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Supplementary Figure 

1. Supplementary Figure 

 

Figure S1. the sketch map of spatial calibration variables (Distdirection) calculation. Within 4000km search radius, 

Orange point is the target/predicted point; Four blue points are the nearest sites in different directions and grey points 
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Figure S2. the monthly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (AOD Spat-Prediction), temporal out-of-

sample prediction (AOD Temp-Prediction), CAMS AOD, MAIAC (Satellite) AOD, MERRA-2 AOD. 
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Figure S3. the weekly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (AOD Spat-Prediction), temporal out-of-

sample prediction (AOD Temp-Prediction), CAMS AOD, MAIAC (Satellite) AOD, MERRA-2 AOD. 
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Figure S4. the spatial distribution maps of normalize mean bias (NMB) for the Phy-DL Satellite fAOD (PDL 

MAIAC fAOD) before 2008 and after 2008 
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Figure S5. the annual performance (R-squared, NMB, NRMSE) comparison between different data sources: QML 

spatial out-of-sample prediction (fAOD Spat-Prediction), temporal out-of-sample prediction (fAOD Temp-

Prediction), Phy-DL Satellite fAOD(PDL MAIAC fAOD). 
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Figure S6. the monthly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (fAOD Spat-Prediction), temporal out-of-

sample prediction (fAOD Temp-Prediction), Phy-DL Satellite fAOD(PDL MAIAC fAOD). 
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Figure S7. the weekly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (fAOD Spat-Prediction), temporal out-of-

sample prediction (fAOD Temp-Prediction), Phy-DL Satellite fAOD(PDL MAIAC fAOD). 
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Figure s8. the performance (R-squared, NMB, NRMSE) comparison between different data sources over years: our 

spatial out-of-sample prediction (cAOD Spat-Prediction), temporal out-of-sample prediction (cAOD Temp-

Prediction) and Phy-DL Satellite cAOD (PDL MAIAC cAOD). 
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Figure S9. the monthly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (cAOD Spat-Prediction), temporal out-of-

sample prediction (cAOD Temp-Prediction), Phy-DL Satellite cAOD(PDL MAIAC cAOD). 
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Figure S10. the weekly performance (Rsquare, NMB, NRMSE, 90% PI (predictive intervals) coverage) comparison 

between different data sources: QML spatial out-of-sample prediction (cAOD Spat-Prediction), temporal out-of-

sample prediction (cAOD Temp-Prediction), Phy-DL Satellite cAOD(PDL MAIAC cAOD). 
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Figure S11. the correlation maps between PM10 and 6 different AOD product 2003-2020: CAMS AOD, MERRA-2 

AOD. Satellite AOD, Phy-DL Satellite fAOD (PDL MAIAC fAOD), QML total AOD predictions (QML AOD), and 

QML fine-mode AOD predictions (QML fAOD) 

 

Figure S12. the correlation maps between Coarse PM and 6 different AOD product 2003-2020: Satellite AOD, Phy-

DL Satellite fAOD (PDL MAIAC fAOD), Phy-DL Satellite cAOD (PDL MAIAC cAOD), QML total AOD (QML 

AOD), fine-mode AOD predictions (QML fAOD) and coarse-mode AOD predictions (QML cAOD). 
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Figure s13. the spearman correlation between PM10 and total AOD products (CAMS, MERRA-2, Satellite AOD and 

QML AOD); PM2.5 and Fine-mode AOD products (PDL fAOD and QML fAOD); Coarse PM and coarse-mode 

AOD products (PDL cAOD and QML cAOD).  

 
Figure s14. the maps of 18-year trend from 2003 to 2020: Reanalysis AOD (CAMS and MERRA-2) (A1-A2), QML 

product (AOD, fAOD and cAOD) (B1-B3), Satellite AOD (MAIAC AOD, PDL fAOD and PDL cAOD) (C1-C3) and 

the corresponding 46 ground-level sites, with more than ten years and at least 50 daily observation for each year. 
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Figure s15. the averages of relative 90%-predictive-intervals width (RPIW= (90% PI upper-90% PI lower)/estimates) 

among tAOD, fAOD and cAOD products in the Pan European domain from 2003-2020. Higher RPIW means higher 

likelihood to obtain the uncertainty predictions. 

