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Responses to #Reviewer 2 

This manuscript presented a study on mapping eight key plant traits at 1 km spatial resolution 

across China using field measurements, environmental variables and vegetation indices. Two 

machine learning methods were used to develop the trait prediction models. This study is well 

written and is interesting to the community. The trait dataset of this study has great potential to 

advance trait-based ecology. However, the methods are not clearly described. Also, it is 

recommended to perform a quantitative comparison between the trait maps of this study with 

those from previous studies. I hope that the following comments are helpful to improve the 

quality of the manuscript. 

[Response]: Thanks for your positive comments and constructive suggestions for our 

manuscript. We have carefully addressed the suggestions and comments on the method 

description and added a quantitative comparison between the trait maps of this study with those 

from previous studies. And detailed revisions and responses are listed below. In addition, we 

have used tracks to highlight the revisions in the revised manuscript. 

 

Specific comments: 

 

1. Line 67: “PROPECT model” should be “PROSPECT model”. 

[Response]: We have corrected this word in the revised manuscript (see Line 70). 

 

2. Line 125: It is interesting to know the proportion of data excluded by criteria #3. Since the 

trait values of individual plant were aggregated to community-weighted trait values within 1km, 

including these data can be helpful to increase the number of measurements. 

[Response]: Thanks for your comment. The description was misleading on the criteria #3 in 

the old version of the manuscript. The aim of criteria #3 was to consider the intraspecific trait 

variation within the same species. When the same species occurred in the same sampling site 

from different studies, we included all original observed data from different studies rather than 

averaging the values at the species level. This criterion can contribute substantially to the trait 

variation within and between communities, and it also can be helpful to increase the number of 

trait measurements in subsequent analysis. We have corrected the relevant description about 

criteria #3 as “In order to consider the intraspecific trait variation, when the same species 

occurred in the same sampling site from different studies, we included all original observed 

data from different studies rather than averaging the values at the species level” in the section 

2.2 in Materials and Methods (see Lines 153–156 in the revised manuscript). 

 

3. Line 135: SLA of sun and shade leaves can be quite different, which may lead to uncertainties 
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for later analysis. 

[Response]: Thanks. We have checked the literature that these literatures of SLA data that 

introduced the sampling and measurement methods all sampled the sun leaves according to 

according to standardized measurement procedures, which require sampling sun leaves during 

field sampling for trait studies (Perez-Harguindeguy et al., 2013). We have corrected this 

sentence as “we included SLA measurements on sun-leaves” in the section 2.2 in Materials and 

Methods (see Line 168 in the revised manuscript). 

 

4. Line 159: Specify the full name of AI. 

[Response]: We have added the full name of AI (i.e., aridity index) in the section 2.3 in 

Materials and Methods (see Line 197 in the revised manuscript). 

 

5. Line 167: The soil data was from Shangguan et al., 2013. Please justify that soil properties 

are time invariant, or their variation across time has little influence on the plant traits. 

[Response]: Soil properties are influenced by climate, vegetation, land use and management 

and human activities over a long period, and to some extent, soil properties may have temporal 

variability. However, due to the limitation of current technology and the availability of field 

survey data, a temporal dynamic dataset for multiple soil properties at a large scale is lacking, 

which is an inadequacy that cannot be resolved in current studies. The soil data that we use is 

the national-scale dataset that was surveyed based on multiple years during the Second National 

Soil Survey (1979–1985) and included 2444 counties, 312 national farms, and 44 forest farms 

in China, which is also a common and widely accepted practice in large-scale spatial mapping 

and biogeographical studies (Maire et al., 2015; Besnard et al., 2021; Huang et al., 2021; Ma et 

al., 2021). Soil properties are regarded to be more stable than that of plant traits. A current study 

has reported that soil organic carbon in most regions in China showed insignificant trend from 

1980s to 2010s and slightly inter-decadal declines in North China and Northeast China (Zhang 

et al., 2023). At the time scale of decades, it is reasonable for being used for large-spatial scale 

studies. 

