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Abstract 15 

Trait-based approaches are of increasing concern in predicting vegetation changes and 16 

linking ecosystem structures to functions at large scales. However, a critical challenge for such 17 

approaches is acquiring spatially continuous plant functional trait maps. Here, six key plant 18 

functional traits were selected as they can reflect plant resource acquisition strategies and 19 

ecosystem functions, including specific leaf area (SLA), leaf dry matter content (LDMC), leaf N 20 

concentration (LNC), leaf P concentration (LPC), leaf area (LA) and wood density (WD). A total 21 

of 34589 in-situ trait measurements of 3447 seed plant species were collected from 1430 sampling 22 

sites in China and were used to generate spatial plant functional trait maps (~1 km), together with 23 

environmental variables and vegetation indices based on two machine learning models (random 24 

forest and boosted regression trees). To obtain the optimal estimates, a weighted average algorithm 25 

was further applied to merge the predictions of the two models to derive the final spatial plant 26 

functional trait maps. The models showed a good accuracy in estimating WD, LPC and SLA, with 27 

average R2 values ranging from 0.48 to 0.68. In contrast, both the models had weak performance 28 

in estimating LDMC, with average R2 values less than 0.30. Meanwhile, LA showed considerable 29 

differences between the two models in some regions. Climatic effects were more important than 30 

those of edaphic factors in predicting the spatial distributions of plant functional traits. Estimates 31 

of plant functional traits in the northeast China and the Qinghai-Tibet Plateau had relatively high 32 

uncertainties due to sparse samplings, implying a need of more observations in these regions in the 33 

future. Our spatial trait maps could provide critical supports for trait-based vegetation models and 34 

allow exploration into the relationships between vegetation characteristics and ecosystem 35 

functions at large scales. The six plant functional traits maps for China with 1 km spatial 36 

resolution are now available at https://figshare.com/s/c527c12d310cb8156ed2 (An et al., 2023). 37 

https://figshare.com/s/c527c12d310cb8156ed2
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1 Introduction 38 

Climate change has been affecting vegetation distributions and biogeochemical cycling globally 39 

and altering their feedbacks to the climate system (Kirilenko et al., 2000; Finzi et al., 2011; 40 

Jónsdóttir et al., 2022). Dynamic global vegetation models (DGVMs) are powerful tools for 41 

predicting changes in vegetation and ecosystem-atmosphere exchanges (e.g., water, carbon and 42 

nutrient cycling) in a changing climate (Foley et al., 1996; Peng, 2000). However, conventional 43 

DGVMs are still insufficient realistic, largely due to their dependence on the plant functional types 44 

(PFTs) assumption (Sitch et al., 2008; Yurova and Volodin, 2011; Scheiter et al., 2013). PFTs in 45 

conventional DGVMs commonly have fixed attributes (mostly trait values) (Van van Bodegom et 46 

al., 2012; Wullschleger et al., 2014) that do not reflect plant adaptation to environments, limiting 47 

the quantification of carbon-water-nutrient feedbacks between terrestrial ecosystems and the 48 

atmosphere (Zaehle and Friend, 2010; Liu and Yin, 2013). Trait-based approaches can provide a 49 

robust theoretical basis for developing the next generation of DGVMs (Van van Bodegom et al., 50 

2012; Sakschewski et al., 2015; Matheny et al., 2017). Plant functional traits, which are closely 51 

associated with ecosystem functions (Diaz et al., 2004; Yan et al., 2023), can effectively reflect 52 

response and adaptation of plants to environmental conditions (Myers-Smith et al., 2019; Qiao et 53 

al., 2023). 54 

Attempts to predict spatially continuous trait maps have been conducted at regional to global 55 

scales (e.g., Madani et al., 2018; Moreno-Martínez et al., 2018; Boonman et al., 2020; Loozen et 56 

al., 2020; Dong et al., 2023). Webb et al. (2010) proposed that the environment creates a filtered 57 

trait distribution along an environmental gradient, and such trait-environment relationships offer 58 

fundamental supports to predict the spatial distributions of plant functional traits through 59 

extrapolating local trait measurements. Boonman et al. (2020) mapped the global patterns of 60 

specific leaf area (SLA), leaf N concentration (LNC) and wood density (WD) based on a set of 61 

climate and soil variables. As the number of available regional and global trait databases increases 62 

(Wang et al., 2018; Kattge et al., 2020), trait-environment relationships are becoming increasingly 63 

quantitative and accurate (Bruelheide et al., 2018; Myers-Smith et al., 2019). Alternatively, remote 64 

sensing approaches, such as empirical methods and physical radiative transfer models (e.g., partial 65 

least squares regression and PROSPECT model), have been developed to estimate plant 66 

physiological, morphological and chemical traits (e.g., leaf chlorophyll content, SLA, LNC and 67 

leaf dry matter content (LDMC)) (Darvishzadeh et al., 2008; Romero et al., 2012; Ali et al., 2016). 68 

Vegetation indices, such as normalized difference vegetation index (NDVI) and enhanced 69 

vegetation index (EVI), have been successful in estimating plant functional traits of croplands, 70 

grasslands and forests (Clevers and Gitelson, 2013; Li et al., 2018; Loozen et al., 2018). Loozen et 71 

al. (2020) demonstrated that EVI was the most important predictor for mapping the spatial pattern 72 

of canopy nitrogen in European forests. Admittedly, a recent study has suggested that combining 73 

environmental variables and vegetation indices can improve the predictive accuracy of canopy 74 
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nitrogen compared to those based on vegetation indices alone (Loozen et al., 2020). 75 

Although there have been reports on plant functional trait distributions in China in some 76 

global or regional researches (e.g., Yang et al., 2016; Butler et al., 2017; Madani et al., 2018; 77 

Moreno-Martínez et al., 2018; Boonman et al., 2020), they there are still large uncertainties in 78 

characterizing the spatial distributions of plant functional traits in China. First, global studies 79 

generally have relatively few,  and unevenly distributed sampling sites across China (Butler et al., 80 

2017; Madani et al., 2018; Boonman et al., 2020), impeding our understanding of the true spatial 81 

characteristics of trait variability. Second, the spatial patterns of traits among these studies are 82 

usually inconsistent. For example, Moreno-Martínez et al. (2018) and Madani et al. (2018) 83 

demonstrated that SLA values were low in the southeast areas but high in the southwest areas of 84 

China, whereas Boonman et al. (2020) found the opposite. Third, most studies focused on leaf 85 

traits (Yang et al., 2016; Loozen et al., 2018; Moreno-Martínez et al., 2018), whereas traits 86 

associated with the whole-plant strategies, such as WD, were ignored. Therefore, mapping and 87 

verifying the spatial patterns of key functional traits that reflect the whole plant economics 88 

spectrum in China is a top priority. 89 

In this study, our main objective was to generate spatial maps for several key plant functional 90 

traits, through combining field measurements, environmental variables and vegetation indices. We 91 

selected six plant functional traits including SLA, LDMC, LNC, LPC, LA and WD. As key leaf 92 

economics traits, SLA, LDMC, LNC and LPC were selected because they are closely linked to 93 

plant growth rate, resource acquisition and ecosystem functions (Wright et al., 2004; Diaz et al., 94 

2016). LA is indicative of the trade-off between carbon assimilation and water-use efficiency 95 

(Wright et al., 2017), and WD reflects the trade-off between plant growth rate and support cost, 96 

with a higher WD linked to a lower growth rate, a higher survival rate and a higher biomass 97 

support cost (King et al., 2006). For each plant functional trait, we predicted spatial patterns at a 1 98 

km resolution using an ensemble modelling algorithm based on two machine learning methods 99 

(i.e., random forest and boosted regression trees). 100 

2 Materials and Methods 101 

2.1 Overview 102 

The spatial maps of plant functional traits in China were generated based on machine learning 103 

methods trained by a large dataset of in-situ field measurements, environmental variables and 104 

vegetation indices in three steps (Fig. 1). First, in-situ field measurements of six plant functional 105 

traits were collected from TRY and China databases as well as published literature, and the PFTs 106 

of plant species were classified based on plant growth form, leaf type and leaf phenology. Multiple 107 

gridded predictors of climate, soil, topography and vegetation indices were used after avoiding the 108 

collinearity among them. Second, random forest and boosted regression trees were used to train 109 

the relationships between plant functional traits and predictors for each PFT individually. Third, 110 
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the spatial abundance of each PFT within 1 km grid cell was calculated using land cover map (100 111 

m). Community-weighted trait values within 1 km grid cell wereas calculated based on these 112 

abundances of each PFT and their predicted trait values in Step 2. To reduce the variability of 113 

different single-models, we derived the final spatial maps of plant functional traits using an 114 

ensemble model algorithm to merge the predictions of random forest and boosted regression trees 115 

according to their cross-validated R2 values. 116 

 117 

Figure 1. Methodological workflow for spatial mapping of plant functional traits. Trait 118 

mapping is performed in three steps. Step 1: in-situ field measurements of plant functional traits, 119 

