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Abstract. The low accuracy of satellite cloud fraction (CF) data over the Arctic seriously restricts 13 

the accurate assessment of the regional and global radiative energy balance under a changing climate. 14 

Previous studies have reported that no individual satellite CF product could satisfy the needs of accuracy 15 

and spatio-temporal coverage simultaneously for long-term applications over the Arctic. Merging 16 

multiple CF products with complementary properties can provide an effective way to produce a 17 

spatiotemporally complete CF data record with higher accuracy. This study proposed a spatiotemporal 18 

statistical data fusion framework based on cumulative distribution function (CDF) matching and the 19 

Bayesian maximum entropy (BME) method to produce a synthetic 1°×1° CF dataset in the Arctic during 20 

2000–2020. The CDF matching was employed to remove the systematic biases among multiple passive 21 

sensor datasets through the constraint of using CF from an active sensor. The BME method was employed 22 

to combine adjusted satellite CF products to produce a spatiotemporally complete and accurate CF 23 

product. The advantages of the presented fusing framework are that it not only uses the spatiotemporal 24 

autocorrelations but also explicitly incorporates the uncertainties of passive sensor products 25 

benchmarked with reference data, i.e., active sensor product and ground-based observations. The 26 

inconsistencies of Arctic CF between passive sensor products and the reference data were reduced by 27 

about 10–20% after fusing. Compared with ground-based observations, R2 increased by about 0.20–0.48 28 

and the root mean square error (RMSE) and bias reductions averaged about 6.09% and 4.04% for land 29 

regions, respectively; these metrics for ocean regions were about 0.05–0.31, 2.85%, and 3.15%, 30 

respectively. Compared with active sensor data, R2 increased by nearly 0.16, and RMSE and bias declined 31 

by about 3.77% and 4.31%, respectively, in land; meanwhile, improvements in ocean regions were about 32 

0.3 for R2, 4.46% for RMSE and, 3.92% for bias. The comparison with the ERA5 reanalysis and CMIP6 33 

CF datasets shows that the proposed fusion algorithm effectively corrected the CF data with differences 34 

greater than 30%. Moreover, the fused product effectively supplements the temporal gaps of AVHRR-35 

based products caused by satellite faults and the data missing from MODIS-based products prior to the 36 

launch of Aqua, and extends the temporal range better than the active product; it addresses the spatial 37 

insufficiency of the active sensor data and the AVHRR-based products acquired at latitudes greater than 38 

82.5°N. A continuous monthly 1-degree CF product covering the entire Arctic during 2000–2020 was 39 
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generated and is freely available to the public at https://doi.org/10.5281/zenodo.7624605 (Liu et al., 40 

2022). This is of great importance for reducing the uncertainty in the estimation of surface radiation 41 

parameters and thus helps researchers to better understand the earth’s energy imbalance. 42 

1 Introduction 43 

Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by 44 

restricting emissions of thermal radiation into space (Ramanathan et al., 1989; Van Tricht et al., 2016; 45 

Danso et al., 2020). Clouds are also an essential variable in the climate system because they are directly 46 

associated with precipitation and aerosol loading (Toll et al., 2019; Poulsen et al., 2016). The cloud 47 

fraction (CF), which represents the amount of sky estimated to be covered by a specified cloud type or 48 

level (partial CF) or by all cloud types and levels (total CF), has long been recognized as a major source 49 

of uncertainty when estimating radiation flux and future climate change (Xie et al., 2010; Liu et al., 2011a; 50 

Qian et al., 2012; Danso et al., 2020). Therefore, an accurate representation of CF is essential for the 51 

evaluation of regional and global energy budgets as well as for predicting future climatic conditions. 52 

By making spatially continuous observations, satellites provided us with an unprecedented 53 

advantage in assessing regional and global cloud effects. In the last few decades, increased effort has 54 

been made to develop, analyze, and validate global or regional cloud property datasets that are based on 55 

long-term satellite observations (Heidinger et al., 2014; Hollmann et al., 2013; Karlsson and Devasthale, 56 

2018; Marchant et al., 2016; Rossow and Schiffer, 1999; Stubenrauch et al., 2013; Enriquez-Alonso et 57 

al., 2016; Sun et al., 2015; Tzallas et al., 2019; Wu et al., 2014). Studies have also shown that although 58 

different cloud datasets were derived from different observation instruments and algorithms, most of 59 

them provide quite consistent CF observations in middle and lower-latitude regions (Karlsson and 60 

Devasthale, 2018; Stengel et al., 2017; Claudia, 2012). However, systematic errors and artifacts exist in 61 

CF data, so some inconsistencies inevitably occur among different datasets (Sun et al., 2015; Tzallas et 62 

al., 2019; Wu et al., 2014), especially in the polar regions (Liu et al., 2022). Perennial snow/ice coverage 63 

coupled with frequent moisture inversions in Arctic has limited the cloud detection capabilities of passive 64 

sensor datasets, where the differences between these various datasets tend to be about two-fold in 65 

magnitude when compared with datasets acquired at other latitudes (Karlsson and Devasthale, 2018; Liu 66 

et al., 2022; Stubenrauch et al., 2013). The uncertainties of the annual global surface downward longwave 67 

(LW) and shortwave (SW) fluxes caused by satellite-derived cloud properties were calculated at about 68 

2% (7 Wm−2 and 4 Wm−2, respectively) and those for global surface upward LW and SW were about 69 

0.8% (about 3 Wm−2) and 13% (also 3 Wm−2), respectively (Kato et al., 2011; Kato et al., 2012; Kim 70 

and Ramanathan, 2008). However, the differences in CF could cause a larger variation of the surface 71 

radiation budget over high-latitude polar regions. Kennedy et al. (2012) found that the CF bias might 72 

cause monthly biases in Arctic surface SW and LW fluxes over 90 and 60 Wm−2 for some reanalyses, 73 

respectively (Kennedy et al., 2012). Walsh et al. (2009) proposed that the bias of summer low-level CF 74 

would create deviations of about 160 Wm−2 in estimated SW radiation (Walsh et al., 2009). Some other 75 

related studies have also found that the variances of annual Arctic surface radiation estimation caused by 76 

CF uncertainty were higher than 10 Wm−2 (Hakuba et al., 2017; Kato et al., 2018b; Huang et al., 2017). 77 

Therefore, relying on a single CF dataset may introduce large uncertainty when analyzing the cloud 78 

dynamics over the Arctic, further affecting the estimated energy budget and related climate applications. 79 

Each cloud dataset has its own advantages and disadvantages in Arctic CF detection. The Advanced 80 

Very High Resolution Radiometer (AVHRR) offers the longest continuous satellite observation records 81 
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extending from 1978 to the present and provides daily global coverage based on data from several 82 

AVHRRs. With the successful operation of new generations of satellites, the frequency of global view 83 

has increased to more than eight each day, which provides richer angular information for CF observations 84 

(Heidinger et al., 2014; Karlsson et al., 2017). Many cloud products exist that are based on AVHRR 85 

sensors. The International Satellite Cloud Climatology Project (ISCCP) H-series product relies on newer 86 

passive imagers with higher spectral, spatial, radiometric, and temporal resolutions; it provides revised 87 

daytime cloud detection over snow and ice in polar regions (Young et al., 2018). Moreover, the ISCCP 88 

is largely unaffected by the AVHRR orbital drifts (Loyola R et al., 2010; Liu et al., 2022). The CM SAF 89 

cLoud, Albedo, and RAdiation datasets (CLARA-A1/A2) systematically use CALIPSO-CALIOP cloud 90 

information for development and validation purposes, and it optimizes the detection conditions during 91 

the polar day over snow- and ice-covered surfaces (Karlsson et al., 2017; Karlsson and Hakansson, 2018). 92 

