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Abstract 14 

Ambient particulate matter (PM) is a widespread air pollutant, consisting of a mixture of different particle species suspended in 15 

the air that negatively affects human health. Given the generally sparse distribution of in-situ PM measurement networks, 16 

spatially-resolved PM estimates are typically derived from Aerosol Optical Depth (AOD) obtained from satellites. However, 17 

satellite AOD data over land is affected by several limitations (e.g., data gaps; coarser resolution; higher uncertainty; unavailable 18 

or unreliable size fraction information), which weakens the relationship between AOD and PM. We have developed a 0.1 degree 19 

resolution daily AOD data set over Europe over the period 2003-2020, based on new Quantile Machine Learning (QML) models. 20 

The dataset provides reliable full-coverage AOD along with Fine-mode AOD (fAOD) and Coarse-mode AOD (cAOD), based 21 

on AERONET (AErosol RObotic NETwork) site observations and climate and air quality reanalyses. Our results show that the 22 

three QML AOD products guarantee better quality with an out-of-sample R2 equal to 0.68 for AOD, 0.66 for fAOD and 0.65 for 23 

cAOD, which is 23-92%, 11-13% and 115-132% higher than the corresponding satellite or reanalysis products, respectively. 24 

Over 88.8%, 80.5% and 88.6% of QML AOD, fAOD and cAOD predictions fall within ±20% Expected Error (EE) envelopes, 25 

respectively. Previous studies reported that Europe is one of the regions with the poorest satellite AOD-PM correlation (Pearson 26 

correlation coefficient (PCC) around 0.1). Our results show that the three QML products are more correlated with ground-level 27 

PMs, especially when they are paired with their corresponding PMs in terms of size: AOD with PM10, fAOD with PM2.5 and 28 

cAOD with PM coarse (R=0.41, 0.45 and 0.26, respectively). Our results show that different PM size fractions may be better 29 

predicted using different AOD size fractions, instead of total AOD. QML long-term aerosol dataset (and associated models) not 30 

only fix some problems of existing AOD data, but also provide better tools to monitor and analyse fine-mode and coarse-mode 31 

aerosols in spatial and temporal dimensions, and to further investigate their impacts on human health, climate, visibility, and 32 

biogeochemical cycling. The QML datasets can be downloaded from https://doi.org/10.5281/zenodo.7756570 (Chen et al., 2023). 33 

  34 

https://doi.org/10.5194/essd-2023-104
Preprint. Discussion started: 27 March 2023
c© Author(s) 2023. CC BY 4.0 License.



2 

 

1. Introduction 35 

According to the latest report of the Global Burden of Disease (Institute for Health Metrics, 2020), ambient particulate matter 36 

(PM) contributed to over 4.14 million deaths globally in 2019, twice as much as the numbers in 1990 (2.04 million deaths). In 37 

Europe, estimates from the European Environment Agency point to 307,000 annual premature deaths linked to fine PMs alone 38 

(PM2.5, i.e. particles smaller than 2.5 micrometres in diameter), a death toll that is one order of magnitude larger than the one 39 

of the other major pollutants, e.g. 40,400 annual deaths for nitrogen dioxide and 16,800 for ozone (European Environment 40 

Agency, 2021). This problem highlights the importance of accurately describing the spatiotemporal distribution of air pollutants, 41 

in particular PM. However, building and maintaining an extensive network of ground-level monitoring stations is expensive and 42 

not sustainable in many countries (Maag et al., 2018), which limits our capacity to derive spatially-representative estimates of 43 

the main air pollutants for epidemiological modelling and health impact assessment (Zhang et al., 2021). 44 

 45 

Compared with surface PM (surface level aerosol particles), the total column of atmospheric aerosols can be monitored over a 46 

larger geographical coverage thanks to satellite observations (Griffin, 2013). The total column of atmospheric aerosols is 47 

generally measured as Aerosol Optical Depth (AOD), by detecting how much sunlight is absorbed or scattered by suspended 48 

particles and surrounding gases. In general, higher AOD values indicate more aerosols in the atmosphere, which can be associated 49 

with higher levels of PM. Therefore, AOD is the common and important indicator for surface PMs estimations, especially in 50 

those locations without available PMs observations.  51 

 52 

However, satellite-derived AOD data still present some downsides, which may hinder the use of AOD to estimate PM. The first 53 

downside is the large data gap in satellite AOD. Over 85% of satellite AOD measurements are missing globally (Kahn et al., 54 

2009; Chen et al., 2019b), mainly due to cloudiness, surface reflectivity and low sun angle at high-latitudes (Wei et al., 2018; 55 

Gupta et al., 2016; Chen et al., 2019b). Secondly, the accuracy of satellite AOD is still subject to various factors, like instrument 56 

calibration, cloud contamination, and climate or geographic conditions (He et al., 2021). These uncertainties may lead that the 57 

correlation between satellite AOD and PM levels varies a lot in different locations, and the correlation in some regions is always 58 

lower. For example, the Pearson correlation coefficient (PCC) between satellite AOD and PM levels in Europe and South 59 

America were found to be the lowest (from 0.1 to 0.12) by Christopher and Gupta (2020), against 0.45-0.70 in Northern America 60 

or East Asia. Lastly, polar satellites can only scan the surface a few times every day in each location, so space-based AOD 61 

measurements cannot fully match the continuous 24-hour ground level measurements. To solve this problem, geostationary 62 

satellites in some regions were launched recently but only provide data in recent years.  63 

 64 

On the other side, aerosol reanalyses nowadays offer global gridded AOD estimates with no missing values, based on the 65 

assimilation of satellite AOD.  However, their resolution exhibit relatively coarse (of the order of 50-100 km) due to large 66 

computational requirements for fine-scale assimilation (Bouttier, 2009), and their products remain with some unavoidable bias 67 

mainly caused by uncertainties in the emission inventories (Huang et al., 2021), and some uncertainties from satellite or 68 

meteorological products that are assimilated. 69 

 70 

In addition to these problems, the type and size distribution of aerosols can also change the amount of light that is scattered or 71 

absorbed by the aerosols, and therefore affect the AOD measurements and their relationship with PMs (Yan et al., 2017; Zang 72 

et al., 2021). For example, in regions with high levels of coarse particles in the atmosphere, those large particles such as dust can 73 

scatter more light than smaller particles, leading to the higher measurement of AOD. At this moment, the high level of AOD 74 

mainly represent those coarser particles rather than small particles like PM2.5. However, the size-resolved AOD information 75 

(fAOD and cAOD) are generally not taken into consideration for the estimation of PM. Due to the lack of reliable sources for 76 
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these components, previous studies have generally used total AOD as the default predictor of PM2.5 or PM10 (Ferrero et al., 77 