PFT classification of plant species and gridded predictors were collected. Step 2: two machine 120 

learning methods were used to predict trait values by training the field measurements and 121 

predictors for each PFT. Step 3: spatialization of trait maps by calculating the abundance of each 122 

PFT using 100 m land cover map and predicted trait values within 1 km grid cells. PFT, plant 123 

functional type; RF, random forest; BRT, boosted regression trees. 124 

2.2 Plant functional trait collection and data processing 125 

The information on the six plant functional traits and their ecological meanings are described in 126 

Table 1. Plant trait data was obtained and collected via two main sources. The first source was 127 

public trait databases, including the TRY database (Kattge et al., 2020) and the China Plant Trait 128 

Database (Wang et al., 2018). The second source was from literature (listed in Appendix A). To 129 

ensure data quality and comparability, we only included trait observations that met the following 130 

five criteria: 1) Measurements must be obtained from natural terrestrial fields in order to minimize 131 

the influences of management disturbance, and observations from croplands, aquatic habitats, 132 

control experiments and gardens were excluded; 2) According to the mass ratio hypothesis, the 133 

effect of plant species on ecosystem functioning is determined to an overwhelming extent by the 134 

traits and functional diversity of the dominant species and is relatively insensitive to the richness 135 
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of subordinate species (Grime, 1998). Thus, we only included studies that measured plant trait 136 

observations from all species or dominant species within a community; 3) In order to consider the 137 

intraspecific trait variation, when the same species occurred in at the same sampling site from 138 

different studies, we included all original observed data from different studies rather than 139 

averaging the values at the species level (Jung et al., 2010; Siefert et al., 2015); 4) Plant trait 140 

observations must be made on mature and healthy plant individuals, so some specific growth 141 

stages (e.g., seedling) and size classes (e.g., sapling) were excluded to reduce the confounding 142 

effect of ontogeny and seasonality (Thomas, 2010); 5) We only included studies with clear 143 

geographical coordinates to match predictor variables. The sampling location and sampling time 144 

information were also included in the dataset. The sampling time mostly focused on the growing 145 

season of a year (i.e., May-October), which can ensures the relative consistency of sampling time 146 

to minimize the effects of seasonality. Plant functional traits must be sampled and measured 147 

according to standardized measurement procedures (Perez-Harguindeguy et al., 2013) to reduce 148 

the variation and uncertainty among different data sources. In this study, we included SLA 149 

measurements on sun-leaves, and WD measurements on main stem of woody species. 150 

Table 1 Description of plant functional traits selected in this study and their relevant 151 

ecosystem functions. 152 

Trait Abbreviation Description Relevant ecosystem functions 

Specific leaf 

area 

SLA As a core leaf economics trait (Wright et al., 

2004), it is related to trade-off between leaf 

lifespan and C carbon acquisition as well as 

light competition (Reich et al., 1991) 

Productivity, litter decomposition, 

competitive ability (Bakker et al., 2011; 

Smart et al., 2017) 

Leaf dry matter 

content 

LDMC Strongly related to resource availability and 

potential growth rate (Hodgson et al., 2011) 

Productivity, litter decomposition, herbivore 

resistance, and drought tolerance (Bakker et 

al., 2011; Smart et al., 2017; Blumenthal et 

al., 2020) 

Leaf N 

concentration 

LNC As a core leaf economics trait, it is strongly 

related to photosynthetic capacity (Wright et 

al., 2004) 

Productivity, nutrient cycling, litter 

decomposition (LeBauer and Treseder, 2008; 

Bakker et al., 2011) 

Leaf P 

concentration 

LPC As a core leaf economics trait, it is strongly 

related to photosynthetic capacity (Wright et 

al., 2004) 

Productivity, nutrient cycling, litter 

decomposition (LeBauer and Treseder, 2008; 

Bakker et al., 2011) 

Leaf area LA Trade-off between C carbon assimilation and 

water use efficiency, it is related to energy 

balance (Wright et al., 2017) 

Productivity (Li et al., 2020) 

Wood density WD A measure of carbon investment, representing 

the trade-off between growth and mechanical 

support (Martínez-Vilalta et al., 2010) 

Drought tolerance, productivity (Hoeber et 

al., 2014; Liang et al., 2021)  

The plant trait data was checked for possible errors and corrected in three steps as follows. 153 

First, species name and taxonomic nomenclature were corrected and standardized according to the 154 

Plant List (http://www.theplantlist.org/) using the “‘plantlist”’ package. Second, illogical values, 155 
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repeated values and outliers were removed, which were defined by observations exceeding 1.5 156 

standard deviations of from the mean trait value for a given species (Kattge et al., 2011). Third, we 157 

appended information on plant growth form, leaf type and leaf phenology from the TRY 158 

categorical traits database (https://www.try-db.org/TryWeb/Data.php#3) and Flora Reipublicae 159 

Popularis Sinicae (http://www.iplant.cn/frps), which were used to match species names to PFTs. 160 

We associated each species with a corresponding PFT based on plant growth form (tree, shrub and 161 

grass), leaf type (broadleaf and needleleaf) and leaf phenology (evergreen and deciduous). For 162 

example, the information on Salix matsudana is: tree, deciduous and broadleaf, thus, we were able 163 

to associate the PFT of deciduous broadleaf forest (DBF) to this species. The species that did not 164 

correspond to any PFT were discarded. After these treatments, we collected a total of 34589 trait 165 

measurements from 1430 sampling sites for our database, representing 3447 species from 195 166 

families and 1066 genera (Fig. 2). Information on the statistics for the six plant functional traits 167 

collected in this study is shown in Table B1 in Appendix B. 168 

 169 

 170 
Figure 2. Location The spatial distribution of sample sites and land cover mapacross 171 

different ecosystems in China. The white areas represent artificial land cover types. 172 

2.3 Preparing predictor variables 173 

2.3.1 Climate data 174 

Twenty-one climate variables were used in this study, including 19 bioclimate variables, solar 175 

radiation (RAD) and aridity index (AI) (Table B2 in Appendix B). The 19 bioclimate variables and 176 

RAD were obtained from the WorldClim version 2.1 for the period from 1970 to 2000 177 

(https://www.worldclim.org/data/worldclim21.html). The AI data was extracted from the CGIAR 178 

Consortium of Spatial Information (CGIAR-CSI) website for the period from 1970 to 2000 179 

(http://www.csi.cgiar.org) (Trabucco and Zomer, 2018). The spatial resolution of climate data is 1 180 

km. 181 

2.3.2 Soil data 182 

https://www.try-db.org/TryWeb/Data.php#3
http://www.iplant.cn/frps
https://www.worldclim.org/data/worldclim21.html
http://www.csi.cgiar.org/
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Twelve soil variables were included in this study, representing the different aspects of soil 183 

properties, i.e., soil texture, bulk density (BD), pH and soil nutrients (Table B2 in Appendix B). 184 

All soil variables were extracted from the Soil Database of China for Land Surface Modeling 185 

(http://globalchange.bnu.edu.cn/research/soil2) (Shangguan et al., 2013). Given the importance of 186 

topsoil properties on community composition (Bohner, 2005), we averaged the first four layers to 187 

represent the topsoil properties (~ 30 cm) in our study. The spatial resolution is 1 km. 188 

2.3.3 Topography 189 

The topographic variable was elevation. Elevation data was extracted from the STRM 90m dataset 190 

in China, based on the SRTM V4.1 database (https://www.resdc.cn/data.aspx?DATAID=123). The 191 

spatial resolution is 1 km. 192 

Given the collinearity among climate and soil variables, we reduced the dimensionality of 193 

these predictors based on Pearson’s correlation coefficient (r) (Figs. B1 and B2 in Appendix B). 194 

