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Abstract. Rising seas are a threat for human and natural systems along coastlines. The relation between global warming and

sea level rise is established, but the quantification of impacts of historical sea level rise on a global scale is largely absent. To

foster  such quantification,  we here  present  a  reconstruction  of  historical  hourly (1979-2015) and monthly (1900-2015)

coastal water levels and a corresponding counterfactual without long-term trends in sea level. The dataset pair allows for

impact attribution studies that quantify the contribution of sea level rise to observed changes in coastal systems following the

definition of the Intergovernmental Panel on Climate Change (IPCC). Impacts are ultimately caused by water levels that are

relative to the local land height, which makes the inclusion of vertical land motion a necessary step. Also, many impacts are

driven by sub-daily extreme water levels. To capture these aspects, the factual data combines reconstructed geocentric sea

level on a monthly time scale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979. The

inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide gauge records in

most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide gauges through the inclusion

of intra-annual ocean density variations. The counterfactual data is derived from the factual data through subtraction of the

quadratic  trend. The dataset  is  made available openly through the Inter-Sectoral  Impact  Model Intercomparison Project

(ISIMIP) at https://data.isimip.org/10.48364/ISIMIP.749905 (Treu et al. 2023a).

Introduction

Sea level rise is a threat to a significant proportion of the world’s population, which is concentrated near the sea. Global sea

levels have risen by 15 to 25 cm from 1901 to 2018 and are expected to rise by further 28 (lower bound of the SSP-1.9

scenario) to 101 cm (upper bound of the SSP-8.5 scenario) relative to the period 1995-2014 by 2100 (Fox-Kemper et al.
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2021). There are still gaps in the understanding of fast Antarctic ice loss, which may lead to sea level rise above the upper

bound of the SSP-8.5 scenario. The trend in relative sea level (RSL) rise is stated as a climate impact driver (Ranasinghe et

al.  2021) for  seven  of  the eight  Representative Key Risks identified in the working group II  contribution to the sixth

assessment report of the Intergovernmental Panel on Climate Change (IPCC, AR6, WGII, chapter 16; (O’Neill et al. 2022a).

It contributes in particular as a driver of risks to low-lying coastal socio-ecological systems through irreversible long-term

loss of land, critical ecosystem services, livelihoods, well-being or culture in combination with other drivers of risk.

Several  studies  assessed  the  future  coastal  risks  from sea  level  rise  and  incorporated  important  drivers  such  as  socio-

economic development and population change (Hallegatte et al. 2013; Hinkel et al. 2014; Neumann et al. 2015; Hunter et al.

2017; Brown et al. 2018; Tiggeloven et al. 2020; Vousdoukas et al. 2020; Kirezci et al. 2023). There is, however, an absence

of works on observed impacts attributed to sea level rise, though similar modeling approaches could be used. In particular,

there is a lack of studies to attribute historical coastal change or disturbances to sea level rise in a global setting (O’Neill et

al. 2022a).

Studies  on a  regional  scale  exist.  They attributed  changes  in  the  physical  quantities  of  historic  flood events,  e.g.,  for

hurricane Katrina (Irish et al. 2014) and Sandy (Lin et al. 2016), coastal retreat to sea level rise in Senegal (Enríquez-de-

Salamanca 2020) and Pakistan (Kanwal et al. 2019), abrupt beach retreat in Tasmania to sea level rise and wind changes

(Sharples et al. 2020). Strauss et al. (2021) quantified the role of historical sea level rise on economic damages for the

individual event of hurricane Sandy. Observed damages in Solomon Islands and Fiji have been assessed to be driven by

relative sea level rise (Albert et al. 2016; McNamara and Des Combes 2015). These examples are taken from the literature

review on impact attribution for the IPCC AR6 WGII Chapter 16 (O’Neill et al. 2022a), see O’Neill et al. (2022b) for a

comprehensive overview of studies1.

Challenges for studies on impact attribution to sea level rise include the sparse observational data on flood extent required to

validate historical impact simulations on the global scale, with improvements becoming available only recently, e.g., through

the Global Flood Database (Tellman et al. 2021) and the Flood Inundation Archive (Yang et al. 2021) for flooded coastal

areas. Few datasets exist for longer-term change of coastlines (Mentaschi et al. 2018; Luijendijk et al. 2018). Global digital

elevation datasets are another important source of uncertainty as their vertical precision is largely below that of historical sea

level change (e.g., Van de Sande, Lansen, and Hoyng 2012; Gesch 2018), but there are promising recent advances (Hooijer

and Vernimmen 2021; Vernimmen and Hooijer 2023). There is, however, also a lack of forcing data to facilitate impact

attribution to sea level rise.

With this study we aim to address the lack of forcing data and facilitate works that quantify the role of sea level rise in

historically observed phenomena at the coast. Such phenomena can be slowly-evolving changes like the retreat of sandy

beaches  or  extreme-event-driven  effects  like  economic  damages  from  coastal  flooding.  We  here  build  on  the  impact

attribution framework outlined in the IPCC AR6 WG2, ch16 (O’Neill et al. 2022a). The IPCC defines an "observed impact

1 https://www.isipedia.org/report/observed-impacts-of-climate-change/
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as the difference between the observed state of a natural,  human or managed system and a counterfactual  baseline that

characterizes the system’s state in the absence of changes in the climate-related systems'' and further that the "difference

between the observed and the counterfactual  baseline state is  considered the change in the natural,  human or managed

system that is attributed to the changes in the climate-related systems (impact attribution)" (O’Neill et al. 2022a). 

As the counterfactual impact baseline cannot be observed, it needs to be modeled by an impact model. A precondition for

impact attribution is that the impact model explains the observed phenomenon under consideration reasonably well given its

drivers. This necessitates a model evaluation step, which is followed by the attribution step itself. The presented work aims

to make forcing data available for both steps: i) factual forcing data to evaluate impact models and produce factual historical

impact simulations and ii) counterfactual forcing data to produce counterfactual impact simulations. 

