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Abstract. The performance of numerical, statistical, and data-driven diagnostic and predictive crop production modeling 

heavily relies on data quality for input and calibration/validation processes. This study presents a comprehensive database and 

the analytics used to consolidate it as a homogeneous, consistent, and multi-dimensional genotype, phenotypic, and 15 

environmental database for maize phenotype modeling, diagnostics, and prediction. The data used is obtained from the 

Genomes to Fields (G2F) initiative, which provides multi-year genomic (G), environmental (E), and phenotypic (P) datasets 

that can be used to train and test crop growth models to understand the genotype by environment (GxE) interaction 

phenomenon. A particular advantage of the G2F database is its diverse set of maize genotype DNA sequences (G2F-G), 

phenotypic measurements (G2F-P), station-based environmental time series (mainly, climatic data) observations collected 20 

during the maize growing season (G2F-E), and metadata for each field trials (G2F-M) across the U.S., the province of Ontario 

in Canada, and the state of Niedersachsen in Germany. The construction of this comprehensive climate and genomic database 

incorporates the analytics for data quality control (QC) and consistency control (CC) to consolidate the digital representation 

of geospatially distributed environmental and genomic data required for phenotype predictive analytics and modeling the GxE 

interaction. The two-phase QC-CC pre-processing algorithm also includes a module to estimate environmental uncertainties. 25 

Generally, this data pipeline collects raw files, checks their formats, corrects data structures, and identifies and cures/imputes 

missing data. This pipeline uses machine learning techniques to fulfill the environmental time series gaps and quantifies the 

uncertainty introduced by using other data sources for gaps imputation in G2F-E, discards the missing values in G2F-P, and 

removes rare variants in G2F-G. Finally, an integrated and enhanced multi-dimensional database is generated. The analytics 

for improving the G2F database and the improved database called “CLIM4OMICS” follows the FAIR principles, and all the 30 

digital resources are available at  http://doi.org/10.5281/zenodo.7490246 and http://doi.org/10.5281/zenodo.8060807, 

respectively. 
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1. Introduction 

The evolving nature of the Earth System models, proximal and remote sensing, instrumentation, Artificial Intelligence, and 

data availability requires a more comprehensive suite of analytics for quality and consistency controls (Livneh et al., 2015; 35 

Reyer et al., 2020; Quiñones et al., 2021; Rico et al., 2021; Westhues et al., 2022; Winn et al., 2023) that foster the 

democratization of data collection, management, transformation, and adoption of FAIR principles. In this changing digital 

environment, data quality and uncertainty assessment on the train and test datasets become critical to improve models' 

performance and ability to predict systems of natural and human origin (Furche et al., 2016; Jiang et al., 2017; Sarzaeim et al., 

2022a). We introduce the analytics for quality and consistency controls useful for the development and consolidation of an 40 

enhanced, high-quality, large-scale, and multi-dimensional database for maize phenotype predictability using genomic and 

phenomic (OMICs) data and meteorological and climatological observations distributed across maize production areas in the 

U.S. , the province of Ontario in Canada, and the state of Niedersachsen in Germany. 

The creation of multi-dimensional databases consistently grapples with integrating the multiple sources and spatiotemporal 

attributions of data, including variety, velocity, volume, and other seven characteristics known as the "Vs" of Big Data (Firican, 45 

2017; Janev, 2020). Exploration, discovery, planning, and management of biological systems under volatile and unevenly 

distributed climate conditions favor the collection, transfer, transformation, and construction of multi-dimensional databases 

with disparate structures and uncertainties (Gonzalez-Rouco et al., 2001; Hubbard et al., 2005; Brönnimann et al., 2006; Sertel 

et al., 2010; Chiu et al., 2009; Sarzaeim et al., 2022a). The use of accessible analytics for quality and consistency controls for 

a growing availability of OMICs data including climate data becomes critical for creating and making valuable databases, 50 

favoring data construction, access, improvement, and using data for discovery and innovation (Overpeck et al., 2011; Shekhar 

et al., 2017; OKN-NSF, 2022). 

Generally, quality control (QC) frameworks are characterized by the identification of technical errors in data collection (Livneh 

et al., 2015) and the diagnostics and removal of data outliers (Gonzalez-Rouco et al., 2001, Alkhalifah et al., 2018). Habib et 

al. (2010) described QC as a process designed to check the correctness and completeness of models' input data. QC is 55 

traditionally oriented to detect and discard erroneous samples, decreasing uncertainties in model outputs. For example, Chiu 

et al. (2009) employed QC based on geospatial interpolation to identify missing data and eliminate erroneous values in a dataset 

of geospatially and heterogeneously distributed meteorological stations. While the heterogeneity of spatially distributed data 

is critical, temporal gaps are an integral part of a robust database for predictive phenotype analytics and models. Lin and Habib 

(2021) proposed a framework for QC of multi-temporal data for phenotyping from LiDAR, developing external and internal 60 

controls to increase accuracy in automated phenotyping. In another study, Wart et al. (2013) applied a QC algorithm to detect 

the incorrect temperature, precipitation, relative humidity, and solar radiation values in time series released by NOAA in parts 

of the U.S. Midwest and replaced the missing values using interpolation techniques. Similar approaches have been developed 

and operationalized for hydroclimate data (Maurer et al., 2002; Livneh et al., 2013; 2015). The application of QC analytics for 

high-dimensional databases has been tested in crop models such as the HybridMaize (Wart et al., 2013) and statistical models 65 
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such as the GxE approach (Sarzaeim et al., 2022a) to predict maize yields. The latter found that improvements in yield 

predictability are directly related to data improvements. However, it remains to be seen whether additional improvements in 

the inputs and the model or the database enhancement based on certain variables can improve the predictability of phenotypes 

and, eventually, identify the underlying processes that drive it.   

On the other hand, the uncertainty in monitoring and sampling and the inconsistency among the collected data structures and 70 

formats are other limitations of predictive analytics and models. Zeng et al. (2015) defined consistency control (CC) as an 

intercomparison among independent datasets of the same product, leading to possible synergies to enhance the product. The 

CC contributes to consolidating multi-dimensional climate and OMICs databases with different formats for phenotype 

simulations. The designed CC checks cross the quality-controlled OMICS and climatic datasets,  discarding discontinued data 

segments containing corresponding missing values and synthesizing the remaining consistent datasets ready for crop growth 75 

simulation and prediction applications. Several studies underscore QC and CC's critical and complementary roles in improving 

model prediction accuracy (Feng et al., 2004; Matthews et al., 2013). For example, Hartkamp et al. (1999) showed how the 

accuracy of agronomic models' output is affected by the input data quality, emphasizing that data QC is a prerequisite for 

model applications and that the data CC is complementary for successful model operations. The solutions for the 

incompatibility of input data and their effects on data availability improvement have been presented in their study to show the 80 

critical role of CC and QC practices. Other efforts by Amaranto et al. (2019;2020) illustrate the need for QC and CC data to 

improve the predictability of variables connected by human or natural origin processes, such as crop evaporative demands and 

natural and engineered water supplies. 

Uncertainty analysis is critical for developing and implementing models and analyzing observations and simulations. 

Surendran Nair et al. (2012) and Merchant et al. (2017) shed some light on the sources of uncertainty in models' inputs, 85 

structure and parameters, and calibration/validation. Munoz-Arriola et al. (2009), Pogson (2011), Asseng et al. (2013), and 

Correa-Jaimes et al. (2022) explain that simplifying the models or using variables that represent key complex processes can 

contribute to explaining the sensitivities in model performance to uncertainties in input data and multiple environmental 

processes. The integration of multiple variables also represents a challenge for estimating and explaining uncertainties that 

emerged from, for example, compounded temperature and precipitation, and are affected by sampling density and 90 

interpretation of spatially distributed data (Rehana et al., 2022; Liu et al., 2022). Furthermore, uncertainties associated with 

climate and crop model performance require data that allow the analyses of error propagation from the inputs to the outputs 

(Asseng et al., 2013; Amaranto et al., 2020; Sarzaeim et al., submitted). The diagnostic analyses of observed data and the 

sensitivity of model performance to the uncertainties in the inputs are related to the quality and consistency controls in high 

dimensional datasets. These relationships also evidence the necessity of expanding input data and quantifying uncertainties to 95 

improve models and model performance for geospatially suitable and reliable applications (Robertson et al., 2014).  

In crop phenotype predictability, large-scale and geospatially distributed experiments integrate crop genetics and climate data 

to map regions suitable to grow and manage resources adaptively to climate and land-use changes (Munoz-Arriola et al., 2009; 

Tang et al., 2012; Rosenzweig et al., 2013; Jarquin et al., 2014; Ruan et al., 2015; Jarquin et al., 2021; Sarzaeim et al., 2022a). 
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The Genomes to Fields (G2F) initiative is a large-scale effort designed and operated to improve the predictability of maize 100 

phenotypes across the U.S. The G2F initiative has released a well-documented, large-scale, and sharable database for maize 

breeding, capturing the phenotypes in response to genetic improvement and environmental changes (Alkhalifah et al., 2018). 