Among a set of highly correlated variables (r > 0.75), only one variable was retained in subsequent 195 

analysis to ensure a combination of different environmental variables. The final selection of 196 

environment predictors included nineteen twenty variables: mean annual temperature (MAT), 197 

mean diurnal range (MDR), min temperature of the coldest quarter (Tmin), max temperature of 198 

the warmest quarter (Tmax), temperature seasonality (TS), mean annual precipitation (MAP), 199 

precipitation seasonality (PS), precipitation of the wettest quarter (PEQ), precipitation of the driest 200 

quarter (PDQ), AI, RAD, elevation, soil sand content (SAND), pH, BD, soil total N (STN), soil 201 

total P (STP), soil available P (SAP), soil alkali-hydrolysable N (SAN) and cation exchange 202 

capacity (CEC). 203 

2.3.4 Vegetation indices 204 

Three categories of vegetation indices were included in this study (Table B2 in Appendix B). First, 205 

EVI was extracted from the MOD13A3 V006 product 206 

(https://lpdaac.usgs.gov/products/mod13a3v006/). This product is available as a monthly average 207 

with the spatial resolution of 1 km, ranging from January 2000 to December 2018. Second, 208 

MODIS reflectance data was also extracted from the MOD13A3 V006 product, including MIR 209 

reflectance, NIR reflectance, red reflectance and blue reflectance. Third, the MERIS terrestrial 210 

chlorophyll index (MTCI) was extracted from the Natural Environment Research Council Earth 211 

Observation Data Centre (NERC-NEODC, 2005) (https://data.ceda.ac.uk/). MTCI data is 212 

available globally as a monthly average at 4.63 km spatial resolution, and ranges from June 2002 213 

to December 2011. It is noted that valid MTCI values should be greater than 1, so our study 214 

deleted any values less than 1. 215 

To avoid collinearity, we also reduced the dimensionality of vegetation indices based on 216 

Pearson’s correlation coefficient (r values) (Fig. B3 in Appendix B). Most selected variables were 217 

related to growing seasons due that plant functional traits were measured during the growing 218 

season. Furthermore, based on the results of Pearson’s correlation coefficient (r)analysis, MTCI, 219 

MIR, NIR, red and blue in January showed low correlations with those in growing season, thus 220 

http://globalchange.bnu.edu.cn/research/soil2
https://www.resdc.cn/data.aspx?DATAID=123
https://lpdaac.usgs.gov/products/mod13a3v006/
https://data.ceda.ac.uk/
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they were included in subsequent analysis. The final selection included 36 variables: annual EVI, 221 

monthly EVI (May, June, July, August and September), monthly MTCI, MIR, NIR, red and blue 222 

(all for January, June, July, August and September). 223 

Both environmental variables and vegetation indices variables were resampled to a consistent 224 

spatial resolution of 1 km using the nearest neighborhood method. 225 

PFT is also an important factor in influencing the variation of plant functional traits 226 

(Verheijen et al., 2016; Loozen et al., 2020), thus the trait predictions were performed for each 227 

PFT individually. We used the 2015 land cover map at a 100 m spatial resolution to calculate the 228 

relative abundance of each PFT within 1 km grid cells, which was extracted from the Copernicus 229 

Global Land Service (CGLS-LC100, Version 3) (https://land.copernicus.eu/global/products/lc) 230 

(Buchhorn et al., 2020). We focused on natural terrestrial vegetation, so all artificial land cover 231 

types or (e.g., croplands) areas were thus eliminated in our dataset. Seven categories were 232 

included: evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous 233 

needleleaf forest (DNF), deciduous broadleaf forest (DBF), shrubland (SHL), grassland (GRL) 234 

and bare/sparse vegetation. 235 

2.4 Model fitting and validation 236 

To predict spatial patterns of plant functional traits, we used two machine learning models, i.e., 237 

random forest and boosted regression trees. 238 

Random forest is an ensemble machine learning method based on classification and 239 

regression trees using collections of regression trees to classify observations according to a set of 240 

predictive variables (Breiman, 2001). This method repeatedly constructs a set of trees from 241 

random samples of training data, and the final prediction is produced by integrating the results of 242 

all individual trees, which makes it a robust method. The model is controlled by two main 243 

parameters: the number of sampled variables (mtry) and the number of trees (ntree). The mtry was 244 

set to range from 1 to 57 (at an interval of 1), and the ntree was set as 500, 1000, 2000, 5000 and 245 

10000 in subsequent runs. This analysis was performed using the ‘randomForest’ function in the 246 

‘randomForest’ package (Liaw and Wiener, 2002). 247 

Boosted regression trees are machine learning methods based on generalized boosted 248 

regression models and using a boosting algorithm to combine many sample tree models to 249 

optimize predictive performance (Elith et al., 2006). There is no need for prior data transformation 250 

or the elimination of outliers, and this method can fit complex non-linear relationships while 251 

automatically handling interaction effects between predictors (Elith et al., 2008). The four 252 

parameters to optimize in these models are the number of trees, interaction depth, learning rate 253 

and bag fractions. We varied the parameter settings to find the optimal parameter combination that 254 

achieves minimum predictive error. The number of trees was set to 3000, the interaction depth 255 

varied from 1 to 7 (at an interval of 1), the learning rate was set to 0.001, 0.01, 0.05 and 0.1, and 256 

the bag fraction was set to 0.5, 0.6, 0.7 and 0.75. PFT was used as a dummy variable in the 257 

https://land.copernicus.eu/global/products/lc
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boosted regression trees models. This analysis was conducted using the ‘gbm’ function in the 258 

‘gbm’ package (Ridgeway, 2006). 259 

We built separate predictive model for each plant functional trait. To select the optimal 260 

parameter combination and to evaluate the final model performance for each trait, we calibrated 261 

the models 10 times using randomly selected 80% of the data for training the models and 262 

validating against the remaining 20% based on cross-validation (Table B3 in Appendix B). The 263 

predictive performance was evaluated by regressing the predicted and observed trait values from 264 

all repetitions of the cross-validation. The fitting performances of the random forest and boosted 265 

regression trees were was evaluated using determinate coefficient (R2), normalized root-mean-266 

square error (NRMSE) and mean absolute error (MAE). These scores are calculated following Eq. 267 

(1), Eq. (2) and Eq. (3): 268 

𝑅2 = 1 −
∑ (𝑝𝑖−𝑜𝑖)2𝑛

𝑖=1

∑ (𝑝𝑖−𝑜�̂�)2𝑛
𝑖=1

                                                                                                                   (1) 269 

NRMSE =
√

1

𝑛
∑ (𝑝𝑖−𝑜𝑖)2𝑛

𝑖=1

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
                                                                                                             (2) 270 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑜𝑖 − 𝑝𝑖|𝑛

𝑖=1                                                                                                      (3) 271 

where 𝑝𝑖 and 𝑜𝑖 are the predictive values and observed values, respectively; 𝑜�̂� is the mean of the 272 

observed values. 273 

To quantify the relative importance of each predictor across the two models consistently, we 274 

used the method proposed by Thuiller et al. (2009). This method applies correlation between the 275 

standard predictions fitted with the original data and predictions where the variable under 276 

investigation has been randomly permutated. If the correlation is high, which indicates little 277 

difference between the two predictions, the variable permutated is considered not important for the 278 

model. This step was repeated multiple times for each predictor, and the mean correlation 279 

coefficient over runs was recorded. Then the relative importance of each predictor was quantified 280 

as one minus the Spearman rank correlation coefficient (see Boonman et al., 2020). In addition, 281 

we used generalized additive models to fit the relationships between plant functional traits and the 282 

most important variables using the ‘gam’ function in the ‘mgcv’ package. 283 

2.5 Generation of plant functional trait maps and model performance 284 

The generation of spatial maps of plant functional traits was performed in three steps. First, we 285 

predicted trait values for each natural PFT (e.gi.e., EBF, ENF, DBF, DNF, SHL and GRL) within 1 286 

km grid cell separately. Second, the abundance of individual natural PFT within 1 km grid cell 287 

was estimated using a land cover map with a spatial resolution of 100 m. Third, refer to the Eq. (4) 288 

that has been widely applied in a community (Garnier et al., 2004), the final trait value in a given 289 

1 km grid cell was calculated as the sum of the predicted trait values multiplying by corresponding 290 

abundance of each natural PFT. 291 

CWM = ∑ 𝑊𝑖
𝑛
𝑖=1 𝑋𝑖                                                                                                 (4) 292 
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where n is the total number of PFT in a given grid; 𝑊𝑖 is the relative abundance of the ith natural 293 