2019; You et al., 2015), even though more accurate models could be calibrated with fAOD and/or cAOD. Importantly, obtaining 78 

reliable high-resolution data of the components of AOD still represents a major challenge (Yan et al., 2022). For the satellite 79 

products, the MODIS fine mode fraction products are only available over oceanic areas, and its products over land have high 80 

uncertainties (Levy et al., 2013); while the products from Polarization and Directionality of the Earth's Reflectance (POLDER) 81 

is only available over short periods of time (Dubovik et al., 2019). To solve this problem, a few experimental studies (Chen et 82 

al., 2020; Yan et al., 2022) attempted to improve satellite data quality by developing lookup table spectral deconvolution 83 

algorithm (LUT SDA) and machine learning, but some limitations still persist, including the coarse spatial resolution (1 degree) 84 

and the large data gaps. 85 

 86 

Given the limitation of existing aerosol products, as well as the poor correlation between satellite AOD and PM2.5 in Europe, 87 

we developed a new set of AOD models, and provided a 0.1 degree resolution daily AOD data set over Europe for the period 88 

2003-2020 to better understand the spatiotemporal distribution of aerosols in the continent. First, based on Quantile Machine 89 

Learning (QML) models fed with ground-level AERONET data and climate and aerosol reanalyses, we develop a high-resolution 90 

daily dataset of AOD, fAOD and cAOD covering Europe over the period 2003-2020. Second, we investigate if these improved 91 

AOD products provide a stronger correlation with surface PM. Compared with previous products, these QML estimates (AOD, 92 

fAOD and cAOD) respectively shows higher correlation with PM10, PM2.5 and PMcoarse (i.e. difference between PM10 minus 93 

PM2.5), providing the foundation for indicating air pollutants distribution when ground-level stations are not available. Our 94 

study was motivated by the need to fill the gap of missing satellite aerosol information, but also to provide reliable fine-mode 95 

and coarse-mode aerosol estimates. At a longer-term horizon, it is aimed at providing new spatiotemporal PM exposure estimates 96 

that could be used in epidemiological studies or for environmental surveillance. 97 

2. Data 98 

2.1 AERONET data 99 

We collected cloud-screened, ground-based AOD data from AERONET v2.0 (Holben et al., 2001). This data source also 100 

provides the decomposition of total AOD into fAOD and cAOD, based on a Spectral Deconvolution Algorithm validated by 101 

O’neill et al. (2003). As it is commonly done in the literature, AERONET data are here considered as the “ground truth” to 102 

validate other aerosol data (Gueymard and Yang, 2020; Bright and Gueymard, 2019). Our data are from 257 sites located in the 103 

research domain here considered: 27-72N x 25W-45E. To be comparable with the satellite and reanalysis data, the AERONET 104 

AOD data at 550 nm was interpolated from the two nearest wavelengths, i.e. 500 nm and 675 nm (Gupta et al., 2020; Duarte and 105 

Duarte, 2020). 106 

2.2 Satellite data 107 

We collected daily AOD data for the period 2003-2020 from MODIS v6.1(https://ladsweb.modaps.eosdis.nasa.gov/), which is 108 

based on the Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm. The data are available at a 1km x 1km 109 

spatial resolution over Europe. MAIAC uses time series analysis and an image-based processing algorithm to provide accurate, 110 

fixed-grid aerosol estimations (Lyapustin et al., 2011). We further filtered the MAIAC data according to the quality assurance 111 

flags of the NASA guidelines (i.e. Quality Assurance of cloud mask = clear sky)(Lyapustin et al., 2018). 112 

 113 
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2.3  MERRA-2 reanalysis 114 

We also retrieved data from MERRA-2, the atmospheric composition reanalysis developed by NASA. To develop this product, 115 

the Goddard Earth Observing System Model (GEOS-5) data assimilation system was used to ingest multiples sources (e.g. data 116 

from AERONET sites, MODIS, MISR and AVHRR sensors (Randles et al., 2017)) to simulate aerosol data with the Goddard 117 

Chemistry, Aerosol, Radiation, and Transport (GOCART) model. MERRA-2 provides assimilated 3-hourly aerosol data at a 118 

resolution of 0.625°×0.5° from 1980. Previous studies (Che et al., 2019) showed that MERRA-2 reproduces the general trends 119 

in annual and seasonal AOD, both at regional and global scales, but with significant biases in some locations. 120 

2.4  CAMS reanalysis 121 

Compared with MERRA-2, CAMSRA, the air quality reanalysis from the European Centre for Medium-Range Weather 122 

Forecasts (ECMWF) (Inness et al., 2019), assimilates the hourly AOD data from Envisat's AATSR sensor, NASA's MODIS 123 

Aqua and Terra sensors since 2003 and in-situ measurements from a wide range of sources (Bozzo et al., 2017; Flemming et al., 124 

2015), although, its spatial resolution is relatively coarser (0.75° x 0.75°). Previous studies showed that the estimates of AOD in 125 

CAMSRA are slightly poorer than in MERRA-2 (Gueymard and Yang, 2020).  126 

2.5  ERA5 reanalysis for meteorological data 127 

Previous studies (Huang et al., 2007; Zhou and Savijärvi, 2014; Tai et al., 2010; Gui et al., 2019; Yan et al., 2022) have analysed 128 

the associations between weather conditions and the concentration of fine- and coarse-mode aerosols. For example, high-pressure 129 

events, characterised by atmospheric stability and low winds, retain the smaller particles, which is seen with higher-than-normal 130 

fine-mode aerosol levels (Tai et al., 2010; Gui et al., 2019). Moreover, rainfall washes out the particles from the lower part of 131 

the troposphere, especially the largest particles. There are other pathways by which aerosols can also affect weather conditions, 132 

for example by reflecting and absorbing the incoming UV radiation (Zhou and Savijärvi, 2014), or by changing the conditions 133 

for the condensation of water in the cloud(Huang et al., 2007). We therefore collected data from several atmospheric, oceanic 134 

and land surface variables, such as boundary layer height, downward UV radiation, cloud cover, surface pressure and 135 

precipitation, from ECMWF ERA-5 reanalysis, which provides data since 1950 at a resolution of 0.25º x 0.25º. 136 