 

Reference 

Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gutter, J., Herault, B., Kassi, J., N'Guessan, 

A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest 

inventories, biomass and climate data. Earth Syst. Sci. Data, 13, 4881–4896, 

https://doi.org/10.5194/essd-13-4881-2021, 2021. 

Huang, Y. Y., Ciais, P., Santoro, M., Makowski, D., Chave, J., Schepaschenko, D., Abramoff, R. Z., Goll, 

D. S., Yang, H., Chen, Y., Wei, W., and Piao, S. L.: A global map of root biomass across the world’s 

forests. Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, 2021. 

https://doi.org/10.5194/essd-13-4263-2021
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Ma, H. Z., Mo, L. D., Crowther, T. W., Maynard, D. S., van den Hoogen, J., Stocker, B. D., Terrer, C., 

and Zohner, C. M.: The global distribution and environmental drivers of aboveground versus 

belowground plant biomass. Nat. Ecol. Evol., 5, 1110, https://doi.org/10.1038/s41559-021-01485-

1, 2021. 

Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., 

Ellsworth, D., Niinemets, U., Ordonez, A., Reich, P. B., and Santiago, L. S.: Global effects of soil 

and climate on leaf photosynthetic traits and rates, Glob. Ecol. Biogeogr., 24, 706–717, 

https://doi.org/10.1111/geb.12296, 2015. 

Zhang, Z. P., Ding, J. L., Zhu, C. M., Wang, J. J., Li, X., Ge, X. Y., Han, L. J., Chen, X. Y., and Wang, J. 

Z.: Exploring the inter-decadal variability of soil organic carbon in China, Catena, 230, 

https://doi.org/10.1016/j.catena.2023.107242, 2023. 

 

6. Lines 167-169: Were the soil properties of eight layers averaged? If the topsoil properties are 

important, it would be good to simply use the soil properties of the first layer (0-45cm). 

[Response]: No, we averaged the first four layers. In Shangguan et al. (2013)’s study, the soil 

characteristics of soil profiles are divided into eight standard layers (i.e., 0–0.045, 0.045–0.091, 

0.091–0.166, 0.166–0.289, 0.289–0.493, 0.493–0.829, 0.829–1.383, and 1.383–2.296 m). The 

first layer is 0-4.5 cm instead of 0-45cm. We averaged the soil data of the first four layers to 

represent the topsoil. We used the topsoil depth of about 30 cm, because we considered most 

relevant for community composition via plant establishment and by influencing plants in later 

life stages, for example, through the potentially high nutrient availability (Vitousek and Sanford, 

1986; Boonman et al., 2020). 

 

Reference 

Shangguan, W., Dai, Y. J., Liu, B. Y., Zhu, A. X., Duan, Q. Y., Wu, L. Z., Ji, D. Y., Ye, A. Z., Yuan, H., 

Zhang, Q., Chen, D. D., Chen, M., Chu, J. T., Dou, Y. J., Guo, J. X., Li, H. Q., Li, J. J., Liang, L., 

Liang, X., Liu, H. P., Liu, S. Y., Miao, C. Y., and Zhang, Y. Z.: A China data set of soil properties 

for land surface modeling. J. Adv. Model. Earth Syst., 5, 212–224, 

https://doi.org/10.1002/jame.20026, 2013. 

Vitousek, P. M., and Sanford, R. L. Jr. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Evol. 

S., 17, 137–167, https://doi.org/10.1146/annurev.ecolsys.17.1.137, 1986. 

Boonman, C. C. F., Benitez-Lopez, A., Schipper, A. M., Thuiller, W., Anand, M., Cerabolini, B. E. L., 

Cornelissen, J. H. C., Gonzalez-Melo, A., Hattingh, W.N., Higuchi, P., Laughlin, D. C., Onipchenko, 

V. G., Penuelas, J., Poorter, L., Soudzilovskaia, N. A., Huijbregts, M. A. J., and Santini, L.: 

Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. 

Biogeogr., 29, 1034–1051, https://doi.org/10.1111/geb.13086, 2020. 

