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A gridded dataset of consumptive water footprints, evaporation, transpiration, 

and associated benchmarks related to crop production in China during 2000-2018 

Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, 

Rong Gao, Chenjian Yan, Ping Zhang, Pute Wu 

Dear Editor and Referees, 

We thank you very much for the valuable chance of revision and such structural and 

detailed comments improving our study substantially. We carefully learned and 

addressed the comments point by point. The revised part is in RED in the revised 

manuscript.  

Authors’ responses to Referee #1’ s comments 

This study constructed a gridded dataset for crop water consumption in China. The 

advantages of this dataset are the separate estimation of blue and green evaporation (E), 

transpiration (T), the use of the local information on irrigation type per crop, and the 

long time series. Even though comparisons with other studies on ET look good, I have 

many concerns about methods that are not clear in the paper. Without this information, 

it is hard for me to conclude on the dataset quality and reliability. I suggest a major 

revision and reconsideration for publication unless the authors can address the 

following concerns/questions. 

Responses: We thank Referee #1 very much for such valuable comments and 

suggestions improving the manuscript. We have carefully addressed all the comments 

and provided our detailed responses below them, responding point by point. 

 

Major comments: 

1. The aquaCrop model setting is absent. 

1-A) There are different versions of AquaCrop and available on different platforms, e.g. 

Windows interface for FAO AquaCrop v7, v6 or before, and Python and MATLAB 

open source versions. Which AquaCrop version was used for this study? 

Responses: Thank you for your comments and questions regarding the AquaCrop 
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version used in our study. We apologize for not providing this information in the 

manuscript. We used FAO AquaCrop Plug-In program V6.0 for crop simulation 

because AquaCrop v7 was not yet released during the course of our study. AquaCrop 

v7 was developed based on AquaCrop v6.0 and includes some bug fixes, performance 

improvements, internal reorganization, as well as the addition of perennial forage crops 

and new calibration crops. However, these updates have minimal impact on the crops 

involved in our study. Moreover, the Plug-In program and the standard windows 

program share consistent simulation logic. In order to enable batch calculations at the 

grid scale, we decided to utilize AquaCrop Plug-In program V6.0 for the simulations.  

In line 68 of the revised manuscript, we have supplemented details on the version of 

the model utilized. In section 2.1 of Figure 1, the model logo was updated. 

 

1-B) As I understand, publicly available AquaCrop cannot simulate perennial crops. 

How did the authors deal with perennial crops using AquaCrop, e.g. tea, and apple? 

Responses: Thank you for your comments. As you have indicated, the number of 

studies that utilize AquaCrop to simulate perennial crops is limited. Hunink and 

Droogers (2010, 2011) conducted simulations in Albania and Uzbekistan to assess the 

response of yield and water requirements of different woody plants, including apple 

trees, grapevines, and olive trees, to climate change. Zhuo et al. (2016b) simulated the 

yield and evapotranspiration of tea and apple trees in China.  

To accommodate the simulation of perennial crops in Aquacrop, the model is used 

differently than the normal model set-up. In AquaCrop, the simulated annual crops are 

programmed to die at the harvest stage, signifying the completion of their life cycle, 

upon which their biomass is reduced to zero. This stands in contrast to perennial plants 

such as tea and apple trees, where the harvest of fruits does not result in the complete 

loss of the standing biomass. 

We attempted to simulate the perennial crops by simulating the foliage, twigs and stem 

of the plants following Poppe (2016). These components are considered the annual 

portion of perennial crops within the scope of this study. The remaining biomass, 

including major branches, is assumed to remain constant once the tree matures. 

Additionally, there will also be no root development for the crop. Since yield is a direct 

function of biomass and harvest index, adjustments are made to the harvest index to 
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reflect its applicability to foliage, twigs and stem biomass, rather than the whole 

biomass. Similar to other crops, the evapotranspiration of perennial crops is directly 

associated with the canopy cover. 

In the revised manuscript, we have added section 2.2.2 to explain how the AquaCrop 

model was utilized to simulate perennial crops in this study (Lines 134-144). 

 

1-C) Using AquaCrop needs crop characteristics as input, e.g. the maximum canopy 

cover, canopy cover decline coefficient, canopy growth coefficient, and many others. 

Where did these inputs come from and what are the inputs? 

Responses: Thank you for your comments. To clarify the sensitivity of a WFCP 

assessment to the main parameters in a simulation, a previous study by the authors 

applied the one-at-a-time and sensitivity index methods to quantitatively evaluate a 

WFCP calculation by AquaCrop (Li et al., 2022). The results indicated that crop water 

consumption and production were extremely sensitive to the reference 

evapotranspiration, the crop transpiration coefficient (KcTr) and planting date (PD).  

In the Annex of the Reference manual for the AquaCrop (Raes et al., 2018), default 

values of crop parameters for the crops covered in this study are given, including crop 

transpiration, biomass production and yield formation, and stresses, totaling 41 

parameters. Furthermore, these parameters are further classified based on crop 

sensitivity as conservative generally applicable (including KcTr), conservative for a 

given species but can or may be cultivar specific, dependent on environment and/or 

management and cultivar specific. The conservative parameters are generally 

applicable and remain unchanged across a wide spectrum of conditions, including 

different climatic and geographic locations, crop cultivars and genotypes, as well as 

variable soil moisture stress statuses. Once calibrated, these identical parameters would 

be utilized without further modification. 

 

Table R1. Regional classification. 

Region Provinces Regional classification 

North Beijing, Tianjin, Shanxi Temperate 

Northeast Inner Mongolia, Liaoning, Jilin, Heilongjiang Continental temperate and temperate 

Huang-huai-hai Hebei, Henan, Shandong, Anhui Temperate 
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Northwest Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang Continental temperate and plateau and Mountain 

Southeast Shanghai, Zhejiang, Fujian Sub-tropics 

East Jiangsu, Hubei, Hunan, Jiangxi Sub-tropics 

South Guangdong, Guangxi, Hainan Sub-tropics and tropics 

Southwest Chongqing, Sichuan, Guizhou, Yunan, Tibet Sub-tropics 

 

According to the regional classification results in Table R1, these key parameters like 

PD, reference harvest index, crop growth stages, and maximum root depth for this study 

are obtained by referring to the literatures described in revision section 2.1.3(Allen et 

al., 1998; Vanuytrecht et al., 2014; Chen et al., 1995; Xie et al., 2011; Zhang and Zhu, 

1990; Hoekstra and Chapagain, 2006). These data have been validated to be reliable 

and applicable in large-scale studies (Cao et al., 2014; Zhuo et al., 2016a; Wang et al., 

2019). Due to data limitations, the remaining parameters such as maximum canopy 

cover, canopy cover decline coefficient, canopy growth coefficient were assigned the 

mean values within the reference range provided in the Annex of the Reference manual 

for the AquaCrop. Although this approach may overlook certain potential variations, 

the use of mean values generally captures the central tendency of the data. 

In summary, the objective of this study is to investigate the response and variability of 

crop water footprints to different water supply and irrigation practices at a large regional 

scale. Similar to previous global and national scale studies (e.g., Liu and Yang, 2010; 

Mekonnen and Hoekstra, 2011; Chiarelli et al., 2020), it was neither practical nor 

feasible to calibrate crop parameters individually for each grid. Nevertheless, we have 

made every effort to ensure the reliability of the model input parameters within the 

constraints of the available data. 

In section 4.2 (Lines 440-445) of the revision and Phenology selection of the 

Supplementary data and methods, we have provided the screening process for key 

parameters affecting WFCP quantification, supplemented explanation on the sources 

and reliability of other crop parameters. 

