
Review 1: 

The manuscript describes the application of a supervised machine learning algorithm 

(lightGBM) for the retrieval of AOD, fAOD, and cAOD over Europe. However, the 

method presented for aerosol retrieval is not new, and I have some main concerns about 

this study. Firstly, the claimed high-resolution (0.1 degree) aerosol product is 

questionable. Secondly, the validation of the proposed model shows severe overfitting. 

Thank you for taking the time to review our manuscript. We appreciate your feedback and 

comments. We understand your concerns regarding the novelty of the method presented 

for aerosol retrieval and the validation of the proposed model, however, our goal in this 

paper is to provide improved fAOD and cAOD products over Europe. To that end our 

methods focus on addressing limitations related to coarse spatial resolutions or the large 

data gaps of current products, rather than introducing a completely new machine learning 

framework. The quality of fAOD and cAOD products are key to better model particulate 

matter of different diameter ranges (e.g., PM2.5 and PM10), which is needed for future 

epidemiological studies. To make the lightGBM method more suitable for our goal, we 

developed three techniques, including distance weighted loss function, minimum 

directional distance, and white-noise data augment to improve the models. As for the other 

two main concerns (spatial resolution and validation), we have revised our manuscript to 

avoid any misunderstanding and we have done some additional sensitivity analyses to show 

the robustness of our predicted aerosol dataset as detailed below.  

Major concerns: 

1. The study claims that their AOD products were generated at a spatial resolution of 

0.1 degrees. However, it should be noted that the key input variable, MAIAC 

AOD, only has a spatial resolution of 1km, and was eventually excluded from the 

models. Other variables used in the study have a lower spatial resolution than 0.1 

degrees. Therefore, it is questionable whether the resulting product is truly a 0.1 

degree product.  

Response: Thank you for your review and for raising these concerns. We apologize for the 

confusion regarding the resolution of our inputs. In the submitted manuscript we inadvertently 

omitted specifying the resolution of 0.1 degrees of the ERA5-land surface variables, which 

contributed to the resolution of the final product. In the revised manuscript we included the 

description of the variable inputs both from ERA5 and ERA5-land (Lines 138-160), and added 

the information about the resolution in Table S2.  

2. Additionally, Figure 11 shows that the developed AOD (B1) does not provide better 

details than the CAMS AOD (0.75 degrees) and MERRA-2 AOD (0.625 degrees * 

0.5 degrees). 

Response: Regarding the differences between QML AOD and CAMS and MERRA-2 AOD, 

we recognize that it is difficult to highlight the differences between products in continental 

maps showing 18-year averages, as originally shown in Figure 11. A zoom of Figure 11 

focusing on Italy and Spain, where MAIAC AOD has fewer missing gaps, shows that the 

QML AOD exhibits substantially more details compared to CAMS AOD and MERRA-2 

AOD (Figure R1). It is remarkable to verify that the spatial variability of the QML AOD is 

close to that of the MAIAC AOD, despite that MAIAC is omitted by the model. While 

MAIAC AOD appears to show slightly more details, likely due to its higher 1km resolution, 

the fewer observations available in MAIAC may also partly contribute to these differences. 

Figure R1A illustrates that the limited observations in MAIAC AOD can introduce some 



biases when calculating 18-year averages for comparison, as opposed to solely comparing 

the overlapping available period of both MAIAC and AERONET data. These biases do not 

exist in QML AOD, because QML AOD have full coverage in 18 years.  

 

 

          Figure R1. 18-year averages (2003-2020) of different AOD in Spain(A-D) 

and Italy(A1-D1). We illustrate the results for these regions because MAIAC AOD 

has few missing gaps in southern Europe (e.g. low cloudiness). Notedly, the CAMS 

AOD and MERRA-2 AOD here have already been spatially interpolated to 0.1 

degrees. 



 
     Figure R1A. The bias between MAIAC and AERONET AOD 18-year (2003-

2020) averages when AERONET data is available(a); the bias between QML and 

AERONET AOD 18-year averages when AERONET data is available (b);  the bias 

between MAIAC and AERONET AOD 18-year averages only when both MAIAC 

and AERONET data are available (c);  bias between QML and AERONET 18-year 

averages only when both MAIAC and AERONET data are available (d). MAE is 

the mean absolute error. 

 

To further validate our product, Figure 4 in the manuscript clearly demonstrates that QML 

AOD exhibits a better fit with AERONET AOD at the daily level compared to other 

products, as evidenced by the higher spatial cross-validation R square (0.68 compared to 

0.36-0.52) and lower NRMSE (21.25% compared to 31.24%-32.96%). 

 

Additionally, we have observed that most products show a good fit with AERONET AOD 

when calculating the 18-year averages (see Figure R2). However, the differences in 

performance among the four products become more pronounced when comparing AOD 

products with daily AERONET AOD. This suggests that while the predictions in 18-year 

averages may appear quite similar, their daily estimations can vary significantly. For 

instance, Figure R3 (randomly selected day) demonstrates that the differences among the 

four products become more noticeable at the daily resolution. While there is a general 

similarity in the patterns across these products, there are substantial differences in certain 

locations. Notably, QML AOD continues to exhibit more details than CAMS AOD and 

MERRA-2 AOD even at the daily scale. 