The engineers, researchers, and economists interested in understanding the maize genetic functionality across environments 

can benefit from the G2F database for phenotypic simulation using statistical models including the genotype by environment 

(GxE) interaction (Lawrence‐Dill et al., 2019). The initial implementation of QC in the G2F database aims to remove the 105 

outliers (Alkhalifah et al., 2018). However, large-scale enterprises are more likely to expand errors and inconsistencies like 

missing samples, uneven records, and emerging locations. Additionally, inconsistencies between the collected data structures 

and format have been maintained rather than the editing for consistency (Alkhalifah et al., 2018). These limitations reduce the 

advantages of using the G2F database for implementing the GxE models. Consequently, improving the datasets through gap 

fulfillment and providing a consistent data structure and format is necessary to implement predictive analytics and models 110 

adequately. Hence, we use the G2F data to test a quality and consistency control (QC-CC) framework for the database 

improvement and uncertainty quantification to input data in the predictability of maize yields in the U.S. , the province of 

Ontario in Canada, and the state of Niedersachsen in Germany. The G2F database offers a geospatial and multi-dimensional 

suite of variables useful to predict maize traits using models including the GxE interaction. It can improve parameterizations 

of the Earth System and crop models (Rosenzweig et al., 2013; Ruane et al., 2015; Winn et al., 2023). The required four-115 

dimensional database for training and testing the GxE models and the output visualization consists of (1) sequences of maize 

genomic molecular markers for multiple inbred genotypes (G2F-G); (2) observed phenotypic variables (G2F-P); (3) time series 

of spatially distributed environmental variables for each experimental trial (G2F-E); and (4) metadata for further analytics and 

geospatial visualization purposes (G2F-M). Figure 1 illustrates a conceptual framework of the quality and consistency control 

algorithms of the G2F data to build homogeneous, consistent, and multi-dimensional OMICs and environmental time series 120 

for maize phenotypes modeling and prediction. 
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Figure 1. A conceptual framework of quality and consistency control algorithms for the multidimensional Genomes to Fields (G2F) 
OMICs and hydroclimatic database. “G2F-G” denotes G2F genomic data, “G2F-P” denotes G2F phenotypic data, “G2F-M” denotes 
G2F metadata, and “G2F-E” denotes G2F environmental data. The map indicates the locations, years, and number of sites per state 
used in by the G2F initiative and represented in the CLIM4OMICS(the map is expanded as Supplementary Figure 1). 

Open and valid data sources are the foundation for open-source science (Wilkinson et al., 2016; Peng et al., 2022), which is 

built upon findability, accessibility, interoperability, and reusability principles, called FAIR data principles (Wilkinson et al., 

2016). When these databases follow the FAIR principles, researchers and communities trigger discovery, innovation, and the 

democratization of digital resources (Livneh et al., 2015, Wilkinson et al., 2016, Amaranto et al., 2018, Quiñones et al., 2021, 125 

Peng et al., 2022). However, access constrains are still a limiting factor for the user’s innovation and a more expedited 

improvement in data and algorithms for collection-to-curation pipelines. This study consolidates a homogeneous, enhanced, 

and high-dimensional database following the FAIR data principles for applications in maize breeding and phenotypic modeling 

and prediction within statistical, data-driven, or biophysical modelling frameworks.  

The objectives of this study are to (1) design and develop QC-CC framework to construct an enhanced multi-dimensional 130 

database for GxE modeling and geospatial analyses of maize phenotypes predictability; (2) quantify the environmental input 

data uncertainties used for maize yield predictions, and (3) provide access to the database and the QC-CC framework pipeline. 

The study contains six additional sections. Section 2 provides a comprehensive description of the original G2F database, 

containing a review of each dataset and the associated limitations of the G2F data and metadata. Section 3 contains the 

foundation and algorithm explanation for the QC module for each dataset (subsection 3.1); the CC algorithm and the 135 
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compatible multi-dimensional datasets from the quality-controlled data (subsection 3.2); and the quantification of uncertainty 

based on the environmental time series errors (subsection 3.3). The results and discussion of the study are presented in Sect. 

4. Finally, the data availability statement and concluding remarks are summarized in Sects. 5 and 6, respectively. 

2. G2F database dimensions 

The goal of the G2F initiative is to collect the key datasets to understand roles played by the genotype, environmental 140 

conditions, and agricultural management practices in crops traits (Lawrence-Dill et al., 2019). Since 2014, the G2F initiative 

has designed several maize field experiments across the U.S. , the province of Ontario in Canada, and the state of Niedersachsen 

in Germany to integrate a large-scale and multi-dimensional database required for maize traits prediction. This database 

provides opportunities for further research and development in data analytics and different types of modeling approaches for 

maize phenotype prediction by incorporating genotype by environment interactions. The G2F platform is updated annually to 145 

publish the genomic, phenotypic, environmental, and metadata collected from the maize field trials. The genomic data is 

published in one file containing the molecular markers of all maize inbred lines tested and/or used as parents of the hybrids 

observed in the G2F sites in the experimental years. While the phenotypes, environments, and metadata are published in 

separate annual years. Two released versions for each phenotypic and environmental data for a given year: (1) raw and (2) 

clean data files. The raw file is the first integrative version of the data collected by the G2F collaborators in each experimental 150 

site. After implementing initial checks on the format, data structure, and wrong entries calibration, the clean file is the 

controlled version of the raw file. This study uses the clean version files, yet there are still several missing values, typos, and 

data structure inconsistencies among the clean version files from different years, which constrain using data for any analytics, 

simulation, and visualization practices.  

The following sub-sections review each G2F dimension: 155 

2.1. Dimension 1: G2F-Genomic Data (G2F-G) 

The G2F has generated, stored, and released molecular genetic sequences at the level of single nucleotide polymorphism 

(SNPs) for 1,576 lines tested across the environments. The SNPs are the most common type of genetic variation among 

individuals. This data has been generated by a genotyping-by-sequence method known as GBS (McFarland et al., 2020). The 

hierarchical data format (HDF) stores the sequenced raw SNPs data of all tested cultivars for data reliability and storage 160 

efficiency. The raw genomic data stored in one single HDF file is available through G2F platform for public access. Figure 2 

shows a screenshot of a slice of G2F-G hierarchical database stored in a single HDF file. 
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Keys: ['Genotypes', 'Positions', 'Taxa', '__DATA_TYPES__'] 

Genotype Lenght: ValuesViewHDF5(<HDF5 group "/Genotypes" (1579 members)>) 

Shape: 

<HDF5 dataset "AncestralAlleles": shape (945574,), type "<i4"> 
<HDF5 dataset "ChromosomeIndices": Shape (945574,), type "<i4"> 
<HDFS dataset "Chromosomes": shape (10,), type "|0"> 
<HDF5 dataset "Positions": shape (945574,), type "<i4"> 
<HDF5 dataset "ReferenceAlleles": shape (945574,), type "<i4"> 
<HDF5 dataset “SnpIds”: shape (945574,), type "|S15") 

Genotypes Data: 

(CML442-B 
(LAMA2002-23-3-B 
(LAMA2002-3S-2-B-B-B-B 
(TX736)_( (TX772_X_T246)_X_TX772) - 1-5-B-B-B-B-B-B6-B6-B2-B13: 100000550 
(TX739)_LAMA2002-10-1-B-B-B-B3-B7_0RANGE-B: 100000510 
(Tx736) ((Tx772xT246)xTx772) -1-5-B-B-B-B-B-B-B6-B12-B2-B13:100000968 
(Tx739) LAMA2002- 10-1-B-B-B-B3-B7orange-B7-B11:108900969 
2FACC: 100000938 
2FACC: 100001100 
2MCDB: 100000307 
2MCDE: 100000475 
3IIH6: 100000120 
4N506: 100000586 
511011-1-1-B: 100000114 
511815-1-1-B: 100000115 
511828-1-1-B: 100000142 
511837-1-1-B: 100000136 
511842-1-1-B: 100000119 
511865-1-1-B: 100000117 

Figure 2. A screenshot of the raw G2F-G data file stored in a single HDF file showing a portion of the 
complex hierarchical data structure of SNPs sequences. 

 

 

The published G2F-G HDF file is designed to be processed by the software Trait Analysis by aSSociation, Evolution and 

Linkage (TASSEL). TASSEL contains statistical approaches for trait association mapping, evolutionary patterns, and 165 

disequilibrium linkage (tasselsoftware.com, Bradbury et al., 2007). Table 1 is a screenshot of a portion of the G2F molecular 

markers dataset open in TASSEL, illustrating comprehensive structure of genetic sequences. 
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 170 

 
Table 1. Overview of raw G2F-G data illustrating the genotyping by sequencing  the molecular marker sequences of different hybrids 
stored in a single HDF-format file.  The first column shows the maize hybrid codes and the first row shows the locus information. 
The A, T, G, C, and R letters are a sample of the major and minor alleles at different marker positions. The letter N denotes the 
missing markers in a genetic sequence at each molecular site. The source file directory for the genetic data is in “File 175 
Upload/Genotype/Markers.txt” in the database package. 

 

 

2.2. Dimension 2: G2F-Maize Phenotypic Data (G2F-P) 

Different types of phenotypic variables have been collected as part of the G2F experiment: time related traits recorded during 180 

the growing season such as number of days to silking or pollen or flowering traits; yield components such as plant height [cm], 

ear height [cm], ear width [cm], and ear length [cm]; and harvest or end traits such as grain yield. Other traits like root or stalk 

lodging occurrence are monitored before the harvest, and the number of stands, grain moisture [%], and grain yield [bu A-1] 

are collected at harvest. More additional information, phenotypic variables definition, and the measurement techniques and 

devices can be found in the Genomes to Fields Phenotyping Handbook (genomes2fields.org). All the mentioned variables for 185 

all cultivars are recorded and released annually in comma-separated values (.csv) format through the G2F platform. Table 2 

represents data types of different variables and shows a slice of the G2F-P dataset. 