 

1-D) What do the authors mean by calibrated AquaCrop? How did the authors calibrate 

AquaCrop? Section 2.3.1 does not explain the calibration on AquaCrop. 

Responses: Thank you for your comments. The calibrated AquaCrop in this study was 

achieved by strictly screening the input parameters and keeping the simulated yields 
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consistent with the provincial-scale statistics. In line with previous studies (Wang et al., 

2019; Siebert and Döll, 2010; Mialyk et al., 2022), we attempt to represent the 

combined effect of advances in agricultural inputs (e.g., fertilisers, machinery, and 

chemical control of weeds and insects) via production scaling factors that scale 

simulated crop production to the annual statistics.  

For the ambiguous expression "calibrated AquaCrop", the verbiage has been emended 

in line 68 of the revised manuscript. 

 

2. Reliability in separating E and T. 

2-A) Distinguishing T from ET is not traditionally in water footprint studies. One 

challenge is that the ratio of T to ET depends not only on crop growth, and irrigation 

type but also on field management, e.g. weeds, soil fertility, mulching. As for large-

scale assessment, there is always lacking data for field management, thus, it is difficult 

to estimate T and E separately. However, total ET is more robust to field management, 

so lacking such data will not be a big issue for total ET. Here the authors try to explicitly 

distinguish E and T from ET but still have very limited ability to describe the field 

management in the model. In this sense, how do the authors evaluate the reliability of 

separating E and T? 

Responses: Thank you for your comments. We acknowledge that the ratio of 

transpiration (T) to evapotranspiration (ET) is influenced not only by crop growth and 

irrigation type but also by field management factors such as weeds, soil fertility, and 

mulching. In this study, we specifically focused on the impact of different irrigation 

practices on crop water footprint, aiming to elucidate the proportion of evaporation (E) 

and transpiration (T) in crop water consumption under different irrigation practices. 

The water consumption results of current study were validated against the dual-source 

(PML-V2(China)) and single-source (SEBAL) remote sensing products. Notably, the 

SEBAL products (Cheng et al., 2021) solely comprised aggregate evapotranspiration 

figures, whereas the PML-V2 products (He et al., 2022) separated land surface 

evapotranspiration into vegetation transpiration (Ec), soil evaporation (Es), evaporation 

of intercepted precipitation (Ei), and water body evaporation (Ew). In this study, Ec + 

Es, Ec and Es were compared with the generated ET, E and T data, respectively. 
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Figure R1. Validation of the evapotranspiration at croplands for the period April to August with PML-

V2(China) datasets. 
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Figure R2. Validation of the evapotranspiration at croplands for the period April to August with SEBAL 

datasets. 
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Figure R3. Validation of the evaporation at croplands for the period April to August with PML-V2(China) 

datasets. 
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Figure R4. Validation of the transpiration at croplands for the period April to August with PML-V2(China) 

datasets. 

 

Comparative analysis in Figure R1 and Figure R2 revealed stronger agreement between 

the simulated evapotranspiration and the PML-V2 products (R2=0.49 – 0.85, RMSE= 

5.82 – 12.12 Mm3) than those with the SEBAL products (R2= 0.44 – 0.75, RMSE= 8.51 

– 15.82 Mm3), although both comparisons demonstrated robust overall consistency. The 

validation results of soil evaporation are presented in Figure R3. The simulated E were 

marginally lower than the PML-V2 products (R2=0.22 – 0.70, RMSE=3.25 – 6.65 Mm3), 
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owing to the current study calculating E exclusively for the planted regions of 21 crops, 

whereas the PML-V2 disregarded land use types during E estimation. Comparative 

analysis of crop transpiration in Figure R4 indicated that our simulated values were 

higher than the PML-V2 products which deducted canopy evaporation (R2=0.38 – 0.69, 

RMSE=6.04 – 10.35 Mm3). Overall, considering the differences in basic input data, 

spatiotemporal resolution and calculation methods, the evapotranspiration, evaporation, 

and transpiration data products produced in this study showed acceptable results when 

compared with various remote sensing products, given the discrepancies exhibited. 

In section 2.3.2 (Lines 230-241) of the revised manuscript, we introduced the datasets 

and data preprocessing methods used for validation. In lines 421-435 and validation 

results of the Supplementary data and methods, we presented the comparison results 

between the simulated values in this study and existing remote sensing datasets. 

 

2-B) Did the authors further distinguish the color of E and T? and how? 

Responses: Thank you for your comments. We distinguished the color of E and Tr as 

follows (Zhuo et al., 2016b; Chukalla et al., 2015): 

ETb[𝑡] = IRR[𝑡] + 𝑆b[𝑡−1] − 𝑆b[𝑡] − RO[𝑡] (
IRR[𝑡]

PR[𝑡] + IRR[𝑡]
 ) − DP[𝑡] (

𝑆b[𝑡−1]

𝑆[𝑡−1]
)            (1) 

ETg[𝑡] = PR[𝑡] + 𝑆g[𝑡−1] − 𝑆g[𝑡] − RO[𝑡] (
PR[𝑡]

PR[𝑡] + IRR[𝑡]
) − DP[𝑡] (

𝑆g[𝑡−1]

𝑆[𝑡−1]
)              (2) 

𝐸b[𝑡] = E[𝑡] (
𝑆b[𝑡−1]

𝑆[𝑡−1]
)                                                                  (3) 

𝐸g[𝑡] = 𝐸[𝑡] (
𝑆g[𝑡−1]

𝑆[𝑡−1]
)                                                                   (4) 

Trb[𝑡] = Tr[𝑡] (
𝑆b[𝑡−1]

𝑆[𝑡−1]
)                                                                 (5) 

Trg[𝑡] = Tr[𝑡] (
𝑆g[𝑡−1]

𝑆[𝑡−1]
)                                                                 (6) 

The green and blue components in E and Tr are calculated per day based on the fractions 

of green and blue water in the total soil water content at the end of the previous day. 

In lines 181-187 of the revised manuscript, we have supplemented details on how 

evaporation (E) and transpiration (Tr) were distinguished. 

 

3. Irrigation and soil moisture assumption. In Table 5, comparing the previous studies, 
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this study has a higher water footprint. According to my experience using these datasets, 

they generally overestimate water consumption compared to hydrological models and 

recent crop models for some crops because of two reasons (maybe more): first, they 

assume irrigation once there is a water deficit, even though the water deficit would be 

tiny; second, when setting the initial soil moisture, they assumed the field capacity of 

the soil moisture at the beginning of each year. Both are unrealistic and will lead to 

overestimation of water consumption. How do the authors set irrigation rules and soil 

moisture in the model and did the authors have a spin-up for the model? 

Responses: Thank you for your comments. In our study, we employed a supplementary 

irrigation strategy, similarly to the first possible reason as mentioned, whereby 

irrigation is applied when soil moisture falls below the plant wilting point to bring it up 

to field capacity. Different irrigation practices indirectly affect water consumption 

during the growth period due to differences in the fraction of the surface wetted. The 

irrigation strategy used in this study was added in lines 193-196 of the revised 

manuscript. 

To establish the initial soil moisture content at the beginning of the growing season, we 

adopted the method and assumptions proposed by Siebert and Döll (2010). Following 

their approach, we generated the initial soil moisture content by using the maximum 

soil moisture content of rainfed fallow land in the two years preceding the planting 

period. The initial soil moisture at the start of the growing period is assumed as green 

water. Such settings and assumptions have been widely applied and with acceptable 

uncertainties (Chiarelli et al., 2020; Hoogeveen et al., 2015). In the revised manuscript, 

section 2.2.1 (Lines 128-133) has been added to elaborate on the spin-up methodology 

employed in this study. 