 



 

Figure R2. The scatter plots of different AOD products against daily AERONET 

data and 18-year averaged AERONET data. Red line is y=x. 

 

Figure R3. the different AOD in Europe (A-D), Spain (A1-D1) and Italy (A2-D2) 

in 2016-01-01. 



3. Based on the input variables listed in Table S2, it appears that only the CAMS 

reanalysis data provides information related to aerosol size. The study seems just 

used the lightGBM algorithm to correct the CAMS-based fAOD and cAOD using 

meteorological data. 

Response: Thank you for raising this question. Note that Table S2 has been updated to 

show the variables that come from ERA5 (0.25 degrees) and ERA5-Land (0.1 degrees). It 

is important to note that we do not use any explicit size information from CAMSRA. We 

use the separate contributions to AOD at 550 nm of "black carbon aerosol," "dust aerosol," 

"organic matter aerosol," "sea salt aerosol," and "sulphate aerosol, which provide size 

information implicitly.  

We developed fAOD and cAOD products specifically to better model the particulate matter 

of different diameter ranges (e.g., PM2.5 and PM10), which is useful for epidemiological 

studies. Our sensitivity analysis indeed shows that the correlation between PM2.5 and QML 

fAOD is stronger than with other CAMSRA composition products (Table R1), and similar 

results are seen with PM10 and PMcoarse. 

Table R1. The spearman correlation between different-size ground-level particulate matter 

(PM10, PM2.5, PMcoarse) with QML AOD products and CAMSRA composition aerosol 

products. 

Correlation QML 

AOD 

QML 

fAOD 

QML 

cAOD 

CAMS

RA Sea 

Salt 

CAMSR

A 

Sulphate 

CAMSR

A 

Organic 

Matter 

CAMS

RA 

Dust 

CAMSR

A Black 

Carbon 

PM2.5 0.40 0.45 0.02 -0.31 0.16 0.19 0.11 0.12 

PM10 0.41 0.37 0.12 -0.29 0.17 0.17 0.16 0.14 

PM coarse 0.15 0.06 0.21 0.13 0.12 0.07 0.19 0.12 

The CAMSRA compositional data contributes to the final model. However, their 

contribution is not more significant than other data sources. The importance score results 

from the lightGBM models in Figure R4 (or Figure A1 in supplementary) reveal that the 

contributions of each variable in the top 20 are relatively similar, ranging from around 2.8% 

to 4%. It is important to recognize that meteorological factors derived from ERA5 or 

ERA5_land, such as boundary layer dissipation (BLD) and height (BLH), humidity (RH), 

surface pressure (SP), and wind speed, also play a significant role in the modeling of fAOD 

(fine mode aerosol optical depth) and cAOD (coarse mode aerosol optical depth).   



 

Figure R4. the top 20 important feature plots of AOD, fAOD and cAOD model, importance 

scores here representing the proportion of model contribution for each feature. The full 

name of variable is as following: 

Short name Source Long name 

MERRA_AOD MERRA-2 MERRA2 aerosol optical depth 550nm 

TCO3 ERA5 total column ozone 

CAMS_SSAOD550 CAMSRA sea salt aerosol optical depth 550nm 

U10 ERA5_land 10m u component of wind 

V10 ERA5_land 10m v component of wind 

RH ERA5_land Surface relatively humidity 

BLD ERA5 boundary layer dissipation 

BLH ERA5 boundary layer height 

SP ERA5_land surface pressure 

CAMS_DUAOD550 CAMSRA dust aerosol optical depth 550nm 

WINDSPEED ERA5_land 10m v component of wind 

CAMS_SUAOD550 CAMSRA sulphate aerosol optical depth 550nm 

TCC ERA5 total cloud cover 

LCC ERA5 low cloud cover 

CAMS_BCAOD550 CAMSRA black carbon aerosol optical depth 550nm 

D2M ERA5 2m dewpoint temperature 

YEAR Time year 

DOY Time day of year 

MSDWSWRF ERA5_land Surface solar radiation downwards 

CAMS_OMAOD550 CAMSRA organic matter aerosol optical depth 550nm 



Short name Source Long name 

T2M ERA5 2m temperature 

HCC ERA5 high cloud cover 

4. It is unclear how well the developed fAOD and cAOD models perform at 

locations where no AERONET data is available. It is also unclear whether the 

study used completely independent ground-based data to test the results, such as a 

test site that was not used in the training process. If the Table S3 intends to show 

this validation, but the R2 of fAOD decreased significantly from 0.68 to 0.56 in 

M3, suggesting that the model may have a severe issue with overfitting. 