 
Table 2. Overview of the raw G2F-P data stored in “.csv” file format showing detailed information of the phenotypic observations 
in 2014 as one example of the multi-year data. The “Year” column shows the year of the a specific G2F experiment, “Field-Location” 190 
column shows the 4-character name of G2F experiment consisting of the state abbreviation in the two first characters and the name 
of the hybrid experiment in the last two characters tested in that state, the “Recid” column shows the ID of the phenotypic record, 
the “Source” column shows the source of the collected phenotypic sample portal, the “Plant Height [cm]” column shows the height 
of the plant in [cm], the “Ear height [cm]” column shows the height of the ear in [cm], the “Stand Count [plants]” column shows the 
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number of plants per plot at harvest, the “Root Lodging [plants]” column shows the number of plants that show the root lodging 195 
per plot, the “Stalk Lodging [plants]”column shows the number of broken plants per plot at harvest, and the “Grain Moisture [%]” 
column shows the percentage of the water content in plant at harvest. The other phenotypic variables have been measured and 
stored in similar columns. The blank cells represent the missing values of phenotypic observations. The source file directory for the 
phenotypic data example is in “File Upload/Phenotype/g2f_2014_hybrid_data_clean.csv” in the database package. 

 200 
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]  

2014 DEH1 2209111 WE13-195ISO-
049-X-POL-195 

MOG_PHG83-
129-1-1-1-1-

B/LH195 
186 104 40 0 4 18 54.1 10.04 98.29 

2014 DEH1 2209430 13WJWE:LH18
5:2073 M0039/LH185 172 85 37 0 0 19.5  18.8 180.69 

2014 DEH1 2209118 
WE13-195ISO-

390-X-POL-
195.3 

MOG_MO45-
055-1-1-1-1-

B/LH195 
230 109 37 0 1 16.7 54.3 12.59 125.21 

2014 DEH1 2209199 13WJWE:LH18
5:2865 

Z022E0130/LH
185 237 103 36 0 0 18.7 54.3 8.26 80.17 

2014 DEH1 2209513 13WJWE:LH18
5:2601 

W10004_0032/
LH185 166 77 35 0 0 18  15.8 154.68 

2014 DEH1 2209203 13WJWE:LH18
5:2847 

Z022E0046/LH
185 266 136 35 0 0 19.3 55.7 15.39 148.28 

2014 DEH1 2209208 13WJWE:LH18
5:2661 

Z013E0028/LH
185 228 115 35 0 0 18.8 55.9 12.6 122.15 

2014 DEH1 2209182 13WJWE:LH18
5:2856 

Z022E0009/LH
185 234 103 33 0 0 20.2 52.3 10.81 102.99 

2014 DEH1 2209086 WE13-195ISO-
361-X-POL-195 

B73_NC230-
041-1-1-1-
1/LH195 

227 125 26 0 0 19.3 53.9 10.86 104.63 

2014 DEH1 2209169 13WJWE:LH18
5:2013 M0355/LH185 248 123 24 0 0 18.9 55.3 8.41 81.43 

2014 DEH1 2209156 13WJWE:LH18
5:2214 M0172/LH185          

2014 DEH1 2209168 13WJWE:LH18
5:2205 M0114/LH185          

2014 DEH1 2209170 13WJWE:LH18
5:2073 M0039/LH185          

2014 DEH1 2209160 13WJWE:LH18
5:2046 M0378/LH185          

2014 DEH1 2209148 13WJWE:LH18
5:2055 M0266/LH185          

2.3. Dimension 3: G2F-Environmental Data (G2F-E) 

Each G2F trial field is equipped with a WatchDog 2700 weather station (genomes2fields.org). These weather stations record 

the environmental data, mainly the climatic drivers in maize growth during the growing season including temperature [T (°C)], 

dew point [DP (°C)], relative humidity [RH (%)], solar radiation [SR (W m-2)], rainfall [R (mm)], wind speed [WS (m s-1)], 205 
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wind direction [WD (degrees)], and wind gust [WG (m s-1)].  The annual environmental data is collected using weather station 

at each experimental field with temporal resolution of 30 minutes and stored in comma separated values (.csv) format. Data 

collected from every weather station is stored in one file for each year and is accessible through G2F website. The nearest 

National Weather Station (NWS) in ASOS network to each of the G2F weather station installed in the trial field has been used 

for false data calibration by G2F collaborators across the G2F layout (Alkhalifah et al., 2018; Jarquin et al., 2021). The 210 

hydroclimatic time series extracted from the NWS stations have been released along with the G2F hydroclimatic time series 

observed in the experiments. Table 3 represents a screenshot of a slice of G2F-E data in 2014 data stored in “.csv” format.  
Table 3. Overview of raw G2F-E data stored in “.csv” file format showing the environmental time series in tabular dormat for 2014 
as one example of the multi-year data. The “Record Number” column shows the number of weather station records in each 
experiment, the “Experiment” column shows the 4-character name of G2F experiment consisting of the state abbreviation in the 215 
two first characters and the name of the hybrid experiment in the last two characters tested in that state, the “Station ID” column 
shows the ID of the weather station, “NWS Network” and “NWS Station” columns show the nearest NWS network and station has 
been used for initial QC by the G2F collaborators, the “Day [Local]”, “Month [Local]”, “Year [Local]”, and “Day of Year [Local]” 
columns show the local day, month, year, and day of year of the weather record, “Daytime [UTC]” column shows the coordinated 
universal time,  “Temperature [C]”, “Dew Point [C]”, “Relative Humidity [%]”, “Solar Radiation [W m2]”, “ Rainfall [mm]”, “ 220 
Wind Speed [m s-1]”, Wind Direction [degrees]”, and “Wind Gust [m s-1] column shows the hydroclimatic time series. The blank 
cells represent the missing values of phenotypic observations. The source file directory for the environmental data example is in 
“File Upload/Environment/g2f_2014_weather.csv”, in the database package. 
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191 DEH1 9079 DE_ASOS GED 13 5 2014 133 14:00:00 5/13/14 
18:00 22.89 14.33 58.2 942 0 4.47 18 7.6 

192 DEH1 9079 DE_ASOS GED 13 5 2014 133 14:30:00 5/13/14 
18:30 21.78 13.89 60.5 918 0 4.92 40 7.6 

193 DEH1 9079 DE_ASOS GED 13 5 2014 133 15:00:00 5/13/14 
19:00 21.56 13.17 58.4 855 0 4.02 21 6.71 

194 DEH1 9079 DE_ASOS GED 13 5 2014 133 15:30:00 5/13/14 
19:30 20.83 12.89 60 778 0 4.47 14 7.15 

195 DEH1 9079 DE_ASOS GED 13 5 2014 133 16:00:00 5/13/14 
20:00 20.72 12.72 59.8 728 0 4.92 351 7.15 

196 DEH1 9079 DE_ASOS GED 13 5 2014 133 16:30:00 5/13/14 
20:30 20.22 12.83 62 642 0 4.02 19 6.26 

197 DEH1 9079 DE_ASOS GED 13 5 2014 133 17:00:00 5/13/14 
21:00 20.06 12.67 62.1 552 0 3.58 354 5.81 

198 DEH1 9079 DE_ASOS GED 13 5 2014 133 17:30:00 5/13/14 
21:30 19.28 12.89 66 452 0 4.47 5 6.26 

199 DEH1 9079 DE_ASOS GED 13 5 2014 133 18:00:00 5/13/14 
22:00 17.89 12.78 71.6 350 0 4.92 32 5.81 

200 DEH1 9079 DE_ASOS GED 13 5 2014 133 18:30:00 5/13/14 
22:30 

  75.9 284 0 4.47 25 5.81 
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201 DEH1 9079 DE_ASOS GED 13 5 2014 133 19:00:00 5/13/14 
23:00 16 12.5 79.6 155 0 3.58 36 5.36 

202 DEH1 9079 DE_ASOS GED 13 5 2014 133 19:30:00 5/13/14 
23:30 14.94 12.22 83.7 79 0 3.58 25 6.26 

203 DEH1 9079 DE_ASOS GED 13 5 2014 133 20:00:00 5/14/14 
0:00 14.06 12 87.4 8 0 4.02 33 6.26 

204 DEH1 9079 DE_ASOS GED 13 5 2014 133 20:30:00 5/14/14 
0:30 13.67 12 89.8 0 0 3.13 12 5.36 

205 DEH1 9079 DE_ASOS GED 13 5 2014 133 21:00:00 5/14/14 
1:00 13.22 12.17 93.3 0 0 3.13 9 5.36 

 

2.3.1. External environmental databases 225 

To gap-fill the climatic datasets, we need to use externally accessible databases. Here three publicly available databases are 

proposed to use for this purpose: (1) National Solar Radiation Database (NSRDB); modeling and integrating half-hourly 4×4 

km2 meteorological dataset in the nation developed by the U.S. Department of Energy (Sengupta et al., 2018), (2) DayMet; 

1×1 km2 Daily Surface Weather and Climatological Summaries developed by Thornton et al. (Thornton et al., 2018), and (3) 

The Automated Surface Observing Systems (ASOS); developed by National Weather Service (NWS) which is a station-based 230 

program containing daily and sub-daily historical and forecasting hydroclimate. These public databases release temperature 

(°C), dew point (°C), relative humidity (%), solar radiation (W m-2), rainfall (mm), pressure (mb and Pa), wind speed (m s-1), 

wind direction (degrees), and precipitable water (mm).  