2.6  ERA5 reanalysis for land surface data 137 

Apart from meteorological data, the land surface data also has important impacts on aerosol. As forests contribute to a large 138 

extent to particle removal, previous studies found the deposition velocity of ultrafine particles is generally more sensitive to leaf 139 

area index than leaf area density (Lin et al., 2018; Huang et al., 2015). Also, the dry deposition of particles is affected by 140 

properties of the vegetation elements (such as leaves and branches) and soil types (Grönholm et al., 2009). Thus, we found the 141 

significant contributions of leaf area index high vegetation, leaf area index low vegetation and soil types to aerosol. Higher Leaf 142 

area index high vegetation means more evergreen trees, deciduous trees or forest, while Higher Leaf area index low vegetation 143 

represents more crops and mixed farming, grass or shrubs. For bare ground or places with no leaves, both of them will be close 144 

to zero. The soil types describe how coarse the soil is, representing the water holding ability of soil. Coarser soil generally has 145 

lower water holding ability. Furthermore, land surface information is also important to surface reflectance, which further affects 146 

the quality of satellite data included in reanalysis data. 147 

3. Methodology 148 

3.1 Overall model 149 

In this study, we used quantile lightGBM (Light Gradient Boosting Machine) models to separately obtain predictions of AOD, 150 

fAOD and cAOD. This gradient boosting framework is a high-performance, tree-based model requiring less computational time 151 
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than Gradient Boosting models or Random forest (Ke et al., 2017). The model also provides the intervals of the quantile 152 

predictions to assess their uncertainty. 153 

3.2 Variable selection 154 

Our model is developed according to the methodological steps summarised in Figure 1. We first bilinearly interpolated all gridded 155 

data to a horizontal resolution of 0.1° x 0.1° (i.e. around 9 km at mid-latitudes), and then extracted the corresponding values at 156 

the longitudes and latitudes of the AERONET sites. To determine the variables included in the models, we conducted the Boruta 157 

feature selection procedure (Kursa and Rudnicki, 2010) separately to AOD, fAOD and cAOD. The Boruta method is the robust 158 

and powerful tree-based algorithm, which was successfully validated in previous simulation studies (Degenhardt et al., 2019). 159 

For each variable, the method first generates a new shadow variable by randomly permutating the values of original variables, 160 

and removes the original variable if there is no significant difference between the contribution to the model of the shadow and 161 

the original variables. To reduce computational time and guarantee the stability, we conducted the Boruta method five times with 162 

random subsamples of 20% of the sites to select those variables that are statistically significant (p-value < 0.05) (selected 163 

variables are listed in Table S1).  164 

 165 

Figure 1. The workflow of Quantile machine learning (QML) for AOD, fAOD and cAOD 166 

 167 

3.3 Techniques to improve the models 168 

To improve the models, we randomly selected 70% of the sites as training data for the quantile lightGBM models. An additional 169 

20% of the sites was used to optimize the model hyperparameter or to validate the following improving performance techniques 170 

(see next paragraph). The remaining 10% of the sites was used to evaluate the out-of-sample predictive ability of the model, and 171 

to select the optimal model configuration that was used to predict the daily AOD, fAOD and cAOD spatiotemporal estimates.  172 

 173 

We applied three techniques to improve the accuracy and stability of the models: 174 
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- distance weighted loss function: given the heterogeneous spatial distribution of the 257 AERONET sites, the model is 175 

likely to be overfitted in those regions with a higher density of stations. To reduce the effect of this selective overfitting, 176 

we used distance weight factors in the loss function to decrease the weight in the regions with a higher density of stations. 177 

The mathematical formulation is 178 

𝑊𝑖 =
(𝐷𝑖−𝐷𝑚𝑖𝑛)

(�̅�−𝐷𝑚𝑖𝑛)
       (1) 179 

𝐿(𝑌, 𝑌∗) = ∑ 𝑊𝑖
𝑛
𝑖=1 ∗ 𝐿(𝑦𝑖 , 𝑦𝑖

∗)      (2) 180 

where Di is the distance of station i to its nearest site; Dmin and D̅ denote the minimum and average distance to their 181 

nearest site; and L(Y, Y∗) and 𝐿(𝑦𝑖 , 𝑦𝑖
∗) are the overall loss function (Y and Y∗ are the observation and prediction vectors) 182 

and the loss functions for station i (yi and yi
∗ are the observations and predictions at station i).  183 

- minimum directional distance: we used this technique to analyse how predictions are affected by the distribution of sites 184 

along the longitudinal and latitudinal axes. Figure S1 illustrates how we constructed these spatial calibration variables. 185 

We first drew, for each station, the longitudinal and latitudinal axes to obtain the four quadrants. We defined a distance 186 

of 2000 km as an upper threshold in each direction. We then calculated the distance to the closest station in each 187 

direction, with a maximum value of 2000 km for the largest values. These distances in four directions were finally 188 

included as additional inputs in the models to account for the minimum directional distance. 189 

- white-noise data augment: this technique was used to reduce the overfit of the model. It duplicates the original training 190 

datasets but adds white noise to the independent predictors. White noise is here defined by a Gaussian distribution with 191 

zero mean and the variance of corresponding independent predictors. 192 

 193 

Actually, most of these techniques tend to increase the contribution of those sites are most distant from its nearby sites. To justify 194 

it, we used those 20% sites to validate the performance of these techniques. Also, we selected the sites with distance to their 195 

nearest sites above mean (463km), to examine the improvement for those locations with fewer stations. These sensitivity analyses 196 

(Table S3) show that the three techniques combined improved the quality of AOD, fAOD and cAOD predictions by around 38%, 197 

27% and 44% in the regions with sparsely distributed stations. 198 

 199 

Lastly, we also tested if the use of satellite MAIAC AOD improved the predictions (find details in the Section 3 of the 200 

Supplementary). Our analysis shows that there is no significant improvement in the final model after including satellite AOD, 201 

even after filling the missing values. This may be partially due to the fact that the reanalysis data already includes the satellite 202 

information (Bozzo et al., 2017; Flemming et al., 2015), and the satellite only accounts for a small fraction in the whole dataset. 203 

As a result, we excluded the MAIAC AOD data from our models. 204 

3.4 AOD Model Validation 205 

To evaluate the out-of-sample predictive capacity of the models, we separately obtained the spatial and temporal out-of-sample 206 

predictions by nested 5-fold cross-validation. For the spatial out-of-sample predictions, we randomly divided the 257 AERONET 207 

sites into five equal-sized subsamples. In each loop of generating predictions, we randomly used four subsamples for model 208 

training and tuning, and the other one for obtaining the out-of-sample predictions. In each model training, we further divided 209 

those four training subsamples to 80% for modelling, and the rest 20% for model hyperparameter optimization. This process was 210 

repeated for each of the five subsamples, generating five models and out-of-sample predictions for all the sites. For the temporal 211 

out-of-sample predictions an analogous strategy was used, but with six subperiods of three consecutive years, covering our 18-212 

year period. Table S1 shows that the spatial and temporal models have similar structures, hyperparameters and results, indicating 213 

that our model strategy is stable to data training strategies. 214 

 215 
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To interpret these out-of-sample predictions, we compared these predictions with the AOD estimates from MERRA-2, CAMSRA 216 

and satellite MAIAC data, by evaluating all of them against the AERONET data. For the fAOD and cAOD, as the reanalysis 217 

data did not provide fine-mode and coarse-mode information, the satellite fAOD and cAOD is the only source for comparison. 218 

Recently, Yan et al. (2022) have developed Phy-DL (PDL) Fine-mode Fraction (FMF) global products, and found their product 219 

outperforms existing FMF products: Polarization and Directionality of the Earth's Reflectance (POLDER) FMF, Multi-angle 220 

Imaging Spectro Radiometer (MISR) FMF and MODIS FMF. Their corresponding correlation with AERONET AOD are 0.78, 221 