While the factual data should stay as close as possible to reality and is thus in principle set, the counterfactual data depends

on the specific  attribution question.  As coastal  systems changed fast  over  the  past  century  with climate  and  sea  level

presumably one but often not the dominant driver, we here ask the attribution question "how did historical sea level rise

affect observed phenomena in dynamic coastal systems with a multitude of drivers, irrespective of the origin of the sea level

rise?" We thus aim to delineate sea level rise from other drivers of change like population change, construction activity at the

coast or ecosystem degradation through direct human intervention. We do not focus on the causes of sea level rise itself, but

treat it as one driver of coastal change or disturbance in line with the IPCC definition (O’Neill et al. 2022a). Quantifying the

fraction  of  impacts  from anthropogenic  influence  on sea  level  rise  would  need  investigation of  the  causal  chain  from

emissions to sea level rise to impacts through a more complex attribution setup based on climate model ensembles (Hope et

al. 2022). 

Coastal systems ultimately experience the change of the water level at the coast relative to the height of the land, which we

term relative water  levels.  As relative water  levels are the most direct  input for impact models we provide factual  and

counterfactual  relative  water  levels.  This  necessitates  the inclusion of  vertical  land motion (VLM),  which  -  though an

important driver of coastal impacts - has been less rigorously observed and researched on a global level than sea level, and

global datasets only are becoming available recently (Oelsmann et al. 2023; Hammond et al. 2021; Frederikse et al. 2020;

Hawkins, Husson, et al. 2019; Pfeffer et al. 2017). Consistent with the impact attribution definition of the IPCC we do not

investigate the drivers of VLM itself,  but treat it  as a driver of impacts as a part of the relative sea level. There is no

predecessor for a global relative water level dataset.

We construct relative hourly and extended monthly coastal water levels globally for the historical period and a respective

counterfactual – the Hourly Coastal water levels with Counterfactual (HCC) dataset. We describe the approach in the section

'Materials and Methods', present the main features of the dataset in the subsequent 'Results' section and provide a discussion

in the final section.
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Materials and Methods

Many impacts manifest through extreme sea level conditions that occur on the timescale of hours, which necessitates a

product that resolves these timescales. The construction of factual relative hourly coastal water levels in our HCC dataset can

be broken down into the sum of four components: 

h=hLF❑+hHF +hT+hSC (1)

where h is the water level relative to the coast; hLF is a low frequency component that also includes the long-term evolution

of water levels and VLM; hHF is a high frequency component that describes hourly changes in water levels;  hT is the tidal

component; and hSC is the regular seasonal cycle. We derive them as follows:

● hLF (low frequency): Derived from a geocentric, deseasonalized version of the hybrid reconstructions (HR) dataset

from Dangendorf et al. (2019) and a probabilistic VLM reconstruction from Oelsmann et al. (2023). This combined

dataset is low-pass filtered by taking its 90-day running mean value to retain only contributions with frequency

longer than three months. To yield hourly resolution, the result is interpolated with cubic spline interpolation.

● hHF (high frequency): Sourced from deseasonalized non-tidal residuals of the Coastal Dataset for the Evaluation of

Climate impact  (CoDEC, Muis et  al.  2020) to  cover  the high-frequency variation of  storm tides.  This is  then

highpass-filtered by removing the 90-day running mean value, to represent water level frequencies higher than 3

months.

● hT (tidal levels): Derived from the tidal component of CoDEC.

● hSC (seasonal cycle):  Multiyear  seasonality computed over the years  1993 to 2015 from the satellite  altimetry

dataset used in Dangendorf et al. (2019). To yield hourly resolution, the seasonal cycle is interpolated with cubic

spline interpolation.

To ensure no overlap, the regular seasonal cycle is excluded from both  hLF and  hHF components. Barotropic water level

changes due to wind and atmospheric pressure on time scales longer or equal to one month are covered in both, the HR, and

the CoDEC dataset.  We use frequency filtering to  prevent  double counting.  CoDEC models these  water  level  changes

explicitly whereas HR is based on a statistical reconstruction method based on sparse observations. However, HR is not

restricted  to  barotropic  variations  alone  and  covers  the  full  spectrum  of  intra-annual  and  longer  sea  level  variations

(including  sterodynamic  and  barystatic  processes).  The  dominating  process  at  different  time  scales  depends  on  local

conditions  (Zhu et  al.,  2021;  Dangendorf  et  al.,  2014).  We thus expect  that  it  depends on the  location  which product

performs better. Our method's cutoff frequency determines which scale of variations is captured by each product. CoDEC

captures variations with higher frequencies than the cutoff, while HR captures variations with lower frequencies. We have

tested for different cutoff frequencies and how it affects the performance of the combined product when compared to tide
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gauges. We varied the cutoff frequency for values of 1, 2, 3, 4, 5, 6, and 12 months and found an optimal cutoff frequency of

3 months (90 days).

We apply the same process but exclude the VLM reconstruction to yield a geocentric version of the combined dataset. To

yield a common vertical reference, we shift the geocentric version of our dataset vertically to yield instantaneous height

above the WGS 84 geoid, which is also called absolute dynamic topography. To that end, we remove the mean value for the

time  period  1993-2012  from  our  geocentric  dataset  and  add  the  mean  dynamic  topography  from  Copernicus  Marine

Environment  Monitoring  Service  (CMEMS)  SEALEVEL_GLO_PHY_MDT_008_0632 that  is  derived  from  satellite

altimetry over the same time period. We align our relative version of the dataset with the geocentric version such that the

water levels in both datasets are equal on the last date of the record. 

We describe in the preceding paragraphs the different source datasets and how we adjusted them for this application. We

describe how we derived the counterfactual dataset in the final paragraph of this section.