PFT; and 𝑋𝑖 is the predicted trait value of the ith natural PFT. 294 

To reduce the variability of different single-models and to construct a more stable and 295 

accurate model, the ensemble model was further applied to merge the predictions of random forest 296 

and boosted regression trees according to their cross-validated R2 values. The predictive predicted 297 

value of ensemble model was calculated in a given grid cell as described by Eq. (5) (Marmion et 298 

al., 2009). The model accuracy was calculated by regressing the predictive predicted values of 299 

ensemble model against the observed trait values. 300 

𝑃𝑟𝑒𝑑_𝐸𝑀𝑡 =
∑ (𝑝𝑟𝑒𝑑2

𝑚=1 𝑚,𝑡×𝑟𝑚,𝑡
2 )

∑ 𝑟𝑚,𝑡
22

𝑚=1
                                                                                              (5) 301 

where 𝑃𝑟𝑒𝑑_𝐸𝑀𝑡 is the predictive predicted values of t trait in the ensemble model; 𝑝𝑟𝑒𝑑𝑚,𝑡 is the 302 

predictive predicted values of t trait in m model; 𝑟𝑚,𝑡
2  is the cross-validated R2 of t trait in m model. 303 

To evaluate the model performance (i.e., the variability in the prediction across models), the 304 

coefficient of variation (CV) was calculated as the difference between the predictions of random 305 

forest and boosted regression trees methods and the ensemble predictionmodel. CV is calculated 306 

as following Eq. (6): 307 

𝐶𝑉𝑡 =

√∑ (𝑝𝑟𝑒𝑑𝑚,𝑡−𝑜𝑏𝑠𝑡)22
𝑚=1

 
∗𝑟𝑚,𝑡

2

∑ 𝑟𝑚,𝑡
22

𝑚=1

𝑜𝑏𝑠𝑡
                                                                                                 (6) 308 

where 𝑝𝑟𝑒𝑑𝑚,𝑡 is the predictive predicted values of t trait in m model; 𝑜𝑏𝑠𝑡 is the values of t trait 309 

in the ensemble model; 𝑟𝑚,𝑡
2  is the cross-validated R2 of t trait in m model. 310 

2.6 Uncertainty assessments 311 

Multivariate environmental similarity surface analysis (MESS) was used to identify the range of 312 

the extrapolated predictor values across the locations in the plant trait dataset (Elith et al., 2010). 313 

This method is often used to evaluate the extent of extrapolation and the applicability domain. If 314 

the values are is negative, this indicates that at a given grid cell, at least one predictor variable is 315 

outside the extent of the referenced predictor layer. This analysis was conducted using the ‘mess’ 316 

function in the ‘dismo’ package. 317 

All analyses were performed in R 4.0.2 (R Core Team, 2020). 318 

3 Results 319 

3.1 Performances of prediction models 320 

Cross-validation showed that the performance of the predictive models differed greatly among the 321 

plant functional traits (Table 2, Tables C1 and C2 in Appendix C). WD had the best performance 322 

in all three models, with R2 values of 0.64, 0.68 and 0.67 for random forest, boosted regression 323 

trees and ensemble model, respectively. SLA and LPC had R2 values greater than 0.45, while 324 

LDMC performed the worst, with R2 values below 0.30. 325 
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Table 2 Results of plant functional traits for cross-validated R2, NRMSE and MAE for 326 

random forest, boosted regression trees and ensemble model. 327 

 Random forest Boosted regression trees Ensemble model 

Traits R2 NRMSE MAE R2 NRMSE MAE R2 NRMSE MAE 

SLA 0.48 0.22 5.10 0.48 0.20 5.08 0.49 0.21 5.07 

LDMC 0.23 0.21 0.07 0.28 0.18 0.07 0.24 0.20 0.07 

LNC 0.33 0.19 4.92 0.34 0.18 4.85 0.34 0.19 4.85 

LPC 0.51 0.24 0.53 0.51 0.22 0.53 0.51 0.27 0.53 

LA 0.37 0.45 26.76 0.39 0.51 27.47 0.40 0.58 26.59 

WD 0.64 0.20 0.10 0.68 0.13 0.10 0.67 0.17 0.10 

SLA, specific leaf area (m2 kg-1); LDMC, leaf dry matter content (g g-1); LNC, leaf N concentration 328 

(mg g-1); LPC, leaf P concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g cm-3); R2, 329 

determinate coefficient; NRMSE, normalized root-mean-square error; MAE, mean absolute error. 330 

3.2 Spatial patterns of predicted plant functional traits 331 

There were relatively consistent spatial patterns for SLA, LNC and LPC, with high values in the 332 

northeastern and northwestern regions China and the southeastern Qinghai-Tibet Plateau, and low 333 

values in the southwestern China (Figs. 3a, 3c and 3d, Figs. D1, D2, D3, D5 and D6 in Appendix 334 

D). SLA and LPC increased with latitude, while LNC did not vary significantly along the 335 

latitudinal gradient. For SLA, LNC and LPC, the variability was low among random forest, 336 

boosted regression trees and ensemble model, with an overall CV less than 0.30 (Figs. 4a, 4c and 337 

4d). LDMC values were relatively high in most regions of China, and the low values were mainly 338 

located in the eastern Yunnan Province and the Loess Plateau (Fig. 3b, Figs. D1, D2 and D4 in 339 

Appendix D). LA showed high values in the northeastern and southern regions (except for the 340 

Sichuan Basin), and the southeastern Qinghai-Tibet Plateau (Fig. 3e, Figs. D1, D2 and D7 in 341 

Appendix D). The strong latitudinal gradient was observed in LA, where the values decreased 342 

with latitude. 343 

The CV values of LPC decreased with latitude, but other traits did not show latitudinal 344 

patterns (Fig. 4). The CV values of LA were relatively high, especially in the northwestern region 345 

China and the Inner Mongolia-Loess Plateau region (Fig. 4e). WD had high values in the 346 

northeastern and southern regions (Fig. 2f, Figs. D1, D2 and D8 in Appendix D), while CV values 347 

for WD in China were low throughout China (Fig. 4f). 348 
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 350 

Figure 3. Spatial patterns of predicted plant functional traits in China based on the ensemble 351 

model. The grey curves to the right of the maps display trait distribution along with latitude. The 352 

white areas represent artificial land cover types and bare vegetation. The lines in grey, blue and 353 

purple represent the boundaries of province, the Qinghai-Tibet Plateau and the Loess Plateau, 354 

respectively. RF, random forest; BRT, boosted regression trees; ensemble, ensemble model; SLA, 355 

specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; LPC, leaf P 356 

concentration; LA, leaf area; WD, wood density. 357 
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 359 

Figure 4. The variability in plant functional trait predictions among random forest, boosted 360 

regression trees and ensemble model. The grey curves to the right of the maps display coefficient 361 

of variation along with latitude. The white areas represent artificial land cover types and bare 362 

vegetation. The lines in grey, blue and purple represent the boundaries of province, the Qinghai-363 

Tibet Plateau and the Loess Plateau, respectively. SLA, specific leaf area; LDMC, leaf dry matter 364 

content; LNC, leaf N concentration; LPC, leaf P concentration; LA, leaf area; WD, wood density. 365 

3.3 Relative importance of predictive variables 366 

The dominant factors explaining spatial variation differed greatly among plant functional traits 367 

(Table 3). Overall, climate variables were more important for predicting plant functional traits 368 

than were soil variables. Temperature variables (i.e., MAT, MDR and TS) showed close 369 

relationships with SLA, LDMC, LPC and WD, while precipitation variables (i.e., PS, PEQ, MAP 370 
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and PDQ) were more important for predicting the spatial patterns of LNC, LPC and LA. RAD was 371 

the fourth most dominant factor in predicting the spatial patterns of SLA and WD. Elevation also 372 

played an important role in the LDMC and LPC predictions. Within soil variables, soil nutrients 373 

(i.e., pH and SAP) showed close associations with SLA and LNC. In addition to the environmental 374 

variables, MTCI emerged as an important predictor for explaining SLA, LDMC and LA. Finally, 375 

EVI was the most important predictor for LA, and MIR in January and May were the primary 376 

predictors of WD. The relationships between plant functional traits and the most important 377 

variables were shown in Figs. E1 and E2 in Appendix E. 378 

Table 3 List of the eight most important variables for plant functional trait predictions. 379 