 

4. Usability and quality of the benchmark 

4-A) Figure 6 shows the benchmark at the grid level. However, if we have a close look 

at the graph, we find usually, the resolution is the provincial level, e.g. the whole 

province is efficient or not. This is because the calibration and scaling were on the 

provincial level. If it is the case, scaling factors seem to play a critical role here other 

than irrigation, climate, and so on. What do the authors think of the reliability of the 

benchmark in this case? 
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Responses: Thank you for your comments. Figure 6 presents the benchmarks for 

uWFCP at different production percentiles under furrow irrigation in China by 2018. A 

few uWFCP benchmarks show significant regional correlations at the provincial scale 

due to inter-annual variations in model inputs. It is essential to emphasize that crop 

production and water consumption simulations for the growing period in this study 

were conducted at the grid scale after integrating high spatial resolution soil texture, 

precipitation, temperature and other model inputs. The above process ensured the 

spatial heterogeneity of the simulated results. Given the data accessibility, the current 

study utilized provincial statistics to validate the simulated production by scaling each 

grid-based simulated result using provincial calibration coefficients, rather than forcing 

the simulated production of all grid within a province to a constant value (Equations 16 

and 17). This method maintained the spatial variability of simulated crop production 

within each province. Hence, we consider the uWFCP benchmarks estimated in this 

study to be robust.  

Additional elaborations have been provided in section 2.3.1 (Lines 214-217, 223-228) 

of the revised manuscript to clarify how calibrating crop production at the provincial 

level retains the spatial variability of uWFCP. 

 

4-B) The whole of China was divided into two climate zones for the benchmark without 

considering soil type. This seems oversimplified to me. Furthermore, this dataset 

provides the benchmark for each year, but the idea for a benchmark is to provide a kind 

of efficient “reference”. So, why not derive using the whole time series? Imagine one 

wants to use the benchmark for future analysis, which year should be selected? How do 

the authors suggest using their benchmark? 

Responses: Thank you for your comments. Our previous study examined crop uWFCP 

benchmarks for rain-fed and irrigated croplands, wet and dry years, warm and cold 

years, different soil types, and various climate zones have indicated that different 

climate zones are crucial factors influencing the uWFCP benchmarks (Zhuo et al., 

2016c). Therefore, this study considered distinguishing the uWFCP benchmarks for 

different climate zones at the grid scale. In Supplementary Table S1, we provide the 

uWFCP benchmark of 21 crops over the whole time series. By utilizing the multi-year 

average of specific crop uWFCP benchmarks in guiding production practices, the 

influence of extreme climate variability within the same region can be mitigated. In fact, 
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as you pointed out, Yue et al. (2022) utilized wheat uWFCP benchmarks generated by 

Wang et al. (2019) for their future analysis. 

In section 2.2.6 (Lines 204-211) of the manuscript, we have elaborated on why we only 

computed the uWFCP benchmarks for different climate zones. In section 3.3 of the 

revision (Lines 348-350), we point out that uWFCP benchmarks generated using whole 

time series should be employed for analysis in subsequent studies. 

 

Minor comments: 

1. In the title, “consumptive water footprints”. By definition, water footprint is 

consumptive water use. Is consumptive redundant here? Or “consumptive water use”? 

Responses: Thank you for your comments. The water footprint is a multi-dimensional 

indicator and divided into consumptive water footprint and degradative water footprint 

(Hoekstra, 2013), in which the consumptive water footprint refers to the use of both 

rainfall and ground-surface water (the green and blue water footprint, respectively), and 

the degradative water footprint refers to the water required to assimilate anthropogenic 

loads of pollutants to freshwater bodies (the grey water footprint). Here, consumptive 

water footprint refers to the blue and green water footprint crop production, excluding 

grey water footprint. 

In line 37 of the manuscript, we provide the source for the definition of “consumptive 

water footprint of crop production”. 

 

2. Line 95-102. The authors basically only rely on the global datasets for land use from 

the year 2000 and then scale to each year. Are there other better datasets that have better 

quality/time coverage in China? 

Responses: Thank you for your comments. In our study, we employed global datasets 

for land use from the MIRCA2000 as the primary data source due to its wide 

accessibility and compatibility with our research objectives. It is important to note that 

MIRCA2000 dataset (e.g., Hoch et al., 2023; Li et al., 2023; Ruess et al., 2022; Lutz et 

al., 2022; Liu et al., 2022; Chiarelli et al., 2022; Chiarelli et al., 2020; Rosa et al., 2020) 

and proportional scaling method (Sloat et al., 2020; Yue et al., 2022; Mialyk et al., 2022; 

Wang et al., 2019) have been applied in several studies within the field. As shown in 
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section 4.1, the harvested area of specific crop obtained by the proportional scaling 

method show a good consistency with the published data in the same time range of the 

grid scale. 

Table R2 presents the crop planting area and irrigated area data products. Recent years 

have witnessed the emergence of numerous long-term and high-resolution irrigation 

area datasets for China, thanks to the combined application of remote sensing 

technology and machine learning approaches. However, these datasets do not 

differentiate between irrigated and rainfed cropping systems, and do not contain crop-

specific planting information. These deficiencies fail to fulfill the original intentions of 

this study design. Global scale data compensates the aforementioned deficiencies to 

some extent. However, it is worth mentioning that existing global databases have 

certain limitations, including a limited range of crop types and intermittent time series. 

For instance, the SPAM dataset is only publicly available for a few specific years 2000, 

2005 and 2010, and interpolation is still required to fill in the gaps. 

 

Table R2. Inventory of irrigated cropland data. 

Source 
Spatial 

coverage 

Temporal 

resolution 

Spatial 

resolution 

Crop type 

distinction 
Planting pattern 

Zhang et al., 2022a China 2000-2019 500 m No 
Only irrigated 

croplands 

Zhang et al., 2022b China 2000 250 m No 
Only irrigated 

croplands 

Zhu et al., 2014 China 2000 5 arcmin No 
Only irrigated 

croplands 

GFSAD1KCD Globe 2007-2012 1000 m 6 crops 
Irrigated and 

rainfed croplands 

GAEZ+ 

(Grogan et al., 2022) 
Globe 2015 5 arcmin 26 crops 

Irrigated and 

rainfed croplands 

SPAM 

(IFPRI 2019) 
Globe 2000, 2005, 2010 5 arcmin 42 crops 

Irrigated and 

rainfed croplands 

MIRCA2000 

（Portmann et al., 2010） 
Globe 2000 5 arcmin 26 crops 

Irrigated and 

rainfed croplands 

 

As a supplement, we present a comparison between the crop planting areas of 15 crops 

in the SPAM2010 dataset and our research dataset at both the provincial and grid scales 

(Figures R5 and R6). It is evident that there is a high degree of consistency between the 
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two datasets at the provincial scale. The differences at the grid scale can be attributed 

to disparities in the identification of grid-level land use between the MIRCA2000 and 

SPAM dataset. According to Figures R7 and R8, the planting area data for sorghum, 

millet, barley, and sugar beets in the GAEZ+ dataset exhibit significant deviations from 

the values applied in this study, both at the provincial and grid scales. However, it 

should be emphasized that all crop planting area data in this study have been calibrated 

against statistical data at the provincial scale, implying an underestimation of the 

planting area for the mentioned crops in the GAEZ+ dataset. 
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Figure R5. Comparison of the current provincial area representing land coverage with the SPAM datasets. 
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Figure R6. Comparison of the current gridded area representing land coverage with the SPAM datasets. 
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Figure R7. Comparison of the current provincial area representing land coverage with the GAEZ+ datasets. 
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Figure R8. Comparison of the current gridded area representing land coverage with the GAEZ+ datasets. 