Coastal Dataset for the Evaluation of Climate Impact (CoDEC)

CoDEC is an update of the Global Tide and Surge Reanalysis (GTSR, Muis et al. 2016) dataset and uses a
newer modeling framework,  higher resolution and newer climate forcing data.  It  is  based on the
hydrodynamic Global Tide and Surge Model (GTSMv3.0), which uses the unstructured Delft3D Flexible
Mesh software (Kernkamp et al. 2011) as shallow-water flow solver and resolves coastal areas at high
detail while being efficiently coarse in the open ocean. GTSM uses the depth-averaged, barotropic
mode of Delft3D, assuming a constant density of ocean waters. It explicitly models tides and storm
surges at a high temporal resolution. The model has global coverage and thus no open boundaries.
The coastal resolution is 1.25km at European coasts and 2.5km at other global coasts. To produce
CoDEC, GTSM is forced with the 10m wind speed and atmospheric pressure from the ERA5 reanalysis
(Hersbach et al. 2020). ERA5 determines the time coverage of CoDEC from 1979 to 2017. The spatial
resolution of ERA5 is 0.25° × 0.25° ( 31 km). Time series are saved at approximately 18,000 output∼

locations that are located at 10-50 km distance along a smoothed global coastline. Validation by Muis et

al. (2020) has demonstrated that CoDEC has an average root mean squared error (RMSE) of 0.26m (SD 0.73m) for the

comparison between modeled and observed annual maxima at 485 tide gauge stations in the Global Extreme Sea Level

Analysis database (GESLA-2; Woodworth et al. 2016). For tropical cyclones with wind fields of relatively small spatial

2 https://protocol.isimip.org/protocol/ISIMIP3a/index.html#socioeconomic-forcing  
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extent, extreme water levels are expected to be underestimated due to poor representation of the meteorological forcing in

ERA5 (Dullaart et al. 2020). Polar regions are not well resolved due to low-quality atmospheric forcing, poor bathymetry

and the poor representation of ice dynamics.

For the HCC dataset we separate the total CoDEC water levels into components of tidal elevation and non-tidal storm surge

residuals. We deseasonalize the storm surge residuals by removing its monthly average climatology over the years 1993-

2015, which is interpolated to hourly resolution with cubic spline interpolation.

The hybrid reconstructions (HR) dataset. 

The HR dataset (Dangendorf et al. 2019) combines two methodologies to reconstruct historical sea level rise from tide gauge

and satellite observations. Both methodologies are prominent sea level reconstruction approaches on their own (Church et al.

2011; Hay et al. 2015) and have their distinct advantages and shortcomings. HR applies each methodology at time scales

where they have well-proven performance. The HR dataset covers the period 1900-2015 and has monthly time resolution.

Thus it cannot provide sea level variability on shorter than monthly timescales, which needs to be introduced by CoDEC.

Since  HR  is  based  on  observations,  the  data  includes  all  sea  level  processes  that  are  not  explicitly  removed.  Most

importantly, it includes the effects of Gravitation, Rotation, and Deformation of the Earth accompanying the sea level change

from mass addition through melting glaciers  and ice sheets,  changes  due to density variations of  the ocean  water  and

dynamic ocean currents, and variations induced by the inverse barometer effect. By construction, HR includes the sea level

variability  from wind and  atmospheric  pressure  changes,  which  are  also represented  in  the  CoDEC dataset.  Note  that

modulations due to the nodal cycle driven by the varying declination of the moon in time are not explicitly modeled within

the HR framework.

We remove VLM contributions from HR to represent the evolution of water levels relative to the geoid (geocentric). HR

contains VLM from long-term glacial isostatic adjustment (GIA) since the glacial maximum 21,000 years ago, and from

short-term crustal responses to present-day ice melt since 1900 (Pfeffer et al., 2017; Spada, 2017; Riva et al., 2017). GIA is

explicitly modeled in HR and can thus be readily taken out. The crustal  responses to present-day ice melt is implicitly

contained in HR through cryostatic fingerprints that are fitted to tide gauges. We use the annual reconstructions of the crustal

responses to present-day ice melt from glaciers, the Antarctic ice sheet and the Greenland ice sheet from Frederikse et al.

(2020) to remove this contribution. For the HCC dataset we deseasonalize the geocentric version of HR by removing the

monthly average climatology over the years 1993-2015.

Vertical Land Motion dataset

We use VLM data from (Oelsmann et al. 2023) that provide a probabilistic annual VLM reconstruction from 1995-2020

based on more than 10,000 time series from global navigation satellite system (GNSS) stations and differences of altimetry

and tide gauge observations. Their approach incorporates long-term secular VLM based on present day observations of the
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combined effects of GIA and various other VLM processes. In regions that are dominated by GIA, such as the Baltic Sea and

the NE-US coast, the trends of the VLM reconstruction align well with a GIA model by Caron et al. 2018 (as can be seen in

Oelsmann et al. 2023, Fig. 4C). They explicitly account for a linear trend component and non-linear variations with time. It

adapts  methods so far  used for  the reconstruction of  absolute sea level  changes  (e.g.,  Church and White,  2011) using

empirical orthogonal functions. The spatiotemporal variations are interpolated along the world’s coastlines using adaptive

Bayesian transdimensional processes (Hawkins, Husson, et al. 2019; Hawkins, Bodin, et al. 2019). By accounting for the

non-linear components of the temporal evolution, the estimated linear trends over the last century (1900-2000) are expected

to be more robust. The nonlinear components capture for example the present-day effects (since 1995) of earthquakes, which

can introduce extreme variations in observed VLM trends up to centimeters per year, or instantaneous displacements with a

magnitude of several centimeters to meters. For this study, we derive VLM from 1900 - 2015 by interpolating the annual

VLM reconstructions linearly to a monthly scale and extrapolate it back to the year 1900 with the reconstruction of the linear

component of VLM.