0.48, 0.42 and 0.37. Besides, the general correlation between PDL fAOD ( = PDL FMF * MAIAC AOD) and AERONET AOD 222 

(PCC = 0.781) in our domain is similar with the result reported by Yan et al. (2022). Given that the PDL fAOD has been shown 223 

to be an optimal method for global comparisons, we selected it as the primary reference for comparing the QML predictions. 224 

The evaluation metrics, including R-squared, NMB (Normalized Mean Bias), NRMSE (Normalized Root Mean Square Error), 225 

90% PI (predictive intervals) coverage, and the percentage of predictions within the expected error envelopes of 20%, are 226 

described in Table S3. 227 

3.5 Exploratory correlation analysis with Surface PMs 228 

The future application of QML AOD, fAOD and cAOD predictions is to provide more information for predicting PM10, PM2.5 229 

and PMcoarse , thereby it is important to provide additional insights into the relationship between aerosol size distribution and 230 

surface PMs. Once we obtain the reliable data for AOD, fAOD and cAOD, we can now undertake the investigation of their 231 

relationship. Also, we can examine whether the QML products can potentially be a better indicator for PMs. First, we obtained 232 

QML AOD prediction for locations with monitoring sites of PM, and then compared spearman correlations coefficient (SCC) 233 

results among different AOD products with PM10, PM2.5 and PMcoarse. The potential monotonic relationship between AOD and 234 

PM is generally not strictly linear, so SCC is a better evaluation tool than PCC. Notedly, the location of ground-level PM sites 235 

generally does not coincide with the AERONET sites, so correlation results are less likely to be affected by overfiting. 236 

4. Results and discussion 237 

4.1 Description of AERONET Data 238 

Figure 2 shows the spatial and temporal distribution of AERONET station data. On average, each site has 662 observations 239 

during the 2003-2020 period, with approximately 28% of sites having over 1,000 observations. Early-built sites (constructed 240 

before 2010) are distributed relatively evenly throughout Europe, allowing models in the early period to be trained with data that 241 

represents the continent as a whole. The annual sample size of observations has been increasing during the last two decades, and 242 

reached its maximum in 2018. In relative terms, the average number of daily observations gradually increased until 2011, when 243 

it stabilised at around 150 annual days per site. This plateau period (2011-2020) indicates that the average number of observable 244 

days for most sites is restricted to around 150 days due to some external factors. For example, the sun photometer requires clear 245 

skies (Holben et al., 2006; GLOBE 2010)). Sometimes, some stations require calibration and are usually taken offline for a few 246 

months intermittently. Before the plateau, the increasing number of observable days per site indicates that some AERONET sites 247 

may have not operated regularly in this earlier period, which would limit the performance of QML AOD models. 248 
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 249 

Figure 2. Spatial and temporal distribution of AERONet sites: (a) number of daily values, (b) built-year and (c) number of 250 

observations for whole domain (left axis, green bars) and average of observable days per site (right axis, blue line). 251 

 252 

Figure 3 depicts the spatiotemporal distribution of AERONET AOD, fAOD and cAOD observations. For instance, AOD and 253 

fAOD are higher in central and eastern Europe, while cAOD is higher in southern Europe. This indicates that central and eastern 254 

Europe are largely affected by anthropogenic pollution sources, mainly associated with anthropogenic (Bellouin et al., 2005) and 255 

secondary aerosols (e.g., sulphate, nitrate, ammonium) (Zhao et al., 2018; Seinfeld and Pandis, 1998), while southern Europe is 256 

influenced by intrusions of mineral dust from the Sahara desert, as well as the advection of sea salt from the Mediterranean Sea 257 

(Meloni et al., 2008; Prospero et al., 2014). Regarding the long-term trend in AOD, the annual values have decreased at a rate of 258 

28.5% per decade for AOD and 27.2% for fAOD, while they have remained stable for cAOD. Given that fAOD is largely 259 

associated with anthropogenic emissions, its decreasing trend reflects the reduction in anthropogenic pollution resulting from air 260 

quality plans implemented in Europe. 261 
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 262 

Figure 3. Spatial and temporal distribution of the median value of AERONet (a) AOD, (b) fAOD and (c) cAOD data. (d) 263 

Temporal evolution of AOD (red+blue), fAOD (blue) and cAOD (red). 264 

 265 

4.2 Spatial and Temporal Evaluation 266 

To further validate the AOD models, we compared in time and space the AOD predictions with the estimates from MERRA-2, 267 

CAMSRA and MAIAC. Given the large fraction of missing values in satellite MAIAC AOD (64%), we divided the validation 268 

results into two subgroups of dates and sites, i.e. those with (“Sat scenario”) or without (“Non-Sat scenario”) available satellite  269 

AOD data, in order to guarantee the comparability among the different products, and provide a better understanding of the factors 270 

limiting the performance of the models. Unlike MERRA-2, CAMSRA and MAIAC, we used our models to generate out-of-271 

sample predictions in space and time in order to shed more light into the validation. 272 

 273 

4.2.1 Total AOD product 274 

Figure 4 validates the different AOD products against the AERONET observations, by comparing QML’s spatial and temporal 275 

out-of-sample AOD predictions with MERRA-2, CAMSRA and MAIAC AOD. The NMB maps show that, in general, QML 276 

predictions agree best with AERONET data, but they are slightly underestimated both in the spatial and temporal out-of-sample 277 

predictions. Additionally, the QML also has the lowest NRMSE, approximately 33% smaller than the other products. In contrast, 278 
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CAMSRA is the product with the largest overestimation, especially in Northern Europe, United Kingdom and some 279 

Mediterranean coastal areas. Meanwhile, satellite AOD tends to underestimate inland areas and overestimate coastal areas. 280 

 281 

In Figure 4 (a1-e1), the box plots of the bias (estimation minus AERONET) are displayed in each decile (Q1-Q10) of the 282 

AERONET AOD, with the range in each decile additionally shown in Table S4. The orange and green lines represent the 283 

expected error (EE) envelopes of ±40 % and ±20 % for each decile according to the methodology described in previous studies 284 

(Levy et al., 2010; Xiao et al., 2016; Yan et al., 2022)). Overall, QML predictions show a high agreement with AERONET data, 285 

with approximately 91% (temporal out-of-sample predictions) and 89% (spatial) of the predictions falling within 20% expected 286 

error (EE) envelopes. In contrast, the 20% EE in the other products ranges between 76% and 78%. QML also exhibits the highest 287 

R-squared, i.e. 0.71 and 0.68 for the temporal and spatial out-of-sample predictions. 288 

 289 

In the Sat scenario, all the products tend to overestimate the AOD in the lower AOD deciles, and to underestimate it in the higher 290 

deciles. However, QML has the highest proportion of predictions within 20% EE (i.e. over 93%), especially with less bias in the 291 

lower deciles. In the Non-Sat scenario, all products perform relatively worse compared to the Sat scenario. This is partially due 292 

to the fact that reanalysis data assimilates satellite data. QML models also benefit from including reanalysis data as input. 293 