2.4. Dimension 4: G2F-Metadata (G2F-M) 

The metadata information is supplementary data about each experiment, including the name, ID, year, state, city, farm name, 235 

planting and harvesting dates, weather station serial number, weather station geo-location, and farm boundaries. These 

metafiles are released annually in comma-separated values (.csv) format through the G2F website. Table 4 represents a 

screenshot of a slice of G2F-M data in 2014 stored in “.csv” format. 
 

 240 
 

 

 

Table 4. Overview of raw G2F-M data stored in “.csv” file format showing the metadata collected for the 2014 experiments as one 
example of the multi-year data. The “Location Name” column shows the state and the number of the experiment in that state, the 245 
“Type” column shows the type of the experiment which can be hybrid or inbred, the “Experiment” column shows the 4-character 
name of G2F experiment consisting of the state abbreviation in the two first characters and the name of the hybrid experiment in 
the last two characters tested in that state, the “City” column shows the city that the experiment located at, the “Farm” column 
shows the name of the farm that the experiment has been tested in, the “Field” column shows the name of the field of the experiment, 
and “lon” and “lat” columns show the longitude and the latitude of the weather station installed in the field. The source file directory 250 
for the metadata example is in “File Upload/Meta/g2f_2014_field_characteristics.csv” in the database package. 
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Location 
name Type Experiment City Farm Field lon lat 

DE hybrid DEH1 Georgetown 
Elbert N. & Ann V. 
Carvel Research & 
Education Center 

27AB -75.20 38.63 

GA hybrid GAH1 Tifton Bellflower 18 -83.55 31.50 

IA1 hybrid IAH1 Ames Worle  -93.69 41.99 

IA2 hybrid IAH2 Carroll   -94.72 42.06 

IA3 hybrid IAH3 Keystone   -92.25 41.98 

IA4 hybrid IAH4 Crawfordsville Southeast Research 
Farm 14 -91.48 41.19 

IL1 hybrid ILH1 Urbana Maxwell Farms MF500 -88.23 40.06 

IN hybrid INH1 West Lafayette Purdue ACRE 97/98 -87.00 40.48 

MN hybrid MNH1 Waseca Southern Research & 
Outreach Center NA -93.53 44.06 

MO1 hybrid MOH1 Columbia Bradford C1a -92.20 38.89 

MO2 hybrid MOH2 Columbia Rollins=Hinkson 
Creek Bottoms block 5 -92.35 38.92 

NC hybrid NCH1 Kinston Cunningham Research 
Farm L block 5 -77.57 35.29 

NE1 hybrid NEH1 Lincoln East Campus 1807 -96.65 40.83 

NE2 hybrid NEH2 North Platte Dryland farm  -100.74 41.05 

NE3 hybrid NEH3 Brule North Dryland West 1/4 -101.99 41.16 

NY1 hybrid NYH1 Aurora Musgrave Research 
Farm J -76.65 42.72 

NY2 hybrid NYH2 Aurora Musgrave E4 -76.65 42.73 

ON1 hybrid ONH1 Waterloo Rosdendale Huras -80.42 43.49 

ON2 hybrid ONH2 Ridgetown On Campus Range 5 -81.88 42.45 

TX1 hybrid TXH1 College Station University Farm 224 -96.43 30.54 

TX2 hybrid TXH2 halfway Halfway pivot -101.94 34.18 

WI hybrid WIH1 Madison West Madison M1400 -89.53 43.057 

3. Methodology 

3.1 Database quality control 

The QC-CC is a two-module data preprocessing pipeline developed in Python for each of the G2F data dimensions (G2F-G, 

G2F-P, G2F-E, and G2F-M) released between 2014 and 2017 (Fig. 2). The QC module focused on four general phases, and 255 

they have specific extensions for each data dimension. The general QC phases are: 

1) Reading raw files. 

2) Checking the data format and structure. 
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3) Detection of missing values and data gaps in the datasets, and  

4) Implementation of predictive data analytics to fulfill gaps. 260 

In the first step, the raw files for G2F-P, G2F-E, and G2F-M are read to identify whether the necessary information is recorded 

in the right column with the appropriate header name (some headers are presented in Table 2-4). The complete lists of 

appropriate headers for each data dimension are represented in Sect. 3.1.2-3.1.4. When the released files lack structure and 

consistent format, the next step is to correct the respective columns and header names. Then, the missing values in each dataset 

are searched and identified, and the appropriate QC methods (i.e., assign an average value for G2F-G and a predicted value 265 

based on deep neural network for G2F-E; Sarzaeim et al., 2022a) are adopted to impute the missing values. After performing 

all steps above for each dataset, the quality-controlled datasets are restored in the updated files and transferred to the CC 

module. The subsections below, explain the methodological QC steps for each G2F data dimension (Fig. 2 illustrates the 

associated algorithm). 

3.1.1 Sub-Module 1: G2F-G 270 

The G2F stores and releases genomic sequences data in HDF file. It is noteworthy that unlike the phenotypic, environmental, 

and metadata been annually released through the G2F website, the genomic data file has been made available once in a 

consolidated HDF file containing the molecular marker sequences of all maize inbred lines used as parents of the hybrids tested 

in all G2F experiments.  

First, we downloaded the raw genotypic data file from the G2F platform, converted to text (.txt) format, named “Markers.txt” 275 

and saved in “File Upload/Genotype” directory in the database package (Sarzaeim et al., 2023). The text file is then 

preprocessed to (1) convert the SNPs to numerical genotypic data, (2) exclude the genotypes with large percent of missing 

values in their genetic sequence, (3) exclude the genotypes that lack of allelic variation, and (4) impute the missing SNPs for 

the remaining cultivars (see Fig. 2). These steps were integrated and implemented in a single script in Python named 

“01_Transformations.py” located at “G2F data preprocessing/Genotype” directory as follows: 280 

1) The raw HDF file released by G2F has been created in the structure that works only in the TASSEL as a “black box” 

software. The developed script extracts the molecular genetic markers from the text file and converts them to 

numerical genotypes in csv-format. This step facilitates the processing of the SNPs within the Python environment. 

The numerical genotype values are the probability of a major allele to be selected randomly in a site marker. Thus, 

the minor and major allele homozygous are converted to 0 and 1, respectively; and the heterozygous are converted to 285 

0.5. 

2) A script was developed to discard the cultivars with more than 20% missing values in their genetic sequence, 

providing enough DNA information for further analyses. The 20% threshold percentage is called the percent of 

missing values (PMV), which varies according to the criteria of the data user. Here, we used the PMV proposed by 

Jarquín et al. (2017). 290 
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3) The SNPs with a minor allele frequency (MAF) smaller than 3% were removed. This filter aims to discard the 

genotypes that lack allelic variation. As in the previous step, the MAF threshold used by Jarquin et al. (2017). 

4) The remaining missing SNPs for each individual are fulfilled using the average of the numerical genotypes at each 

locus (p). If the average is equal to or smaller than 0.5 (the probability of heterozygous selection), the missing values 

are fulfilled by the p. Otherwise, the missing values are imputed by 1-p. The screened lines and their fulfilled SNPs 295 

sequences are generated and stored in a clean version of genotypic data in “.csv” format. 

3.1.2. Sub-Module 2: G2F-P 

Multiple participants affiliated to the G2F initiative monitored Maize’s growth stages and harvest (genomes2fields.org). 

Examples of phenotypes include plant morphology (e.g., plant height [cm]), ear morphology (e.g., ear height [cm], width [cm], 

and length [cm]), and plant productivity (e.g., grain moisture [%] and yield [bu A-1]). While in this study we focused on yield 300 

for simulation and prediction purposes, measured in [bu A-1], other phenotypes are made available and can be used. 

The phenotypic datasets are released on an annual basis through the G2F website in “.csv” format. First, for preprocessing, we 

download the raw data files from all available years, save them in “File Upload/Phenotype” directory and then the QC is 

implemented to (1) check whether the first-level data known as primary columns are available, (2) check whether the second-

level data known as secondary columns are available, and (3) remove the missing samples (Fig. 2). These steps are described 305 

below:  

1) The primary columns are the first-level data necessary for further processing. These columns are “Year,” “Field-

Location,” “Pedigree,” “Plant Height [cm],” “Ear Height [cm],” “Grain Moisture [%],” and “Grain Yield [bu A-1].” 

The Python script “01_Phenotype_Files_Primary_Columns.py” verifies if the mentioned headers are available in the 

phenotypic files. Note that the input is case-sensitive, and in many cases, there are typos in headers in the raw files. 310 

Thus, the script returns the associated error(s) with typos and suggests how to fix them. The user fixes those typos 

manually in the raw files. Otherwise, the file is ready for the secondary-column control step. 

2) The secondary columns represent the second-level data necessary for further analysis, but if they are not available in 

the raw files, they can be constructed based on primary columns. These columns are “ID,” “Experiment,” “Experiment 

ID,” “Pedigree,” “P1,” and “P2.” The “Location” denotes the state and the name of the hybrid experiment. The 315 

“Experiment” refers to the environment, year, state, and name of the hybrid experiment. The “Experiment ID” refers 

to the unique ID, which is the combination of the hybrid experiment’s year, state, and name. The “P1” and “P2” 

denote the maize hybrid parental pedigrees’ names. The Python script “02_Phenotype_Files_Secondary_Column.py” 

controls the availability of these columns. If they are not available in the raw files, they will be created automatically 

from the data available in the primary columns.  320 

3) We need the phenotypic observations to train and test the crop growth model (e.g., GxE model). In many cases, the 

phenotype’s observed measurements have been missed to be recorded, and thus, the missing phenotypic samples are 

filtered out from the database by applying “01_Phenotypes.py” script. 
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The developed Python scripts for step (1) and (2) are located at “File Control/Phenotype” directory, and the script for step (3) 

is located at “G2F data pre-processing/Phenotype” in the database package. 325 

3.1.3. Sub-Module 3: G2F-E 

The G2F environmental time series consists of temperature [T (°C)], dew point [DP (°C)], relative humidity [RH (%)], solar 

radiation [SR (W m-2)], rainfall [R (mm)], wind speed [WS (m s-1)], wind direction [WD (degrees)], and wind gust [WG (m s-

1)] collected during the growing season, from planting to the harvest. The following QC steps and the developed Python scripts 

are designed to preprocess the above hydroclimatic variables. The users can adapt the scripts to integrate other environmental 330 

time series. 