We incorporated this VLM dataset, which is directly derived from observations, as the most independent source for such

data. Alternatives to this approach exist and were already used in earlier datasets. One possibility is to only account for VLM

that is caused by GIA which can directly be modeled, or implicitly through cryostatic fingerprints in the case of responses to

present day ice melt (Dangendorf et al., 2019). Another possibility is to approximate non-linear effects from the residual

between tide gauge observations and reconstructions (Hay et al., 2015; Kopp et al., 2014; Dangendorf et al., 2021), which

can be valuable to extend observations in time when no GNSS data are available. This residual approach depends on long

tide gauge records which have an uneven and sparse global coverage and is thus not fully suitable to generate a densely

interpolated coastal estimate. 

Tide Gauge datasets

We use two different tide gauge datasets to evaluate the HCC dataset. To evaluate long-term sea level change we use the tide

gauge measurements of monthly mean sea level from the Permanent Service for Mean Sea Level (PSMSL, Woodworth and

Player 2003). We restrict our analysis to 663 PSMSL records of at least 20 year length and with at least 30 percent data

coverage in the 1993-2012 period. To align PSMSL with HCC or HR we remove the 1993-2012 average from each of those

datasets respectively. We specifically calculate the average only over all timesteps where the associated observational record

has valid data. This reduces the alignment error between the observations and modeled data. 

To evaluate the higher frequencies shorter than a month we use the tide gauge data provided by the GESLA-3 database

(Woodworth et al., 2016; Haigh et al., 2023; Caldwell et al., 2015), which is provided on an hourly or sub-hourly sampling

frequency. We aggregated all records with higher sampling frequency to hourly resolution by taking the average over all

timesamples that fall within plus or minus 30 min of a specific hour. We use GESLA-3 records to evaluate the HCC dataset
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at daily maximum water levels and to assess the 99th percentile of the storm surge residual. Both analyses have slightly

different  requirements  for  the  data  availability.  For  the  first  analysis  we  use  daily  maximum water  levels,  which  are

detrended by removing their respective annual mean value. Here we only include years in the calculation that have at least

11 months of valid data. For comparability between stations, we require at least 30 percent of valid years between 1979 and

2015.  Observations  and  modeled  data  are  aligned  by  the  annual  detrending  and  thus  no  further  vertical  alignment  is

necessary. With these restrictions we use 1040 tide gauge records from GESLA-3 for this analysis.

The second analysis is based on storm surge time series from GESLA-3. To remove the tidal contribution we estimate tides

for the observations by fitting harmonic functions with 69 harmonic components as described by (European Commission,

Joint Research Centre, Probst, P. , Annunziato, A., 2017). To preserve variability with frequencies larger or equal to one

month we predict harmonic tides based on fitted parameters for 65 sub-monthly harmonic components only, leaving out 4

components  with  frequencies  larger  or  equal  to  one  month.  We  then  remove  the  predicted  harmonic  tides  from  the

observations. 

We evaluate the performance of HCC on the 99th percentile of daily maxima storm surge in the 2011-2015 period. To that

end, we vertical align the observational and factual datasets by removing their respective mean value for timesteps with valid

observations in this period. We require at least 90 percent data coverage in this period. With these restrictions we use 999

tide gauge records from GESLA-3 for this analysis. In the supplementary text and Fig. S1 we perform a statistical test on

how sensitive the vertical alignment is on different percentages of data coverage in the alignment period.

The tide gauge stations used in  this  study are illustrated  in  Fig.  1 with colors referring  to ocean  basins following the

definition of Thompson and Merrifield (2014). 

Figure 1: Tide Gauge stations used for the evaluation of the presented dataset. Orange circles show 663 tide gauge stations from
PSMSL, black dots show 1040 tide gauge stations from the GESLA-3 database with 30 percent data coverage in the period 1979 to
2015 and blue circles show  999 GESLA-3 stations that have at least  90 percent data coverage in the period 2011 - 2015. The
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respective ocean basins are shown as colored areas.  Map adapted from  (Thompson and Merrifield,  2014) with an additional
division of the North Atlantic into West and East and are extended by nearest neighbor interpolation.

Counterfactual water levels

We generate counterfactual water levels that exclude the trends since the beginning of the 20th century but preserve the

short-term sea level variability of the factual dataset. There is increased evidence for an acceleration in global sea level rise

(Church and White, 2011; Hay et al., 2015; Frederikse et al., 2020; Dangendorf et al., 2017, 2019) . To account for the

accelerated trend in sea level rise, we employ a quadratic trend model. For each location, we estimate this trend using linear

regression on the annual mean time series, setting the intercept to the average sea level from 1900-1905. After removing this

long-term trend, we obtain the counterfactual time series. We evaluate the robustness of this trend estimate using the moving

block bootstrapping algorithm as described by (Mudelsee, 2019). We find that the total sea level rise derived from the trend

estimate varies depending on the location with standard deviations ranging from 3.4 mm to 16.7 mm and an average standard

deviation of 8.1 mm (See supplementary materials Text S2 and Fig. S2). While uncertainties exist, this demonstrates that the

quadratic  model  provides  a  robust  representation  of  the  long-term trend  in  sea  level  rise.  Importantly,  the  uncertainty

associated with our model is relatively small when compared to the uncertainties in the factual dataset itself.

As the water height relative to the coast is needed as input for impact models the factual/counterfactual tuple can be used as

forcing in such models directly. We additionally provide a counterfactual of the geocentric version of the factual dataset

excluding the effects of VLM. The geocentric factual/counterfactual tuple can be used if it is known from other sources that

VLM is  negligible  or  if  better  VLM estimates  are  available  regionally.  To  yield  a  counterfactual  consistent  with  our

approach, the VLM quadratic trend since 1900-1905 would need to be estimated from the regional VLM data and then

subtracted from the geocentric counterfactual dataset.

Results

We provide the factual  and  counterfactual  datasets  with hourly resolution for  the time period 1979-2015 and monthly

resolution for the time period 1900-2015. 