 

Given the above analysis, we choose the MIRCA2000 database for estimating the 

planted areas of different crops under various water supply and irrigation practices. 

While we acknowledge the potential for alternative datasets, it is important to highlight 

that our study made a conscious decision based on the available data sources and 

applied rigorous methods to ensure reliability and comparability.  
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Further elaboration regarding the crop planting area data selection has been noted in 

lines 100-101 of the revised manuscript. Comparative analyses between the data 

utilized in the current study and the SPAM and GAEZ+ data products have been 

incorporated in section 4.1 of the revision (Lines 404-419). The inventory of the latest 

Chinese irrigated cropland database, detailed delineation of the crop planting area data 

selection, and additional comparative crop planting area data results have been provided 

within the Planting area selection of Supplementary data and methods. 

 

3. What is CC in Equation 11? Canopy cover? 

Responses: Thank you for your comments. Sorry for not explaining this variable in the 

text. CC is canopy cover (m2 m-2). 

In line 202 of the revision, we provide the explanation for CC.  

 

4. I didn’t see the causal relationship between the number in lines 222-228 and why it 

is important to distinguish irrigation type. Lines 263-269 do explain some. 

Responses: Thank you for your comments. In this paragraph, our research findings 

underscore the substantial increase in WFCP by 0.8 and 25 times under sprinkler and 

micro-irrigation, respectively, while a decreasing trend is observed under furrow 

irrigation. Considering the positive correlation between WFCP and the cultivated area 

under different water supply and irrigation practices, the above results reflect the 

preference for sprinkler and micro-irrigation over furrow irrigation on existing and 

freshly reclaimed farmland.  

Given the large scale of crop cultivation in China, such a significant shift in irrigation 

practices will have important implications: (i) it will affect the quantification of national 

crop water consumption; (ii) it will create market opportunities while concurrently 

propelling technological innovation in the irrigation infrastructure. 

Therefore, different from the comparison of uWFCP in lines 263-269 in original 

manuscript, this paragraph strives to elucidate the significant impact of considering 

different irrigation practices at the national level from the perspective of WFCP.  

In lines 270-275 of the revision, we have elaborated on the causal relationships between 

the numbers in this paragraph and explained why distinguishing between irrigation 
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types is important, per your suggestion. 

 

5. In the paper, e.g. line 240, the authors discussed the monthly blue and green water 

consumption but is not available in the dataset. Some items are available monthly and 

some annually. What are the criteria to decide which data is open to the public or not? 

And the dataset lacks projected coordinate system information. 

Responses: Thank you for your comments. The current online database only comprises 

monthly-scale data on WFCP under various water supply and irrigation practices. 

Monthly-scale data for blue and green water footprint will be uploaded to the online 

database in a timely manner once our ongoing work is published. If necessary, we can 

share the unpublished data with you. The online database adopts the "WGS 84" 

projection coordinate system. 

In the updated data description, we have added the projected coordinate system 

information. See https://zenodo.org/record/7756013 for details. 

 

6. Line 245-247, why sprinkler irrigation has the highest value? Because of crop type? 

Responses: Thank you for your comments. The spatial distribution of WFCP under 

different water supply and irrigation practices is expressed in units of mm mon-1 

(monthly scale) and mm yr-1 (annual scale), representing the water consumption per 

unit planted area at monthly and annual scales. As described in section 2.2.3, Different 

irrigation practices indirectly affect water consumption during the growth period due to 

differences in the fraction of the surface wetted (fw). The fw-values used for furrow, 

sprinkler, and micro-irrigation were 80%, 100%, and 40%, respectively. The fraction of 

the surface wetted influences the soil evaporation coefficient (Ke), resulting in increased 

water consumption per unit cultivated area during the crop growing period (Equations 

6, 7 and 14). Therefore, the higher grid WFCP, WFCPb, and WFCPg of sprinkler 

irrigation at the monthly and annual scales mentioned in this paragraph refers to the 

higher water consumption per unit cultivated area. Since the planting area under 

sprinkler irrigation is small, the total WFCP, WFCPb, and WFCPg under sprinkler 

irrigation is not high (As shown in Table 1). 

As mentioned in our previous study (Wang et al., 2019), conventional water-saving 
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irrigation methods primarily focus on increasing water use efficiency in the field and 

reducing water losses during delivery. For instance, sprinkler irrigation can effectively 

reduce water demand by 46% compared to furrow irrigation (Xue and Ren, 2016). 

However, when it comes to reducing the water footprint of crop production, sprinkler 

irrigation is not an efficient solution. On the one hand, although furrow irrigation is less 

efficient with higher percolation and runoff fluxes compared to sprinkler irrigation, 

these fluxes return to the catchment and are not considered as actual water consumption 

(Hoekstra et al., 2011; Grafton et al., 2018). On the other hand, sprinkler irrigation 

results in a larger ET due to the large surface-wetting rate for an equal yield. 

In lines 297-299 of the revision, we have explained why the grid WFCP, WFCPb, and 

WFCPg is higher under sprinkler irrigation. 

 

7. Line 298-300, can the authors explain why the benchmarks of some crops are higher 

in arid zones and others are higher in humid zones? 

Responses: Thank you for your comments. The benchmarks of crops under rainfed 

cultivation are higher than those under irrigation cultivation. The benchmarks of crops 

under different irrigation practices vary according to climatic zones and crop types. 

Several factors contribute to these results. Firstly, crops cultivated in arid zones are 

more irrigation-reliant due to scarce precipitation and undergo greater 

evapotranspiration, resulting in higher uWFCP versus humid zones. Secondly, certain 

crops like cotton possess higher benchmarks in humid zones since their yields are 

markedly lower than those extensively grown in arid regions. Importantly, the uWFCP 

benchmarks of the same crop vary depending on different irrigation practices and 

climatic zones. Based on the findings of this study, agricultural practitioners can guide 

production practices from the perspectives of irrigation practices and climatic zones. 

In lines 352-355 of the revision, we have explained why the benchmarks of some crops 

are higher in arid zones and others are higher in humid zones. 

 

8. in GAEZ+2015 and MapSPAM2010, they also have other crops, did the authors 

include them in the comparison? And GAEZ+2015 is developed for the year 2015 and 

MapSPAM2010 is developed for the year 2010, why not use the corresponding years 

other than the average between 2001 and 2008? 
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Responses: Thank you for your comments. The publicly available crop planting area 

data in GAEZ+ dataset is limited to the year 2015, whereas the SPAM dataset covers 

data for the years 2000, 2005, and 2010. In the main text, we have presented the 

comparison of major crop planting areas with the GAEZ+2015 and MapSPAM2010 

datasets. The comparative results of other crops planting areas have been discussed and 

explained earlier in the minor comments 2. 

 

Technical corrections 

1. Table 3 doesn’t seem consistent with the text. I only checked for rice. In Table 3, the 

total water consumption of rice is 81847+58979+4629+5540=150995 M m3 and in the 

text, it is 143 G m3. 

Responses: Thank you for your comments. Sorry for this expression error. The 143 G 

m3 in the text refers to the multi-year average of WFCP from 2000 to 2018, while the 

table only presented the WFCP for the year 2018.  

In lines 259, 260 and 270 of the revision, we have differentiated between annual average 

WFCP and WFCP for specific years in the text descriptions. 
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Authors’ responses to Referee #2’ s comments 

This paper calculated the WFCP from physical model and then analyzed the water 

footprints of major crops in Chine between 2001 and 2018, it is a useful topic and the 

analysis workflow is fine. But my major concern is about the quality of the data, I think 

there are data with better quality can be used as input and generate more reliable dataset 

for analysis. Therefore, my opinion is that the paper needs a major revision and a new 

version of the dataset should be generated before the analysis as the current version 

make no sense in scientific community. 