CAMSRA AOD is the product with stronger overestimations in almost all deciles (Q1 to Q8), while MERRA has similar 294 

performance as CAMSRA from Q1 to Q6. In comparison, QML mainly narrows the bias among those quantiles (Q1 to Q8), and 295 

its rate of falling within 20% EE reaches 86%-89%.  296 

 297 

Overall, both scenarios show that QML AOD mainly provide better predictions in lower quantiles, where other products tend to 298 

overestimate AOD. This implies that QML AOD is less likely to overestimate values in the lower range, but like other products, 299 

it may still exhibit some overestimates in higher ranges, leading to a slightly negative NMB. 300 

 301 

To assess the performance over time, Figure 5 presents the annual performance of AOD products based on three criteria: R-302 

square, NMB, and NRMSE. QML AOD predictions consistently achieve higher R-squared values than reanalysis or satellite 303 

estimates. Regarding NMB, all products show slightly increasing trends over the years, with MERRA-2 and MAIAC estimates 304 

shifting from negative to positive values. This trend could be due to the decrease in AERONET AOD over time, coupled with 305 

the tendency of most products to overestimate the AOD in the lower deciles. In contrast, the NMB in QML is relatively constant. 306 

As for NRMSE, all products show slight decreases over time, with the lowest values in QML throughout the entire period.  307 

 308 
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Figure 4. The spatial distribution maps of normalize mean bias (NMB) (a-e) and box plots of AOD estimation bias (Estimation 310 

minus AERONet data) for different quantiles of AERONet AOD (a1-e1) in 2003-2020. These data sources include: MERRA-2 311 

AOD (a-a1), CAMSRA AOD (b-b1), MAIAC AOD (c-c1), QML spatial out-of-sample prediction (QML AOD Spat) (d-d1) and 312 

QML temporal out-of-sample prediction (QML AOD Temp) (e-e1). The N(%) is the sample size (proportion); 20% and 40% EE 313 

are expected error envelopes with 0.05 ±20 % observation and 0.05 ±40 % observation. The upper, middle, and lower lines in 314 

each box are the 75th, median, and 25th percentiles, respectively. 315 

 316 

 317 

Figure 5. Comparison of the performance (R-squared, NMB, NRMSE) between different data sources: QML spatial out-of-318 

sample prediction (QML AOD-Spat), temporal out-of-sample prediction (QML AOD-Temp), CAMS AOD, MAIACAOD, 319 

MERRA-2 AOD. 320 

After splitting the data into two scenarios, it was observed that most products performed slightly worse in the Non-Sat scenario, 321 

while QML consistently maintained better performance in both scenarios. Additional validation statistics for calendar months 322 

(Fig S2) and days of the week (Fig S3) are provided in the Supplementary, which also show that the QML temporal and spatial 323 

predictions outperform the estimates from reanalysis and satellite AOD. All products fit better with AERONET data in the warm 324 

season (April-September), while it is more challenging to predict AOD in the cold season (October to March) due to cloud and 325 

rain, which reduces the amount of sun photometer observations (GLOBE 2010; Holben et al., 2006). The reanalysis data, 326 

particularly the CAMSRA AOD, are more likely to overestimate the AOD in the warm season and to underestimate it in the cold 327 

season, while QML performance remains relatively constant among seasons. Regarding the weekly cycle, there are no significant 328 
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differences between the days of the week, possibly due to the relatively smaller influence of human activities on column-329 

integrated AOD. 330 

 331 

QML provides 90% prediction intervals (PI) as an estimation of the uncertainty of the predictions, and its performance is shown 332 

in Table S4. The average coverage of the QML temporal and spatial PI is 84.2% and 83.5%, respectively, slightly lower than the 333 

expected value of 90%. QML still faces some difficulty in predicting intervals for the first and last deciles, with only a coverage 334 

of 55% in Q1 and 68% coverage in Q10. This indicates that the intervals are slightly underestimated by our quantile models. 335 

 336 

3.2.2 Fine-mode AOD product 337 

Figure 6 validates the QML and PDL fAOD products against the AERONET observations. Generally, QML fAOD does not 338 

exhibit any spatial pattern in its NMB, but with some underestimates in certain locations. Additionally, its overall NRMSE is 339 

lower than that of PDL fAOD. In contrast, PDL fAOD exhibits an uneven pattern in its predictions, with overestimates in 340 

Southwest Europe and underestimates in Central and Eastern Europe. The main difference between these two areas is their fAOD 341 

concentration, with generally lower fAOD in Southwest Europe and higher fAOD in Central and Eastern Europe (as seen in 342 

Figure 3 (b)). Thus, it can be inferred that this uneven pattern results from the preference of PDL to overestimate small fAOD 343 

values and underestimate high fAOD values (as seen in Figure 6 (a1)). However, Compared to PDL fAOD (Fig. 6 (a1-c1)), QML 344 

fAOD narrows the bias, especially in smaller deciles (Q1-Q5), so that over 86% (spatial) and 87% (temporal) of the predictions 345 

fall within 20% expected error (EE) in Sat scenarios. In Non-Sat scenarios, QML still maintains 77-79% of the predictions within 346 

20% EE. The overall R-squared of QML reaches 0.66 (spatial) and 0.68 (temporal). 347 
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  348 

Figure 6. Spatial distribution maps of normalize mean bias (NMB) (a-c) and quantile box plots for for different quantiles of 349 

AERONet fAOD (a1-c1) in 2003-2020, including: Phy-DL Satellite fAOD (PDL MAIAC fAOD) (a-a1), QML spatial out-of-350 

sample prediction (QML fAOD-Spat)(b-b1) and temporal out-of-sample prediction (QML fAOD-Temp) (c-c1). The N(%) is the 351 

sample size (proportion); 20% and 40% EE are expected error envelopes with 0.025 ±20 % observation and 0.025 ±40 % 352 

observation. The upper, middle, and lower lines in each box are the 75th, median, and 25th percentiles, respectively. 353 
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 354 

Figure 7. The annual performance (R-squared, NMB, NRMSE) comparison between different data sources in the satellite 355 

scenario: QML spatial out-of-sample prediction (QML fAOD Spat-Prediction), temporal out-of-sample prediction (QML fAOD 356 

Temp-Prediction), Phy-DL Satellite fAOD(PDL MAIAC fAOD). 357 

As the PDL fAOD is only available in the satellite scenario, Figure 7 (left columns) compares the year-to-year performance 358 

between PDL and QML fAOD in the Sat scenario. The R-squared values indicate that the performance of PDL fAOD exhibits 359 

greater variability over time than QML, and the difference between the two products appears to increase slightly over years. The 360 

NMB (%) shows a strong underestimation of PDL fAOD before 2008, partly because of its uneven spatial bias pattern during 361 

that early period (Fig 6A). Prior to 2008, more AERONET sites were located in western Europe (Fig. S4), where PDL fAOD 362 

was underestimated. Afterward, more sites were set in areas in which the product tends to overestimate the predictions (e.g., 363 