Long-term sea level trends

We evaluate the performance of our dataset by comparing it to tide gauge measurements from the PSMSL database. In the

‘Materials and Methods’ section we describe in more detail how we select tide gauge measurements from PSMSL and how

we align it with the HCC and HR datasets. To visualize long-term sea level change we plot the linear trend from the tide

gauge records and the modeled coastal water levels respectively for years with valid observations. Our dataset reflects well
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the different trends in different world regions (Fig. 2a) and shows a comparable root mean squared error (RMSE) against

observations. Figure 2b shows the root mean squared error (RMSE) of the monthly HCC dataset and the HR dataset against

observations.  Figure 2c depicts  latitudes for  all  tide gauge stations from the PSMSL record  that  were  used to analyze

monthly water levels, aligned by ocean basins. 
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Figure 2: Performance of our HCC dataset and the HR dataset compared to tide gauges from the PSMSL record. Panel a: Linear
sea level trend for years with valid observations for tide gauge records (black) and HCC (blue) connected by a gray bar. Panel b:
RMSE between observed and modeled RSL as blue and pink dots for HCC and HR respectively. RMSE values for the same tide
gauge station are connected with a blue bar if HCC has a lower RMSE than HR and with a pink bar if it is higher. Panel c:
Latitude of tide gauge locations sorted by ocean basin. A progressive integer of the considered tide gauge is plotted on the x-axis.
Outliers are not plotted.

We evaluate the performance of the HCC dataset through its RMSE against observations and compare it to the performance

of the HR dataset (Table 1). The HCC dataset shows a median RMSE of 5.43 cm (std. 5.34 cm) over all tide gauge stations

which is an improvement compared to the HR with a median RMSE of 5.69 cm (std 6.00 cm). We performed a Wilcoxon

signed-rank test to compare the RMSE samples and found that the improvement is statistically significant with a p-value of

5.36 ×10-10.  However,  the improvement  of  0.26 cm is only modest  when compared  to  the total  error  magnitudes.  The

improvement occurs in all 7 basins and is pronounced in the Subtropical North Atlantic with a median RMSE of 4.55 cm

(std. 2.79 cm) as compared to 5.45 cm (std. 6.2 cm) in HR. Figure 2b provides more detail, showing RMSE per tide gauge.

In  the  higher  latitudes  of  the  East  Pacific  our  dataset  has  a  lower  RMSE than  HR for  most  stations  (Fig.  2b).  The

performance also decreases at tide gauges in the lower northern latitudes of the East Pacific. As these regions are all located

at plate boundaries and are thus highly prone to tectonically induced VLM, this may hint to problems in the extrapolation
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back in time to 1900 from recent VLM data for such regions. However, in summary for all locations we see the inclusion of

observational VLM and its backward extrapolation superior to approaches that only include the GIA component of VLM and

neglect other contributing processes as can be seen in the overall improvement of median RMSE.

PSMSL GESLA-3

1900 - 2015 1979 - 2015 2011-
2015

Monthly means Daily max. values Monthly means Bias of 
extreme 
surges

HCC
(ours)

HR HCC*
(ours)

CoDEC* HCC*
(ours)

HR* HCC
(ours)

Subpolar North 
Atlantic East

5.48 
(3.58)

5.56 
(3.46)

12.09 
(13.05)

12.40 
(12.74)

2.98 
(3.41)

3.57 
(3.37)

-8.39 
(28.2)

Subpolar North 
Atlantic West

4.30 
(11.94)

4.50 
(12.46)

50.26 
(37.05)

50.16 
(36.92)

2.69 
(2.86)

3.35 
(2.93)

-15.03 
(24.51)

Subtropical 
North Atlantic

4.55 
(2.79)

5.45 
(6.20)

13.55 
(11.56)

14.37 
(11.13)

3.37 
(1.21)

3.70 
(1.24)

-12.91 
(15.19)

South Atlantic 7.60 
(2.59)

8.11 
(2.59)

14.65 
(4.92)

14.54 
(4.74)

3.22 
(1.26)

3.92 
(1.31)

-11.89 
(8.92)

East Pacific 7.01 
(4.17)

7.22 
(7.72)

11.93 
(18.78)

12.68 
(18.56)

3.68 
(2.56)

3.88 
(2.76)

-18.22 
(20.07)

Northwest 
Pacific

5.45 
(5.69)

5.53 
(5.45)

8.11 
(9.77)

10.93 
(9.13)

3.59 
(1.82)

3.47 
(1.87)

-13.19 
(18.40)

Indian Ocean - 
South Pacific

5.21 
(6.49)

5.41 
(6.62)

12.70 
(32.12)

13.34 
(31.96)

3.42 
(2.56)

3.82 
(2.26)

-14.66 
(19.89)

Global 5.43 
(5.34)

5.69 
(6.00)

12.02 
(22.15)

12.68 
(21.85)

3.35 
(2.60)

3.71 
(2.55)

-12.78 
(22.22)

PSMSL GESLA-3

1900 - 2015 1979 - 2015 2011-
2015

Monthly means Daily max. values Monthly means Bias of 
extreme 
surges

HCC
(ours)

HR HCC*
(ours)

CoDEC* HCC*
(ours)

HR* HCC (ours)

Subpolar North 
Atlantic East

5.48 
(3.58)

5.56 
(3.46)

12.09 
(13.05)

12.40 
(12.74)

2.98 
(3.41)

3.57 
(3.37)

-8.39 
(28.2)

Subpolar North 
Atlantic West

4.30 
(11.94)

4.50 
(12.46)

50.26 
(37.05)

50.16 
(36.92)

2.69 
(2.86)

3.35 
(2.93)

-15.03 
(24.51)
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Subtropical 
North Atlantic

4.55 
(2.79)

5.45 
(6.20)

13.55 
(11.56)

14.37 
(11.13)

3.37 
(1.21)

3.70 
(1.24)

-12.91 
(15.19)