G2F-P and G2F-E QC steps are similar except for some extensions of the latter. The G2F-P datasets are single measurements 

sampled at a specific maize growing stage for each individual plant, while the G2F-E datasets are time series of continuous 

hydroclimate records along the maize growing season for each experimental site. The hydroclimate time series data required 

additional pre-processing actions to form the G2F-E QC. The additional actions include the initial elimination of erroneous 335 

hydroclimatic records, corrections of experiment name, and dataset categorizations accounting for the missing values. 

For G2F-E preprocessing, we first download the raw data files from all available years; then, we save the data files in “File 

Upload/Environment” directory in the database package and implement the QC. The QC procedure (1) checks whether the 

first-level data, known as primary columns, are available, (2) checks whether the second-level data known as secondary 

columns are available, (3) checks whether the missing samples in each experiment in each year are existing, and (4) imputes 340 

the data gaps (see Fig. 2). These steps are described below in detail: 

1) The primary columns are the first-level data necessary for further processing. These columns are “Station ID,” 

“Experiment,” “Day [Local],” “Month [Local],” “Year [Local],” “Time [Local],” Temperature [C],” “Dew Point [C],” 

“Relative Humidity [%],” “Solar Radiation [W m-2]”, “Rainfall [mm],” “Wind Speed [m s-1],” “Wind Direction 

[degrees],” and “Wind Gust [m s-1].” The Python script “01_Weather_Files_Primaty_Column.py” located in 345 

subdirectory “File Control/Environment” checks if these columns exactly with the mentioned headers are available 

in the environmental files. Note that, like the G2F-P, the input is case-sensitive. Thus, the script exactly returns the 

associated error where there is a mismatch and provides suggestions for fixing typos. Also, the user needs to fix the 

typos manually in the raw files, otherwise the file is ready for the next control step. 

2) The secondary columns are the second-level data necessary for further analysis, but if they are not available in the 350 

raw files. The columns for weather data are “Record Number” and “Day of Year [Local]”. The Python script 

“02_Weather_Files_Secondary_Column.py” located in “File Control/Environment” controls the availability of these 

columns. If the columns are not available in the raw files, they will be created automatically from the data available 

in the primary columns. 

3) Before checking for the missing values, we can perform an initial check on the time series and remove the remained 355 

erroneous samples after the G2F collaborators implemented the QC. The script “03_Control.py” is saved in the “File 



16 
 

Control/Environment” directory. This initial check occurs in the Python script and depends on the weather variables 

and their possible value range: 

• For “Relative Humidity [%]” the script removes the 𝑥 values if 𝑥 < 0 or 𝑥 > 100.  

• For “Solar Radiation [W m-2]” the script removes the 𝑥 values if 𝑥 < 0. 360 

• For “Rainfall [mm]” the script removes the 𝑥 values if 𝑥 < 0.  

• For “Wind Direction [degrees]” the script removes the 𝑥 values if 𝑥 < 0 or 𝑥 > 360; and assigns an 𝑥-value to 

empty if the “Wind Speed [m s-1]” is zero 

For further analysis, we need to have a consistent and informative protocol for uniquely name the experiments because 

of the multiple experiments implemented in each state and field. Additionally, the name’s format should be consistent 365 

in the entire QC module. We created a name format that illustrates the split of the raw files into as many “.csv” files 

as experiments are recorded in each raw environmental file. The newly-generated file names are self-described as 

“YearStateExperiment”. For example, “2014ILH1.csv” refers to the environmental file containing the weather time 

series recorded for experiment “H1” implemented in the state of “IL” in the year “2014” and stored in “.csv” format. 

The scripts, “01_Weather_Data_Reading.py” that reads the environmental data with correct primary and secondary 370 

columns and correct the values from all years, and “02_Name_Fixing.py” that fixes the experiments names, both are 

in the “G2F data preprocessing/Environment” directory. 

The environmental datasets are categorized into three groups based on the presence of missing values in the raw 

environmental data files: (1) “complete,” (2) “empty,” and (3) “incomplete.” The separate Python scripts 

“Database.py” for each hydroclimate variable go through the generated files with a specific name containing the 375 

environmental time series for each experiment in each year to check if all the records during the growing season are 

available or not. For example, if all records of temperature for a given experiment are available, this dataset belongs 

to the “complete” group. If all temperature records are empty, that dataset belongs to the “empty” category. If the 

temperature dataset is not categorized into the above groups, it belongs to “incomplete” category. The “complete” 

datasets are directly transferred to the updated environmental database ready for CC module. However, the “empty” 380 

and “incomplete” datasets must be imputed and fulfilled, and then moved to the improved database. A separate Python 

script has been developed to categorize each hydroclimatic variable into the three groups above and within the 

“Database” subdirectory of the database package. 

4) For gap fulfillment of “empty” and “incomplete” time series, we developed an evaluation-improvement pipeline 

(Sarzaeim et al., 2022a). This pipeline acquires external hydroclimate (i.e., NSRDB, DayMet, and NWS) through 385 

developed Application Programming Interfaces (APIs). The Python APIs are located at “API” folder in the database 

package for download, store, and process the G2F hydroclimate time series at the available locations and years. 

Afterwards, the script imputes the best-fitted dataset from the NSRDB, DayMet, or NWS for any given hydroclimate 

variable to the “empty” datasets. Following Sarzaeim et al. (2023) the “incomplete” datasets use a separate script for 

predictive analytics of deep neural networks to cover the missing hydroclimate values in the G2F-E time series, which 390 
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are stored in “ML” folder and are part of the database package. The updated “empty” and “incomplete” datasets are 

transferred to the updated improved G2F-E database, and later used by the CC module. For the ease of selecting the 

desired experiment(s) by users, a Python script has been developed and stored in the “Selection” folder of the database 

package and offers experiment options for users to select. 

3.1.4. Sub-Module 4: G2F-M 395 

The metadata files contain the digital information relevant to the experiments annually released at the G2F website in a “.csv” 

format. For preprocessing, we download the raw data files from all available years, save them in “File Upload/Meta” directory, 

and then implement the control. Then, the control (1) checks whether the first-level data known as primary columns are 

available, (2) checks whether the second-level data known as secondary columns are available, and (3) checks whether any 

experiments with unknown locations are available (see Fig. 2). The scripts for steps (1) and (2) are stored in “File 400 

Control/Meta” directory and the script designated for step (3) is located at “G2F data preprocessing/Meta” directory, all within 

the database package. These steps are described below in detail: 

1) The primary columns are the first-level data necessary for further processing. These columns are “Experiment,” “Lat,” 

and “Lon”. The “Lat” and “Lon” denote the latitude and longitude of the weather stations located in the field. The 

script “01_Meta_Files_Primary_Columns.py” first checks if these primary columns with the exactly listed headers 405 

are available in the metadata files. Note that the input is case-sensitive. Thus, the script returns the associated error 

where there is a mismatch and suggests how to fix them. In this case, the user needs to fix the typos manually in the 

raw files. Otherwise, the file is ready for the next control step. 

2) The secondary columns are the second-level information necessary for further analyses. These columns are “State,” 

“Experiment ID,” and “Experiment Type”. Note that there are two types of experiments conducted by the G2F 410 

collaborators: Inbred and Hybrid experiments. Here, we need the hybrid experiments for the GxE simulation. The 

script “02_Meta_Files_Secondary_Columns.py” controls the availability of secondary columns. If they are not 

available in the raw files, they will be created automatically from the information available in the primary columns. 

3) For model output postprocessing and geospatial visualization, the script “01_Lat_Lon_Reader.py” requires the 

latitude and longitude of the experiments. Additionally, if a given dataset is categorized as “empty” or “incomplete,” 415 

the G2F experiment location is also required to geolocate and extract the associated values from other databases. The 

experiments with missing latitude and longitude are removed. 

3.2 Consistency control 

The CC module is the last pre-processing step before data is ready for model implementation (i.e., GxE modeling). The CC 

module integrates all controlled and updated files from the QC module, checks their compatibility as inputs for GxE modeling, 420 

and synthesizes the multi-dimensional database for phenotypic simulation and postprocessing. The compatibility check is 

required by the GxE model, which is only possible when genomic, phenotypic, environmental data, and metadata are present. 
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When some genotypic markers or phenotypic observations or metadata are discarded in the QC sub-modules, the CC removes 

the experiments with at least one missing dimension in the controlled files. The designed Python script for CC module is saved 

in “Control” folder in the database package. 425 

Figure 3 conceptualizes the QC-CC algorithm for each dimension. First, each dataset is controlled by its format, availability, 

and imputation. Then, the quality-controlled datasets are evaluated for compatibility purposes for the simulation process in the 

CC module.  