Response: Thank you for raising this point. We acknowledge that the description of 

techniques to improve the models was misleading or confusing the readers. We have 

revised the manuscript to clarify any misunderstanding (Line 180-187). We have done two 

validation processes: On the one hand, we randomly selected 70% of the sites as training 

data for the quantile lightGBM models, additional 20% of the sites were used to optimize 

the model, and the rest 10% sites were completely independent test data. On the other hand, 

we used 5-fold cross-validation to repeat the first process, in order to test the stability of all 

model configurations.  

The R2=0.56 mentioned in the comment corresponds to the subgroup of top 1% farthest 

sites, with distances to their neighbors over 463km, which were mostly located at the edge 

of our domain. Considering your concerns regarding the performance of the model in 

regions with sparsely distributed stations, we divided the top 20% of sites that were farthest 

from their nearest neighbors, requiring distances of at least 130.5km, and trained the model 

using the remaining sites.  Then we compared these results to random split 20% validation 

datasets. We have done these sensitive comparisons for tAOD, fAOD and cAOD in Figures 

R4, R5 and R6, respectively. It shows that the results of our models among top 20% of 

farthest sites is relatively similar or a bit lower than the results in 20% random sites. It 

indicates models are quite stable without any severe overfitting. 



     
      Figure R4. the out of sample R-square of AOD model in top 20% of farthest sites (A) 

and 20% random validation sites (B), their corresponding scatter plots (C and D). 



  

Figure R5. the out of sample R-square of fAOD model in top 20% of farthest sites (A) 

and 20% random validation sites (B), their corresponding scatter plots (C and D). 

 



 

 

Figure R6. the performance of cAOD model in top 20% of farthest sites (left) and 20% 

random validation sites (right) 

5. During the lightGBM-based training for fAOD and cAOD, the AERONET only 

provides data for fAOD and cAOD at 500nm. However, it is unclear how the 

model was trained to calculate fAOD and cAOD at 550nm, which is a crucial 

issue that the paper did not address. 

Response: Thank you for bringing up this concern, we added a more detailed description (Line 

104-115) on the procedure we followed to obtain the fAOD and cAOD at 550nm.  

“To be comparable with the satellite and reanalysis data, the AERONET AOD data at 550 nm 

(𝐴𝑂𝐷550) was interpolated from the 𝐴𝑂𝐷500 (Gupta et al., 2020; Duarte and Duarte, 2020). The 

equation (1) used for this interpolation is as follows: 

𝐴𝑂𝐷550 = 𝐴𝑂𝐷500 ∗ (
550

500
)−∝𝑡

     (1) 

𝑤ℎ𝑒𝑟𝑒 ∝𝑡  is the AERONET AOD Ångström exponent at 500nm, which is obtained from AERONET 



spectral deconvolution algorithm (SDA) output. Before obtaining the 𝑓𝐴𝑂𝐷550 and  𝑐𝐴𝑂𝐷550, we 

first transformed the Fine mode fraction at 550 nm (𝐹𝑀𝐹550) from the 500 nm (𝐹𝑀𝐹500) using the 

equation (2): 

𝐹𝑀𝐹550 =
𝑓𝐴𝑂𝐷500∗(

550

500
)−∝𝑓

𝐴𝑂𝐷500∗(
550

500
)−∝𝑡 = 𝐹𝑀𝐹500 ∗ (

550

500
)∝𝑡−∝𝑓

    (2) 

where ∝𝑓 is the AERONET fAOD Ångström exponent at 500nm. All of these parameters are 

available from AERONET SDA products. Finally, we obtained 𝑓𝐴𝑂𝐷550 and  𝑐𝐴𝑂𝐷550 by following 

the formula: 

𝑓𝐴𝑂𝐷550 = 𝐴𝑂𝐷550 ∗ 𝐹𝑀𝐹550     (3) 

𝑐𝐴𝑂𝐷550 = 𝐴𝑂𝐷550 ∗ (1 − 𝐹𝑀𝐹550)     (4) 

” 

Specific concerns: 

1. In Figure 1, it is not clear how to use Boruta to select the variables. 

We revised the description on the use of Boruta in Line 180-187. “For each iteration, the 

Boruta algorithm generates a new set of shadow variables by randomly permutating the 

values of each potential variable, and trains a random forest classifier on the original and 

shadow features. The importance score of each original feature is compared to the 

maximum importance score of its corresponding shadow features. If the original feature has 

an importance score that is significantly higher than the maximum importance of its 

corresponding shadow features, it is considered important. Then Boruta marks the 

important features and removes the shadow features associated with them, and repeats 

these steps until a predefined number of iterations (e.g., 50 iterations in our study) have 

been reached.” 

2. The caption of the Figure 3 says “Spatial and temporal distribution of the median 

value of AERONet (a) AOD, (b) fAOD and (c) cAOD data”. It makes me 

confused how (a), (b) and (c) reveal the temporal information. 

Revised, thanks: “Spatial distribution of the median value of AERONet (a) AOD, (b) 

fAOD and (c) cAOD data”. 

3. AERONET in the figure caption is “AERONet”, but in the text is “AERONET”. 

Revised. 

4. Typing errors: P10, L285, (Levy et al., 2010; Xiao et al., 2016; Yan et al., 2022)). 

Revised. 