Responses: Thank you very much for the positive words on the significance of the 

dataset and recognition of the workflow. We are very grateful for your kind concerns 

about the input data quality and related issues. We totally agree with the comments. 

Actually, we tested carefully the feasibility of all the well-acknowledged existing and 

new data to ensure the best data quality as we can. Please kindly refer to our point-to-

point responses as followed. 

 

1. Some concerns about the input dataset: 

(1) Irrigated and rainfed crop areas between 2001 and 2018 is generated from the 

combination of MIRCA 2000 with 5 arcmin resolution and the year book data, but 

currently, there are actually a lot of new dataset about irrigated cropland from satellite 

data, for example, Zhang et.al 

(https://www.sciencedirect.com/science/article/abs/pii/S0022169422009830) 2022, 

and Zhang et.al 2022 (https://www.nature.com/articles/s41597-022-01522-z). Maybe 

there are still other data products, I just searched in Google and found the above two 

datasets. All these irrigation data could be verified and then resampled to 5 arcmin, and 

used as input data. Basically, the spatial distribution of irrigation land generated from 

satellite are more reliable than a 15-year-old coarse resolution data and yearbook. As 

the irrigation cropland is the basement of all the following data generation, please keep 

the pace with new datasets in the geo-agricultural community. 

Responses: Thank you for your comments. Prior to initiating this study, we screened 

the required crop planting area data based on the following criteria: distinguishing crop 

types, separating irrigated and rainfed areas, long-term temporal resolution, and high 
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spatial resolution. MIRCA2000 was selected because it meets the objectives of this 

study. This is also the reason that the MIRCA2000 dataset is still the most widely used 

for crop water consumption or requirement dataset making (e.g., Hoch et al., 2023; Li 

et al., 2023; Ruess et al., 2022; Lutz et al., 2022; Liu et al., 2022; Chiarelli et al., 2022; 

Chiarelli et al., 2020; Rosa et al., 2020). In order to improving the reliability of the input 

land use data, the proportional scaling approach based on the MIRCA2000 dataset have 

been applied in numerous studies in this field (Sloat et al., 2020; Yue et al., 2022; 

Mialyk et al., 2022; Wang et al., 2019). 

Table R2 presents the crop planting area and irrigated area data products, including 

those the Referee#2 recommended. Recent years have witnessed the emergence of 

numerous long-term and high-resolution irrigation area datasets for China, thanks to 

the combined application of remote sensing technology and machine learning 

approaches. However, these datasets do not differentiate between irrigated and rainfed 

cropping systems, and do not contain crop-specific planting information. These 

deficiencies fail to fulfill the original intentions of this study design. 

Global scale data compensates the aforementioned deficiencies to some extent. 

However, it is worth mentioning that existing global databases have certain limitations, 

including a limited range of crop types and intermittent time series. For instance, the 

SPAM dataset is only publicly available for a few specific years 2000, 2005 and 2010, 

and interpolation is still required to fill in the gaps. The GFSAD1KCD dataset 

encompasses a smaller variety of crop types. 

We further compared planting areas of other crops in SPAM and our data provincially 

and in grids (Figures R5 and R6). It is evident that there is a high R2 at the provincial 

scale. The differences at the grid scale can be attributed to discrepancies in the 

identification of gridded land use between the MIRCA2000 and SPAM. According to 

Figures R7 and R8, the planting area data for sorghum, millet, barley, and sugar beets 

in the GAEZ+ exhibit significant deviations from this study, both at the provincial and 

grid scales. However, it should be emphasized that all crop planting area data in this 

study have been calibrated against statistical data at the provincial scale, implying an 

underestimation of the planting area for the mentioned crops in the GAEZ+. 

Given the above analysis, we used MIRCA2000 to estimate crop planting areas by 

water supply and irrigation practices. Other datasets have potential but based on our 

screening criteria, we made assessments of available data and adopted rigorous methods 
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to ensure the reliability of the applied data. 

In lines 100-101 of the revision, we point out that further details about the planting area 

data selection and comparative results have been provided in the Supplementary data 

and methods. In section 4.1 of the revision (Lines 404-419), we have added 

comparisons of the data used in this study with the SPAM and GAEZ+ data products. 

In the Planting area selection of Supplementary data and methods, we list the inventory 

of the latest Chinese crop irrigated area database, explain the principles for selecting 

crop planting area data in detail, and supplement the comparative results of crop 

planting area data. 

 

(2) The crop phenology for the major crop need to be further specific. For example, the 

winter wheat, the planting date of winter wheat is Oct 15, and all winter wheat are 

assumed to have the same phenology characters. But this is not the situation in practice, 

and the phenology of winter have significant difference even in North China Plain with 

different sowing, emergence and dormancy date. It is essential to use more detailed 

phenology data as input. 

Responses: Thank you for your comments. As you rightly pointed out, we recognize 

the significance of planting date (PD). Currently, there are some phenology datasets for 

major Chinese crops. The dataset generated by Luo et al. (2020), which only 

encompasses three major crops wheat, rice and maize. As indicated on the website of 

China Meteorological Data Service Center, the “Ten-day Values Dataset of Crop 

Growth and Development and Soil Moisture Content” they published has not gone 

through quality control and is of average quality. Here we mainly used phenology data 

published by Chen et al. (1995) for model input since it is widely used and its reliability 

is validated (Long et al., 2010; Cao et al., 2014; Ding et al., 2020). 

We discussed the effects of inputs like PD on water footprint of crop production (WFCP) 

estimation in the discussion,“The effect of PD differed for each crop, and advancing 

or delaying it exposed crops to completely different rain and heat conditions …. in 

future research, attention to the collection and organisation of basic data can play a 

positive role in the improvement of the model mechanism and accuracy of the output.” 

As shown in Table R3, our previous study conducted a sensitivity analysis of WFCP to 

PD at the site scale. The results indicated that when PD shifts ±10 days, the change in 

WFCP remains within 4%. With PD shifts of ±20 days, the variation in WFCP is under 



 31 / 49 

 

8.5% (Li et al., 2022). 

 

Table R3. Sensitivity analysis of water footprint of crop production to planting date.  

Crop -20 days -15 days -10 days -5 days 5 days 10 days 15 days 20 days 

Wheat 

(297 sites) 
-5.9% -4.5% -3.0% -1.4% 2.0% 3.9% 5.6% 7.5% 

Maize 

(304 sites) 
-0.4% 0.0% 0.2% 0.3% 0.2% -0.1% -0.6% -1.5% 

Rice 

(480 sites) 
0.4% 0.5% 0.5% 0.4% -0.5% -1.1% -2.3% -3.6% 

Soybean 

(299 sites) 
6.3% 5.0% 3.5% 1.8% -1.9% -4.0% -6.2% -8.5% 

Note: “-” means advance planting date. “+” means delay planting date. Sources: Li et al., (2022).  

 

In short, PD's effect on WFCP estimation is acceptable since crop water consumption 

is primarily concentrated in crop development (L2) and mid-season (L3) stages. In this 

study for instance, with over 13 crops having L2 and L3 water consumption proportions 

exceeding 80% (Figure R9). Therefore, minor shifts in PD forward or backward have 

relatively small influences on WFCP.  

 

Figure R9. The proportions of crop water consumption in stages L2 and L3 for various crops. 