Southwest Europe), offsetting the bias and bringing the NMB of PDL fAOD closer to 0 after 2008. The NRMSE results also 364 

suggest that PDL fAOD has a larger error than QML fAOD. In contrast, the QML predictions are generally better in terms of 365 

NRMSE, and errors remain stable over the years. 366 

 367 

We note that the availability of PDL AOD in our dataset is lower than the satellite MAIAC AOD (21% VS 36%), because PDL 368 

FMF is not always available when satellite AOD is available. Figure S5 shows that the R-squared of QML fAOD in the Non-Sat 369 

scenario is about 10% lower than its performance in the Sat scenario, and its NMB also indicates a stronger underestimation than 370 

in the Sat scenario. 371 

 372 
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In the seasonal analysis (Fig. S6), all fAOD products show a similar pattern to total AOD, and perform better in summer. In the 373 

Sat scenario, QML fAOD provides better and more stable performance than PDL fAOD. At the weekly level, there is no 374 

difference in performance among different days of the week (Fig. S7). The performance of PI in QML is shown in Table S5, 375 

with the average coverage for QML temporal and spatial PI at 83.3% and 84.4%, respectively, which is similar to the results of 376 

total AOD. 377 

 378 

3.2.3 Coarse-mode AOD product 379 

Figure 8 shows the evaluation of QML and PDL cAOD products against AERONET observations. All cAOD products have 380 

overall negative NMB, but the NMB of QML is around half that of PDL cAOD, due to the relatively strong underestimation of 381 

PDL cAOD in some locations of Central Europe. The overall NRMSE in QML is also around 18-19% lower. Around 91%(spatial) 382 

and 93%(temporal) QML predictions fall within the 20% EE in the Sat scenario (Fig.8 (a1-c1)), while 83% of the PDL predictions 383 

are within the 20% EE. Moreover, the R-squared difference is larger, i.e. 0.65-0.67 in QML and 0.38 in PDL. For the non-sat 384 

scenario, 87% (spatial) and 89%(temporal) of QML predictions fall within 20% EE, around 4% less than in the Sat scenario. 385 

 386 
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 387 

Figure 8. the spatial distribution maps of normalize mean bias (NMB) (a-c) and quantile box plots for for different quantiles of 388 

AERONet cAOD (a1-c1) in 2003-2020, including: Phy-DL Satellite cAOD(PDL MAIAC cAOD) (a-a1), our spatial out-of-389 

sample prediction (QML cAOD Spat-Prediction) (b-b1) and temporal out-of-sample prediction (QML cAOD Temp-390 

Prediction)(c-c1). The N(%) is the sample size (proportion); 20% and 40% EE are expected error envelopes with 0.025 ±20 % 391 

observation and 0.025 ±40 % observation. The upper, middle, and lower lines in each box are the 75th, median, and 25th 392 

percentiles, respectively. 393 

 394 

Figure 7 also shows the comparison of the year-to-year performance for between PDL cAOD and QML cAOD, when both of 395 

them are available. We can see the performance difference between QML cAOD and QML fAOD is smaller than the differences 396 

between PDL products. The R-squared of PDL cAOD is relatively lower and more volatile than PDL fAOD, while QML cAOD 397 
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maintains a similar performance as QML fAOD. And the PDL tends to underestimate cAOD to a lower extent over years, while 398 

it exhibits stronger bias in its NRMSE. Since PDL cAOD is calculated by subtracting PDL fAOD from Satellite MAIAC AOD, 399 

the large differences in performance between PDL fAOD and PDL cAOD suggest that the modelling of PDL FMF might rely 400 

too heavily on the calibration of AERONet fAOD, while neglecting the contribution from cAOD data. We therefore conclude 401 

that it is important to be cautious when using PDL FMF to extract cAOD values, while the QML appears to resolve this potential 402 

bias in cAOD prediction. 403 

 404 

The result of the non-satellite and all scenarios of QML cAOD is displayed in Figure S8. This figure shows that the difference 405 

in the performance between the Non-sat and sat scenarios is smaller compared with QML fAOD. The reason of these more 406 

accurate predictions for QML cAOD in the Non-sat scenario is that, compared with fAOD, the cAOD is more influenced by 407 

larger-scale sources (e.g., dust storms or sea salt advection), which means that their spatial distribution is generally more 408 

homogeneous. Thus, it is easier to predict even when satellite information is absent, while fine aerosols come from various 409 

anthropogenic sources.  410 

 411 

When the analysis is performed by month, the QML cAOD product consistently outperforms the PDL cAOD, while the latter 412 

exhibits larger variability across months (Figure S9 and S10). The performance of PI in QML can be found in Table S6, and the 413 

average coverage of the QML temporal and spatial PI is 81.8% and 79.2%, respectively. 414 

 415 

3.3 Correlation between AOD products and particulate matter components 416 

After this in-depth validation of the three AOD products, we here investigate the Spearman correlation between AOD, fAOD 417 

and cAOD with PM2.5, PM10 and PMcoarse, to explore the potential optimal indicator for surface PMs. To ensure comparability 418 

of analyses, we only computed the correlation for locations with at least 100 AOD-PM data pairs. 419 

 420 

Figure 9 displays the fishnet maps of SCC between ground-level PM2.5 and different AOD products. The fishnet maps show the 421 

show the mean correlation for stations over a 0.1°x0.1° grid, given that the network of over 2,600 PM2.5 sites are too dense to 422 

show in a point map. We excluded cAOD results from these comparison maps because the resulting correlations were not 423 

statistically significant (Table S7). Among the other AOD products, the strongest correlation with daily ground-level PM2.5 was 424 

found in QML fAOD (0.45) and QML AOD (0.40), followed by PDL fAOD (0.29), MERRA-2 (0.18), MAIAC (0.17), and 425 

CAMSRA AOD (0.10). The correlation between PM2.5 and PDL fAOD is higher than with MAIAC AOD, which is consistent 426 

with previous research. Furthermore, QML fAOD performs better than QML AOD, indicating that the fine-mode component of 427 