The AVHRR Pathfinder Atmospheres - Extended (PATMOS-x) product is the first multi-parameter 93 

dataset that is making use of all AVHRR channels. This product has a relatively finer spatial resolution 94 

than other AVHRR-based records, and it also improves cloud detection based on active sensor data 95 

(Heidinger et al., 2012; Heidinger et al., 2014). However, the AVHRR-based products are often reported 96 

to underestimate Arctic CF because of the limitations in radiation correction and spatial bands (Stengel 97 

et al., 2017; Kotarba, 2015). In addition, the United States National Oceanic and Atmospheric 98 

Administration’s (NOAA’s) archiving of data has its own problems with intermittent occurrences of gaps, 99 

duplications, and corrupt data as well as the orbit drifts of satellites (Karlsson et al., 2017). Beginning in 100 

2000, the higher resolution, higher calibration accuracy, and larger number of spectral bands used in the 101 

Moderate Resolution Imaging SpectroRadiometer (MODIS) cloud products resulted in more robust, but 102 

shorter-length products than AVHRR (Kennedy et al., 2012; Claudia, 2012; Stengel et al., 2017), 103 

including MOD08/MYD08 (Marchant et al., 2016) and the Clouds and the Earth’s Radiant Energy 104 

System (CERES) (Kato et al., 2018b; Minnis et al., 2011). Meanwhile, the MODIS-based products are 105 

usually reported to overestimate the CF in the Arctic (Trepte et al., 2019; Liu et al., 2022). Although 106 

passive sensor data provide a long time series of continuous CF data covering the entire Arctic region, 107 

the limitations of visible and thermal channels in distinguishing clouds from snow and ice cause the cloud 108 

results of passive sensor data in the high-latitude bright cold polar regions to have questionable accuracy 109 

(Eastman and Warren, 2010; Liu et al., 2010; Liu et al., 2012a; Philipp et al., 2020). Active instruments, 110 

such as CALIOP, do not rely on thermal or visible contrasts in detecting clouds, so they are regarded as 111 

an excellent reference for passive data collection in transient and zonular scenarios (Stubenrauch et al., 112 

2013; Stengel et al., 2017). However, the number of CALIPSO spatial samplings is too low to overlap 113 

large areas repeatedly in a short time, and the CALIPSO imagers only cover the regions within 82.5°N 114 

latitudes, which greatly reduced spatial and temporal coverages when compared with passive sensor 115 

sensors (Liu et al., 2022; Claudia, 2012; Stubenrauch et al., 2013). Therefore, an effective method for 116 

blending the advantages of multiple satellite products should yield more accurate Arctic CF products 117 

based on a variety of observations and algorithms. 118 

Several studies have been dedicated to correcting passive sensor data based on active sensor data 119 

with the goal of improving the accuracy of CF products. Philipp et al. (2020) corrected passive sensor 120 

CF data by constructing a function of the sea ice concentration in different seasons and the CF bias in 121 

data acquired from active and passive sensors, which showed reliable results for low-level cloud cover 122 

identification where the sea ice concentration was known (Philipp et al., 2020). Kotarba (2020) matched 123 

the CALIPSO profile data and the MODIS instantaneous field of view to correct passive sensor data 124 

(Kotarba, 2020). This method can be used as an important reference for short-term research covering a 125 
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small area, while the efficiency of the algorithm is also important for the correction of long-time series 126 

and large-scale data. When considering that passive sensor CFs have comparable seasonal fluctuations 127 

with active sensor data (peaking in September and minimizing in April in the Arctic) (Liu et al., 2022), 128 

the cumulative distribution function (CDF) matching approach based on time series data may be able to 129 

improve both the accuracy and efficiency of CF detection. Using CDF matching can reduce the 130 

systematic bias and root mean square errors (RMSEs) between target and reference datasets while 131 

maintaining the relative relationship, which has been successfully applied in the study of soil moisture, 132 

surface emissivity spectra, precipitation, and land surface temperature (Drusch, 2005; Brocca et al., 2011; 133 

Liu et al., 2011b; Zhang et al., 2018; Nie et al., 2016; Xu and Cheng, 2021). 134 

In the field of meteorology, to obtain more accurate cloud coverage information, multi-source data 135 

fusion is usually performed based on spectral bands and scale geometry information of instantaneous 136 

satellite images. Examples include various transforms including the contourlet(Miao and Wang, 2006; 137 

Jin et al., 2011), curvelet (Li and Yang, 2008; Liu et al., 2015), NSCT (Wang et al., 2012), and tetrolet 138 

transforms (Zhang et al., 2014). Alternatively, based on the field of view of different observation 139 

instruments used to acquire satellite images and of ground-based stations, methods such as the stepwise 140 

revision method (Kenyon et al., 2016) and data assimilation technology (Hu and Xue, 2007) have been 141 

used. However, in the climate domain, the estimation of a radiative energy budget on a large scale over 142 

a long time series usually requires monthly climate model grid data (Kato et al., 2018a; Sledd and 143 

L’ecuyer, 2021). Using fused instantaneous data to extrapolate climate-scale data may result in a large 144 

accumulation of errors. In recent decades, the fusion of multi-sensor thematic products in climate-scale 145 

studies has been widely used and developed. Two main types of methods exist for merging multiple 146 

satellite thematic products based on the principle of calculation. One type of fusing approach provides 147 

spatiotemporal data fusion by spectral correlation, which is more suitable for the regions where the spatial 148 

information of objects has no obvious change, such as the Spatial and Temporal Adaptive Reflectance 149 

Fusion Model (STARFM) and the improved STARFM (Gao et al., 2006; Hilker et al., 2009; Zhu et al., 150 

2010; Zhang et al., 2014). The other type of spatiotemporal data fusing method is data-driven, which 151 

involves developing geostatistical models to solve the problem created when the same parameter is 152 

inconsistent among different satellite products. This method includes the Kriging family of techniques 153 

(Chatterjee et al., 2010; Li et al., 2014; Savelyeva et al., 2008), the spatiotemporal interpolation method  154 

(Yang and Hu, 2018), and the Bayesian melding framework (Fuentes and Raftery, 2005; Christakos, 155 

2010). However, these methods rely on Gaussian assumptions and linear models, which limits their 156 

estimation accuracy  (Nazelle et al., 2010; He and Kolovos, 2017). A nonlinear spatiotemporal 157 

geostatistical method, Bayesian maximum entropy (BME), has been proposed to fuse the parameters that 158 

have apparent spatiotemporal variations (Nazelle et al., 2010). The BME method can integrate 159 

information from different sources and then consider the data uncertainties in achieving improved 160 

prediction accuracy. The most important advantage of BME is that it does not restrict the complex 161 

stochastic relationship between predictions/observations and ‘true’ values to the Gaussian linearized 162 

model; this is a significant breakthrough over approaches restricted to using normal distributions (Nazelle 163 

et al., 2010; Li et al., 2013; Xu et al., 2019). The BME method has broad application in the assessment 164 

of many different atmosphere parameters, such as ozone concentration (Nazelle et al., 2010; Bogaert et 165 

al., 2009; Christakos et al., 2004), PM2.5, PM10 (Yu and Wang, 2010; Beckerman et al., 2013), and aerosol 166 

optical depth (Xia et al., 2022; Tang et al., 2016). These parameters have similar spatiotemporal 167 

properties to CF, i.e., they vary rapidly in both time and space. Therefore, BME has the potential for use 168 

in merging multiple satellite CF products to produce spatiotemporally complete, accurate, and coherent 169 
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Arctic CF products. 170 