 

7. Line 200: Please explain why the MTCT/MIR/etc. of January were used. They are not within 

the growing season. 
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[Response]: Thanks. Most selected variables were related to growing seasons because plant 

functional traits were measured during the growing season. Furthermore, based on the results 

of collinearity (r values), we found that MTCI, MIR, NIR, red and blue in January showed low 

correlations with those in other months, thus these variables were included to be used in the 

machine learning methods (see Lines 239–243 in the revised manuscript). 

 

8. Lines 239-241: What is the difference between the 10-fold cross validation and 80%/20% 

data split? 

[Response]: The description of this section was not clear in the old version. First, we spilt the 

data into two parts: 80% of the trait data was used to train the models, and the remaining 20% 

was used to assess model’s performance. To obtain a stable and reliable model, this procedure 

was repeated 10 times, and the model performances (R2, NRMSE and MAE) were calculated 

by the average values of these 10 results. We have corrected the description as “we calibrated 

the models 10 times using randomly selected 80% of the data for training the models and 

validating against the remaining 20% based on cross-validation.” in the section 2.4 in Materials 

and Methods (See Lines 287–290 in the revised manuscript). 

 

9. Line 252: Please describe the way of obtaining permuted values in more detail. 

[Response]: Thanks. The relative importance of each variable is available from model 

prediction, but it may be model-specific. To overcome this limitation, Thuiller et al. (2009) used 

a randomisation procedure to estimate the importance of each variable that is independent of 

the modelling technique, thus enabling direct comparison across models. This method applies 

correlation between the standard predictions (i.e. fitted values) and predictions where the 

variable under investigation has been randomly permutated. If the correlation is high, i.e. it is 

showing little difference between the two predictions, the variable permutated is considered not 

important for the model. This is repeated multiple times for each variable, and the mean 

correlation coefficient over runs is recorded. Then the relative importance of each predictor was 

quantified as one minus the Spearman rank correlation coefficient (see Boonman et al. 2020). 

We have added more detailed description in the section 2.4 in Materials and Methods (see Lines 

302–306 in the revised manuscript). 

 

Reference 

Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – A platform for ensemble 

forecasting of species distributions. Ecography, 32, 369–373, https://doi.org/10.1111/j.1600-

0587.2008.05742.x, 2009. 

Boonman, C. C. F., Benitez-Lopez, A., Schipper, A. M., Thuiller, W., Anand, M., Cerabolini, B. E. L., 

Cornelissen, J. H. C., Gonzalez-Melo, A., Hattingh, W.N., Higuchi, P., Laughlin, D.C., Onipchenko, 
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V.G., Penuelas, J., Poorter, L., Soudzilovskaia, N.A., Huijbregts, M.A.J., and Santini, L.: Assessing 

the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr., 29, 

1034–1051, https://doi.org/10.1111/geb.13086, 2020. 

 

10. Line 259: It is not clear how the trait values of individual plant were aggregated with PFT 

to community-weighted trait values within 1km. Please describe the method in more detail. 

[Response]: We generated the plant functional trait maps in four steps as follows. First, we 

associated each species with a corresponding PFT based on plant growth form (tree, shrub and 

grass), leaf type (broadleaf and needleleaf) and leaf phenology (deciduous and evergreen). For 

example, the information on Salix matsudana is: tree, deciduous and broadleaf, thus, we were 

able to associate the PFT of deciduous broadleaf forest (DBF) to this species. The species that 

did not correspond to any PFT were discarded. Second, we predicted the trait values for six 

PFTs separately by building the machine learning models using the field measurement data and 

environmental variables and vegetation indices at a 1 km spatial resolution. Then, we obtained 

six prediction layers for single plant functional trait. Third, the classification of natural PFT 

types includes evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous 

needleleaf forest (DNF), deciduous broadleaf forest (DBF), shrubland (SHL) and grassland 

(GRL). We calculated the abundance of individual PFT within 1 km grid cell using a land cover 

map with a spatial high-resolution of 100 m. Forth, the final community weighted mean trait 

values were calculated according to the predicted trait values (the second step) and 

corresponding abundance of each PFT (the third step) refer to the equation of CWM calculation 

in the community as Eq. (1) (Garnier et al., 2004). 