 

 

Figure S16. the time series of monthly mean tAOD, fAOD and cAOD products in the Pan European domain from 

2003-2020. 
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2. Supplementary Table 
Table S1. The comparison of model settings and results in spatial and temporal cross-validation 

tAOD 

 Finala Spatiala Temporala 

Variablesb u10, v10, rh, t2m, asn, bld, blh, mcc, lai_hv, lai_lv,lcc, 

msdwswrf,sp,tco3,aluvd,aluvp, Year, DOW, DOY, Lat,Lon, 

NE,SE,SW,NW, cams_bcaod550, cams_duaod550, cams_omaod550, 

cams_ssaod550, cams_suaod550, merra_aod 

Out-of-sample 

R-squaredc 

0.72 0.68-0.74 0.65-0.79 

Max depth 18 18(4);16(1) 18(3);17(2);16(1) 

Subsample 0.8 0.8(4);0.7(1) 0.8(4);0.9(2) 

Learning rate 0.05 0.05 0.05 

Colsample by tree 0.8 0.8(4);0.7(1) 0.8(4);0.7(2) 

fAOD 

 Final Spatial Temporal 

Variables u10, v10, d2m, t2m, bld, blh, mcc,tcc,slt, msdwswrf,sp,tco3,tp,aluvd,aluvp, 

Year, DOW, DOY, Lat,Lon, NE,SE,SW,NW, cams_bcaod550, 

cams_duaod550, cams_omaod550, 

cams_ssaod550, cams_suaod550, merra_aod 

Out-of-sample 

R-squared 

0.67 0.65-0.73 0.61-0.75 

Max depth 17 17(3);18(2) 17(4);16(2) 

Subsample 0.8 0.8(4);0.7(1) 0.8(4);0.9(2) 

Learning rate 0.05 0.05 0.05 

Colsample by tree 0.8 0.8(4);0.7(1) 0.8(4);0.7(2) 

cAOD 

 Final Spatial Temporal 

Variables u10, v10, d2m, t2m, bld, blh, mcc, lai_hv, lai_lv,lcc, 

msdwswrf,sp,tco3,aluvd,aluvp, Year, DOW, DOY, Lat,Lon, 

NE,SE,SW,NW, cams_bcaod550, cams_duaod550, cams_omaod550, 

cams_ssaod550, cams_suaod550, merra_aod 

Out-of-sample 

R-squared 

0.68 0.68-0.74 0.62-0.78 

Max depth 15 15(4);16(1) 16(3);15(2);14(1) 

Subsample 0.8 0.8(4);0.7(1) 0.8(5);0.7(1) 

Learning rate 0.05 0.05 0.05 

Colsample by tree 0.8 0.8(4);0.7(1) 0.8(5);0.7(1) 
a Final: the final trained models; Spatial: five models generated by different spatial subsamples, Temporal: Six models generated by 
different temporal subsamples. And the numbers in brackets for each parameter means how many models selected this parameter 

settings by their own parameter validation. 
b the names of variables shown Table s2 
c The performance in test datasets (not involving in the model development and parameter optimization) for final models. The 

performance in the spatial/temporal test fold of sub-sample model. 
d Max depth: higher mean higher complexity of trees; Subsample: Subsample ratio of the training instances for growing each tree, to 
control overfit problem; Learning Rate:Step size shrinkage used in update to prevents overfitting; Colsample by tree: hSubsample 

ratio of inputs used for growing each tree. 
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Table S2. The list of variables used in this study 

SHORT 
NAME 

SOURCE LONG NAME UNIT 

U10 ERA5 10m u component of wind m s**-1 

V10 ERA5 10m v component of wind m s**-1 

RH ERA5 relatively humidity (0 - 100) 

D2M ERA5 2m dewpoint temperature K 

T2M ERA5 2m temperature K 

BLD ERA5 boundary layer dissipation J m**-2 

BLH ERA5 boundary layer height m 

HCC ERA5 high cloud cover (0 - 1) 

LAI_HV ERA5 leaf area index high vegetation m**2 m**-2 

LAI_LV ERA5 leaf area index low vegetation m**2 m**-2 

TCC ERA5 total cloud cover (0 - 1) 

LCC ERA5 low cloud cover (0 - 1) 