South Atlantic 7.60 
(2.59)

8.11 
(2.59)

14.65 
(4.92)

14.54 
(4.74)

3.22 
(1.26)

3.92 
(1.31)

-11.89 
(8.92)

East Pacific 7.01 
(4.17)

7.22 
(7.72)

11.93 
(18.78)

12.68 
(18.56)

3.68 
(2.56)

3.88 
(2.76)

-18.22 
(20.07)

Northwest 
Pacific

5.45 
(5.69)

5.53 
(5.45)

8.11 
(9.77)

10.93 
(9.13)

3.59 
(1.82)

3.47 
(1.87)

-13.19 
(18.40)

Indian Ocean - 
South Pacific

5.21 
(6.49)

5.41 
(6.62)

12.70 
(32.12)

13.34 
(31.96)

3.42 
(2.56)

3.82 
(2.26)

-14.66 
(19.89)

Global 5.43 
(5.34)

5.69 
(6.00)

12.02 
(22.15)

12.68 
(21.85)

3.35 
(2.60)

3.71 
(2.55)

-12.78 
(22.22)

Table 1: RMSE in cm between tide gauge observations and different reconstructions of coastal water levels. For the comparison on
daily maximum values, time series are detrended by removing annual means (marked with an * in the table header). Rows contain
median and standard deviation (in brackets) of RMSE in cm aggregated for different basins and globally. The rightmost column
shows median bias of the top one percent daily maximum surge levels between HCC and tide gauge observations. Negative values
indicate that HCC underestimates the observed surge level.
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Figure 3: Illustrative comparison of our HCC (blue line), the HR (pink line) and CoDEC (red line) datasets with observations
(black line) at five example tide gauge stations.  We show daily mean values for the year 2001 that are vertically aligned by
removing the respective annual mean sea level.
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Intra-annual variability

To evaluate our dataset on timescales shorter than a year we compare it with observations from the GESLA-3 database. For

illustration, in Fig. 3 we first show daily mean values for CoDEC, HR and our dataset as anomalies to their respective yearly

mean in the year 2001 for five selected tide gauge stations. For the example of Stockholm, Sweden, the density variations

modulating sea level during the annual cycle as present in HR bring the atmospheric wind- and pressure-driven variability

from CoDEC significantly closer to observations and thus improve the performance in our combined dataset. A similar effect

is evident for Toyama, Japan and Miami, USA. Notably, also after including HR, the HCC water levels don’t perfectly

match the observations. Discrepancies remain, e.g. in Miami, USA between October and November 2001. However this falls

well within the uncertainty margins of the HR dataset, given that it represents a global statistical reconstruction of water

levels. For the stations of Zanzibar, Tanzania, and Rio de Janeiro, Brazil, sea level variation of HR is low as compared to the

total sea level amplitude, thus the factual dataset and CoDEC evolve similarly and an improvement is not evident. Both

stations are located in areas that are barely covered by tide gauges used in HR.

We assess if improvements are visible over all tide gauges in Fig. 4. We compare coastal water levels from our dataset,

CoDEC and HR through their respective RMSE against tide gauge observations. Following Muis et al (2020), each dataset is

detrended by subtracting the annual mean from each time series and each year respectively. This means that a performance

improvement is due to better alignment of intra-annual variability with tide gauges as inter-annual mean sea level change is

explicitly excluded. For most locations the RMSE against tide gauge observations from GESLA-3 is lower for our detrended

monthly dataset than for HR, visualized by blue bars in Fig. 4a. The global median RMSE of our dataset is 3.35 cm (std.

2.60 cm) compared to 3.71 cm (std. 2.55 cm) for the HR dataset. The improvement is consistent over all basins except for

the Northwest Pacific where the median RMSE for our dataset of 3.59 cm (std. 1.82 cm) is slightly higher than for HR with

3.47 cm (std. 1.87 cm) (Table 1). The improved performance of our dataset is stronger in mid to higher latitudes of the North

Atlantic and some stations in the East Pacific. In the East Pacific and Indian Ocean - South Pacific there is a mixed picture

with some stations showing a lower performance than HR (green bars Fig. 4a). Wind and air-pressure driven barotropic sea

level variability is more pronounced in mid to higher latitudes (Merrifield et al., 2013) which might explain the improved

performance of our dataset  in these regions since it  uses sea level  variability from CoDEC on a time scale up to three

months. This is plausible as wind and air-pressure driven sea level variability are explicitly modeled in CoDEC and only

interpolated from sparse observations in HR. Daily maximum water levels in our dataset have a global median RMSE of

12.02 cm (std. 22.15 cm), which is lower compared to CoDEC with a median RMSE of 12.68 cm (std. 21.85 cm). This

improvement is evident for almost all stations as illustrated by the blue bars in Fig. 4b. The largest performance increases are

in the Northwest Pacific where our dataset has a median RMSE of 8.11 cm (std. 9.77 cm) compared to 10.93 cm (std. 9.13

cm) for CoDEC and is almost halved to values as low as 50 mm for some stations (Fig. 4b). The more important role of

ocean density variations as compared to wind- and air-pressure-driven variability is a plausible explanation for the stronger

15

315

320

325

330

335

340

345



increase in performance in the lower latitudes. Density variations are captured in our dataset through the inclusion of HR and

the seasonal cycle from AVISO.

Figure 4. Comparison between our HCC dataset, HR, CoDEC and tide gauge records from GESLA-3. Panel a: RMSE of monthly
mean sea level between HCC and GESLA-3 (blue dots) and HR and GESLA-3 (pink dots). Dots are connected with a blue bar if
monthly HCC has a lower RMSE than HR and with a pink bar if it has a higher RMSE. Panel b: RMSE between annually
detrended HCC and GESLA-3 (blue dots) and annually detrended CoDEC and GESLA-3 (red dots). Dots connected analogously
to panel a. Panel c: Latitude of tide gauge locations sorted by ocean basin. A progressive integer of the considered tide gauge is
plotted on the x-axis. Outliers are not plotted.