 

In addition to considering fixed planting dates and crop duration, we conducted a 
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sensitivity analysis of the effect of growing degree days (GDD) on the quantification 

of WFCP (Zhuo et al., 2014). The GDD measures heat units during crop growth, greatly 

improves the accuracy of expressing and predicting crop phenological cycles compared 

to other methods like calendar year or days (McMaster and Wilhelm, 1997). The results 

indicated that when wheat PD was shifted 30 days earlier than the reference date, yield 

and WFCP decreased by 0.25% and 0.3% respectively. When rice planting was delayed 

by 30 days, yield and WFCP reduced by 0.2% and 9.3% respectively. Therefore, under 

constant GDD, yield and WFCP showed low sensitivity to changes in crop PD. 

In section 2.1.3 of the revision (lines 120-121), we point out that the crop phenology in 

this study underwent strict screening. In section 4.2 of the revision (lines 440-445), we 

have supplemented the conclusions from our previous study on the sensitivity analysis 

of WFCP to fixed planting dates, crop duration and GDD. The results of the sensitivity 

analysis have been appended to the phenology selection of Supplementary data and 

methods. 

 

1. Data comparison 

Figure 9, Please include RMSE in the Figure, when analyzing quantitative results, 

RMSE is more commonly used to evaluate overestimation and underestimation. 

Although it seems the value of R square is good here, I found the number of high ET 

value is small, this indicates the high R square value in this Figure do not make sense 

either, Please include more high ET-value pixels in the analysis. 

Responses: Thank you for your comments. The lack of high ET values in Figure 9 is 

attributed to the preliminary screening applied when selecting data for comparison in 

this study. As described in Section 2.3.2 (Lines 230-236): Because of the spatially 

fragmented nature of crop cultivation, we conducted remote sensing validation 

according to the Chinese Agricultural Cropping System to reduce the interference of 

non-agricultural land with the validation results. We selected grids in which the sum of 

planted areas was greater than 5 kha (> 50% of a single grid) and greater than 10 kha 

(>100% of a single grid) for single- and multi-crop regions, respectively. In terms of 

the time span, 19 of the 21 crops studied experienced growth periods from April to 

August; therefore, these five months were set as the validation interval in terms of total 

evapotranspiration.  
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As suggested, the RMSE has been added in the revised Figure 9 (Line 435) and other 

figures (Figures 7 and 8). Correspondingly, the computational methodology for RMSE 

has been appended in section 2.3.4 (Lines 248-255).  

 

1. Separation of E and T 

The separation of E and T can not be verified because there is no validation data. Please 

address this in discussion section, pay attention to include the uncertainty analysis of E 

and T separation. 

Responses: As mentioned in reply to reviewer#1’s question 2-A, the water 

consumption results of current study were validated against the dual-source (PML-

V2(China)) and single-source (SEBAL) remote sensing products. Notably, the SEBAL 

products (Cheng et al., 2021) solely comprised aggregate evapotranspiration figures, 

whereas the PML-V2 products (He et al., 2022) separated land surface 

evapotranspiration into vegetation transpiration (Ec), soil evaporation (Es), evaporation 

of intercepted precipitation (Ei), and water body evaporation (Ew). In this study, Ec + 

Es, Ec and Es were compared with the generated ET, E and T data, respectively. 

Comparative analysis in Figure R1 and Figure R2 revealed stronger agreement between 

the simulated evapotranspiration and the PML-V2 products (R2=0.49 – 0.85, RMSE= 

5.82 – 12.12 Mm3) than those with the SEBAL products (R2= 0.44 – 0.75, RMSE =8.51 

– 15.82 Mm3), although both comparisons demonstrated robust overall consistency. The 

validation results of soil evaporation are presented in Figure R3. The simulated E were 

marginally lower than the PML-V2 products (R2=0.22 – 0.70, RMSE=3.25 – 6.65 Mm3), 

owing to the current study calculating E exclusively for the planted regions of 21 crops, 

whereas the PML-V2 disregarded land use types during E estimation. Comparative 

analysis of crop transpiration in Figure R4 indicated that our simulated values were 

higher than the PML-V2 products which deducted canopy evaporation (R2=0.38 – 0.69, 

RMSE= 6.04 – 10.35 Mm3). Overall, considering the differences in basic input data, 

spatiotemporal resolution and calculation methods, the evapotranspiration, evaporation, 

and transpiration data products produced in this study showed acceptable results when 

compared with various remote sensing products, given the discrepancies exhibited. 

The datasets and data preprocessing procedures implemented for validation purposes 

were delineated in section 2.3.2 (Lines 230-241) of the revision. Comparative analysis 
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between the simulated values from the current study and established remote sensing 

datasets was presented in lines 421-435 and the validation results of the Supplementary 

data and methods. 

 

Line 183, Can you show the map of humid (AI > 0.5) and arid (AI < 0.5) zones? 

Responses: Thank you for your comments. We sincerely apologize for the confusion 

caused by the unclear illustration, which inconvenienced your review. The climate 

zones are defined as the ratio of rainfall to reference evapotranspiration, where humid 

(AI > 0.5) and arid (AI < 0.5) zones are delineated.  

In Figure 6 (Lines 368-369), we differentiated the arid and humid zones with wine red 

boundary lines, and the specific locations of arid and humid areas can be found in Figure 

6a.  

 

Line 194, What remote sensing data have you used for comparison? 

Responses: Thank you for your comments. We sincerely apologize for the oversight on 

our part, which caused inconvenience to your review. The water consumption results of 

current study were validated against the dual-source (PML-V2(China)) and single-

source (SEBAL) remote sensing products. 

In section 2.3.2 (Lines 230-241) of the revised manuscript, we introduced the datasets 

and data preprocessing methods used for validation. 

 

Line 316~319, I think the two factors addressed here do not make sense as the data used 

in the analysis have significant shortage, please use your new version to compare. 

Responses: Thank you for your comments. Prior to the simulation, we conducted 

rigorous screening and reliability validation of the input data based on principles of 

accuracy and representativeness, using the currently optimal available data. We 

recognize that the accuracy of all model studies, including AquaCrop, is contingent on 

model mechanisms and input data. Therefore, laying emphasis on collection and 

collation of fundamental data in future studies will play a positive role in improving 

model mechanisms and output precision. 
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It should be noted that the WATNEEDS represents crop water requirements, while 

WFCP in our study refers to crop water consumption during the growing period, as has 

been elaborated in lines 51-52 of the Introduction. Therefore, we think the two factors 

addressed here are valid, that the primary factors leading to discrepancies between the 

datasets are the differences in simulation mechanisms (crop water requirements vs. crop 

water consumption) and irrigation practices (whether distinguishing irrigation 

practices).  

In section 4.2 (lines 437-494) of the revision and the Supplementary data and methods 

section, the sensitivity and uncertainty analysis and the screening procedure 

implemented for the input data in the current study were rewritten in the interest of 

guaranteeing the credibility of the outcomes. 
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Authors’ responses to Referee #3’ s comments 

The article " A gridded dataset of consumptive water footprints, evaporation, 

transpiration, and associated benchmarks related to crop production in China during 

2000–2018" established a gridded dataset of monthly green and blue water footprint of 

crop production (WFCP), evaporation and transpiration et al. based on AquaCrop 

model. On the whole, the paper has important research significance and much work was 

done, but there are some shortcomings in the paper, and it is suggested to modify. 

Responses: We sincerely appreciate the referee #3’s constructive comments and 

suggestions. We acknowledge the reviewer's opinion that there are areas needing 

improvement in our paper. In accordance with the reviewer's valuable suggestions, we 

will make revisions and updates to the manuscript where needed to further enhance its 

quality and contribution.  

 

1. In Lines 186-187, “The statistical yearbook only has crop production statistics on the 

provincial level. Therefore, we calibrated crop production at the provincial scale.”. The 

statement is not accurate. Statistics data on the city level can be found in the provincial 

statistical yearbook. 