SLT ERA5 soil type 
1-7, higher is finer soil with stronger 

ability contains water 
MSDWSWR

F 
ERA5 

mean surface downward short wave 
radiation flux 

W m**-2 

ASN ERA5 snow albedo (0 - 1) 

MCC ERA5 medium cloud cover (0 - 1) 

SP ERA5 surface pressure Pa 

TCO3 ERA5 total column ozone J m**-2 

TP ERA5 total precipitation m 

ALUVD ERA5 
uv visible albedo for diffuse 

radiation 
(0 - 1) 

ALUVP ERA5 
uv visible albedo for direct 

radiation 
(0 - 1) 

YEAR Time Year \ 

DOW Time day of week \ 

DOY Time day of year \ 

LAT Spatial latitude \ 

LON Spatial longtitude \ 

NE 
Minimum 
directional 
distance 

minimum distance to nearest sites 
in North-east direction 

m 

SE 
Minimum 
directional 
distance 

minimum distance to nearest sites 
in South-east direction 

m 

SW 
Minimum 
directional 
distance 

minimum distance to nearest sites 
in South-west direction 

m 

NW 
Minimum 
directional 
distance 

minimum distance to nearest sites 
in North-west direction 

m 

CAMS_BCA
OD550 

CAMSRA 
black carbon aerosol optical depth 

550nm 
\ 

CAMS_DU
AOD550 

CAMSRA dust aerosol optical depth 550nm \ 

CAMS_OM
AOD550 

CAMSRA 
organic matter aerosol optical depth 

550nm 
\ 

CAMS_SSA
OD550 

CAMSRA 
sea salt aerosol optical depth 

550nm 
\ 

CAMS_SUA
OD550 

CAMSRA 
sulphate aerosol optical depth 

550nm 
\ 

MERRA_A
OD 

MERRA-2 
MERRA2 aerosol optical depth 

550nm 
\ 
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Table S3. The performance comparison of additional techniques in parameter validation datasets (20% sites), with R-

squared (Rsq), Root Mean Square Error (RMSE) and their standard deviation(SD). 

 tAOD fAOD cAOD 

All validation sites 

 Rsq(SD) RMSE(SD) Rsq(SD) RMSE(SD) Rsq(SD) RMSE(SD) 

Origin (O) 0.64(0.20) 0.05(0.07) 0.63(0.25) 0.03(0.05) 0.61(0.35) 0.013(0.02) 

M1 0.64(0.17) 0.04(0.05) 0.64(0.23) 0.02(0.04) 0.62(0.33) 0.012(0.03) 

M2 0.66(0.10) 0.04(0.03) 0.65(0.13) 0.02(0.01) 0.63(0.17) 0.009(0.01) 

M3 0.71(0.12) 0.03(0.04) 0.68(0.15) 0.02(0.03) 0.67(0.20) 0.007(0.02) 

The validation sites far away from nearest sites a 

 Rsq(SD) RMSE(SD) Rsq(SD) RMSE(SD) Rsq(SD) RMSE(SD) 

Origin (O) 0.42(0.25) 0.07(0.10) 0.44(0.28) 0.04(0.05) 0.36(0.28) 0.02(0.02) 

M1 0.48(0.24) 0.06(0.04) 0.47(0.26) 0.03(0.04) 0.41(0.24) 0.015(0.02) 

M2 0.49(0.23) 0.05(0.03) 0.48(0.22) 0.03(0.02) 0.46(0.21) 0.013(0.02) 

M3 0.58(0.24) 0.04(0.04) 0.56(0.21) 0.02(0.03) 0.52(0.22) 0.011(0.02) 
a  The distance from these sites to their nearest sites is larger than 463km (the average distance from 257 AERONET 

sites to their nearest sites) 
b M1= O+ weighted loss function;  M2= M1+ data augment; M3= M2 + minimum directional distance
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Table S3. The main evaluation criteria used in this paper 

Criteria Formula Function Range 

R-squared SSregression/SStotal 
Proportion of variance 

explained by models 
0 to 1, higher is better 

Normalized Mean Bias 

(NMB %) 

∑ (𝑃𝑟𝑒𝑑𝑘 −𝑂𝑏𝑠𝑘)
𝑛
𝑘=1

∑ (𝑂𝑏𝑠𝑘)
𝑛
𝑘=1

 

