970-2000 1 km WorldClim version 2.1 

 Min temperature of coldest 

month 

Tmax °C 1970-2000 1 km WorldClim version 2.1 

 Temperature annual range TAR °C 1970-2000 1 km WorldClim version 2.1 

 Isothermality IS % 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of 

wettest quarter 

MTEQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of driest 

quarter 

MTDQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of 

warmest quarter 

MTWQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of 

coldest quarter 

MTCQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean annual precipitation MAP mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of wettest 

month 

PEM mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of driest 

month 

PDM mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation seasonality PS % 1970-2000 1 km WorldClim version 2.1 

 Precipitation of wettest 

quarter 

PEQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of driest 

quarter 

PDQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of warmest 

quarter 

PWQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of coldest 

quarter 

PCQ mm 1970-2000 1 km WorldClim version 2.1 

 Aridity index AI / 1970-2000 1 km Global CGIAR-CSI 

 Solar radiation RAD kJ m-2 

day-1 

1970-2000 1 km WorldClim version 2.1 

Topography Elevation / m  1 km SRTM 90m V4.1 

Soil Soil sand content SAND % / 1 km Shangguan et al. (2013) 

 Soil silt content SILT % / 1 km Shangguan et al. (2013) 

 Soil clay content CLAY % / 1 km Shangguan et al. (2013) 

 Bulk density BD g cm-3 / 1 km Shangguan et al. (2013) 

 Soil pH pH / / 1 km Shangguan et al. (2013) 
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Continued       

Type of variables Variable name Abbreviations Units Time periods Spatial 

resolution 

Source 

 Soil organic matter SOC g kg-1 / 1 km Shangguan et al. (2013) 

 Soil total N STN g kg-1 / 1 km Shangguan et al. (2013) 

 Soil total P STP g kg-1 / 1 km Shangguan et al. (2013) 

 Soil alkali-hydrolysable N SAN mg 

kg-1 

/ 1 km Shangguan et al. (2013) 

 Soil available P SAP mg 

kg-1 

/ 1 km Shangguan et al. (2013) 

 Soil available K SAK mg 

kg-1 

/ 1 km Shangguan et al. (2013) 

 Cation exchange capacity CEC me 

kg-1 

/ 1 km Shangguan et al. (2013) 

EVI MODIS EVI long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

NIR MODIS NIR long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

MIR MODIS MIR long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

Red MODIS red long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

Blue MODIS blue long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

MTCI MTCI long-term monthly 

averages 

 / 2003-2011 4.63 km MTCI level 3 product 

Land cover Land cover map  / 2015 100 m Copernicus Global Land 

Service Collection 3 

The remote sensing variables are calculated as long-term monthly averages from 2001 to 2018. Thus 12 836 

variables of each remote sensing category are obtained. 837 
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 838 

Figure B1. Correlations among climate variables. The blank indicates that the correlations are not 839 

significant (P > 0.05). The size of the circles is proportional to the correlation coefficient. The 840 

abbreviation of climate variables is seen in Table B2. 841 
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 842 
Figure B2. Correlations among soil variables. The blank indicates that the correlations are not significant 843 

(P > 0.05). The size of the circles is proportional to the correlation coefficient. The abbreviation of soil 844 

variables is seen in Table B2. 845 
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 846 

Figure B3. Correlations among monthly remote sensing variables. The blank indicates that the 847 

correlations are not significant (P > 0.05). The size of the circles is proportional to the correlation 848 

coefficient. (a) enhanced vegetation index (EVI); (b) MERIS terrestrial chlorophyll index (MTCI); (c) 849 

MIR reflectance; (d) NIR reflectance; (e) red reflectance; (f) blue reflectance. 850 
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Appendix C 851 

Table C1 Optimal parameter combination and model performance of random forest (RF) for plant 852 

functional traits 853 

Traits ntree mtry R2 RMSE MAE 

SLA 1000 24 0.476 7.049 5.134 

LDMC 1000 11 0.234 0.095 0.072 

LNC 1000 57 0.392 0.129 0.098 

LPC 1000 20 0.587 0.176 0.129 

LA 1000 18 0.278 72.996 26.622 

Height 1000 38 0.871 0.234 0.178 

WD 1000 9 0.531 0.092 0.072 

SM 1000 22 0.197 6043.95 1290.866 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P 854 

concertation; LA, leaf area; WD, wood density; SM, seed mass. 855 

 856 

Table C2 Optimal parameter combination and model performance of boosted regression trees (BRT) for 857 

plant functional traits 858 

Traits n.tree 
interaction. 

depth 
shrinkage 

learning 

rate 

bag 

fractions 
R2 RMSE MAE 

SLA 3000 6 0.01 10 0.75 0.486 6.986 5.082 

LDMC 3000 2 0.01 10 0.75 0.247 0.094 0.071 

LNC 3000 6 0.01 10 0.70 0.414 0.126 0.096 

LPC 3000 7 0.01 10 0.75 0.591 0.175 0.129 

LA 3000 3 0.001 10 0.75 0.282 72.308 27.556 

Height 3000 3 0.05 10 0.6 0.871 0.234 0.178 

WD 3000 4 0.01 10 0.70 0.627 0.082 0.066 

SM 3000 7 0.001 10 0.50 0.192 6070.703 1268.386 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P 859 

concertation; LA, leaf area; WD, wood density; SM, seed mass.860 
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Appendix D 861 

 862 

Figure D1. Spatial distribution of plant functional traits based on random forest (RF). The grey curves 863 

on the right of maps were trait distribution along with latitude. SLA, specific leaf area; LDMC, leaf dry 864 

matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, leaf area; WD, wood density; 865 

SM, seed mass. 866 
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 867 

Figure D2. Spatial distribution of plant functional traits based on boosted regression trees (BRT). The 868 

grey curves on the right of maps were trait distribution along with latitude. SLA, specific leaf area; 869 

LDMC, leaf dry matter content; LNC, leaf N concertation; LPC, leaf P concertation; LA, leaf area; WD, 870 

wood density; SM, seed mass. 871 
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Appendix E 872 

 873 

Figure E1. The relationships between SLA, LDMC, LNC, LPC and their eight most important predictors. 874 
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 875 

Figure E2. The relationships between LA, SM, Height, WD and their eight most important predictors.876 
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