Responses: Thank you for your comments. You rightly pointed out that the statistical 

yearbooks contain crop production data at the city level. For years and regions with 

more comprehensive data, it would be worthwhile to utilize higher-resolution data. It 

should be noted that although provincial yearbooks include some city-level crop 

production data, considering the numerous crop types involved in this study, and the 

division of certain crops by harvest periods (e.g., winter wheat, spring wheat, early rice, 

mid rice, late rice), there are indeed many instances of missing and incomplete data at 

the city scale. To ensure data integrity and accuracy, production calibration was carried 

out at the provincial level. Such provincial calibration has been extensively applied in 

previous studies (Yue et al., 2022; Zhuo et al., 2016).  

The meteorological and soil factors are critical factors affecting the estimation of water 

footprint of crop production (WFCP) (Zhuo et al., 2014; Tuninetti et al., 2015). By 

incorporating precipitation, temperature, soil texture and other elements into the 

fundamental model inputs, the simulation results of this study were still able to reflect 

heterogeneities in the spatial distribution of crop water consumption, production, and 
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WFCP well, despite crop production was calibrated at the provincial level. We have 

ensured these sensitive factors meet the accuracy requirements of this study at temporal 

and spatial scales. 

In section 2.3.1 (Lines 214-228) of the revision, we provided the reason for calibrating 

production at the provincial level and ensured the validity of the simulated results.  

 

2. In your research, AquaCrop model was used to simulate crop production more than 

21 crops. Wheat, corn and rice are the main food crops in China. In crop production, 

irrigation and fertilization are both important management measure to improve crop 

yield. However, only irrigation was considered. In my opinion, it is necessary to 

consider the effects of irrigation and fertilization on crop production in different regions 

when simulating crop production process using AquaCrop model. 

Responses: Thank you for your comments. AquaCrop here only modeled irrigation and 

excluded other practices like fertilization. As you pointed out, both irrigation and 

fertilization are critical agronomic measures to improve crop production. It should be 

noted that AquaCrop was developed by the FAO as a water-driven model. Since the 

focus of this study is to assess the impacts of different water supply and irrigation 

practices on quantifying WFCP, irrigation practice was selected as the sole simulation 

factor. 

The AquaCrop model adopts a semi-quantitative method to evaluate fertilizer stress. 

That is, it cannot directly simulate crop response to fertilizer based on plant nutritional 

demand and soil nutrient content (Akumaga et al., 2017). Research shows AquaCrop 

performs better without fertilizer stress versus with stress (Adeboye et al., 2021; Wu et 

al., 2022). In fact, there is a serious overapplication of chemical fertilisers in Chinese 

farmlands (Chen et al., 2014; Cui and Shoemaker, 2018). The impact of fertilization on 

crop production was indirectly reflected through calibration against statistical data.  

Moreover, gridded data is deficient regarding fertilizer varieties and application 

quantities, more so for crop-specific data. So like past AquaCrop global (Mialyk et al., 

2022) and national (Wang et al., 2019) studies, nutrient stress is not considered in 

simulations. 

Certainly, the above assumption has limitations. Establishing high resolution fertilizer 

application databases is vital for future crop production research. When updating the 
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WFCP database later, we will enhance model mechanisms to improve accuracy if 

fertilizer data becomes available. 

In section 4.2 (Lines 456-468) of the revision, we have discussed the reasons for not 

considering fertilization in crop production simulation, and called for establishing high-

resolution fertilizer application databases to improve crop production research. 

 

3. As we all know, AquaCrop is a farm-scale model. In your research, the crop 

production at the provincial scale was calibrated and validated by statistical yearbook. 

I don’t think this is a good idea. It is recommended that some representative sites were 

selected to verify the AquaCrop parameters. 

Responses: Thank you for your comments. Conservative parameters in the basic model 

inputs originate from the Annex of the Reference manual for the AquaCrop (Raes et al., 

2018), while key sensitive parameters are acquired from extensively utilized databases 

that considered regional differences originally. With regard to your later reviewer 

comment 5, comprehensive delineation pertaining to the crop parameter selection 

procedure has been furnished. 

In the context outputs validation, similar to previous large-scale footprint studies (Yu et 

al., 2019; Li et al., 2023), model calibration focuses on the verification of 

evapotranspiration (ET) against high-precision remote sensing products and production 

validation at administrative level. Therefore, we validated the simulated crop ET 

against remote sensing products over the same grids and time, which showed good 

consistency (Lines 230-241, 421-432). For crop production validation, on one hand it 

is difficult to obtain site-level measured data, and on the other hand crop production 

data at the city and county levels contain missing values for the numerous crops 

involved. As mentioned in the responses to reviewer comment 1, by incorporating 

precipitation, temperature, soil texture and other elements into the fundamental model 

inputs, the simulation results of this study were still able to reflect heterogeneities in 

the spatial distribution of crop water consumption, production, and WFCP well, despite 

crop production was calibrated at the provincial level (Lines 223-228).  

 

4. Whether the parameters are consistent in AquaCrop model under different irrigation 

methods? 
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Responses: Thank you for your comments. As stated in the AquaCrop model user 

manual, different irrigation practices are distinguished by the parameter of surface 

wetness fraction, while other parameters remain consistent (Raes et al., 2018). This 

irrigation practices differentiation approach is commonly used before (Pereira et al., 

2015; Wang et al., 2019; Chibarabada et al., 2020; Li et al., 2022; Yue et al., 2022). 

Specifically, as elaborated in Section 2.2.5, Different irrigation practices indirectly 

affect water consumption during the growth period due to differences in the fraction of 

the surface wetted (fw) by each method. where the fw-values used for furrow, sprinkler, 

and micro-irrigation were 80%, 100%, and 40%, respectively. 

In section 2.2.5 (Lines 193-196) of the revision, we have supplemented the applicability 

of the method for the model used to distinguish irrigation practices. 

 

5. Lines 391-392. The crop parameters do not vary with simulation time and space. It 

is inaccurate for the whole Country to use only one set of crop parameters to simulate 

crop yield. In my opinion, different crop parameters should be used for each province. 

Responses: Thank you for your comments. Due to inappropriate narration, our 

description of crop parameters in the manuscript has caused severe misunderstanding 

during your review. In fact, strict regional differences were considered during the initial 

screening of the 21 crops’ parameters. The 31 provinces were divided into 8 major 

regions at the provincial level (Table R1). According to the regional classification 

results, we adjusted the crop types and planting date parameters. Based on planting and 

irrigation practices, we tuned the crop rooting depth. 

In our previous research (Li et al., 2022), ten input variables or model parameters were 

selected, including reference evapotranspiration (ETo), crop transpiration coefficient 

(KcTr), planting date (PD), soil evaporation coefficient (KE), maximum canopy cover 

(MCC), precipitation (PR), canopy decline coefficient (CDC), planting density of the 

crop (DC), reference harvest index (HI0), and normalised water productivity (WP*). 

The results showed that WFCP is generally more sensitive to KcTr and PD among the 

model parameters. 

In the Annex of the Reference manual for the AquaCrop (Raes et al., 2018), default 

values of crop parameters for the 12 crops covered in this study are given, including 

crop transpiration, biomass production and yield formation, and stresses, totaling 41 



 42 / 49 

 

parameters. Furthermore, these parameters are further classified based on crop 

sensitivity as conservative generally applicable (including KcTr), conservative for a 

given species but can or may be cultivar specific, dependent on environment and/or 

management and cultivar specific. The conservative parameters are generally 

applicable and remain unchanged across a wide spectrum of conditions, including 

different climatic and geographic locations, crop cultivars and genotypes, as well as 

variable soil moisture stress statuses. Once calibrated, these identical parameters would 

be utilized without further modification. 