Overestimates/ 

Underestimates evaluation 

from normalized average 
forecast error 

-Inf to Inf, closer to 0 is 

better 

Normalized Root Mean 

Square Error 

(NRMSE %) 

√∑
(𝑃𝑟𝑒𝑑𝑘 − 𝑂𝑏𝑠𝑘)

2𝑛
𝑘=1

𝑁
𝐴𝑣𝑔(𝑂𝑏𝑠)

 

Bias evaluation, give more 

weight to the largest errors. 
0 to Inf, lower is better 

Predictive Intervals (PI) 

Coverage (%) 
Nwithin_intervals/N 

Stability evaluation for 

PI 

0 to the PI levels it set (e.g., 
90% for 90% PI), higher is 

better 

Within 20% expected error 

envelopes (Within 20% 

EE %) 

Nwithin_EE/N 
EE:0.05 ±20 % observation for AOD; 

0.025 ±20 % observation for fAOD and 

cAOD 

Evaluate how many sample´s 

bias controlled within 20% 

error. 

0 to 100, higher is better 

Robustness for R-squared 
𝑉𝑎𝑟(𝑅2)

𝐴𝑣𝑔(𝑅2)
 

level of dispersion for cross-

validation R-squared 
0 to Inf, lower is better 

Trend inconsistency (TI) |𝑙𝑛 (
𝑇𝑃𝑟𝑒𝑑
𝑇𝑂𝑏𝑠

)| 
Trend consistency index for 

Predictions and observation 

0 to Inf, closer to 0 is better. 
Inf represent the opposite 

trends 

 

 

 

Table S4. The coverage and width of 90% predictive intervals (PI) for tAOD model in 10 bins   

tAOD Range N 
N of Coverage 

(%) 

N of over-

estimationsα 

(%) 

N of under-

estimationsβ 

(%) 

Interval 

width (avg) 

Interval 

width 

(sd) 

Spatial 

[0.00478,0.0424] 26476 14636(55.28) 11457(43.27) 550(2.08) 0.068 0.045 

(0.0424,0.0584] 26493 22060(83.27) 4153(15.68) 277(1.05) 0.081 0.045 

(0.0584,0.0731] 26457 23360(88.29) 2328(8.8) 768(2.9) 0.092 0.048 

(0.0731,0.089] 26475 23688(89.47) 1536(5.8) 1251(4.73) 0.103 0.050 

(0.089,0.107] 26476 23386(88.33) 1547(5.84) 1543(5.83) 0.116 0.056 

(0.107,0.131] 26475 23406(88.41) 1022(3.86) 2046(7.73) 0.132 0.058 

(0.131,0.162] 26475 23281(87.94) 854(3.23) 2338(8.83) 0.149 0.062 

(0.162,0.205] 26475 22980(86.8) 501(1.89) 2992(11.3) 0.173 0.069 

(0.205,0.279] 26475 22383(84.54) 208(0.79) 3883(14.67) 0.207 0.080 

(0.279,1.99] 26476 18103(68.38) 45(0.17) 8327(31.45) 0.293 0.141 

Temporal  

[0.00478,0.0424] 26476 17611(66.52) 8171(30.86) 724(2.73) 0.056 0.040 

(0.0424,0.0584] 26493 22496(84.91) 3457(13.05) 539(2.03) 0.076 0.044 

(0.0584,0.0731] 26457 23616(89.26) 2031(7.68) 808(3.05) 0.090 0.047 

(0.0731,0.089] 26475 23953(90.47) 1380(5.21) 1142(4.31) 0.102 0.051 

(0.089,0.107] 26476 23800(89.89) 984(3.72) 1691(6.39) 0.115 0.055 

(0.107,0.131] 26475 23903(90.29) 805(3.04) 1766(6.67) 0.132 0.061 

(0.131,0.162] 26475 23721(89.6) 571(2.16) 2183(8.25) 0.149 0.064 

(0.162,0.205] 26475 23527(88.86) 398(1.5) 2548(9.62) 0.173 0.072 

(0.205,0.279] 26475 22727(85.84) 218(0.82) 3528(13.33) 0.209 0.085 

(0.279,1.99] 26476 20244(76.46) 44(0.17) 6187(23.37) 0.313 0.155 

over-estimationsα: the lower bounds of PI higher than the real tAOD, under-estimationsβ: the upper bounds of PI lower than the real 

tAOD 
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Table S5. The coverage and width of 90% predictive intervals (PI) for fAOD model in 10 bins  

fAOD Range N 
N of Coverage 

(%) 