Rank SLA LDMC LNC LPC LA WD 

1 SAP MAT PS MDR EVI5 MIR1 

2 TS Elevation SAP PDQ PEQ TS 

3 blue9 MTCI5 pH Elevation MTCI9 MIR5 

4 RAD blue8 MDR MIR8 NIR9 RAD 

5 MTCI4 MTCI4 MAP Tmax AI MIR6 

6 MTCI6 MTCI6 PEQ MTCI6 MTCI6 pH 

7 Elevation NIR1 MIR1 MIR7 MAP red5 

8 MTCI7 CEC Tmax MIR9 red5 PS 

SLA, specific leaf area (m2 kg-1); LDMC, leaf dry matter content (g g-1); LNC, leaf N concentration 380 

(mg g-1); LPC, leaf P concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g cm-3); SAP, soil 381 

available P; TS, temperature seasonality; blue, blue reflectance; RAD, solar radiation; MTCI, MERIS 382 

terrestrial chlorophyll index; MAT, mean annual temperature; NIR, near-infrared reflectance; CEC, 383 

cation exchange capacity; PS, precipitation seasonality; MDR, mean diurnal range; MAP, mean annual 384 

precipitation; PEQ, precipitation of the wettest quarter of a year; MIR, middle infrared reflectance; 385 

Tmax, max temperature of the warmest month of a year; PDQ, precipitation of the driest quarter of a 386 

year; EVI, enhanced vegetation index; AI, aridity index; red, red reflectance. 387 

3.4 Model performance 388 

The distributions of the predictive predicted trait values based on random forest, boosted 389 

regression trees, and ensemble model were consistent with the original trait observations, 390 

especially the peak values (Fig. 5). The mean values of trait observations were relatively higher 391 

than those of the predictive predicted values. 392 
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 393 

Figure 5. Comparison of trait distribution between observations and predictions predictive 394 

values in each of the different three models. Each panel depicts the distribution of observations in 395 

solid red, of the random forest (RF) model in yellow, of the boosted regression trees (BRT) model 396 

in blue, and of the ensemble model in green. The dashed vertical lines indicate mean values. SLA, 397 

specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; LPC, leaf P 398 

concentration; LA, leaf area; WD, wood density. 399 

3.5 Uncertainty assessments 400 

The MESS values of all plant functional traits were positive in most regions, indicating a wide 401 

applicability domain of our models (Fig. 6). Nevertheless, trait predictions should be interpreted 402 

carefully for the northeastern China and the Qinghai-Tibet Plateau due to the sparse samplings in 403 

these regions. 404 
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 405 

Figure 6. Multivariate environmental similarity surface (MESS) assessments for the six plant 406 

functional traits. The blue line represents the boundary of the Qinghai-Tibet Plateau. The black 407 

dots represented the locations of trait observations. More intense shades indicate greater similarity 408 

(blue) or difference (red) in environmental conditions of the location compared to the predictive 409 

factors covered by the training dataset. The white areas represent artificial land cover types and 410 

bare vegetation. SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N 411 

concentration; LPC, leaf P concentration; LA, leaf area; WD, wood density. 412 

4 Discussion 413 

4.1 Comparison with previous work 414 

Our study predicted the spatial patterns of six key plant functional traits across China using 415 

machine learning methods and identified the applicability domain of the models. WD had the 416 

highest precision with an average of R2 of 0.66, which was higher than the global WD prediction 417 

(Boonman et al., 2020). This improvement in precision may be attributed to the large number and 418 

dense occurrence of sample sites as well as the inclusion of vegetation indices in our study. In 419 

addition, SLA and LPC also showed good accuracy with R2 values of 0.50, which was higher than 420 
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that of Boonman et al. (2020) and consistent with that of Moreno-Martínez et al. (2018). However, 421 

LNC and LA showed relatively poor performance, which may be related to the reason that these 422 

two traits were more influenced by phylogeny than environmental variables (Yang et al., 2017; An 423 

et al., 2021). In addition, we found that mean values of trait predictions were lower than those of 424 

observations, which may be attributable to the reason that the mean values of trait observations 425 

were from the individual level, while the mean values of predicted values were based on the 426 

relative abundance of PFTs and corresponding predicted values within 1 km grid cell. 427 

The frequency distributions of plant functional traits in China differed between our study and 428 

previous studies (Fig. 7, Fig. F1, Table F1 in Appendix F). Given that the spatial resolution of trait 429 

maps in most previous studies is was 0.5° (except for Moreno-Martínez et al. (2018) and 430 

Vallicrosa et al. (2022)), we resampled the data products of previous studies and our study to 0.5° 431 

spatial resolution. The distributions in our study contained more predictions at lower values of 432 

SLA, LNC and LPC and was were broader than those for SLA and LNC in previous global studies. 433 

However, the distribution of LNC in our study was consistent with that in the study of Vallicrosa 434 

et al. (2022) at with a 1 km spatial resolution the 1 km spatial resolution (Fig. F1 in Appendix F). 435 

LA in our study contained more predictions at higher values and was also broader than those in 436 

previous global studies. WD did not show the lower and higher predictive predicted values in this 437 

study, however, the WD values in the studies of Boonman et al. (2020) and Schiller et al. (2021) 438 

had more predictions at higher values and no lower values (< 0.30 g cm-3). Our predicted values of 439 

SLA showed the highest spatial correlation with those of Dong et al. (2023), and LNC showed the 440 

strongest spatial correlation with those of Butler et al. (2017) (Table 54). LA and WD showed the 441 

best spatial correlation with those of Schiller et al. (2021), but LPC showed relatively weak spatial 442 

correlation with those of published studies. 443 

In addition, we compared our results to with the other studies focused on China. Yang et al. 444 

(2016) predicted the spatial distributions of leaf mass per area (i.e., 1/SLA) and LNC based on 445 

trait-environment relationships in China and had an R2 values of 0.13-0.16. The lower predictive 446 

precision may be because Yang et al. (2016) only used MAT, MAP and RAD as predictors in 447 

estimating the spatial patterns of leaf mass per area and LNC, which likely led to poor 448 

performance and low heterogeneity. These results also demonstrated the advantage of our methods 449 

in mapping the spatial patterns of plant functional traits at a regional scale. 450 
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Table 5 4 Spatial correlations for SLA, LNC, LPC, LA and WD between this study and other 451 

previous trait maps, labelled by the first author of the corresponding publication (see Table F1 in 452 

Appendix F for citations) 453 

Spatial 

correlation 

Dong Vallicrosa Schiller Boonman Moreno Madani Butler Bodegom 

SLA 0.398 

0.40 

 -0.082 0.32733 0.242 0.13614 -0.042 0.31932 

LNC 0.156 0.35936 0.22923 0.252   0.394  

LPC  0.13614     0.05706  

LA   0.514      

WD   0.64765 0.10711     

The spatial correlation of leaf dry matter content (LDMC) between our study and previous studies was 454 

not included, as the LDMC maps were not available. SLA, specific leaf area (m2 kg-1); LNC, leaf N 455 

concentration (mg g-1); LPC, leaf P concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g 456 

cm-3). 457 

 458 

Figure 7. Frequency distributions of plant functional traits in our study (“This study”, dashed 459 

black lines) and other trait maps, identified by the first author of the corresponding publication 460 
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(see Table F1 for citations). SLA, specific leaf area (m2 kg-1); LNC, leaf N concentration (mg g-1); 461 

LPC, leaf P concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g cm-3). 462 

4.2 Spatial patterns of plant functional traits in China 463 

Our study revealed the spatial patterns of different plant functional traits across China, and the 464 

variability among the two machine learning methods was relatively low. We compared the spatial 465 

differences of trait maps between our study and previous studies at the global scale (Figs. F2-F6 in 466 

Appendix F). For example, our study showed high SLA values in the southeastern Qinghai-Tibet 467 

Plateau, which concurred with the global study of Boonman et al. (2020). The spatial difference of 468 

SLA between our study and van Bodegom et al. (2014) was relatively low, and the predictive 469 

predicted values in most regions were slightly lower in our study than those in van Bodegom et al. 470 

(2014). The spatial pattern of difference in SLA between our study and Moreno et al. (2018), 471 

Bulter et al. (2017) and van Bodegom et al. (20202014) was consistent, and the values were higher 472 

in the northeastern China and the southwestern Qinghai-Tibet Plateau in our study than those 473 

studies. Our study showed higher LNC values in the northern Inner Mongolia-the Loess Plateau-474 

the eastern Qinghai-Tibet Plateau and the northwestern China than those global studies at the 475 

global studies  (Butler et al., 2017; Moreno-Martínez et al., 2018; Boonman et al., 2020; Vallicrosa 476 

et al., 2022; Dong et al., 2023), reflecting the consistent spatial pattern among these studies. 477 