AOD may be a better proxy for PM2.5 (Lin et al., 2019; Zang et al., 2021; Yan et al., 2017). Both QML AOD and QML fAOD 428 

have a stronger correlation with PM2.5 than PDL fAOD, while they exhibit lower NRMSE to AERONet data (21.65 (QML 429 

fAOD), 21.25 (QML AOD), and 31.84 (PDL fAOD)). Regarding the spatial pattern, the strongest correlations with PM2.5 across 430 

most products are found in Western Europe. One possible explanation for this phenomenon is that the aerosol in Western Europe 431 

has a higher proportion of anthropogenic aerosol sources. These sources are more likely to concentrated in lower atmosphere or 432 

in smaller areas, such as urban centres, which may contribute to the stronger relationship between AOD and PM observed in this 433 

region. 434 

 435 
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The correlation analysis with PM10 and PMcoarse is additionally shown in Fig. S11 and Fig. S12, respectively. The spatial 443 

pattern of the correlations with PM10 is similar to the one obtained with PM2.5, but the SCC between PM10 and QML AOD is 444 

higher than the one with QML fAOD, around 0.41 and 0.37, repectively. For the Coarse PM, the correlation with QML cAOD 445 

is the strongest, reaching 0.26, especially in the southern Europe.  446 

 447 

As the correlation with different sizes of PM is consistently higher in QML products (Table S7), we explored the relationship 448 

between three QML AOD components and different-size PMs. Figure 10 presents the correlation analysis among QML AOD 449 

products, PM10, PM2.5, and PMcoarse in locations with at least 100 AOD-PM pairs during 2003-2020. The correlation in 450 

different years suggests that AOD, fAOD and cAOD are the best candidates for PM10, PM2.5 and Coarse PM prediction, 451 

respectively.  452 

 453 

The correlation of QML fAOD with PM2.5 and PM10 is always highest in winter and lowest in summer (Fig. 10, second rows). 454 

In contrast, the correlation of cAOD with PM2.5 and PM10 shows the opposite seasonal pattern: weaker or even negative in 455 

winter, but stronger in spring and summer. In winter, the proportion of suspended fine particles increases due to more energy 456 

consumption, such as domestic heating (Martins and da Graça, 2017). At the same time, the cAOD in winter is more contributed 457 

by sea-salt aerosols in Europe (Zhao et al., 2018), with the help of the windy season under low pressure systems over the Atlantic 458 

Ocean (Manders et al., 2009). Thus, we can observe the non-significant or even negative correlation between cAOD and PM2.5 459 

in the winter. In spring and summer, when the Saharan dust transport is active (Meloni et al., 2008; Prospero et al., 2014), the 460 

cAOD starts to have significant correlation with all particulate matter fractions, especially with the coarse. This also reduces the 461 

contribution of fAOD to PMs in summer, especially to PM10.  462 

 463 

As AOD, fAOD and cAOD are the best potential candidates for the prediction of PM10, PM2.5 and Coarse PM, respectively, 464 

we further compare QML products with other products in AOD, fAOD and cAOD (Fig. S13). Among all types of AOD products, 465 

the QML products always provide better indicators for ground-level particulate matter. 466 

 467 

3.4 Spatial distribution and trend analysis for QML AOD products 468 

In this section, we compared the spatial distribution of 18-year average maps from different data sources (Fig. 11) and their 469 

trends over the study period (Fig. 12 and Fig. S14). The 18-year average of reanalysis products and QML products generally 470 

have a similar spatial pattern at 0.1-degree resolution (Fig. 11), and show good agreement with the long-term average of 471 

AERONET data. The Pearson correlation with AERONET data for the 18-year averages are: 0.89 (QML AOD), 0.85 (MERRA-472 

2), and 0.79 (CAMSRA). Also, the 18-year averages of QML fAOD and cAOD are highly correlated with corresponding 473 

AERONET data (R=0.91 and 0.93). The uncertainty of QML products is shown as the relative predictive intervals width (RPIW, 474 

the ratio of 90% predictive intervals width and corresponding estimates) in Figure S15. 475 
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 484 

For the spatial pattern for aerosol, the high values of total QML AOD are mainly located in central and eastern Europe, the 485 

Mediterranean and Northern Africa. However, the composition of these high-value AOD are different. For example, the high 486 

fAOD are mainly located in inland areas of Europe, like the middle and eastern part of Europe (especially Northern Italy, 487 

Southern Poland, Hungary, Serbia, Romania and Bulgaria). Meanwhile, the cAOD are mainly affecting Northern Africa, the 488 

Mediterranean and some coastal areas in Europe. This composition pattern is consistent with the general pattern in AERONET 489 

data, but gives more details in each exact location due to the extended coverage of the product. As the fAOD and cAOD mainly 490 

come from different sources (anthropogenic vs dust/sea-salt sources) (Zhao et al., 2018; Seinfeld and Pandis, 1998; Yan et al., 491 

2022; Bellouin et al., 2005), the AOD in middle and eastern of Europe are more contributed by anthropogenic small-size aerosol, 492 

while Mediterranean areas and Northern Africa are more impacted by Saharan dust.  493 

 494 

Figure S14 shows the 18-year trend maps of QML (AOD, fAOD and cAOD), Satellite (MAIAC AOD, PDL fAOD and PDL 495 

cAOD) and Reanalysis (CAMSRA and MERRA-2) products. To guarantee the robustness while calculating the annual trend, 496 

we subset 46 AERONET sites (points in Fig. s14), with more than 10 years of data and at least 50 daily observations per year. 497 

Generally, QML and CAMSRA have a good agreement with these 46 AERONET sites. All the total AOD products show 498 

decreasing trends in Europe. Both total AOD and fAOD have stronger decreasing trends in central and Southeast Europe, while 499 

the trend of the QML cAOD is not significant in most areas of Europe. As the fAOD is discriminates to some extent 500 

anthropogenic aerosols (Bellouin et al., 2005), these trend results support previous findings (Crippa et al., 2016) in that the 501 

decreasing aerosol emission in Europe are mainly driven by reduced anthropogenic emission (e.g., transportation and industrial 502 

emission). 503 

 504 

Figure 12(a) shows the monthly time-series plot of different AOD products in the Pan European domain. The four products show 505 

similar monthly cycles: the values are higher in summer/spring, and lower in winter/autumns. The seasonal patterns are consistent 506 

with previous findings (Chen et al., 2019a; Zhao et al., 2018). In summer, more secondary aerosols are formed under higher 507 

insolation and temperature (Kulmala et al., 2014). Meanwhile, the more abundant water vapor in summer boosts the hygroscopic 508 

growth of aerosols (Zheng et al., 2017). Even though the seasonal pattern is similar in all products, reanalysis data (CAMSRA 509 

and MERRA-2) generally provide higher values in summer than others, and MERRA-2 values in winter are also higher. 510 

 511 

To further confirm which estimation is closer to the ground-truth, Figure 12(b) further compares different products in those 46 512 

AERONET sites. Compared with the whole domain (Fig. 12(a)), these 46-site data generally have a stronger decrease trend (Fig. 513 

12(b)), because many of them are located in areas with steeper decreases (Fig s14), like central or western Europe. To evaluate 514 

the trend consistency, we also calculate the absolute log ratio between the trend of each product and AERONET data, as the 515 

Trend Inconsistency index (TI) (see more details in Table S3). If two trends are perfectly consistent, TI will be zero. Otherwise, 516 

it will be far away from zero. The QML product keeps the better agreement with AERONET data (TI = 0.13), and the values 517 

also fit closer to the ground-truth. The slope of CAMSRA is also close to the AERONET one (TI=0.22), but with a higher 518 

intercept, due to its overestimation in summer. Lastly, the satellite and MERRA-2 AOD generally underestimate the decreasing 519 

trend (TI= 0.44 and 0.86), but in a different way. The satellite mainly underestimates the AOD values before 2015, while 520 