Extreme Water Levels

To illustrate the role of the long-term trend for sea level extremes, we investigate extreme water levels in our factual and

counterfactual dataset and compare them to tide gauge observations from GESLA-3. We only consider extreme events from

2011-2015 because this period is well covered in the observations and sea level rise is close to its maximum. We restrict our

analysis of extreme water levels to tide gauge stations with at least 90 percent of data in the considered period which leaves a

total of 999 stations. As astronomical tides introduce a strong offset in extreme water levels and thus make the comparison

between different locations difficult, we here remove astronomical tides from the modeled and observed water levels and

focus on the surge component. As coasts are historically adapted to their tides, extreme surges are an important cause for
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extreme impact events and their damages. We therefore analyze the 99th percentile of daily maximum surge levels. To that

end, we pick the one percent highest daily maximum surge levels from the observational data in the years 2011-2015 and

compare those to our factual and counterfactual dataset. We focus solely on sea level anomalies, to level out differences in

surge height between different stations, caused by permanent differences to the geoid. We calculate sea level anomalies for

tide gauge records by removing the mean sea level over time steps with valid observations in the period 2011-2015. To

reduce the alignment error, we calculate the mean sea level for the factual dataset only for time steps with valid observations

in the tide gauge record. From that we derive sea level anomalies for the factual and counterfactual by removing the factual

mean sea level from both datasets. This maintains the difference between the factual and counterfactual datasets resulting

from long-term sea level rise.

We show this top one percent highest water levels for our factual and counterfactual dataset, and the tide gauge observations

in Fig. 5a. In general, there is a good agreement between modeled extreme water levels (blue bars) and observations (black

markers). However, our dataset underestimates the extreme water levels at most locations with a median bias of -12.78 cm

(std. 22.22 cm). This underestimation is pronounced for the East Pacific with -18.22 cm (std. 20.07 cm) and Subpolar North

Atlantic West with -15.03 cm (std 24.51 cm) (Table 1). There is a known low bias in the model in particular for the highest

water levels originating from the CoDEC dataset. It is largely attributed to the spatial resolution of the atmospheric inputs

(Muis et al., 2020).

By design, the counterfactual dataset preserves the daily, monthly and inter-annual variability of the factual dataset. Extreme

sea level events have the same timing in the counterfactual and the factual. We can thus pick the timings of the one percent

highest water levels from the factual dataset and assess the events in the counterfactual dataset in Fig. 5a. The trend in

relative coastal water levels increased extreme water levels for almost all world regions with the counterfactual lying below

the factual for most tide gauge locations. Especially for regions with low surge magnitudes it often contributes a significant

fraction to the extreme event. The situation is different for the high northern latitudes where counterfactual sea level rise is

above the factual. In these regions the extreme event magnitude is reduced primarily due to the influence of GIA (Emery and

Aubrey, 1985). In some regions the counterfactual is below zero. These are regions where the highest surge levels are close

to the mean sea level from 2011-2015. With the factual not much higher than zero the counterfactual without the sea level

trend since 1900 easily falls below zero.
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Figure 5: Range and mean of the top one percent of extreme coastal  water levels  without astronomical  tides for tide gauge
observations (black), our factual (blue) and our counterfactual (orange) HCC data (panel a). The mean value of the factual HCC
data from 2011-2015 is subtracted from all three datasets. Panel (b) shows mean coastal water level change from 1900 to 2015,
computed by subtracting the mean value over 2010-2015 from the mean value over 1900 to 1905. Blue markers show coastal water
level change for the presented dataset and is decomposed into the geocentric component (gray bars) and the contribution of VLM
(brown bars). Latitude of tide gauge locations sorted by ocean basin (panel c). A progressive integer of the considered tide gauge is
plotted on the x-axis. Outliers are not plotted.

We illustrate the contribution from geocentric water levels and VLM to the relative coastal water levels in Fig. 5b. The

contribution of geocentric water levels is relatively stable across locations. This is in contrast to the contribution from VLM,

which is more variable across locations. In many places both processes have a similar order of magnitude and there are some

regions where VLM exceeds changes in geocentric water levels. This has been recognized in earlier works (Oelsmann et al.

2023, Nicholls et al., 2021; Pfeffer et al., 2017; Hawkins et al., 2019b; Hammond et al., 2021; Wöppelmann and Marcos,

2016). 
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Discussion

In this work, we combine datasets of long-term sea level change, short-term coastal water level variability and VLM to yield

a forcing dataset for historical simulations with coastal impact models. To facilitate the attribution of historical impacts to

sea level rise, we complement the dataset with a counterfactual. 

The task poses several challenges. A major one is the inclusion of VLM to yield relative coastal water levels. Given the

sparsity of direct observational data, particularly prior to the 1990s, extrapolating VLM back to the early 20th century makes

our estimates  error  prone and anthropogenic influence post  WWII adds additional  difficulties.  It  is  difficult  to exclude

anthropogenic  influences  like  fluid  extraction  from  the  trend  estimation.  Further  advances  in  this  field  should  be

incorporated in future sea level assessments. By providing a geocentric version of the HCC dataset it is possible to combine

our water levels with other reconstructions of VLM.

Another challenge originates from the different nature of the source datasets that we combine. HR and the VLM data are

built from observations, thus include all contributing processes, but there are limits for the disentanglement of components in

these datasets. CoDEC is a simulation-based dataset in which the individual components are available, but CoDEC does not

capture all processes. We avoid double counting atmospherically-driven barotropic sea level changes by frequency filtering

which affects all processes. The choice of a specific cutoff frequency is a trade-off as it means that processes with higher

frequencies come from the CoDEC dataset without coverage of density-driven sea level variability. Partly we can account

for that by frequency filtering only deseasonalized data and adding the seasonal cycle from AVISO satellite altimetry. For

processes  with  lower  frequencies  than  the  cutoff,  sea  level  variability  comes  from  HR  which  covers  density-driven

variability but is for many regions not as good in covering atmospherically driven variability as CoDEC. Future work could

explore using region-specific cutoff frequencies to better harness the individual strengths of HR and CoDEC. This approach,

however,  would necessitate a comprehensive analysis of the dominant time scales of variability within each dataset for

different regions.