However, Yang et al. (2016) predicted high LNC values in the northeastern and the northwestern 478 

China, the northern Inner Mongolia and the entire Qinghai-Tibet Plateau, and SLA and LNC had 479 

low heterogeneity overall. The discrepancy with Yang et al. (2016) may be attributed to spatial 480 

extrapolation based on trait-climate relationships with a low predictive precision. There was no 481 

consistent spatial pattern in LPC between our study and previous studies. Consistent with the 482 

global pattern (Wright et al., 2017), LA was larger in the southern regions than in the northern 483 

regions and showed a decreasing trend with latitude. In addition, LA and WD values in our study 484 

were lower in most regions than those ones at the global scale. These discrepancies between our 485 

study and previous studies at the global scale may be related to three reasons. First, there is bias in 486 

the available in-situ field measurement data from China in these global studies, with a large gaps 487 

in the western China for SLA and no data in China for WD (Boonman et al., 2020). Second, some 488 

trait-environment relationships may be scale-dependent (Bruelheide et al., 2018), and these studies 489 

we compared are from the global scale because the trait maps in China are not available. Third, the 490 

methods used for trait mapping were different among studies, including eco-evolutionary 491 

optimality models (Dong et al., 2023), Convolutional Neural Networks based on RGB 492 

photographs (Schiller et al., 2021), machine learning algorithms (Vallicrosa et al., 2022; Boonman 493 

et al., 2020) and multiple regression analysis (van Bodegom et al., 2014). 494 

Moreover, our study also identified the applicability domain of our models for predicting the 495 

spatial patterns of plant functional traits across China. Five leaf traits and WD appeared to have 496 

poor applicability in the northeastern China and the Qinghai-Tibet Plateau, primarily due to sparse 497 
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samplings. Future studies predicting plant functional traits across a large scale through remote 498 

sensing observations or other supplementary data will be needed to re-evaluate our results. 499 

4.3 The role of predictive variables 500 

Our study indicates indicated that environmental variables are were important for predicting the 501 

spatial patterns of plant functional traits, especially climate variables. Temperature variables were 502 

primary predictors for SLA, LDMC, LPC and WD. The relationships between leaf traits and 503 

temperature have been widely discussed in global and regional studies (Reich and Oleksyn, 2004; 504 

Bruelheide et al., 2018). The positive linkage between WD and temperature may be driven by 505 

changes in water viscosity. Plants can adapt to the low water viscosity at high temperatures by 506 

reducing the diameter and density of their vessels and by thickening cell walls (Roderick and 507 

Berry, 2002; Thomas et al., 2004). Precipitation variables were important predictors for leaf 508 

nutrient traits and LA. For example, precipitation of the wettest quarter of a year was the factor 509 

that most influenced LA variation, which has been confirmed by a previous study (An et al., 2021). 510 

A smaller LA could be an adaptive strategy to decrease water loss via reducing the surface area for 511 

transpiration under dry environmental conditions (Du et al., 2019). Although the effects of soil on 512 

trait predictions were relatively weak, we found that SAP and pH played key roles in SLA and 513 

LNC predictions. These results were similar with the previous studies that reported reporting that 514 

soil pH was an important driver of trait variation at the global scale and in tundra regions (Maire et 515 

al., 2015; Kemppinen et al., 2021). Additionally, from the perspective of cost-efficient theory, the 516 

strong effects of SAP reflected that high SLA may be an adaptation for facilitating soil exploration 517 

more efficiently in fertile soils (Freschet et al., 2010). 518 

Vegetation indices have recently been proposed as important predictors of spatial patterns of 519 

plant functional traits (Loozen et al., 2018). Our results corroborated these findings and further 520 

suggested that EVI, MTCI and MIR reflectance are were important predictors in models. Here, the 521 

underlying mechanisms between vegetation indices and plant functional traits are were not further 522 

discussed due to their complexity and uncertainty. However, our results indicated that vegetation 523 

indices and NIR reflectance are were not key predictors of LNC estimation, which contrasts 524 

contrasted the findings from global and regional studies (Wang et al., 2016; Loozen et al., 2018; 525 

Moreno-Martínez et al., 2018). This may be related to the multitude of factors that influence the 526 

relationships between LNC and vegetation indices and NIR reflectance, such as forest type and 527 

canopy structure (Dahlin et al., 2013). 528 

4.4 Uncertainties 529 

Although our study mapped the spatial patterns of key functional traits in terrestrial ecosystemsof 530 

seed plants in across China through large-scale field investigations and compared the predictions 531 

with previous studies performed at global and regional scales, there persists persisted some 532 

uncertainties in the interpretation of these results. First, the predictive ability of models was 533 
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relatively worse for certain traits, especially LDMC. Beyond the environmental effects, the 534 

variation in plant functional traits is also regulated by phylogenetic structure among plant species 535 

(e.g., family, order and phylogenetic clade) (Li et al., 2017). Consequently, incorporating the 536 

phylogenetic information will be a promising avenue for further improving the accuracy of spatial 537 

predictions of plant functional traits (Butler et al., 2017). A second potential issue is sampling bias; 538 

there were are major spatial gaps in field investigations in both the northeastern China and the 539 

Qinghai-Tibet Plateau. Due to the few measurements for shrubs and the lack of herbs, WD data is 540 

mainly confined to eastern forests, and the overall quantity of WD data was is much lower than 541 

that of leaf traits, even in the TRY database. The environmental information of sampling sites was 542 

not always obtained from original literature, thus using the public environmental products is a 543 

common resolution in large-scale plant trait studies (Boonman et al., 2020; Vallicrosa et al., 2022). 544 

Such mismatch between in-situ trait measurements and predictors should be resolved in further 545 

work. Finally, an additional key challenges in data availability must be resolved to scale up from 546 

the species to the community levels, in particular with data surrounding species co-occurrence and 547 

their relative cover or abundance in ecological communities (He et al., 2023). For example, Global 548 

biodiversity data (e.g., sPlot and Global Biodiversity Information Agency databases) that contains 549 

information on species occurrence or the proportion of species in a community has the potential 550 

for enabling the calculation of community-weighted trait values and the re-evaluation of our 551 

results in future work (Telenius, 2011; Bruelheide et al., 2019). The lack of consistent time period 552 

and spatial resolution of predictors due to limitation of data availability is another a key challenge 553 

in the spatial mapping of plant functional traits. In addition, although WorldClim version 2.1 554 

product has high spatial resolution and includes various aspects of climatic parameters, there 555 

exists certain limitation and uncertainty in predicting trait maps. Therefore, integrating satellite 556 

remote sensing monitoring methods with in-situ trait data collection can also provide an effective 557 

way to estimate and assess the species diversity at large scales (Cavender-Bares et al., 2022). 558 

4.5 Potential applications 559 

Maps of these key functional traits in terrestrial ecosystemsof seed plants highlighted large-scale 560 

variability in space, which will significantly advance ecological analyses and future 561 

interdisciplinary research. First, using the spatially continuous trait maps, one can optimize and 562 

develop trait-flexible vegetation models to reduce uncertainties uncertainty of conventional 563 

vegetation models based on PFTs, which allows for the exploration of the community assembly 564 

rules based on how plants with different trait combinations perform under a given set of 565 

environmental conditions (Berzaghi et al., 2020). When trait-flexible vegetation models are 566 

available, incorporating trait maps into models will bridge the gap for vegetation classifications 567 

and predictions of vegetation distribution under global change (Van van Bodegom et al., 2012; 568 

Yang et al., 2019). Second, most studies focused on the effects of plant functional traits on 569 

ecosystem carbon processes at individual, species and community scales, while how such effects 570 
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scale up to regional or larger scales remains challenging. In addition, the assessments of China’s 571 

terrestrial ecosystem carbon sink have had large uncertainties so far (Piao et al., 2022). The spatial 572 

continuous trait maps will provide an effective way to link ecosystem characteristics to ecosystem 573 

carbon sink estimates in China (Madani et al., 2018; Šímová et al., 2019). These analyses will help 574 

shed light on the mechanisms underlying plant functional traits and terrestrial ecosystem carbon 575 

storage at a large scale. 576 

5 Data availability 577 

The original plant functional trait data collected in this study that were was used for machine 578 

learning models (named by Data file used for machine learning models.csv) and final maps of 579 

plant functional traits in a GeoTIFF format in terrestrial ecosystems in a GeoTIFF format across 580 