In this paper, we present a spatiotemporal data fusion framework based on a CDF matching 171 

approach and BME methodology to generate a fused monthly CF product with 1°× 1° resolution in the 172 

Arctic region from 2000 to 2020. The CDF matching approach is used to correct the bias of passive 173 

sensor data based on active sensor data, thereby improving the quality of the passive data. The BME 174 

method is used to produce spatiotemporally complete monthly CF data from corrected multiple-satellite 175 

CF products. The uncertainties of passive sensor CF products benchmarked with active sensor data and 176 

ground-based data are all considered in the fusing process. The study area was in the Arctic region above 177 

60°N, including land and marine areas. The structure of this paper is as follows. Section 2 describes the 178 

data, while Section 3 introduces the data preprocessing and methods. The results and discussion are 179 

presented in Sections 4 and 5, respectively. Finally, the conclusions are provided in Section 6. 180 

2 Data 181 

2.1 Satellite Data 182 

In view of the complementarity among the AVHRR-based, MODIS-based, and active sensor 183 

products, this study involved ten passive-satellite-derived products from MODIS and AVHRR, with the 184 

time period spanning from 2000 to 2020 along with an active-satellite-derived product from CALIPSO, 185 

with the time period spanning from 2006 to 2016. The experimental period only included the sunlit 186 

months from April to September because of the darkness of the Arctic winter. All the data are briefly 187 

described in Table 1. 188 

The AVHRR sensors are onboard sun-synchronous orbit satellites collecting data in the morning or 189 

afternoon (NOAA, Metop-A/B). The morning (afternoon) orbits cross the equator on their descending 190 

(ascending) node at approximately 0730 (1330) local time (LT). Starting with NOAA-17 and all MetOp 191 

satellites, AVHRR data are available from a midmorning orbit with the equator crossing time at 192 

approximately 0930 LT. However, complications arose from changes in the equatorial crossing times of 193 

individual AVHRR sensors due to satellite drift (Heidinger et al., 2014; Karlsson et al., 2013). The 194 

AVHRR has a nominal spatial resolution of 1.1 km at the nadir point, facilitating full global coverage 195 

twice daily (daytime and nighttime), but the products this study employed provide global area coverage 196 

data with a nadir footprint size of 1.1 km × 4.4 km (Stengel et al., 2017). Cloud detection algorithms of 197 

these latest satellite data have improved greatly in polar regions. However, some data gaps exist as a 198 

result of AVHRR scan motor errors (e.g., the NOAA-15 orbits were blacklisted in 2000 and 2001) and 199 

limitations of observation conditions (e.g., CLARA-A2 could not cover the central Arctic Sea in 200 

September). 201 

A MODIS sensor is onboard both the morning satellite Terra and the afternoon satellite Aqua, with 202 

overpass times at the equator of approximately 1030 LT and 1330 LT, respectively. The MODIS produces 203 

complete near-global coverage in less than 2 days. The 36 channels from the visible to thermal infrared 204 

spectrum provide abundant spectral information for cloud parameter retrieval. The new version datasets 205 

have improved the cloud detection algorithms in polar regions, whereas some researchers found 206 

overestimated CF in snow/ice surface in the new datasets when compared with active sensor data 207 

(Marchant et al., 2020; Marchant et al., 2016; Paul, 2017; Trepte et al., 2019). Although some differences 208 

exist between Terra and Aqua, the consistency between these two satellites should be noticeable (Trepte 209 

et al., 2019). 210 
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The CALIPSO satellite combines an active light detection and ranging (lidar) instrument (Cloud-211 

Aerosol Lidar with Orthogonal Polarization - CALIOP Lidar) with passive infrared (Imaging Infrared 212 

Radiometer) and visible imagers (Wide Field Camera) to probe the vertical structure and properties of 213 

thin clouds and aerosols worldwide (Winker et al., 2007; Vaughan et al., 2004; Hunt et al., 2009; Vaughan 214 

et al., 2009; Winker et al., 2009). As the most accurate currently active space-borne instrument for 215 

detecting clouds, CALIPSO has a 16-day repeat cycle with equatorial overpass time at 1:30 PM. The 216 

CAL_LID_L3_GEWEX_Cloud-Standard-V1-00 is a widely used grid cloud product with a spatial 217 

resolution of an equal angle grid 1°×1° (Claudia, 2012). 218 

Table 1. Satellite cloud fraction products used in this research. 219 

Products 

Cloud detect 

method 
Satellite Sensor 

Overpass 

time 
Time range 

Temporal 

resolution 

Spatial 

resolution 

MOD08-M3 

Terra MOD 35 Terra MODIS 1030am 2000.2-2020.12 daily 1°x 1° 

MYD08-M3 

Aqua MYD 35 Aqua MODIS 1330pm 2002.7-2020.12 daily 1°x 1° 

CERES-SSF 

Terra 
CERES Edition 4 Terra MODIS 1030am 2000.3-2020.12 daily 1°x 1° 

CERES-SSF 

Aqua 
CERES Edition 4 Aqua MODIS 1330pm 2002.7-2020.12 daily 1°x 1° 

CLARA-A2 

AM 

EUMETSAT 

NWC SAF PPS 

NOAA-15 AVHRR3 0730am 

2000.1-2000.7 

2001.3-2002.7 

 

daily 

 

0.25°x 

0.25° 
NOAA-17 AVHRR3 0930am 2002.8-2007.6 

METOPA AVHRR3 0930am 2007.7-2019.6 

CLARA-A2 

PM 

 
EUMETSAT 

NWC SAF PPS 

NOAA-14 AVHRR2 1330pm 2000.1-2000.12  
daily 

 
0.25°x 

0.25° 
NOAA-16 AVHRR3 1400pm 

2001.1-2003.5 

2003.6-2005.7 

NOAA-18 AVHRR3 1330pm 2005.8-2009.5 

NOAA-19 AVHRR3 1330pm 2009.6-2019.6 

 

 

PATMOS-x 

AM 

 
 

Naive Bayesian NOAA-15 AVHRR3 0730am 

2000.1-2000.7 
2001.3-2002.8 

 
daily 

 
0.1°x 0.1° 

NOAA-17 AVHRR3 0930am 2002.9-2007.6 

METOPA AVHRR3 0930am 2007.7-2020.12 

 

 

PATMOS-x 

PM 

 

 
Naive Bayesian 

NOAA-14 AVHRR2 1330pm 2000.1-2001.3  

daily 

 