CWM = ∑ 𝑊𝑖
𝑛
𝑖=1 𝑋𝑖                                                         (1) 

where n is the total number of PFT in a given grid, 𝑊𝑖is the relative abundance of the ith PFT, 

and 𝑋𝑖 is the predicted trait value of the ith PFT.  

We have revised the relevant content in the sections 2.2 and 2.5 in Materials and Methods 

(see Lines 177–187, 249–258, 314–322 in the revised manuscript). 

 

Reference 

Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., 

Aubry, D., Bellmann, A., Neill, C., and Toussaint, J. P.: Plant functional markers capture ecosystem 

properties during secondary succession. Ecology, 85, 2630–2637, https://doi.org/10.1890/03-0799, 

2004. 

 

11. Lines 263-264: It is not clear how the predictions of the two methods were merged. Did the 

authors set a threshold for the cross-validated R2? If the accuracies of predictions of one method 

were too low, it may not be necessary to include them. 
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[Response]: Thanks for your nice suggestion. In this manuscript, we did not set a threshold for 

the cross-validated R2. We used Weighted Average methods based on the R2 values of single-

model to obtain the predictive performance of the ensemble models. Firstly, we calculated the 

predictive values of ensemble model, in a given grid cell, based on predictive values and the 

cross-validated R2 values of random forest and boosted regression trees as described by the 

following equation (Marmion et al., 2009; Boonman et al., 2020). 

𝑃𝑟𝑒𝑑_𝐸𝑀𝑡 =
∑ (𝑝𝑟𝑒𝑑2
𝑚=1 𝑚,𝑡

× 𝑟𝑚,𝑡
2 )

∑ 𝑟𝑚,𝑡
22

𝑚=1

 

where 𝑃𝑟𝑒𝑑_𝐸𝑀𝑡  is the predictive values of t trait in ensemble model, 𝑝𝑟𝑒𝑑𝑚,𝑡  is the 

predictive values of t trait in m model, 𝑟𝑚,𝑡
2  is the cross-validated R2 of t trait in m model. 

Second, the accuracy of the ensemble model was calculated by regressing the predictive 

values of ensemble model based on the merged predictive values (based on Eq. 5) against the 

observed trait values. In addition, the accuracies of these two models showed little variability 

for a given trait. 

We have added the relevant description on how the predictions of the two methods were 

merged in the section 2.5 in Materials and Methods (see Lines 326–336 in the revised 

manuscript). 

 

12. Lines 403-417: It would be great to perform a quantitative comparison with previous trait 

maps, for instance, the differences between the trait maps from this study and those of previous 

studies can be calculated. From such maps, one can easily tell the main differences among the 

datasets. 

[Response]: Thanks for your constructive suggestion. Previous studies mainly focused on the 

global scale (see Table F1 in Appendix F), we extracted the data of China from the global trait 

maps. Before the quantitative comparisons with previous studies, we performed two steps to 

make the products as comparable as possible and improve the consistency between different 

datasets. First, because the spatial resolution of most global trait maps is 0.5°, we resampled 

the data products of previous studies and our maps to 0.5° spatial resolution. In addition, 

Vallicrosa et al. (2022) generated the global maps of LNC and LPC with a 1 km spatial 

resolution, we also compared the frequency distribution of Vallicrosa et al. (2022) with that of 

our study at a 1 km spatial resolution. Second, our study focused on natural vegetation, so the 

global trait maps were used to filter out non-natural vegetation (e.g., croplands). For example, 

Madani et al. (2018) predicted the spatial distributions of key plant traits for SLA, canopy height 

and seed mass that include croplands. We quantitatively compared our maps with previous 

studies from two perspectives. The comparisons among trait maps were made using frequency 

plots and spatial correlations (Fig. 7 and Table 5, Fig. F1 in Appendix F) in the section 4.1 in 
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Discussion (see Lines 469–483 in the revised manuscript). And the maps of spatial differences 

between our study and previous studies were displayed as Figs. F2-F6 in Appendix F in the 

section 4.2 in Discussion (see Lines 513–542 in the revised manuscript). 