N of over-

estimationsα 

(%) 

N of under-

estimationsβ 

(%) 

Interval 

width (avg) 

Interval 

width 

(sd) 

Spatial 

[6.36e-05,0.0228] 26475 16491(62.29) 9493(35.86) 515(1.95) 0.045 0.030 

(0.0228,0.0333] 26475 21423(80.92) 4508(17.03) 546(2.06) 0.060 0.037 

(0.0333,0.0433] 26475 23125(87.35) 2516(9.5) 834(3.15) 0.067 0.040 

(0.0433,0.0538] 26524 23221(87.55) 2105(7.94) 1195(4.51) 0.078 0.043 

(0.0538,0.0662] 26475 23734(89.65) 1342(5.07) 1399(5.28) 0.087 0.046 

(0.0662,0.0821] 26479 23781(89.81) 919(3.47) 1779(6.72) 0.102 0.050 

(0.0821,0.103] 26420 23666(89.58) 594(2.25) 2160(8.18) 0.117 0.054 

(0.103,0.134] 26475 23636(89.28) 316(1.19) 2522(9.53) 0.135 0.060 

(0.134,0.19] 26475 22533(85.11) 135(0.51) 3806(14.38) 0.163 0.069 

(0.19,1.97] 26475 18979(71.69) 17(0.06) 7477(28.24) 0.245 0.120 

Temporal  

[6.36e-05,0.0228] 26475 16701(63.08) 8973(33.89) 860(3.25) 0.037 0.029 

(0.0228,0.0333] 26475 21683(81.9) 4025(15.2) 767(2.9) 0.054 0.037 

(0.0333,0.0433] 26475 23320(88.08) 2228(8.42) 927(3.5) 0.064 0.040 

(0.0433,0.0538] 26524 23470(88.49) 1457(5.49) 1596(6.02) 0.075 0.045 

(0.0538,0.0662] 26475 23773(89.79) 1013(3.83) 1688(6.38) 0.085 0.048 

(0.0662,0.0821] 26479 23683(89.44) 738(2.79) 2058(7.77) 0.101 0.053 

(0.0821,0.103] 26420 23870(90.35) 459(1.74) 2091(7.91) 0.116 0.058 

(0.103,0.134] 26475 23523(88.85) 249(0.94) 2702(10.21) 0.135 0.063 

(0.134,0.19] 26475 22602(85.37) 112(0.42) 3760(14.2) 0.167 0.075 

(0.19,1.97] 26475 19896(75.15) 8(0.03) 6569(24.81) 0.260 0.134 

over-estimationsα: the lower bounds of PI higher than the real fAOD, under-estimationsβ: the upper bounds of PI lower than the real 

fAOD 
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Table S6. The coverage and width of 90% predictive intervals (PI) for cAOD model in 10 bins  

fAOD Range N 
N of Coverage 

(%) 

N of over-

estimationsα 

(%) 

N of under-

estimationsβ 

(%) 

Interval 

width (avg) 

Interval 

width 

(sd) 