0.1°x 0.1° 

NOAA-16 AVHRR3 1400pm 

2001.4-2003.5 

2003.6-2005.7 

NOAA-18 AVHRR3 1330pm 2005.8-2009.5 

NOAA-19 AVHRR3 1330pm 2009.6-2020.12 

ISCCP-H 

AM 

IR and VIS 

threshold 

NOAA-14- 

NOAA-19; 
METOPA 

AVHRR2

/ 
AVHRR3 

9000am 

2000.1-2017.6 daily 1°x 1° ISCCP-H 

PM 

1500pm 

CALIPSO-

GEWEX 

5km merged layer 

product level 2 
CALIPSO CALIOP 1330pm 2006.6-2016.12 Monthly 1°x 1° 

2.2 Ground Observation Data 220 

2.2.1 Climatic Research Unit Gridded Time Series 221 

The Climatic Research Unit gridded Time Series (CRU TS) is a widely used climate dataset 222 

covering all land surfaces except Antarctica, which uses angular distance weighting to interpolate 223 
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monthly climate anomalies from extensive networks of weather station observations onto a 0.5° grid 224 

(Harris et al., 2020; Harris et al., 2014). This dataset was first published in 2000, and the latest version, 225 

CRU TS4.05, contains ten variables including cloud cover for the period 1901–2020 (Harris et al., 2020). 226 

The percentage of cloud cover was derived from observations of sunlit hours, and CRU TS4.05 output 227 

files are actual values, not anomalies. 228 

2.2.2 International Comprehensive Ocean-Atmosphere Data Set 229 

The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is the most extensive 230 

freely available archive of global surface marine data, which has been assimilated into all major 231 

atmospheric, oceanic, and coupled reanalyses (Freeman et al., 2017). The ICOADS report is derived 232 

from synthetical observations of ships, buoys, coastal platforms, or oceanographic instruments. This 233 

dataset offers a gridded monthly summary for 2° latitude × 2° longitude boxes dating back to 1800 (and 234 

1°×1° boxes since 1960) (Woodruff et al., 2005). The available climatic variables include cloud cover 235 

and other atmospheric parameters (Bojinski et al., 2014). In this study, we used the 1°×1° cloud cover 236 

data spanning 2000 to 2020. 237 

2.3 Reanalysis Data and Model Data 238 

The ERA5 reanalysis product is the fifth generation European Centre for Medium-range Weather 239 

Forecasts reanalysis of global climate and weather, which uses data assimilation and model forecasts to 240 

produce a new best estimate of the state of the atmosphere. Reanalysis datasets have been widely used 241 

to evaluate clouds and radiation fluxes over the Arctic (Yeo et al., 2022; Kennedy et al., 2012; Huang et 242 

al., 2017). This study uses the CF of ‘ERA5 hourly data on single levels from 1959 to present,’ and the 243 

CF parameter has been regridded to a regular lat-long grid of 0.25° and calculated by making 244 

assumptions about the degree of overlap/randomness between clouds at different heights. 245 

The sixth phase Coupled Model Intercomparison Project (CMIP6) models have been used in many 246 

research papers about climate. Among them the simulation data of the MRI-AGCM3-2-S climate 247 

model provides a basis for climate research designed to answer fundamental scientific questions and 248 

serves as a resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on 249 

Climate Change (IPCC-AR6). This model was released in 2017 and provided CF parameters at native 250 

nominal resolutions of 25 km. 251 

In the present paper, the reanalysis and model data are treated as independent validation datasets. 252 

3 Data Preprocessing and Methodology 253 

In this study, we propose a fusion algorithm framework that combines data from multiple satellites 254 

to provide CF datasets with high spatiotemporal coverage and improved accuracy. Figure 1 shows a 255 

flowchart of the general process, which includes four parts. First, the original data were preprocessed 256 

before data fusion, a process that included data quality control and data resampling. Second, bias 257 

correction of passive sensor data was conducted using active data with the CDF matching method. Third, 258 

spatiotemporal trend analysis and division was focused on, and the multiple satellite datasets were 259 

divided into the heterogenetic global spatiotemporal trend data and the isotropous residual data. Fourth, 260 

the spatiotemporal covariance function was modeled based on the spatiotemporally detrended CF 261 

datasets, and then the entropy was maximized with covariance constraint. All the satellite-based CF data 262 
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were treated as soft data so that the associated uncertainties were incorporated into the fusing process. 263 

 264 

Figure 1. Flowchart for merging the multiple satellite cloud fraction products based on cumulative 265 

distribution function matching and the Bayesian maximum entropy method. 266 

 267 

3.1 Data Preprocessing 268 

Over the Arctic, the cloud detection capabilities of passive sensors are always limited by spectral 269 

channels, while active sensors are not susceptible to these effects (Liu et al., 2010; Liu et al., 2012b; 270 

Kotarba, 2020; Shupe et al., 2013). To obtain more accurate fused CF results, it is necessary to correct 271 

these passive sensor products using active sensor data before merging. 272 

The large standard deviations (STDs) of satellite datasets represent the large uncertainties of CF 273 

detection (Ackerman et al., 2008; Stengel et al., 2017). In this study, we calculated the relationship 274 

between differences in STDs and CFs of passive/active sensor datasets and found that the larger the 275 

standard deviation, the more serious the underestimation of passive sensors. For the products with 276 

standard deviation flags, including MOD08 Terra/Aqua, CLARA-A2 AM/PM, and the PATMOS-x 277 

AM/PM, we used the 90% percentile of the daily standard deviation as scene-based dynamic thresholds 278 

to screen CF data. 279 

However, no standard deviation information was available for CERES-SSF Terra/Aqua and the 280 

ISCCP-H AM/PM datasets. Based on research that shows ignoring optically very thin clouds could 281 

increase the agreement between passive sensor data and the CALIPSO data, the 0.15 COT dataset was 282 

selected as the quality threshold in this study. 283 
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3.2 CDF Matching 284 

A widely used scaling strategy known as CDF matching can be used to adjust the distribution of the 285 

target dataset to the range of reference data under the constant relative relationship. Several studies have 286 

proved that the process of adjusting this distribution does not change the variation of original satellite-287 

based products, but imposes the value range (Liu et al., 2011b; Brocca et al., 2011; Xu and Cheng, 2021). 288 

Based on similar seasonal fluctuations of the passive sensor CFs and active sensor data, the time series 289 

passive sensor data from each grid box in the Arctic region were adjusted to the values of the paired 290 

CALIPSO-GEWEX latitude and longitude grid. However, the CALIPSO-GEWEX data could not cover 291 

regions with a latitude greater than 82.5°N and the temporal range only covers 2006–2016. To correct 292 

the CF bias over the entire Arctic region, two strategies were considered. 293 

First, for the regions with enough reference data, the CF data of all passive sensors were directly 294 

adjusted by CDF matching. The matching approach includes three steps: (1) constructing the cumulative 295 

distribution function, (2) deriving regression parameters, and (3) adjusting the original data with 296 

regression parameters. In our study, we use a three-month moving mean to eliminate the uncertainties in 297 