Regarding the other sensitive parameter PD, the phenology dataset generated by Luo 

et al. (2020) only included three major crops wheat, rice and maize. As indicated on the 

website of China Meteorological Data Service Center, the “Ten-day Values Dataset of 

Crop Growth and Development and Soil Moisture Content” they published has not gone 

through quality control and is of average quality. In this study, we primarily used the 

phenology data published by Chen et al. (1995) as model input, because this dataset has 

been widely applied and its reliability has been validated (Long et al., 2010; Cao et al., 

2014; Ding et al., 2020). 

 

Table R4. The proportions of crop water consumption in stages L2 and L3 for various crops. 

Crop Proportion Crop Proportion 

Spring wheat 75.8%±0.8% Cotton 79.5%±1.0% 

Winter wheat 87.8%±0.6% Sugar cane 87.7%±1.4% 

Spring maize 88.6%±0.5% Sugar beets 89.3%±0.7% 

Summer maize 73.8%±1.3% Groundnuts 90.4%±0.6% 

Early rice 78.7%±0.8% Spring rapeseed 73.1%±1.8% 

Mid rice 80.4%±1.0% Winter rapeseed 77.8%±2.2% 

Late rice 86.3%±0.4% Sunflower 80.6%±0.6% 

Sorghum 77.2%±1.6% Tomatoes 73.6%±1.3% 

Millet 77.4%±0.9% Apple 86.8%±0.5% 

Spring barley 77.0%±1.4% Tea 85.0%±0.7% 

Winter barley 85.2%±0.9% Tobacco 83.3%±0.5% 

Soybeans 69.9%±1.4% Cabbage 76.3%±1.4% 

Potatoes 71.7%±1.1% Grapes 73.2%±1.4% 

Sweet potatoes 66.6%±1.0%   

 

In this study for example, the proportions of crop water consumption in the crop 

development (L2) and mid-season (L3) stages for various crops are shown in Table R4, 
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with more than 13 crops having L2 and L3 water consumption proportions over 80%. 

As shown in Table R3, when PD varies ±10 days, the change in WFCP is within 4%. 

When PD varies ±20 days, the change in WFCP is within 8.5%. The impact of PD on 

WFCP estimation is acceptable, because the crop water consumption during the 

growing season is mainly concentrated in L2 and L3 stages. In these processes, crop 

water consumption increases substantially with the rise of canopy cover and crop 

growth demand. Therefore, based on the parameter adjustments that have been 

implemented at the provincial level, minor shifts in PD forward or backward have 

relatively small influences on WFCP. 

We obtained these key parameters like reference harvest index, crop growth stages, and 

maximum root depth for this study by referring to the literature (Allen et al., 1998; 

Vanuytrecht et al., 2014; Xie et al., 2011; Zhang and Zhu, 1990; Hoekstra and 

Chapagain, 2006). These data have been validated to be reliable and applicable in large-

scale studies (Zhuo et al., 2016; Wang et al., 2019). Due to data limitations, the 

remaining parameters such as maximum canopy cover, canopy cover decline coefficient, 

canopy growth coefficient were assigned the mean values within the reference range 

provided in the Annex of the Reference manual for the AquaCrop. Although this 

approach may overlook certain potential variations, the use of mean values generally 

captures the central tendency of the data. 

In summary, unlike small-scale studies at site level that emphasize region-specific 

measured parameters for model simulation, large regional-scale studies often adopt 

literature-recommended parameter values during data collection, with greater focus on 

regional variability and wide adaptability of the parameters. (Hoekstra and Wiedmann 

2014; Davis et al., 2017; Mekonnen and Hoekstra 2020; Lutz et al., 2022; Halpern et 

al., 2022; Liu et al., 2022; Chiarelli et al., 2022; Demay et al., 2023). It was neither 

practical nor feasible to calibrate crop parameters individually for each grid given the 

constraints of available data. Nevertheless, we have made every effort to ensure the 

reliability of the model input parameters within the existing limitations.  

Within section 4.2 (Lines 438-455) of the revision and the Supplementary data and 

methods, we have provided the screening process for key parameters affecting WFCP 

quantification. In section 4.2 (Lines 473-481) of the revision, we have supplemented 

explanation on the sources and reliability of other crop parameters. In section 4.2 (Lines 

482-490) of the revision, we have discussed the differences between large regional-
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scale studies and small regional-scale studies in crop parameter selection. It should be 

reemphasized that the WFCP database generated in this study is updatable annually. 

Should higher-resolution crop parameter products become available in future, we will 

update the existing WFCP database accordingly. 

 

6. The discussion needs to be rewritten. The results of this study can be compared with 

those of others, and the reasons for the similarities and differences can be analyzed. For 

example, in section 4.1, it is inadequate just compared with the evapotranspiration result 

with SEBAL model, which is a single-source model. In your research, evaporation and 

transpiration has been estimated. It will be more meaningful to verify evaporation and 

transpiration based on the two-source model. 

Responses: Thank you for your comments. As mentioned in reply to reviewer#1’s 

question 2-A and reviewer#2’s question about “Separation of E and T”, the water 

consumption results of current study were validated against the two-source (PML-

V2(China)) and single-source (SEBAL) remote sensing products. Notably, the SEBAL 

products (Cheng et al., 2021) solely comprised aggregate evapotranspiration figures, 

whereas the PML-V2 products (He et al., 2022) separated land surface 

evapotranspiration into vegetation transpiration (Ec), soil evaporation (Es), evaporation 

of intercepted precipitation (Ei), and water body evaporation (Ew). In this study, Ec + 

Es, Ec and Es were compared with the generated ET, E and T data, respectively.  

Comparative analysis in Figure R1 and Figure R2 revealed stronger agreement between 

the simulated evapotranspiration and the PML-V2 products (R2=0.49 – 0.85, RMSE 

=5.82 – 12.12 Mm3) than those with the SEBAL products (R2=0.44 – 0.75, RMSE =8.51 

– 15.82 Mm3), although both comparisons demonstrated robust overall consistency. The 

validation results of soil evaporation are presented in Figure R3. The simulated E were 

marginally lower than the PML-V2 products (R2= 0.22 – 0.70, RMSE =3.25 – 6.65 

Mm3), owing to the current study calculating E exclusively for the planted regions of 

21 crops, whereas the PML-V2 disregarded land use types during E estimation. 

Comparative analysis of crop transpiration in Figure R4 indicated that our simulated 

values were higher than the PML-V2 products which deducted canopy evaporation 

(R2= 0.38 – 0.69, RMSE =6.04 – 10.35 Mm3). Overall, considering the differences in 

basic input data, spatiotemporal resolution and calculation methods, the 

evapotranspiration, evaporation, and transpiration data products produced in this study 
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showed acceptable results when compared with various remote sensing products, given 

the discrepancies exhibited. 

In section 2.3.2 (Lines 230-241) of the revised manuscript, we introduced the datasets 

and data preprocessing methods used for validation. In lines 421-435 and validation 

results of the Supplementary data and methods, we presented the comparison results 

between the simulated values in this study and existing remote sensing datasets. 

 

Minor questions: 

1. In Line 40, what’s the mean of “CWASI”. 

Responses: Thank you for your comments. We sincerely apologize for the 

inconvenience caused to your review work due to the use of abbreviations. “CWASI” 

refers to the abbreviation for the virtual water and water footprint dataset created by 

Tamea et al. (2021) in line 41. 

In line 41 of the revised manuscript, we have rewritten this sentence to avoid confusion. 

 

2. In Lines 130, 135 et al., no spaces before “where …”. 

Responses: Thank you for your comments.  

In the revised manuscript, we have deleted spaces before all instances of "where", in 

order to ensure formatting accuracy and consistency.  
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