MERRA-2 overestimates in summer after 2015. 521 

 522 

Lastly, we also plotted the trend of fAOD and cAOD grid data in Europe (Figure S16). The seasonal cycles and annual trends of 523 

fAOD are similar to those of AOD, which indicates that the variation and trends of AOD in Europe are mainly dominated by 524 

fAOD. The cAOD a relatively flat annual trend, and always peaks in spring and early summer (from April to June), consistent 525 

with Saharan dust events in Europe being more frequent in spring and summer (Papayannis et al., 2008) 526 
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3.5 Summary of evaluation of the AOD products 527 

To summarize the strength and weakness among different AOD products, Figure 13 summarizes the results in eight dimensions:  528 

Accuracy, Stability, Percentage (%) of bias within 20% EE, Correlation with corresponding PMs, TI index, Coverage, Resolution 529 

and Product Period. We only compared results in the common period 2003-2020 among different products.  530 

 531 

For AOD, QMLproduct performs the best in these dimensions: it shows higher accuracy (R2: 0.69 (QML AOD) vs 0.36-0.56 532 

(others)) and stability (variation coefficients of R2: 0.24 (QML AOD) vs 0.35-0.53 (others)), and it is a better indicator of ground-533 

level PM10 (Correlation with PM10: 0.41(QML AOD) VS 0.17-0.23(others)).  534 

 535 

We also found out that the higher correlation with AERONET AOD is generally linked to a higher correlation with PMs, but not 536 

always. For example, the CAMSRA is well fitted with AERONET AOD, but its correlation with PM10 is the lowest among the 537 

four products. Some potential factors could explain this behaviour. First, the location of ground-level PM observations generally 538 

does not coincide with the AERONET sites, and their distribution is denser and covers more areas in our domain. Therefore, 539 

some unknown biases or factors from CAMSRA in those locations outside the AERONET sites may worsen the AOD-PM 540 

relationship. Second, PM measurements are also more frequent (almost every day), while AERONET data are only available 541 

with clear sky condition. Thus, the performance of CAMSRA in those days without AERONET data is unknown. Therefore, 542 

some unknown biases or factors from CAMSRA in cloudy days may also additionally deteriorate the AOD-PM relationships.  543 

 544 
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 545 

Figure 13. Radar plot for three different AOD product (AOD (a), fAOD (b) and cAOD (c)) with different data sources: The 546 

QML method (blue); Satellite MAIAC (fAOD and cAOD based on PDL method) (orange); MERRA-2 (green); CAMSRA (red). 547 

The eight dimensions in radar plot: Accuracy (Spatial CV R2 for our methods or R2 for other products); Stability (the variation 548 

coefficients of Spatial CV R2 for our methods or R2 for other products among different locations); the percentage (%) of bias 549 

within 20% EE; Correlation with corresponding PMs; Trend Inconsistency (TI, formula listed in Table S3); Coverage (the overall 550 

spatial coverage); Resolution (degree of resolution); Period (the data provided years). 551 

 552 

As for the trend comparison, the satellite MAIAC AOD is least consistent with AERONet AOD, suggesting that the missing 553 

values in MAIAC AOD affects the analysis of aerosol trend. Additionally, the satellite AOD is the only product that cannot 554 

provide full temporal coverage, with only 24.21% coverage. Among these products, MERRA-2 provide the longest records (i.e., 555 

from 1980), while our data period starts from 2003, limited by the CAMSRA input. 556 

 557 

Figure 13 (b) shows that the QML fAOD outperforming the PDL fAOD in most dimensions. The QML fAOD product is more 558 

accurate, stable and highly correlated with PM2.5 compared with PDL. QML also improves some shortcomings of PDL by 559 
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improving the spatial coverage of data from 14.96% to 100%, and increases the resolution from 1 degree to 0.1 degree. As for 560 

the trend comparison, the QML fAOD is more consistent with AERONET data, partly because of the better coverage of the 561 

product.  562 

 563 

QML greatly improves the performance for cAOD (Figure 1(c)): more accurate, robust performance and more highly correlated 564 

with Coarse PM. In the trend comparison, the QML cAOD agrees well with AERONET data, while PDL cAOD shows the 565 

opposite trend against AERONET data (its value of TI is infinite). Thus, the QML cAOD provides a better tool for coarse aerosol 566 

time series analysis, and its full coverage and higher resolution makes it possible to better estimate Coarse PM in the future. 567 

5. Conclusion 568 

Europe is the one of regions with the poorest association between satellite AOD and ambient PM2.5 (Christopher and Gupta, 569 

2020).  It is a great challenge to obtain suitable aerosol products to estimate PMs in Europe. However, existing aerosol products 570 

generally cannot provide full-coverage and reliable particles-size fraction information in high resolution. Therefore, this study 571 

generated a new 18-years aerosol product (AOD, fAOD and cAOD) at 0.1 degree, to better understand the European different 572 

particles-size AOD ś distribution. These three products also provide the better indicator for PM10, PM2.5 and Coarse PM, 573 

respectively.  574 

 575 

The out-of-sample validation of the QML AOD, fAOD and cAOD are extensively evaluated in the spatial and temporal 576 

dimensions. Compared with other products, their NRMSE is 21%-55% lower, reaching 21.25, 21.65 and 27.56 %, respectively.  577 

Their R2 is 11-132% higher than that of other products, reaching 0.68, 0.66 and 0.65. Over 88.8, 80.5 and 88.6 % of biases 578 

respectively fall within a ±20 % EE envelope. In correlation exploratory analysis, we found that the QML fAOD products fixed 579 

the problem of the poor association with PM2.5, by providing higher quality and coverage predictions. The spearman correlation 580 

almost doubles from 0.10-0.29 to 0.45. We also found that different-size PMs may be better predicted with different AOD 581 

fractions, instead of using total AOD. For example, the QML AOD and cAOD are better indicators of PM10 and Coarse PM, 582 

than other AOD products.  583 

 584 

This new aerosol dataset and models not only avoid some shortcomings (e.g., lower coverage, discontinuous time) and biases, 585 

caused by missing satellite aerosol information, but also meet the urgent need of reliable fine-mode and coarse-mode AOD data 586 

to better estimate surface-level PMs. Thereby, it is a useful tool to monitor or to analyse the fine-mode and coarse-mode aerosols 587 

in the spatial and temporal scales, and to further investigate their impacts on human health, the environment and the climate. 588 

6. Data availability 589 

 590 

The pan-European high-resolution aerosol optical depth (AOD) daily estimations and its fraction products developed by this 591 

study is available at https://doi.org/10.5281/zenodo.7756570 (Chen et al., 2023). The QML AOD data are in the Geotiff format 592 

on a daily scale. 593 
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