CALIPSO-GEWEX data caused by the limitation of sampling quantities and frequencies. The filtered 298 

daily passive sensor datasets were resampled as monthly mean data, and then the CDFs were constructed 299 

for every dataset based on the same method used for the active data. A least-square fit was used to derive 300 

the relationship between the reference and the target datasets. Based on the analysis of Liu et al.(2022), 301 

the seasonal variation of CF for multiple satellites was greater than the interannual changes in CF (Liu 302 

et al., 2022). We propose an additional assumption that the CDF ratio between active and passive sensor 303 

data remains constant over the years in a 1°×1° grid cell. 304 

Second, it was difficult to implement the CDF matching strategy for areas beyond the coverage of 305 

active sensor data. Considering the relationship among the CF bias before and after CDF correction, the 306 

cumulative percentage of CF (CPCF), and the sea ice concentration (SIC), a fitting function is proposed 307 

to correct the CF data. 308 

After executing the abovementioned steps, we obtained the corrected multiple satellite data. 309 

3.3 Spatiotemporal Trend Analysis and Removal 310 

The BME theory was constructed based on the hypothesis of spatiotemporal random field (S/TRF) 311 

(Nazelle et al., 2010; Christakos, 2000; He and Kolovos, 2017), which means that all the variables used 312 

for this process are homogeneous and isotropous. However, a natural process that evolves in space–time, 313 

such as the distribution of CF, can be divided into a heterogenetic global spatiotemporal trend and a 314 

spatiotemporally isotropous residual, following Eq. (1): 315 

      ,, ,s ts t res s t
CF CF CF 

, (1) 316 

where (s, t) represents the space and time, 𝐶𝐹(𝑠,𝑡) represents the global spatiotemporal trend, and CFres(S,t) 317 

represents the stochastic anomalies of the variable. To meet the second-order stationarity assumption 318 

(constant mean and variance), it is necessary to remove the global spatiotemporal trend before estimating 319 

the spatiotemporally autocorrelated structure of the data (Spadavecchia and Williams, 2009; Tang et al., 320 

2016). In this study, the global spatiotemporal trend was calculated using a spatiotemporal filter window 321 

with a size of 5° (longitude) × 5° (latitude) × 3 (months). 322 

Figure 2 shows a histogram of the original combined satellite CF data, the global spatiotemporal 323 

trend, and the residual spatiotemporally isotropous component. From these distributions of the histogram, 324 
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the residual is approximately normally distributed, which meets the requirement for modeling the 325 

structure of the spatiotemporal autocovariance. 326 

 327 
Figure 2. Histograms of (a) original combined satellite cloud fraction, (b) global spatiotemporal trend, and (c) 328 

spatiotemporally isotropous component, for the entire Arctic area (Example using 2010 data). 329 

 330 

3.4 BME Fusion 331 

3.4.1 Spatiotemporal Covariance Modelling 332 

In spatiotemporal geostatistics, a covariance function indicates the spatial and temporal dependency 333 

of the data, which decreases as distance/time increases (Griffith, 1993). The spatiotemporal variation of 334 

the CF also can be expressed by a spatiotemporal covariance function. In the BME method, the 335 

experimental covariance can be calculated from the point pairs at specific distances and then modeled by 336 

the commonly used covariance model (Cressie, 2015). This study uses a nested covariance model with 337 

two spatiotemporal exponential models to model the spatiotemporal covariance of the detrended 338 

combined CF data, following Eq. (2): 339 

 
1 2

1 1 2 2

3 3 3 3
cov( , ) exp exp exp exp

s t s t

d d
d c c

a a a a

 


       
            

       

, (2) 340 

where d is the spatial lag and τ is the temporal lag between point pairs at coordinates (s, t) and coordinates 341 

(s′, t′); c1and c2 are the partial sill variances of the two exponential models; as1and as2 are the spatial 342 

ranges of the two exponential models; at1 and at2 are the temporal ranges of the two exponential models. 343 

The parameters for spatiotemporal covariance are modeled separately for each year. 344 

3.4.2 Construction of Soft Data 345 

In the BME method, a key conceptual aspect is that the framework does not impose any restrictive 346 

assumptions about the PDFs of soft data. Hence, a parameterized statistical distribution of different 347 

sources of information can be used to replace the real PDFs (Nazelle et al., 2010). Soft data could be 348 

probabilistic or interval soft data (Christakos, 2000). In this study, the differences between satellite data 349 

and ground observations followed normal distributions approximately. Therefore, the passive sensor data 350 

used for fusion were all treated as soft data with a Gaussian distribution, following Eq. (3): 351 

 
, ,sate x ground x xCF CF   , (3) 352 

where CFsate ,x and CFground ,x are the satellite CF data and the corresponding ground observation, 353 

respectively, and εx is an independent random error, following Eq. (4): 354 

https://doi.org/10.5194/essd-2023-10
Preprint. Discussion started: 13 February 2023
c© Author(s) 2023. CC BY 4.0 License.



11 

 

  2,N     , (4) 355 

where 𝜇𝜀 represents the mean of CF and 𝜎𝜀
2 represents the variance (Tang et al., 2016). 356 

 

 

Figure 3. Gaussian probability density functions of the random errors between each type of satellite data and 357 

ground observations at six randomly selected regions of interest from April to September. 358 

 359 

Because the uncertainties in each satellite CF data vary at different spatial and temporal scales, using 360 

the average uncertainty of the entire dataset to construct soft data over the entire study area will 361 

undoubtedly neglect the spatiotemporal variation of uncertainties. In this study, six regions were 362 
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randomly selected to analyze the probability density functions (PDF) of random errors (Fig. 3). Large 363 

inconsistencies were observed for the PDF in land and ocean regions, and the temporal variation was 364 

also an important factor in inconsistencies. We constructed the soft data for CF data over land and ocean 365 

regions in every month separately. Considering the large errors in the Greenland Ice Sheet (GrIS), we 366 

calculated the PDF of random error separately for that region. 367 

For each grid box, the CFs of different satellite data were converted into a Gaussian distribution 368 

probability soft data, individually (Tang et al., 2016). The soft data were expressed as: 369 

  2

, ,soft sate sateCF N CF    , (5) 370 

where CFsate is the detrended CF value of multiple satellite datasets; the mean and variance of the 371 

Gaussian distribution probability soft data were expressed by CFsate+με and 𝜎𝜀
2, respectively. 372 

3.4.3 Using the BME Method for Multiple CF Data Fusion 373 

The BME method can be used to merge continuous variables of satellite data for some atmospheric 374 

parameters to simplify the heterogeneity and anisotropic variability; the residuals were considered only 375 

in the fusion process. Assuming that various adjacent observations from satellites were available with 376 

irregular spatial and temporal gaps, the nonlinear mean estimation 𝑥𝑘̅̅ ̅ of CF at the location (sx, sy) at 377 

time t was estimated as: 378 

  ,1 ,2 ,, ...k k k soft soft soft n kx x f x x x x dx  , (6) 379 

where f (xk|xsoft,1, xsoft,2…xsoft,n) is a posterior PDF over the spatiotemporal adjacent grid observations, and 380 

xsoft,1, xsoft,2…xsoft,n are the probabilistic Gaussian soft data derived from multiple satellite data. The 381 

posterior PDF at the estimation point updates from the prior PDF in the Bayesian rule when soft data are 382 

involved, so the relationship can be expressed as: 383 

  
 
 

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

, ... ,
, ...