  

 
Figure 3. The overall algorithmic QC-CC framework for G2F database. The “G2F-G,” “G2F-P,” “G2F-E,” and “G2F-
M” denote the G2F genomic, phenotypic, environmental, and meta data, respectively. The “PMV” and “MAF” denote the 
percent missing values and minor allele frequency, respectively. The “Primary Cols.” and “Secondary Cols.” denote 
primary and secondary columns, respectively.  

3.3. Uncertainty 430 

For the quantification of uncertainty in improved climate data by other data sources (i.e., NSRDB, DayMet, and NWS) we 

used the differences in the standard deviation (SD) between the climate time series of the G2F and other data sources used for 

G2F-E data imputation. The SD represents the dispersion of the probability distribution function (PDF) of errors and measure 

the magnitude of the standard uncertainty according to Merchant et al. (2017). The following equation represents the error 

term: 435 

𝑒𝑟𝑟!"#$%&'(%)	 =	𝑥+,',!"# −	𝑥+,',%&'(%) 𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑁𝑆𝑅𝐷𝐵,𝐷𝑎𝑦𝑀𝑒𝑡, 𝑁𝑊𝑆 (1) 
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Where, 𝑒𝑟𝑟!"#$%&'(%)	is the difference between G2F time series and other options, 𝑥+,',!"#  is the G2F observed value of 

variable m at day t, and 𝑥+,',%&'(%) is the value of variable m from other options at day t. The uncertainty is estimated as a 

spatial aggregate for the area of study. Yet, the algorithm can be implemented by station if the degrees of freedom is adequate.  

A separate script “Uncertainty.py” was developed to quantify the uncertainty for each hydroclimatic variable located in 

“Database” folder of the database package. 440 

4. Results and discussion 

In this study, we aim to introduce a quality and consistency data controls framework that includes the consolidation of pipelines 

for the retrieval, transformation, improvement, and access to spatiotemporal, large-scale, and multi-dimensional databases for 

plant breeding. The provided QC-CC pipeline uses a high-dimensional G2F database that involves genomic, phenotypic, 

environmental, and metadata, integrating and improving a database for maize yield predictability. The results of the QC module 445 

applications are presented in Sect. 4.1 to 4.4. The results of the CC module and data synthesis are presented in Sect. 4.5. 

Finally, the uncertainty introduced by external environmental databases to improve the G2F-E is presented in Sect. 4.6.   

4.1. G2F-G QC  

Plant breeding and genetic improvement programs focus on developing more productive cultivars resistant to uncertain 

environmental conditions. These uncertain conditions include a wide range of biotic (i.e., diseases, pests, and herbicides) and 450 

abiotic (i.e., drought, heat, cold extremes, wet weather, and water limits) stresses (Blum, 2010) which directly affect the crops' 

productivity and yields. The crop yield (and other commercially essential phenotypes) can be improved in the target 

environment by selecting the varieties tolerant to the environmental stresses (Cattivelli et al., 2008; Sarzaeim et al., 2021). The 

molecular markers data for tested lines in multiple environments across the large scale of the U.S. and Ontario in Canada 

provide the opportunity to diagnose and select superior and tolerant maize lines with specific environmental stresses in each 455 

environment. 

There are extensively published datasets for phenotypic measurements, biophysical parameters, and geospatial environmental 

observations in croplands. Gomez-Dans et al. (2022) released an integrative dataset in West Africa, including location, leaf 

area index, and maize yield values. In another study, Weber et al. (2022) published a high-quality, multi-crop, and multi-year 

database during the crop phenological stages containing canopy height, leaf area index, biomass, and soil water content and 460 

temperature in Europe. However, the lack of genetic data may limit the ability to diagnose the superior lines. Thus, providing 

and publishing high-quality crop genomic datasets and ground phenotypic and environmental observations adds value to 

designing climate-resilient cropping systems for a changing climate. Poland et al. (2012) and Jarquín et al. (2014) underscore 

that crop DNA data consist of missing values due to the technical inadequacy of sequencing. Also, Alkhalifah et al. (2018) 

described that the main limitations with G2F datasets, including the G2F-G, are missing data in several marker sites. We have 465 

previously observed the missing sequencing values in Table 1. To overcome this limitation, the generated numerical genotypes 
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for each maize line pass through the PMV to remove the genotypes containing missing values of more than 20% of the whole 

sequence. Along with PMV, the MAF filter eliminates the uncommon variants. Lopes et al. (2015) describe that rare variants 

are usually removed because of the limited population size and keeping the acceptable precision level in phenotyping. 

After applying the PMV and MAF filters, 253 lines were removed, and 1,323 individuals with numerical genotypes were kept 470 

for further analysis. This process led to missing values in the genome sequences in the remanent cultivars of less than 20%, 

and the minor allele frequency is larger than 3%. The defined strategy in Sect. 3.1.1 fulfills the missing values in marker sites 

of the remining 1,323 maize lines and the integrated, imputed, and enhanced G2F-G datasets are ready for further analysis. 

4.2. G2F-P QC 

Overall, phenotypic field measurements of 83,981 individual cultivars have been recorded for maize inbred and hybrid 475 

experiments between 2014 and 2021 across G2F sites. Figure 4 shows the spatial distribution of phenotypic measurements 

sampled for each G2F experiment. The minimum and maximum observations are 38 and 1257 sampled in the "2017COH1" 

and "2018TXH1" experiments, respectively. The total number of observations in 2014 were 5,834 and 13,790 in 2021 (15,577 

observations were recorded in 2019).  
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Figure 4. The spatial distribution of phenotypic records of G2F experiments in the U.S. regions, the province of Ontario in Canada, and 
the state of Niedersachsen in Germany between 2014. And 2021. The state of Niedersachsen in Germany includes the years 2018, 2020, 
and 2021 for three locations. The location of each station in the map was modified for visualization purposes, allowing the illustration 
of sations with multi-year records. The size of the circle represents the number of years sampled, which also appears within the 
parenthesis next to the year at each site. The colors of the circles were included for visualization purposes only.  

Like in the G2F-G, there are several missing phenotypic observations. For example, Table 2 indicates the missing values for 480 

all environmental variables in the last five rows or experiments. Also, note that the phenotypic measurement is maize grain 

yield in this study; thus, the missing values for grain yield are removed from the raw phenotype datasets. The same 

methodology can be applied to other phenotypic variables like grain moisture, test weight, and plot weight found as columns 

in the stored “csv” file (Upload/Phenotype/g2f_2014_hybrid_data_clean.csv). By removing cultivars with grain yield missing 

values, a total of 85,138 field observations remains in the G2F-P dataset. In the last step, the clean versions of G2F-P dataset 485 

in each year between 2014 and 2021 are consolidated in one single “.csv” file. One record of the clean G2F-P dataset is 

represented in Table 5 as an example. This example displays phenotypic observations for the B37/MO17 maize line tested in 

the state of Delaware in the experiment of H1 in 2014. 
Table 5. Record of a single of G2F-P dataset. It shows the phenotypic measurements including “Plant Height (cm),” “Ear Height 
(cm),” “Grain Moisture (%),” and “Grain Yield (bu A-1)” for a maize hybrid with pedigrees of “B37” and “MO17” collected in 490 
“2014-DEH1” experiment located in Delaware in 2014. The ID of the record is “2014_DEH1_B37/MO17, and the ID of the 
experiment is “2014DEH1”. The “H” denotes the hybrid type of the experiment, “P1” and “P2” denote the pedigrees of the maize 
hybrid, and “DE” denotes the state of Delaware. 
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4.3. G2F-E QC 495 

The designed QC scripts in Python for hydroclimatic files have been implemented, and the available typos and mismatches in 

the headers have been fixed to have a consistent format among the files stored in different years.  

The nonviable samples available in the datasets, such as negative values for solar radiation and rainfall, the out-of-range 

relative humidity percentage, and the wrong wind direction values have been detected, eliminated, and left as missing values, 

as described in Sect. 3.1.3.  500 
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At this point, the naming policy for the environments is applied. Note that this study focuses on the hybrid experiments for 

GxE models and associated simulations, which suggests that inbred experiments are discarded. One hundred twelve hybrid 

experiments remain in the database for the categorization step.  

The G2F-E QC and G2F-M QC sub-modules are implemented in parallel. The reason for this parallel implementation is: (1) 

the geolocation of weather stations is required to download the data from external environmental data sources, and (2) the 505 

location of the experiments is required for the visualization of the geospatially distributed crop growth predictability. Among 

the 2011 experiments, there are 8 experiments with missing data. Afterwards, for simplicity of the datasets analyses, each G2F 

annual climate “.csv” file is split into separate files for each experiment and climate variable. This file structure represents 

eight files containing each of the hydroclimatic variables time series (e.g., temperature, dew point, relative humidity, solar 

radiation, rainfall, wind speed, wind direction, and wind gust) for each experiment (203×8 = 1,624 time series files are created 510 

and stored). 

On the other hand, just 32 experiments were complete from the 97 experiments that compose the file structure. Table 6 presents 

a synthesis of experiment completeness between 2014 and 2021 for the G2F-E data. The missing files are mainly caused by 

gaps of environmental data, limiting the ability of crop models and analytics for phenotype predictions. This situation was 

emphasized by Huang et al. (2019) who evidenced that the limitation in phenotypic and environmental data restricts the timely 515 

diagnostics of crop growth and, consequently, hampers the use of crop growth models for prediction purposes. Di Paola et al., 

2016 provides an additional perspective by using the minimal set of input data for crop growth modeling predictions can 

become more biased. Sarzaeim et al. (2022a) provided a strategy to reduce the gaps in environmental data using deep neural 

networks. Such effort evidenced how phenotype predictability increases and could be attributed to climate patterns of 

variability. 520 
Table 6. The percentage of complete, empty, and incomplete portions of time series for each G2F hydroclimatic variable: 
Temperature (T), Dew Point (DP), Relative Humidity (RH), Solar Radiation (SR), Rainfall (R), Wind Speed (WS), Wind Direction 
(WD. 