Spatial 

[5.06e-09,0.00649] 26660 4358(16.35) 21502(80.65) 29(0.11) 0.034 0.020 

(0.00649,0.0106] 26439 16172(61.17) 9472(35.83) 199(0.75) 0.038 0.021 

(0.0106,0.0155] 26381 22649(85.85) 2411(9.14) 119(0.45) 0.039 0.022 

(0.0155,0.0211] 26494 23978(90.5) 1065(4.02) 237(0.89) 0.042 0.021 

(0.0211,0.0267] 26493 23002(86.82) 1108(4.18) 794(3) 0.045 0.025 

(0.0267,0.0331] 26544 22460(84.61) 702(2.64) 1883(7.09) 0.048 0.025 

(0.0331,0.0425] 26443 20763(78.52) 666(2.52) 2934(11.1) 0.050 0.027 

(0.0425,0.0595] 26493 18940(71.49) 810(3.06) 5051(19.07) 0.060 0.035 

(0.0595,0.104] 26703 17382(65.09) 505(1.89) 6784(25.41) 0.088 0.048 

(0.104,1.87] 26284 17083(64.99) 1013(3.85) 7338(27.92) 0.173 0.113 

Temporal  

[5.06e-09,0.00649] 26660 8678(32.55) 16778(62.93) 450(1.69) 0.035 0.022 

(0.00649,0.0106] 26439 16831(63.66) 8869(33.55) 139(0.53) 0.039 0.023 

(0.0106,0.0155] 26381 23438(88.84) 1528(5.79) 211(0.8) 0.039 0.022 

(0.0155,0.0211] 26494 24300(91.72) 674(2.54) 306(1.15) 0.044 0.023 

(0.0211,0.0267] 26493 23458(88.54) 1036(3.91) 410(1.55) 0.046 0.025 

(0.0267,0.0331] 26544 23471(88.42) 654(2.46) 920(3.47) 0.049 0.024 

(0.0331,0.0425] 26443 22110(83.61) 349(1.32) 1905(7.2) 0.052 0.027 

(0.0425,0.0595] 26493 20512(77.42) 465(1.76) 3825(14.44) 0.063 0.032 

(0.0595,0.104] 26703 19514(73.08) 352(1.32) 4806(18) 0.090 0.043 

(0.104,1.87] 26284 19872(75.6) 116(0.44) 5447(20.72) 0.177 0.113 

over-estimationsα: the lower bounds of PI higher than the real cAOD, under-estimationsβ: the upper bounds of PI lower than the real 

cAOD 

Table S7. The spearman correlation between different-size particulate matter (PM10, PM2.5, 

Coarse PM (from 2.5 to 10 micrometers)) and different AOD products. 

 PM10 PM25 Coarse PM 

QML AOD 0.414* 0.392* 0.205* 

MAIAC AOD 0.227* 0.166* 0.165* 

MERRA AOD 0.234* 0.183* 0.158* 

CAMS AOD 0.170* 0.096* 0.157* 

QML fAOD 0.375* 0.446* 0.099* 

PDL fAOD 0.285* 0.285* 0.135* 

QML cAOD 0.181* 0.021 0.258* 

PDL cAOD 0.119* 0.011 0.163* 

*with significant Spatial R
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3. Preliminary analysis for satellite AOD 
 

3.1 Study design 
In the preliminary study, we designed three different routes for the comparison: Route A: without 

Satellite AOD; Route B: Satellite AOD Included; Route C: gap-filled Satellite AOD included are 

developed to compare and to determine the optimal model structure (Figure B1). The Route A is to 

train the Non-sat model without additional satellite data, well described in the manuscript.  

The Route B is to answer whether the satellite AOD can bring more benefits to the models, under its 

relatively high spatial resolution. Due to the high missing rate of satellite data, this route needs to 

split the dataset into two scenarios: “Sat scenario” and “Non-Sat scenario”. For the sat scenario, we 

built the satellite calibration model to dig out the potential relationship between satellite MAIAC 

AOD and AERONET AOD. For the rest scenario, it remains the same model structure as Route A. 

As for the route C, they try to answer whether we can maximize the information usage of satellite 

AOD observation. There are two stages in route C: First stage is designed to fill the missing gaps of 

MAIAC AOD, though modelling with reanalysis and other data. The route C assumed that splitting 

scenarios (like route B) may cause some discontinues surface while merging two scenarios´ data, and 

this discontinuous distribution may further lead to some bias in the future application. Second stage is 

to calibrate the missing-filled MAIAC AOD. 

 

3.2 Preliminary results 
Given in the high missing rate of Satellite AOD (75.79%) in our research domain during 2003-2020, 

three models route (Route A: without Satellite AOD; Route B: Satellite AOD Included; Route C: 

missing-filled Satellite AOD included) are developed to evaluate the contribution from satellite 

AOD, and to determine the optimal model structure. Figure s15 shows the radar plot for three 

different model routes under Six dimensions: Spatial and Temporal Accuracy (Spatial and Temporal 

CV R2); Spatial and Temporal Robustness (the variation coefficients of Spatial CV R2 among 

different locations and Temporal CV R2 among different years); simplicity (the numbers of models 

required); Correlation with PM2.5. Notedly, for simplicity, there is only one model for Route A, 

while there are two for Route B (Route A model+ Sat Model) and Route C (gap-filled model+ Sat 

Model). 
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Figure s15. the workflows for three different model routes 

 