, ...

soft soft soft n k

soft soft soft n

soft soft soft n

f x x x x
f x x x

f x x x
 , (7) 384 

where f (xsoft,1, xsoft,2…xsoft,n) represents the prior PDF of the spatiotemporally isotropous CF at the adjacent 385 

grid, f (xk|xsoft,1, xsoft,2…xsoft,n, xk) is the joint PDF without specific information. Generally, the joint PDF 386 

is represented by fg(xmap), which can be calculated by maximizing the entropy under the constraint of the 387 

general knowledge g (Jaynes, 1957). When predicting the probability distribution of a random event, the 388 

larger the information entropy, the larger the amount of information obtained, and the result is closer to 389 

the actual situation under a most uniform probability distribution. In this study, general knowledge is the 390 

spatiotemporal covariance model, and to maximize the entropy, we introduce a Lagrange multiplier λ 391 

(Xia et al., 2022). 392 

  
 

 

1

1

exp

exp

n

map

g map n

map map

g x

f x

g x dx

 


 










 
 
 

 
 
 





, (8) 393 

Finally, the expectation of spatiotemporally CF isotropous component can be calculated by solving 394 

these equations. Then the anisotropic spatiotemporal trend component of each grid was added to the 395 

expectation at the corresponding point to obtain the merged CF product. 396 
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4 Results 397 

4.1 Result of CDF Matching 398 

Figure 4 shows the scatter plots of the CF distribution before and after CDF matching from multiple 399 

passive and active sensors at the valid grid boxes with a latitude of less than 82.5°N. Based on the fact 400 

that the assumption that the correction coefficient does not vary over time, the training datasets (T) were 401 

processed from 2008 to 2014 and the validation datasets (V) were processed in 2006, 2007, 2015, and 402 

2016. In Fig. 4, the ‘Original CF (T)’ and ‘Original CF (V)’ indicate the comparison of CALIPSO-403 

GEWEX CF and that of the original passive sensor data, so that the ‘CDF CF (T)’ and ‘CDF CF (V)’ 404 

represent the comparison between CALIPSO-GEWEX CF and the corrected CF. In general, for all the 405 

passive sensor datasets, the CFs after CDF matching were closer to the 1:1 line than before CDF matching. 406 

R2 increased by about 0.07–0.15, while that for ISCCP-H products was over 0.45. The RMSEs decreased 407 

to one-third to one-half of what they were, and the biases decreased to approximately zero, which means 408 

that the CDF matching obviously corrected outliers and eliminated the average differences between the 409 

passive and active sensor CFs. From these scatter plots, we also understand that CDF matching plays an 410 

important role in low CFs (less than 60%), which was always seen in April or on the GrIS(Liu et al., 411 

2022). 412 

MOD08 

 

MYD08 

 

CERES-SSF Terra 
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ISCCP-H AM 

 

ISCCP-H PM 
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PATMOS-x AM 

 

PATMOS-x PM 

 

 413 

Figure 4. The scatter plots of the cloud fraction comparison between the passive and active sensor datasets at 414 

regions with latitudes less than 82.5°N before and after cumulative distribution function matching: (T) means 415 

training data with time ranges from 2008 to 2014 and (V) means validation data from 2006, 2007, 2015, and 2016. 416 

 417 

In regions with latitudes exceeding 82.5°N, the relationships between CF bias of passive sensor data 418 

after and before CDF matching, CPCF, and SIC are shown in Fig. 5. The results indicated that the mean 419 

of bias increased with the increase in SIC, but decreased with the CPCF. 420 
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Figure 5. The relationship between cloud fraction bias of passive sensor data after and before cumulative 421 

distribution function matching, the cumulative percentage of cloud fraction, and the sea ice concentration. 422 

 423 

Based on this relationship, we corrected the CF of passive sensor data for sea ice at latitudes 424 

exceeding 82.5°N, called the CFs corrected as the cumulative percentage of CF and SIC as follows: C-425 

SIC corrected CF. The results indicate that R2 of the corrected scatter plots increased slightly, but the 426 

RMSEs and bias were greatly reduced (Fig. 6). In particular, the CF underestimated by passive sensors 427 

was similar to that of active sensors after correction. In our previous study, we have proven that this type 428 

of underestimation is very common(Liu et al., 2022). The results also showed that the corrected CFs have 429 

higher consistency with the CFs corrected by the CDF matching, with R2 over 0.75, RMSE less than 3.6, 430 

and bias less than 0.5. However, although the correction has improved the ISCCP-H CFs, they also 431 

showed large inconsistencies with the passive sensor data and the CDF matching data. Therefore, the 432 

ISCCP-H CFs in regions north of 82.5°N were not included in the following fusion process.  433 
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Figure 6. The scatter plots of the cloud fraction (CF) comparison between the passive sensor datasets and the 434 

active sensor dataset before and after using the method of CF corrected by the cumulative percentage of CF and 435 
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SIC (C-SIC). And the scatter plots of the results comparison between C-SIC and cumulative distribution function 436 

matching are showed in the right panels. 437 

 438 

Accompanying the decreases in the CF differences of the active and passive sensor data, the 439 

accuracy of individual passive sensor datasets for the entire Arctic during the experimental period was 440 

also generally improved. Moreover, the consistency of multiple satellite data has improved greatly. 441 

Figure 7 shows that in different regions of the Arctic, the frequency of the standard deviation (STD) of 442 

multiple satellite CFs with values greater than and less than 5% has decreased and increased significantly, 443 

respectively. For the Holarctic region, the mean STD for multiple passive sensor CFs decreased from 444 

9.18% to 5.75%, where the number of STD values between 5% and 10% decreased the most. In the sea 445 

ice area, the reduction rate of the mean STD was larger than that in the Holarctic, or approximately 4.5%, 446 

and the main reduction derived from a value range of 10–15%. The distribution of STD frequency in 447 

regions over 82.5°N and in the entire sea ice area seemed similar, which indicated that the C-SIC 448 

corrected method was very effective in 82.5°N regions. In areas with latitude below 82.5°N, the mean 449 

STD only decreased by about 3%; this can be explained because the STD mainly decreased from 5% to 450 

10% to within 5%. Although the relative values have improved, the absolute value of the change appeared 451 

inconspicuous. 452 

 453 

Figure 7. Standard deviation between 1° × 1° passive sensor cloud fraction before and after cumulative distribution 454 

function matching. 455 

 456 

4.2 Result of BME Fusing 457 

4.2.1 Spatial and Temporal Distribution of the Fused CF 458 

Figure 8 shows the spatial distribution of Arctic CF from the fused product, multiple satellite data, 459 

and ground observations. The results indicate that although most satellite-based products agreed 460 
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relatively well with the ground-based observations in both the geographical distribution and the zonal 461 

average of Arctic CF at first glance, large disparities also appeared in some specific regions, whereas the 462 

fused product we proposed reduced these disparities significantly. For instance, nearly all the passive and 463 

active sensor products show the CFs over the GrIS were less than 60%. However, CFs of ground-based 464 

observations over this region were reported as nearly 70%, which is closer to that of the fused product. 465 

The sea regions of the central Arctic, which are covered by perennial sea ice/snow, are another area where 466 

the passive sensor products always underestimate CF. From these figures, some passive sensor products, 467 

especially for the AVHRR-based datasets, have CFs that are about 10–20% lower than those of active 468 

sensor data and ground-based observations. However, the fused CF has a similar magnitude to these two 469 

referred datasets. 470 

 471 

Figure 8. Distribution of the average cloud fraction of different datasets over the Arctic from 2000 to 2020. The 472 

time ranges for ISCCP-H and CALIPSO-GEWEX were from 2000 to 2017 and from 2006 to 2016, respectively. 473 