Table F1 Summary table of related trait maps used in this study. 

References Related 

traits  

Methods Predictors Consideration 

of PFT 

Resolution 

Dong et al. 

(2023) 

SLA 

LNC 

Optimality models Climate Yes 0.5° 

Vallicrosa et al. 

(2022) 

LNC 

LPC 

Neural networks Climate 

Soil 

N and P deposition 

Yes 0.0083° 

Schiller et al. 

(2021) 

SLA 

LNC 

LA 

WD 

Convolutional Neural 

Networks 

Climate 

In-situ RGB 

images 

No  

 

0.5° 

Boonman et al. 

(2020) 

SLA 

LNC 

WD 

Generalized linear 

model, Generalized 

additive model, Random 

forest, Boosted 

regression trees, 

Ensemble model 

Climate 

Soil  

 

No  0.5° 

Moreno et al. 

(2018) 

SLA  

LNC 

LPC 

LDMC 

Regularized linear 

regression, Random 

forest, Neural networks, 

Kernel networks 

Climate 

Elevation 

Reflectance 

 

Yes 0.0045° 

Madani et al. 

(2018) 

SLA Generalized additive 

model 

Climate No 0.5° 

Butler et al. 

(2017) 

SLA  

LNC 

LPC 

Bayesian model Climate 

Soil  

 

Yes 0.5° 

Bodegom et al. 

(2014) 

SLA 

WD 

Multiple regression 

analysis 

Climate 

Soil 

No 0.5° 

The resolutions 0.5°, 0.0083°, and 0.0045° correspond to square grid cell sizes of about 50 km, 1 km and 

500 m at the equator. SLA, specific leaf area; LDMC, leaf dry matter content; LNC, leaf N concentration; 

LPC, leaf P concentration; LA, leaf area; WD, wood density. 
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Table 5 Spatial correlations for SLA, LNC, LPC, LA and WD between this study and other 

previous trait maps, labelled by the first author of the corresponding publication (see Table F1 

for citations). 

Spatial 

correlation 

Dong Vallicrosa Schiller Boonman Moreno Madani Butler Bodegom 

SLA 0.398  -0.082 0.327 0.242 0.136 -0.042 0.319 

LNC 0.156 0.359 0.229 0.252   0.394  

LPC  0.136     0.057  

LA   0.514      

WD   0.647 0.107     

SLA, specific leaf area (m2 kg-1); LNC, leaf N concentration (mg g-1); LPC, leaf P concentration (mg g-

1); LA, leaf area (cm2); WD, wood density (g cm-3). 

 

Figure 7. Frequency distributions of plant functional traits in our study (“This study”, dashed black 

lines) and other trait maps, identified by the first author of the corresponding publication (see Table 

F1 for citations). SLA, specific leaf area (m2 kg-1); LNC, leaf N concentration (mg g-1); LPC, leaf P 

concentration (mg g-1); LA, leaf area (cm2); WD, wood density (g cm-3). 
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Figure F1. Frequency distributions of plant functional traits in our study (“This study”, dashed black 

lines) and Vallicrosa et al. (2022) at 1 km spatial resolution. LNC, leaf N concentration (mg g-1); 

LPC, leaf P concentration (mg g-1). 
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Figure F2. Spatial differences in SLA (specific leaf area, m2 kg-1) between our study and trait maps from 

previous studies (see Table F1 for citations). 
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Figure F3. Spatial differences in LNC (leaf N concentration, mg g-1) between our study and trait maps 

from previous studies (see Table F1 for citations). 



12 

 

 

Figure F4. Spatial differences in LPC (leaf P concentration, mg g-1) between our study and trait maps 

from previous studies (see Table F1 for citations). 
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Figure F5. Spatial differences in LA (leaf area, cm2) between our study and trait maps from previous 

studies (see Table F1 for citations). 
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Figure F6. Spatial differences in WD (wood density, g cm-3) between our study and trait maps from 

previous studies (see Table F1 for citations). 
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