China (named by plant functional trait category) are now available for the private link 581 

https://figshare.com/s/c527c12d310cb8156ed2 (An et al., 2023). Once the article is accepted, we 582 

will publicly publish these maps data at the figshare website. 583 

6 Conclusions 584 

We generated a set of spatial continuous trait maps at a 1-km spatial resolution using machine 585 

learning methods in combination with field measurements, environmental variables and vegetation 586 

indices. Models for leaf traits (except for LDMC) and WD showed good accuracy and robustness, 587 

whereas models of LDMC had relatively poor precision and robustness. Temperature variables 588 

were the most important predictors for leaf traits (except for LA) and WD, and precipitation 589 

variables were the most important predictors for leaf nutrient traits and LA. We caution that plant 590 

functional trait predictions should be interpreted carefully for the northeastern China and the 591 

Qinghai-Tibet Plateau. The spatial continuous trait maps generated in our study are 592 

complementary to current terrestrial in-situ observations and offer new avenues for predicting 593 

large-scale changes in vegetation and ecosystem functions under climate scenarios in China. 594 
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Appendix B 885 

Table B1 Summary of statistics in plant functional traits, environmental variables and 886 

geographical distribution in China. 887 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; LPC, leaf P concentration; LA, 888 

leaf area; WD, wood density; MAT, mean annual temperature; MAP, mean annual precipitation. 889 

Trait Unit Range Mean CV (%) 
No. of 

species 
Entries Sites 

SLA m2 kg-1 0.06–81.68 17.88 54.96 2463 9195 1032 

LDMC g g-1 0.06–0.95 0.34 100.00 1582 3957 193 

LNC mg g-1 3.41–66.02 21.52 37.44 2335 7407 567 

LPC mg g-1 0.09–9.70 1.83 62.19 2074 6266 515 

LA cm2 0.0033–2553.33 36.16 259.64 1838 5976 691 

WD g cm-3 0.25–1.37 0.68 33.16 768 1788 639 

Altitude m -144–5454     1430 

MAT °C -12.07–24.32     1430 

MAP mm 15–2982     1430 

Soil total N g kg-1 0.11–10.25     1430 

Bulk density g cm-3 0.83–1.45     1430 
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Table B2 List of all the predictors including environment and remote sensing variables used 890 

in this study. 891 

Type of variables Variable name Abbreviations Units Time periods Spatial 

resolution 

Source 

Climate Mean annual temperature MAT °C 1970-2000 1 km WorldClim version 2.1 

 Mean diurnal range MDR °C 1970-2000 1 km WorldClim version 2.1 

 Temperature seasonality TS °C 1970-2000 1 km WorldClim version 2.1 

 Max temperature of the 

warmest month 

Tmin °C 1970-2000 1 km WorldClim version 2.1 

 Min temperature of the 

coldest month 

Tmax °C 1970-2000 1 km WorldClim version 2.1 

 Temperature annual range TAR °C 1970-2000 1 km WorldClim version 2.1 

 Isothermality IS % 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of the 

wettest quarter 

MTEQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of the 

driest quarter 

MTDQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of the 

warmest quarter 

MTWQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean temperature of the 

coldest quarter 

MTCQ °C 1970-2000 1 km WorldClim version 2.1 

 Mean annual precipitation MAP mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the wettest 

month 

PEM mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the driest 
month 

PDM mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation seasonality PS % 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the wettest 

quarter 

PEQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the driest 

quarter 

PDQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the 

warmest quarter 

PWQ mm 1970-2000 1 km WorldClim version 2.1 

 Precipitation of the coldest 
quarter 

PCQ mm 1970-2000 1 km WorldClim version 2.1 

 Aridity index AI / 1970-2000 1 km Global CGIAR-CSI 

 Solar radiation RAD kJ m-2 

day-1 

1970-2000 1 km WorldClim version 2.1 

Topography Elevation / m  1 km SRTM 90m V4.1 

Soil Soil sand content SAND % / 1 km Shangguan et al. (2013) 

 Soil silt content SILT % / 1 km Shangguan et al. (2013) 

 Soil clay content CLAY % / 1 km Shangguan et al. (2013) 

 Bulk density BD g cm-3 / 1 km Shangguan et al. (2013) 

 Soil pH pH / / 1 km Shangguan et al. (2013) 

 Soil organic matter SOC g kg-1 / 1 km Shangguan et al. (2013) 

 Soil total N STN g kg-1 / 1 km Shangguan et al. (2013) 

 Soil total P STP g kg-1 / 1 km Shangguan et al. (2013) 

 Soil alkali-hydrolysable N SAN mg kg-1 / 1 km Shangguan et al. (2013) 

 Soil available P SAP mg kg-1 / 1 km Shangguan et al. (2013) 

 Soil available K SAK mg kg-1 / 1 km Shangguan et al. (2013) 

 Cation exchange capacity CEC me kg-1 / 1 km Shangguan et al. (2013) 
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Continued       

Type of variables Variable name Abbreviations Units Time periods Spatial 

resolution 

Source 

EVI MODIS EVI long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

NIR MODIS NIR long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

MIR MODIS MIR long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

Red MODIS red long-term 
monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

Blue MODIS blue long-term 

monthly averages 

 / 2001-2018 1 km MOD13A3 V006 

MTCI MTCI long-term monthly 

averages 

 / 2003-2011 4.63 km MTCI level 3 product 

Land cover Land cover map  / 2015 100 m Copernicus Global Land 

Service Collection 3 

The vegetation indicesremote sensing variables are calculated as long-term monthly averages from 2001 to 2018. , 892 

Thus thus 12 variables of each remote sensingvegetation index category are obtained. 893 

 894 

 895 

 896 

 897 

Table B3 The number of samples of eight six plant functional traits used for model training 898 

(80%) and validation (20%). 899 

Traits  No. of samples No. of samples used for model 

training 

No. of samples used for model 

validation 

SLA 9195 7356 1839 

LDMC 3957 3166 791 

LNC 7407 5926 1481 

LPC 6266 5013 1253 

LA 5976 4781 1195 

WD 1787 1430 357 

SLA, specific leaf area (m2 kg-1); LDMC, leaf dry matter content (g g-1); LNC, leaf N concentration (mg g-1); LPC, 900 

leaf P concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g cm-3). 901 
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 902 

Figure B1. Correlations among climate variables. The blank indicates that the correlations are not 903 

significant (P > 0.05). The size of the circles is proportional to the correlation coefficient. The 904 

abbreviations of climate variables is are seen in Table B2. 905 
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 906 

Figure B2. Correlations among soil variables. The blank indicates that the correlations are not 907 

significant (P > 0.05). The size of the circles is proportional to the correlation coefficient. The 908 

abbreviations of soil variables is are seen in Table B2. 909 
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 910 

Figure B3. Correlations among monthly vegetation indexremote sensing variables. The blank 911 

indicates that the correlations are not significant (P > 0.05). The size of the circles is proportional 912 

to the correlation coefficient. (a) enhanced vegetation index (EVI); (b) MERIS terrestrial 913 

chlorophyll index (MTCI); (c) MIR reflectance; (d) NIR reflectance; (e) red reflectance; (f) blue 914 

reflectance. 915 
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Appendix C 916 

Table C1 Optimal parameter combination and model performance of random forest for plant 917 

functional traits. 918 

Traits ntree mtry R2 NRMSE MAE 

SLA 1000 24 0.47648 0.22 5.134 

LDMC 1000 11 0.234 0.20 0.072 

LNC 1000 57 0.392 0.00 0.09810 

LPC 1000 20 0.58759 0.05 0.12913 

LA 1000 18 0.278 0.48 26.622 

WD 1000 9 0.531 0.02 0.072 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; LPC, leaf P concentration; LA, 919 

leaf area; WD, wood density.; R2, determinate coefficient; NRMSE, normalized root-mean-square error; MAE, 920 

mean absolute error. 921 

 922 

Table C2 Optimal parameter combination and model performance of boosted regression trees 923 

for plant functional traits. 924 

Traits n.tree 
interaction. 