For the total AOD (Fig s16(a)), the Spatial and temporal performance among three different model 

routes are similar (Temporal CV R2 
Route A VS B VS C=0.715 VS 0.718 Vs 0.718; Spatial CV R2 

Route A VS B 

VS C=0.691 VS 0.696 VS 0.695), and Satellite AOD only bring small improvement (0.015 in Spatial 

CV R2). There is no difference between different satellite AOD applications: Building separate 

models for satellite AOD (Route B) and using gap-filled satellite AOD (Route C). In another word, 

the gap-filled product based on association between satellite AOD and meteorological factors cannot 

provide extra information for estimating AERONet AOD data.  
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Figure s16. the radar plot for estimated AOD by three different routes (Route A (blue): without Satellite AOD; 

Route B (orange): Satellite AOD Included; Route C (green): missing-filled Satellite AOD included) under three 

different AOD product (tAOD (a), fAOD (b) and cAOD (c)). The Six dimensions in radar plot: Spatial and 

Temporal Accuracy (Spatial and Temporal CV R2); Spatial and Temporal Robustness (the variation coefficients 

of Spatial CV R2 among different locations and Temporal CV R2 among different years); simplicity (the steps 

required); Correlation with PM2.5. 

 

To further figure out the reason of the small contribution from satellite AOD (Figure s17), we 

divided the validation results into two scenarios: ”Sat scenario” and “Non-Sat scenario” (satellite 

MAIAC AOD are available or not). In the Sat scenarios, using the satellite AOD (Route B and Route 

C) can bring 0.061-0.069 improvement (Spatial CV R2 
Route A VS B VS C=0.727 VS 0.796 VS 0.788), but 

three model routes have almost same performance (Spatial CV R2 
Route A VS B VS C=0.623 VS 0.623 VS 

0.622) during the Non-Sat scenario.  However, the Sat scenario only accounts for 36.3% of 224,369 

matching datasets, so model improvements in the Sat scenario cannot make a big change in overall 

performance. Furthermore, the fraction of Sat scenarios in the whole domain (24.21%)  is smaller 

than AERONET matching datasets (36.30%) the weather condition, as the requirement between 

AERONET site and Satellite is a bit similar:  sunlight cannot be blocked by clouds during 

measurements (for AERONET) or clear sky (for satellite) (Flag et al., 2015; Holben et al., 2006; 

GLOBE 2010). In another word, the differences among different routes (whether using satellite AOD 

as input) will be even smaller when they are applied in the whole domain.  
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Figure s17. the spatial distribution maps of normalize mean bias (NMB) and scatter plots of tAOD estimation 

bias (Estimation minus AERONet data) for different data sources in 2003-2020. 

 

And Route A have a bit more robust (lower variation coefficients) validation results among different 

locations and years (Temporal Robustness 
Route A VS B VS C=0.232 VS 0.241 Vs 0.250; Spatial 

Robustness Route A VS B VS C=0.105 VS 0.121 VS 0.128). The potential reason why adding satellite AOD 

as inputs will weaken the result robustness is that the Route B and C only improve the performance 

in Sat scenarios, and different locations or years generally have different missing rates, so it will 

bring more variance in the results. As for the correlation between ground-level PM2.5 and tAOD 

estimation from three different model routes, the Route A has slightly higher correlation than other 

two routes (R=0.418 VS 0.415 Vs 0.413).  

For fAOD and cAOD (Fig s16 (b) and (c)), they have similar results as the tAOD product: three 

different models routes have similar performance but Route A is simpler (takes one less model than 

other routes). Thus, we will mainly discuss and compare the Route A with other aerosol products in 

the following section. In the subgroup analysis, Route B and C still mainly improve the performance 

in Sat scenarios for fAOD and cAOD (Figure 18 and 19), but the smaller fraction of Sat scenarios is 

still the main reason for small differences between three model routes. 
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Figure s18. the spatial distribution maps of normalize mean bias (NMB) and scatter plots of fAOD 

estimation bias (Estimation minus AERONet data) for different data sources in 2003-2020. 



Preliminary analysis for satellite AOD 

26 
 

   

Figure s19. the spatial distribution maps of normalize mean bias (NMB) and scatter plots of cAOD 

estimation bias (Estimation minus AERONet data) for different data sources in 2003-2020. 

 

 

 