 T 
(°C) 

DP 
(°C) 

RH 
(%) 

SR 
(W m-2) 

R 
(mm) 

WS 
(m s-1) 

WD 
(degrees) 

 

Complete 78.6 69.6 79.2 37.6 84.3 76.4 23.6 - 
Empty 0 6.1 0.5 11.8 0 1.1 1.6 - 

Incomplete 21.4 24.3 20.3 50.6 16.7 22.5 74.8 - 
 

In this study, we fulfill the missing values identified as empty and incomplete in the environmental time series to consolidate 525 

a high dimensional database that could be translated into an improvement in GxE models performance. The improved G2F-E 

enhances the G2F multi-dimensional database and provides the opportunity to increase the OMICs observations engaged in 

the GxE simulations. The time series without missing values are delivered to the final improved database, while files with 

empty or incomplete time series are processed to fulfill data gaps with external climate data sources (e.g., NSRDB, DayMet, 

NWS). For fulfillment step, the designed APIs read the “Lat” and “Lon” data from controlled G2F metafiles, download, and 530 
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store the climatic datasets for each G2F experiment trial site. The downloaded datasets for each data source are divided into 

separated files, one per experiment and climate variable, and stored in “.csv” format.  

The empty datasets have been replaced by one of the other data sources selected based on the calculated minimum root mean 

square error (RMSE) values between G2F and each of the NSRDB, DayMet, and NWS for a given climatic variable in G2F 

database. A deep neural networks (DNNs) technique was implemented to estimate the missing values of the incomplete 535 

datasets. The strategies for gaps fulfillment have been explained in detail in Sarzaeim et al. (2020;2022a,b). The gap fulfilment 

in the environmental data allowed us to increase the number of complete experiments from 32 to 86 experiments. Also, we 

added other climatic variables like pressure and precipitable water from NSRDB and DayMet, which were not initially 

provided by the G2F initiative. The G2F-E QC sub-module enables downloading other databases and pre-process them for the 

expansion of the G2F-E. 540 

One record of the improved G2F-E data is represented in Table 7 as an example. This example refers to a record for a hybrid 

experiment called H1 conducted in the state of Delaware in 2014. This record represents the first observation of the climatic 

time series, including temperature, dew point, relative humidity, solar radiation, rainfall, wind speed, wind direction, and wind 

gust. 
Table 7. Record of a single example of G2F-E dataset. It shows the observed hydroclimate data including “Temperature (°C),” “Dew 545 
Point (°C),” “Relative Humidity (%),” “Solar Radiation (W m-2),” “Rainfall (mm),” “Wind Speed (m s-1),” “Wind Direction 
(degrees),” and “Wind Gust (m s-1)” collected by weather station with ID of “9079” for “2014DEH1” experiment located in Delaware 
on 9 May 2014 at 15:00:00 local time. The ID of the experiment is “2014DEH1”. The “H” denotes hybrid type of the experiment, 
and “DE” denotes the state of Delaware. 
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 550 

After implementing the G2F-E QC sub-module and improving the recorded hydroclimatic time series for each experiment, the 

mean temperature (Tmean) and accumulative rainfall (Racc) over the maize growing season is calculated here and represented in 

Fig. 5. The minimum and maximum of Tmean values are 11.8 °C and 25.9 °C in 2014NYH1 and 2016GAH2 experiments, 

respectively. The minimum and maximum of Racc during the growing season of maize are 11.8 mm and 1525.9 mm observed 

in 2015NEH3 and 2016KSH1 experiments, respectively.  555 
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(a) 

 
(b) 

Figure 5. The spatial distribution of (a) improved mean temperature (Tmean) and (b) improved accumulated rainfall (Racc) records 
in G2F-E database during the maize growing season in all G2F experimental fields in 2014-2017. 

 

Additionally, the number of G2F trials heatmap located in the same state over the period of 2014-2021 is illustrated in Fig. 6. 

The lowest and largest number of experiments is 2 in state of Colorado in Rocky Mountains region and 12 in Iowa in the 

Midwest respectively. The number in each cell displays the average of improved hydroclimatic variables in each state including 

mean of temperature, dew point, relative humidity, solar radiation, accumulative rainfall, wind speed, and wind direction. 560 
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Figure 6. The heatmap for number of G2F experiments in the U.S. regions , the province of Ontario in Canada, and the state of 
Niedersachsen in Germany between 2014. And 2021. The state of Niedersachsen in Germany includes the years 2018, 2020, and 
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2021 for three locations. The color shows the number of stations in each state. The number in each cell represents the average of 
hydroclimatic variables in each state including mean of Temperature (T), mean of Dew Point (D), mean of Relative Humidity 
(R), mean of Solar Radiation (S), accumulative Rainfall (R), mean of Wind Speed (W), and mean of Wind Direction (I). 

 

4.4. G2F-M QC 

From 2014 to 2017, a total of 112 tested hybrid experiments were registered across the G2F sites. However, the latitude and 

longitude of 15 experiments were missed and consequently removed from the database. As mentioned in Sect. 4.3, the G2F-

M QC sub-module has been implemented in parallel with the G2F-E QC sub-module to avoid the processing of redundant data 565 

for the experiments with unknown location. One record of the G2F-M data is represented in Table 8 as an example. This 

example illustrates the coordinates of the weather station located in the experiment of H1 in the state of Delaware in 2014. 
Table 8. Record of a single of G2F-M dataset. It shows the location including “Lat” and “Lon” of the “2014DEH1” experiment 
located in Delaware in 2014. The ID of the experiment is “2014DEH1”. The “Lat” denotes latitude, “Lon” denotes longitude, “H” 
denotes the hybrid type of the experiment, and “DE” denotes the state of Delaware. 570 

Experiment 
Experiment 

ID 

Experiment 

type 
Year State Lat Lon 

DEH1 2014DEH1 H 2014 DE 38.63 -75.20 

 

4.5. Database CC 

The last stage of input data preprocessing is to check the consistency among the quality-controlled and improved files across 

the G2F-G, G2F-P, G2F-E, and G2F-M QC sub-modules. The main purpose of the CC module is to check all quality-controlled 

files and remove those from the records when their information is not available. In other words, the CC module records the 575 

available files with complete sequences of genetic, phenotypic observations, climatic time series, and location data for an 

eventual implementation of GxE model and visualization analytics, or the possible use in crop and Earth System models. Also, 

the CC uses the unique experiments’ names in the “Experiment ID” column, which is common among G2F-P, G2F-E, and 

G2F-M, to remove those records missing at least one OMICs or environmental category of G2F data. After checking this three 

data dimensions consistency, the CC module uses “P1” and ‘P2” columns, common between controlled G2F-P and G2F-G, to 580 

update the G2F-G file for the available records in phenotypic data. Consequently, all the common records in the high 

dimensional G2F data are kept for use in crop growth modeling. We identified that after implementing the CC on G2F’s 2014-

2021, 376 lines, 79,122 yield observations, and 172 experiments remained for phenotype diagnostics or modeling. Figure 7 

symbolizes the synthesis of enhanced high-dimensional G2F database after applying QC and CC modules.  

The considerable decrease in the number of genotypes indicates that although the genetic sequence of 1,576 maize lines have 585 

been generated and published in G2F database, most of them have not yet been tested in the trials. The phenotypic observations 

dropped from 89,549 to 79,122 after QC-CC, which could be mitigated by releasing the new samples in a larger number of 
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experiments by G2F initiative through years and overcome this trials deficit (Fig. 7). The use of crop and data-driven modeling, 

and remote sensing products to estimate the crop yield and other phenotypes can mitigate these data deficits as well.  

 
Figure 7. The number of observations of G2F-Gen. (genomic data), G2F-Phe. (phenotypic data), and G2F-Env. (environmental 
data) in the original database, quality-controlled database, and the consistency-controlled database. The QC and CC refer to 
quality and consistency control algorithms. 

Following the FAIR principles, the multi-dimensional, consolidated, and enhanced G2F database along with developed 590 

Python-based QC-CC scripts are released in the Zenodo platform for public access (findable and accessible). The associated 

documentation is also available for the database users. The folders and files structures are explained and interoperable, 

including the datasets preprocessing, the QC and CC sub-modules, and the implementation process for each G2F data release. 

Additionally, the database is usable for other crop growth modeling, and the scripts are modifiable to be implemented using 

datasets from other sources rather than G2F (reusable). The “CLIM4OMICS” database package along with the current study 595 

can be taken as a guideline to create and enhance other geospatial databases for Earth System, crop growth and statistical 

modeling. 

The developed databases package in this study is an example of multi-dimensional databases involving the enhanced OMICs 

variables along with the improved hydroclimatic drivers of crop growth. The present database contributes to mitigate the lack 

of genomic and phenotypic data, which limit the use of OMICs data in plant modeling according to Germeier and Unger 600 

(2019).  Several databases are used in applications like the Agricultural Model Intercomparison and Improvement Project 

(AgMIP) to simulate agricultural risks under climate change, emphasising the role played by environmental factors like 

weather and soil physical properties (AgMIP, 2022).  