depth 
shrinkage 

learning 

rate 

bag 

fractions 
R2 NRMSE MAE 

SLA 3000 6 0.01 10 0.75 
0.4864

9 
0.20 5.082 

LDMC 3000 2 0.01 10 0.75 
0.2472

8 
0.19 0.071 

LNC 3000 6 0.01 10 0.70 0.414 0.00 0.09610 

LPC 3000 7 0.01 10 0.75 0.591 0.05 0.12913 

LA 3000 3 0.001 10 0.75 0.282 0.55 27.556 

WD 3000 4 0.01 10 0.70 
0.6276

3 
0.01 0.06607 

SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; LPC, leaf P concentration; LA, 925 

leaf area; WD, wood density; R2, determinate coefficient; NRMSE, normalized root-mean-square error; MAE, 926 

mean absolute error. 927 



40 

 

Appendix D 928 

 929 

Figure D1. Spatial distributions of plant functional traits based on random forest. The grey curves 930 

on the right of maps were are trait distribution along with latitude. The white areas represent 931 

artificial land cover types and bare vegetation. SLA, specific leaf area; LDMC, leaf dry matter 932 

content; LNC, leaf N concentration; LPC, leaf P concentration; LA, leaf area; WD, wood density. 933 
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 934 

Figure D2. Spatial distributions of plant functional traits based on boosted regression trees. The 935 

grey curves on the right of maps were are trait distribution along with latitude. The white areas 936 

represent artificial land cover types and bare vegetation. SLA, specific leaf area; LDMC, leaf dry 937 

matter content; LNC, leaf N concentration; LPC, leaf P concentration; LA, leaf area; WD, wood 938 

density. 939 
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 940 

Figure D3. Spatial distribution of specific leaf area (SLA) for each plant functional type. The left 941 

penal was is obtained from RF method (random forest) method, the right penal was is obtained 942 

from BRT method (boosted regression trees) method. The white areas represent other natural 943 

vegetation types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, evergreen 944 

needleleaf forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; SHRUB, 945 

shrubland; GRASS, grassland. 946 
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 947 

Figure D4. Spatial distribution of leaf dry matter content (LDMC) for each plant functional type. 948 

The left penal was is obtained from RF method (random forest) method, the right penal was is 949 

obtained from BRT method (boosted regression trees) method. The white areas represent other 950 

natural vegetation types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, 951 

evergreen needleleaf forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; 952 

SHRUB, shrubland; GRASS, grassland. 953 
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 954 

Figure D5. Spatial distribution of leaf N concentration (LNC) for each plant functional type. The 955 

left penal was is obtained from RF method (random forest) method, the right penal was is obtained 956 

from BRT method (boosted regression trees) method. The white areas represent other natural 957 

vegetation types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, evergreen 958 

needleleaf forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; SHRUB, 959 

shrubland; GRASS, grassland. 960 
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 961 

Figure D6. Spatial distribution of leaf P concentration (LPC) for each plant functional type. The 962 

left penal was is obtained from RF method (random forest) method, the right penal was is obtained 963 

from BRT method (boosted regression trees) method. The white areas represent other natural 964 

vegetation types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, evergreen 965 

needleleaf forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; SHRUB, 966 

shrubland; GRASS, grassland. 967 
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 968 

Figure D7. Spatial distribution of leaf area (LA) for each plant functional type. The left penal was 969 

is obtained from RF method (random forest) method, the right penal was is obtained from BRT 970 

method (boosted regression trees) method. The white areas represent other natural vegetation 971 

types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, evergreen needleleaf 972 

forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; SHRUB, shrubland; 973 

GRASS, grassland. 974 
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 975 

Figure D8. Spatial distribution of wood density (WD) for each plant functional type. The left 976 

penal was is obtained from RF method (random forest) method, the right penal was is obtained 977 

from BRT method (boosted regression trees) method. The white areas represent other natural 978 

vegetation types and artificial land cover types. EBF, evergreen broadleaf forest; ENF, evergreen 979 

needleleaf forest; DBF, deciduous broadleaf forest; DNF, deciduous needleleaf forest; SHRUB, 980 

shrubland.981 
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Appendix E 982 

 983 

Figure E1. The relationships between SLA (specific leaf area), LDMC (leaf dry matter content), 984 

LNC (leaf N concentration), LPC (leaf P concentration) and their eight most important predictors. 985 
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 986 

Figure E2. The relationships between LA (leaf area), WD (wood density) and their eight most 987 

important predictors. 988 
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Appendix F Comparisons between our study with trait maps from previous 989 

studies 990 

Given that the trait maps predicted for China were not available from the literature and their 991 

authors, we compared our study with those studies performed at the global scale (see Table F1). 992 

Thus, we extracted the data in China from global trait maps. Before the quantitative comparisons 993 

with previous studies, we performed two steps to make the data products as comparable as 994 

possible and improve the consistency between different studies. First, due to different spatial 995 

resolution of global trait maps (mainly 0.5°) and our study, we resampled the data products of 996 

previous studies and our maps to 0.5° spatial resolution. In addition, Vallicrosa et al. (2022) 997 

generated the global maps of LNC and LPC with a 1 km spatial resolution, we also compared the 998 

frequency distribution of Vallicrosa et al. (2022) with that of our study at a 1 km spatial resolution. 999 

Second, our study focused on natural vegetation, so the global trait maps were used to filter out 1000 

non-natural vegetation (e.g., croplands). For example, Madani et al. (2018) predicted the spatial 1001 

distributions of SLA that included croplands. We quantitatively compared our maps with previous 1002 

studies from two perspectives. The comparisons among trait maps were made using frequency 1003 

plots and spatial correlations (Figure Fig. 7,  and Table 54 and Fig. F1 in Appendix F). And the 1004 

maps of spatial differences between our study and previous studies were displayed as Figs. F1F2-1005 

F5 F6 in Appendix F. 1006 

 1007 

Table F1 Summary table of related trait maps of previous studies used in this study. 1008 

References Related 

traits 

Methods Predictors Consideration 

of PFT 

Spatial 

Resolutionresolution 

Dong et al. 

(2023) 

SLA 

LNC 

Optimality models Climate Yes 0.5° 

Vallicrosa et 

al. (2022) 

LNC 

LPC 

Neural networks Climate 

Soil 

N and P 

deposition 

Yes 0.0083° 

Schiller et al. 

(2021) 

SLA 

LNC 

LA 

WD 

Convolutional 

Neural Networks 

Climate 

In-situ RGB 

images 

No  

 

0.5° 

Boonman et 

al. (2020) 

SLA 

LNC 

WD 

Generalized linear 

model, Generalized 

additive model, 

Random forest, 

Boosted regression 

trees, Ensemble 

model 

Climate 

Soil  

 

No  0.5° 

Moreno et al. 

(2018) 

SLA  

LNC 

Regularized linear 

regression, Random 

Climate 

Elevation 

Yes 0.0045° 
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LPC 

LDMC 

forest, Neural 

networks, Kernel 

networks 

Reflectance 

 

Madani et al. 

(2018) 

SLA Generalized 

additive model 

Climate No 0.5° 

Butler et al. 

(2017) 

SLA  

LNC 

LPC 

Bayesian model Climate 

Soil  

 

Yes 0.5° 

Bodegom et 

al. (2014) 

SLA 

WD 

Multiple regression 

analysis 

Climate 

Soil 

No 0.5° 

The resolutions 0.5°, 0.0083° and 0.0045° correspond to square grid cell sizes of about 50 km, 1 km and 500 m at 1009 

the equator. PFT, plant functional type; SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N 1010 

concentration; LPC, leaf P concentration; LA, leaf area; WD, wood density. 1011 

 1012 

Figure F1. Frequency distributions of plant functional traits in our study (“This study”, dashed 1013 

black lines) and Vallicrosa et al. (2022) at 1 km spatial resolution. (a) LNC, leaf N concentration 1014 

(mg g-1); (b) LPC, leaf P concentration (mg g-1). 1015 
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 1016 
Figure F2. Spatial differences in SLA (specific leaf area, m2 kg-1) between our study and trait 1017 

maps from previous studies (see Table F1 for citations). 1018 
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 1019 

Figure F3. Spatial differences in LNC (leaf N concentration, mg g-1) between our study and trait 1020 

maps from previous studies (see Table F1 for citations). 1021 
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 1022 

Figure F4. Spatial differences in LPC (leaf P concentration, mg g-1) between our study and trait 1023 

maps from previous studies (see Table F1 for citations). 1024 
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 1025 

Figure F5. Spatial differences in LA (leaf area, cm2) between our study and trait maps from 1026 

previous studies (see Table F1 for citations). 1027 
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 1028 

Figure F6. Spatial differences in WD (wood density, g cm-3) between our study and trait maps 1029 

from previous studies (see Table F1 for citations). 1030 
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