 474 

By contrast, the ground-based CF products have a large data gap because ground weather stations 475 

are sparsely distributed in the Arctic, so the limitation of sampling quantities and frequencies had the 476 

effect of limiting the spatial and temporal ranges of active sensor data. Moreover, the AVHRR-based 477 

products often suffer from missing data as a result of satellite failures or band switching (Hollmann, 478 

2018); in addition, some passive sensor products such as CLARA-A2 have some spatial gaps over the 479 

Arctic Sea during autumn (Karlsson et al., 2017). Although we have eliminated a large number of low-480 

precision daily data in preprocessing, the completeness of the merged multiple-satellite CF products is 481 

obviously higher than those of the original satellite-based data and ground-based observations in both 482 

spatiality and temporality, especially in regions of the Arctic Ocean. The spatial completeness (the ratio 483 

of available data to the CF grids of the entire Arctic) of the fused CF product was nearly 100%, which is 484 
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much larger than 54.09% of ground-based products and 73.15% of the active sensor product. Therefore, 485 

the fusion algorithm proposed by this study can not only significantly reduce the inconsistencies of Arctic 486 

CF between multiple satellite products and reference datasets but also effectively compensate for the data 487 

gaps caused by the lack of reference data. 488 

It is well known that the CF in the Arctic regions fluctuates significantly with the change in 489 

seasons. To show the temporal accuracy of the fusion products, we analyzed the long time series area-490 

weighted mean of the CF. Figure 9 shows all data before and after fusing can be used to obtain the 491 

fluctuation of the annual CF, which peaks in September and reaches a minimum in April. However, 492 

only the fused product always maintains a high level of consistency with the reference data, with the 493 

monthly mean CF varying from 62% to 79%. The overall area-weighted mean of the differences 494 

between fused CF and CALIPSO-GEWEX CF and between fused CF and ground-based CF was about 495 

0.91% and 0.40%, respectively, which are about one-third of the differences for MODIS-based 496 

products and reference products and about one-fifth to one-twentieth of the differences for AVHRR-497 

based products and reference products. In land and ocean areas, the fusion algorithm clearly corrects 498 

the outliers with large deviations, such as the CF from CLARA-A2, PATMOS-x products, and the 499 

CERES-SSF products. The first two datasets are usually famous for underestimating the Arctic CF 500 

dramatically (Karlsson et al., 2017; Karlsson and Dybbroe, 2010). In this study, the underestimation 501 

mainly occurred in April, with approximately 8% and 3% for those two datasets, respectively. The 502 

latter has often been reported to overestimate CF (Doelling et al., 2016; Trepte et al., 2019), and in this 503 

study the CERES-SSF products nearly overmeasure CF all year long from April to September. 504 

However, the fusion framework proposed by this study scales these underestimated values or 505 

overestimated values to a range similar to that of active sensor data by CDF matching; meanwhile, it 506 

takes into account the deviation from ground observations in the BME fusion process. The fused CFs 507 

can not only reduce the overestimation of CF by MODIS-based products but also decrease the 508 

underestimation of CF for AVHRR-based products, which obviously improves the consistency of CF 509 

between the active sensor, passive sensor, and ground observation dataset compared with the original 510 

data. 511 

 

Figure 9. The area-weighted means of cloud fraction over (a) Holarctic, (b) Land, and (c) Sea for different 512 

products in the Arctic from 2000 to 2020. The time ranges for ISCCP-H and CALIPSO-GEWEX were from 2000 513 

to 2017 and from 2006 to 2016, respectively. 514 
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 515 

4.2.2 Quantitatively Assessment of Fused CF 516 

To validate the fused CF and compare the accuracy of the fused results to that of several original 517 

satellite CFs, all the passive sensor CF products and the merged CF product were spatiotemporally 518 

compared with the CRU TS4.05 in land regions and ICOADS measurements in sea regions. The 519 

correlation coefficient (R2), root-mean-square error (RMSE), and mean bias (bias) were used to 520 

quantitatively evaluate the accuracies of the original and merged CF products. As Fig. 10 indicates, the 521 

scatters of the fused CF product and ground-based observations were closer to the 1:1 line than that of 522 

the original satellite data. In this case, the original satellite data had the largest R2 (0.51), lowest RMSE 523 

(6.95%), and the lowest bias (0.35%) for land regions. In addition, the original satellite data had the 524 

largest R2 (0.42), the lowest RMSE (5.62%), and the lowest bias (0.55%) for sea regions. 525 

 526 
Figure 10. Validation of the fused cloud fraction and the original passive sensor datasets against the (a) CRU 527 

TS4.05 and (b) ICOADS datasets. 528 

 529 

For land, it can be also seen that the fusion results have a strong ability to correct the satellite CF 530 

that is less than 30%. These values were mainly found on the GrIS, in the Canadian Islands, and on the 531 

central Eurasian continent. In addition, the RMSE of CF after fusion was only one-half of the original 532 
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satellite data, which means that the overall distribution of the fused CF is better fitted to the reference 533 

data, and most of the CFs with differences over 30% were well-corrected. 534 

The observations of ICOADS come from multiple observation platforms, and most of these 535 

platforms operate in open waters. The open water regions varied mostly with the growth and decline of 536 

the SIC, which brings great spatiotemporal heterogeneity for the sampling of ICOADS. Therefore, in the 537 

verification process, the first step was to spatiotemporally collocate the satellite data with ocean site. 538 

Figure10 (b) shows that R2 of the fused CF only improved by about 0.05–0.08 when compared with most 539 

satellite data. However, the fusion algorithm reduces the RMSEs and bias significantly. The RMSEs were 540 

about one-fourth to one-third of the original values for MODIS-based products and one-third to three-541 

fifths of the original values for AVHRR-based products. The reductions of bias were about 4–5% for 542 

MODIS-based products and about 2–5.4% for AVHRR-based products. 543 

 544 
Figure 11. Validation of the fused cloud fraction and the original passive sensor datasets against the CALIPSO-545 

GEWEX dataset over (a) land and (b) sea regions, with a temporal range from 2006 to 2016. 546 

 547 

As the accepted reference for passive sensor products, CALIPSO-based products are 548 

considered to provide excellent data and are always used to validate the accuracy of cloud datasets. 549 

In Fig. 11, we compare the CFs of passive sensor products before and after fusion with that of the 550 

CALIPSO-GEWEX product. The results show that when compared with the original satellite data, 551 
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the consistencies between the fused product and the active sensor product were further improved in 552 

both land and sea regions. The RMSEs were reduced to about one-third to one-half of the original 553 

values, or approximately 5.69% and 4.58% for land and sea regions, respectively. Actually, the 554 

consistency of CFs between passive and active sensor datasets was higher than that between satellite 555 

data and ground observations. Except for the ISCCP-H products, R2 of original satellite data was 556 

over 0.63; that of fused CF only improved significantly in sea regions (about 0.12–0.21), while it 557 

improved slightly but insignificantly in land regions (about −0.01–0.1). This can be explained by 558 

the fact that the fusion algorithm greatly improves the low-value CFs in the land areas (especially 559 

on the GrIS) to levels similar to that of ground-based observations, while the CF of the active sensor 560 

data was no more than 60%. Therefore, some overestimations for the fused CF existed when 561 

compared with the CALIPSO-GEWEX CF data. From the bias of Fig. 11 (a), we also see that the 562 

fusion algorithm can obviously improve the CF underestimated by the original satellite data. 563 

However, in the sea regions, the MODIS-based datasets seem to overidentify CF, especially when 564 

the CF was over 80%. Meanwhile, the AVHRR-based datasets show underestimation when CF was 565 

less than 80%. Obviously, the fused product corrected these CFs to a more suitable range. 566 

 567 

Figure 12. Validation of the fused cloud fraction (CF) and the original passive sensor datasets against (a) ERA5 CF 568 

dataset and (b) CMIP6 CF dataset over the Holarctic. 569 

 570 

https://doi.org/10.5194/essd-2023-10
Preprint. Discussion started: 13 February 2023
c© Author(s) 2023. CC BY 4.0 License.