HR does not cover regions with sea ice because there is no continuous coverage of altimetry for those regions. Our coastal

water levels in those regions are based on extrapolation of HR and need to be used with extreme care. We provide a mask

along with the dataset so users can exclude sea ice areas. For some of these regions, namely for Greenland, Siberia and

Antarctica, VLM data is also absent (Oelsmann et al., 2023). 

To derive a counterfactual dataset in line with the concept of impact attribution of the IPCC, we use a quadratic model to

first estimate and then remove the sea level  trend since 1900 from the factual  dataset.  The quadratic model assumes a

constant acceleration of sea level rise over time. Analysis of sea level rise shows variation throughout the last century with

an acceleration phase in the early century followed by a deceleration and then again acceleration until today (Frederikse et
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al., 2020; Dangendorf et al., 2019; Slangen et al., 2016). By design, this variation is not included in our quadratic trend

estimate. In general, we expect our trend estimation to largely exclude natural variability due to its low dimension and the

long data period. This is a desired outcome and preserves the natural variability in the counterfactual. The quadratic model

provides robust trend estimates, given the fact that we do not extrapolate the trend into the future, which would increase

uncertainties. To further increase the robustness of the trend estimate, future studies should include predictors for the main

modes of climate variability as for example in (Menéndez and Woodworth, 2010; Marcos and Woodworth, 2017; Wang et

al., 2021). 

In contrast to atmospheric climate change, there is no pre-industrial period in which sea level was stable over time. There is

therefore not a clear indication for the time period that we can reference as the baseline for the counterfactual. We here took

the practical choice of making the years 1900-1905 the reference time because this is when the HR dataset starts. In a strict

sense, with the counterfactual forcing data we thus mimic a sea level world of the beginning of the 20th century and not a

world in  which sea  level  rise  has  not  occurred.  The approach  produces  counterfactuals  that  are  largely  stationary,  but

incorporate  the same shorter-term variability  as  the factual  dataset.  The data thus also allows for  impact  attribution of

individual coastal extreme events. For an extended discussion of the concept see (Mengel et al. 2021).

Without  additional  analysis,  the  presented  work does  not  allow for  the  attribution of  coastal  impacts  to  anthropogenic

greenhouse gas emissions, mediated through sea level rise. Such additional steps would need the differentiation between

climate variability and forced climate response. This is usually done via large model ensembles and dedicated experimental

setups like DAMIP (Gillett et al., 2016). While attribution of global mean sea level change to anthropogenic emissions is

possible (e.g.  Slangen et  al. 2016),  the task of separating variability from the forced signal  is  more challenging on the

regional level that is necessary for impact assessments and not yet possible over the 20th century (Fox-Kemper et al., 2021).

We here exclude deliberately the separation of anthropogenic and non-anthropogenic forcing of sea level rise as it often

becomes the focus of impact  attribution studies  and sidelines  the more  difficult,  less  researched,  but in  our view very

relevant issue of separation of climate change from direct human interventions as drivers of observed changes in natural,

human and managed systems. Additionally, large earth system model ensembles that would allow for the attribution to

emissions but also reliably capture all major sea level components are not available so far.

We provide the factual  and  counterfactual  dataset  as  part  of  the  ISIMIP3a simulation round.  This  simulation round is

dedicated to the evaluation of impact models and to impact attribution. ISIMIP already provides datasets on some additional

drivers of coastal impacts, such as change in population, land use, economy or urban area3. With the presented data, we aim

to facilitate the development of a new generation of coastal impact models that explicitly resolve the observed spatial and

temporal coastal changes and disturbances. 

3 https://doi.org/10.48670/moi-00150
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Code and data availability

The  HCC dataset is made available openly through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) at

https://data.isimip.org/10.48364/ISIMIP.749905 (Treu et  al.  2023a).  The  source code (v1.1) underlying the analysis and

producing the figures presented in the paper is archived at  https://doi.org/10.5281/zenodo.  10359838  8400878   (Treu, 2023).

All code is open to use under the Creative Commons Attribution 4.0 International license. 

We provide direct links to all datasets used in this study. 

● CoDEC and HR: https://doi.org/10.5281/zenodo.8322750

● VLM: https://doi.org/10.5281/zenodo.8308347

● PSMSL tide gauge data, retrieved 26 Sep 2022 from https://psmsl.org/data/obtaining/. An archived version of this

dataset can be downloaded from https://psmsl.org/data/obtaining/year_end/2022/.

● GESLA-3 tide gauge data, retrieved 23 Aug 2023 from https://gesla.org 

● We use two different sources of satellite altimetry

○ To separate the seasonal cycle from HR, we use the same satellite altimetry dataset that was employed in

the production of HR. The dataset is a merged product of TOPEX/Poseidon and Jason altimeter missions

and was at that time distributed by AVISO. This dataset, including the corrections described in Dangendorf

et al. 2019 is archived together with the HR dataset at https://doi.org/10.5281/zenodo.8322750

○ To reference our dataset to the WGS 84 geoid, we use the CMEMS mean dynamic topography dataset

SEALEVEL_GLO_PHY_MDT_008_063, available at https://doi.org/10.48670/moi-00150

Data and code used to produce the table and figures presented in this study, based on v1.2 of the source code, are  The

presented  counterfactual  climate  dataset  at  tide  gauge  locations  is  archived  at

https://doi.org/10.5281/zenodo.  10354898  8400053   (Treu et al., 2023b)2023) and based on v1.1 of the source code.
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