 On the other hand, improving digital products through genomic and phenotypic quality control pipelines for genomic selection 

can lead to applications in multiple fields, as Persa et al. (2021) stated. The developed QC-CC framework for environmental 605 

drivers in our study finds its niche among other efforts as a showcase for climate data for OMICS database enhancement, 

which could be relevant to improve phenotype predictability, integrate high-throughput phenotyping, and emerging 

phenotyping technologies (Araus et al., 2018; Rico et al. 2020,2021). The enhanced G2F climate and OMICS database, 

CLIM4OMICS, and the preprocessing data framework are designed to interconnect the OMICs variables with environmental 

drivers to improve the models’ performance in complex agricultural and climate systems. For example, in an application for 610 

version 1.0 of the database, Sarzaeim et al. (2022a)illustrated the benefits of an enhanced G2F database in increasing maize 
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yield predictability by 12.1% using the coefficient of determination (R2), 2.2% in terms of RMSE, 11.4% in terms of Mean 

Square Error (MSE), and 1.4% in terms of Mean Absolute Error (MAE).Thus, the current developed database provides and 

opportunity to integrate interdisciplinary teams formed by agronomists, agricultural engineers, and climate scientists interested 

in improving food security and resilience applications for climate change and increasing population demands of grains. 615 

4.6. Error uncertainty 

In database creation and curation to successfully train and test crop growth models, the uncertainty quantification is a useful 

technique to assess the error sources. Quality and consistency controls enhance and consolidate multi-dimensional databases 

for achieving crop models high performance, and uncertainty assessment diagnose the main sources of error propagation in 

the models predictive skill.  620 

The use of external databases (e.g., NSRDB, DayMet, and NWS) to impute and simulate missing environmental data 

propagates errors in sampling, modeling, and transforming environmental estimations into the G2F time series. These errors 

in the input data also propagate uncertainties into crop growth model outputs, which require the quantification of input data 

uncertainty. The standard uncertainty of the climate variables has been quantified using the SD of the PDF of the errors between 

the observed G2F time series and those of the external databases for a given climatic variable. For G2F improvement, the error 625 

SD represents the uncertainty introduced by using each external data source (Steiner et al., 2013). Thus, first, we calculated 

the errors using Eq. (1), and then the PDFs of errors. The SD statistics of the error terms are then calculated (see Fig. 8). 
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Figure 8. The probability distribution function (PDF) of the error values for (a) rainfall (Err-R), (b) solar radiation 
(Err-S), (c) dew point (Err-D), (d) relative humidity (Err-H), (e) wind speed (Err-W), (f) wind direction (Err-I), and 630 
(g) temperature (Err-T). Note that each of the external environmental data sources may not contain all the G2F 
hydroclimatic variables. The error term has been calculated for the common variables between G2F and each of the 
data sources. The SDG2F-NSRDB denotes the standard deviation of the errors between G2F and NSRDB, the SDG2F-
DayMet denotes the standard deviation of the errors between G2F and DayMet, and SDG2F-NWS denotes the standard 
deviation of the errors between G2F and NWS for a given climatic variable. 635 
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Standard uncertainty is a very informative measurement when the PDF of errors is close to a normal distribution with a mean 

of zero (Merchant et al., 2017). Here, the error distribution for rainfall (Fig. 8a), dew point (Fig. 8c), relative humidity (Fig. 

8d), wind direction (Fig. 8f), and temperature (Fig. 8g) are roughly normal. In the case of solar radiation (Fig. 8b), the normal 

distribution is reasonably fitted to the errors between G2F and NSRDB. Also, the PDF of the errors in wind speed are close to 640 

a normal distribution.  

The SD has been calculated for the errors between G2F and each NSRDB, DayMet, and NWS databases. In the case of 

temperature, the smallest standard uncertainty of errors is obtained from DayMet (SDG2F-DayMet = 2.1).  For dew point, the 

NSRDB introduces the smallest error uncertainty (SDG2F-NSRDB = 2.6). In the case of relative humidity, although the SD 

statistics are very close for both NSRDB and NWS, it is slightly smaller for NSRDB (SDG2F-NSRDB = 11.2). For solar radiation, 645 

the uncertainty of using NSRDB to impute the gaps of G2F is considerably smaller than using DayMet (SDG2F-NSRDB = 72.6). 

The dispersion of errors for rainfall for DayMet and NWS show the largest differences among climate variables (with SDs of 

11.8 and 183.5, respectively). This discrepancy can be attributed to the geospatial location and aggregation since one of the 

products uses the closest climatological station and the other represents a gridded product (NWS and DayMet, respectively). 

There is not a consistent pattern of uncertainty for the wind properties. For the wind speed, the SD is slightly smaller from the 650 

NWS (SDG2F-NWS = 7.4), while in the case of the wind direction, NSRDB represents the smaller error uncertainty (SDG2F-NSRDB 

= 71.1). These SD statistics values illustrate the error magnitude introduced by using external databases. In case of using any 

other data sources rather than those provided by the G2F initiative, the uncertainty estimations show the sources of error 

propagation through the crop growth prediction.  

By comparing all the error dispersion statistics for each climate variable, the the largest inconsistencies among digital resources 655 

(NSRDV, NWS, and DayMet) were found for Temperature and Dew point with error discrepancies of 43% and 38%, 

respectively.  Solar radiation, relative humidity, and wind speed followed with discrepancies of 18.6%, 10.4%, and 8.6 %, 

respectively. The rest of the variables presented discrepancies below 5%. These results are aligned with several previous 

studies that show rainfall as a complex phenomenon difficult to measure, model, and predict. This difficulty in rainfall 

estimates can also be attributed to the spatiotemporal heterogeneity of the collected data (Bruno et al., 2014; Pollock et al., 660 

2018). However, the considerably small differences in the errors among G2F, DayMet, and NSRDB for rainfall (SDG2F-DayMet 

= 815.6 and SDG2F-DayMet =814.5, respectively) illustrate the higher robustness of publicly available gridded products and their 

usefulness to complement in-situ databases (i.e., NWS) for improving the G2F-E datasets.  

Note that the NWS is the only database that records wind gust. However, we removed the wind gust from the G2F-G database 

due to several missing values available in that database. 665 

5. Data availability 

The data that support the findings of this study “CLImate for Maize OMICS: CLIM4OMICS Analytics and Database” (V1.0) 

“CLImate for Maize OMICS: CLIM4OMICS Analytics and Database” (V2.0) are openly available in “Zenodo” 
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at   http://doi.org/10.5281/zenodo.7490246 and doi 10.5281/zenodo.8060807, respectively. A quick guideline for performing 

the Python scripts is provided in “ReadMe.txt” file, and the required Python packages to be installed are listed in 670 

“Requirements.txt” file in the database package (Sarzaeim, et al., 2023 and Aslam et al. 2023) and in a GitHub repository at 

https://github.com/HasnatJutt/CLImate-for-Maize-OMICS_CLIM4OMICS-Analytics-and-Database. 

6. Conclusion 

In this study, we proposed an algorithmic QC-CC framework for data pre-processing pipeline to consolidate a homogeneous, 

multi-dimensional, and enhanced database consisting of (1) OMICs observations, (2) hydroclimatic variables, and (3) metadata 675 

for statistical, data-driven, and biophysical crop growth models’ applications to simulate GxE interaction. The G2F initiative 

database for maize phenotypes predictability across the U.S., the province of Ontario in Canada, and the state of Niedersachsen 

in Germany between 2014 and 2017 has been used to test the designed QC-CC framework. A QC sub-module has been 

developed for each G2F data dimension, including G2F-G, G2F-P, G2F-E, and G2F-M sub-modules. Each sub-module 

generally aims to (1) read the raw files, (2) check and correct structural and format inconsistencies, (3) detect the missing 680 

values, and (4) fulfill them. The CC module is the last step of the input data pre-processing. It is designed to check the 

compatibility of controlled input data to identify the intersection of the records between all data dimensions ready for GxE 

model implementation and analytical operation. Multiple external data sources, including NSRDB, DayMet, and NWS, have 

been used to simulate the G2F-E gaps. The error uncertainty introduced by these data sources is also quantified. 

After passing through the QC-CC data pre-processing pipeline, the structural inconsistencies have been corrected, and the 685 

missing values have been filled in G2F-G and G2F-E datasets. As a result, 84 G2F trials for GxE simulation are released, 

consisting of molecular genetic markers of 376 maize lines and 79,122 yield observations. Here, the target phenotypic 

observation is yield. However, other phenotypes like plant height, ear height, and grain moisture also have been provided in 

the improved database for users. The improved G2F-E database contains seven hydroclimatic time series during the maize 

growing season in the G2F trial sites: temperature, dew point, relative humidity, solar radiation, rainfall, and wind speed and 690 

direction. The proposed methodology is applicable for other spatiotemporal variables improvement for the GxE models 

implementation. The improved multi-dimensional G2F database, along with developed scripts in a Python environment, is 

freely available for all users to be employed in their research. 

The database provided in this study can foster further efforts to improve GxE analytics and phenotypic predictability by 

enhancing the quality and consistency controls robustness as listed below: 695 

1. Employ remote sensing imageries to simulate and fulfill the crop’s phenotypic missing values to involve more samples in 

the database and analytics of maize growth predictability, 

2. Integrate other hydroclimate time series to provide a wide range of environmental drivers of maize growth for the 

improvement of GxE models' predictive skill, and 



32 
 

3. Develop rapid-response and user-friendly software architectures benefiting from pattern recognition techniques to correct 700 

typos, erroneous values, and data structure inconsistencies for boosting database management, analytical tools, and 

visualization efficiency. 
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