25 

 

To further verify the accuracy of the fusion results, we analyzed the difference in CFs between 571 

different satellite data and both the ERA5 reanalysis and the CMIP6 model datasets. As can be seen from 572 

Fig. 12, the fusion product greatly reduced the deviation in CF between the satellite data and both the 573 

reanalysis and model datasets. When compared with the ERA5 CF dataset, the scatters of fused CFs were 574 

more concentrated around the 1:1 line than those of the original satellite data. R2 of the fusion product 575 

was about 1.5 times higher (improved about 0.18) than that of the original data, and the RMSEs and bias 576 

decreased to one-third of their original values (decreases of about 3.08–8.68% and 1.45–15.88% , 577 

respectively). This means that the distributions of the CFs over the entire Arctic of the fusion product 578 

were more consistent with those of the reanalysis CF dataset than the original satellite. 579 

However, the low absolute values also indicated that there were inescapable inconsistencies in some 580 

grids. The ERA5 dataset has usually been reported to overestimate CF over the Arctic, especially in the 581 

ocean regions (Yeo et al., 2022). When we deleted CF of April, the consistency between fused CF and 582 

reanalysis CF improved obviously; the fitted R2 for fused data was near 0.5, the RMSE was about 7.32%, 583 

and the bias was about −2.01% (data not shown). The comparison results with the CMIP6 CF show that 584 

when compared with the original satellite data, the fusion method reduced the CF underestimation partly; 585 

these underestimations were often seen in April or over the central and western GrIS. In addition, R2 was 586 

improved by about 0.14, and the RMSEs were reduced to one-fourth of their values of original satellite 587 

data (about 2.60–8.20% reduction). However, although the fusion data relieve some CF overestimations 588 

that occurred in original passive sensor datasets, the scatter plot in Fig. 12 shows that the fusion CFs in 589 

some grids were significantly higher than the CMIP6 CF (with bias by 4.26%). These grids are usually 590 

found in the open water areas of Arctic Ocean, central Alaska, central Eurasia, and along the eastern 591 

margin of Greenland. Several studies have shown that the climate models underestimate the CF over 592 

these regions (Vignesh et al., 2020). 593 

5 Discussion 594 

5.1 The Efficacy of CDF Matching in CF Fusion 595 

The CDF matching approach was operated based on a time series CF considering the time-varying 596 

process of CF products at a specific longitude–latitude grid box. Compared with the metrics for the 597 

traditional approach, the CF of multiple passive sensor products was scaled to a level similar to the active 598 

sensor CF after CDF matching, so that the inconsistencies among multiple passive sensor CF datasets 599 

were reduced. To further evaluate the efficacy of CDF matching in the CF fusion process, we 600 

quantitatively evaluated the deviation between satellite data before and after CDF correction with ground 601 

observation data. 602 

By comparing Fig. 10 and Fig. 13, we can infer that CDF matching can significantly improve the 603 

low value of CFs typical of satellite data, making such data more similar to that observed by ground-604 

based sites. These improvements were more obvious for CFs over land regions. Among them, the largest 605 

bias correction was seen for the ISCCP-H products (about 7.9% improvement) and the CLARA-A2 606 

products (about 6.5% improvement); the former always underestimated CF in the Arctic (Kotarba, 2015; 607 

Liu et al., 2022) and the latter have often been reported to under-identify CF over northern Canada, 608 

northern Russia, and across the entire GrIS in land regions and over the entire Arctic Ocean in April 609 

(Karlsson and Dybbroe, 2010). Note that the bias of CERES-SSF changes from 0.4% to −0.72% after 610 

CDF matching, because CERES-SSF products are usually reported to overestimate CF and these 611 
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overestimations were corrected reasonably. For the ocean regions, the ground references used in this 612 

paper were derived from multiple platform observations, which have great spatio-temporal heterogeneity. 613 

Therefore, a large CF discrepancy existed between satellite data and ocean observations. Almost all the 614 

passive sensor data have RMSEs and bias that would decrease after CDF correction by about 0.8–1.7% 615 

and 0.68–5.26%, respectively. The CDF matching mainly improves the CF in the high-value grid boxes 616 

of MODIS-based data and PATMOS-x data as well as in the CF in low-value grid boxes of ISCCP-H and 617 

CLARA-A2. Admittedly, the number of overestimates almost occurs in passive sensor data with 618 

increases after CDF correction. Thus, the reduction in bias toward zero is partly a result of this 619 

overestimation. In the subsequent fusion process, the difference between satellite CF and ground CF was 620 

taken into account, which can play a certain extent role in overfitting correction. 621 

 622 
Figure 13. Validation of the corrected cloud fraction of passive sensor datasets after cumulative distribution 623 

function matching against (a) CRU TS4.05 dataset over land regions and against (b) ICOADS dataset over sea 624 

regions. 625 

 626 

In addition, in the land area, CDF matching was directly carried out grid by grid. However, the short 627 

temporal range (2006–2016) of the reference data limits the production of long time-series CF products. 628 

In this study, we proposed a hypothesis that the matching parameter in a specific grid box does not change 629 

over time. To prove the validity of this hypothesis, we conducted sensitivity analysis on the matching 630 
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parameters from the fifth to the eleventh year at one-year intervals. The results show that the variation 631 

of matching parameters was less than 0.05%. The differences in the results between satellite data and 632 

ground observations before and after CDF matching in the entire research period are shown in Fig. 14. 633 

Clearly, the differences remained steady over time, and the maximum average annual difference was no 634 

more than 1.56%, while part of it was derived from the orbit drift of satellite and variations in the spectral 635 

channel. 636 

 637 

Figure 14. The difference in results between satellite data and ground observations before and after cumulative 638 

distribution function matching over the Arctic from 2000 to 2020. 639 

 640 

5.2 The Spatio-temporal Differences in Soft Data Construction 641 

In this study, the soft data of multiple satellite CF datasets were constructed by comparing the 642 

spatiotemporally collocated satellite CFs and the ground-based records from CRU TS4.05 over land and 643 

from ICOADS over sea. Traditionally, the deviations between each satellite dataset and ground site 644 

observations at different times and different regions have been averaged to the entire datasets, and then 645 

used to calculate the average uncertainty of these data. In this way, the spatial variation of uncertainty in 646 

each satellite dataset was ignored. Because the conditions that cause uncertainty are variable in time and 647 

space, the uncertainties in each satellite dataset were definitely not the same everywhere (Tang et al., 648 

2016). This is especially true for the ICOADS data, which come from different platforms and introduce 649 

large inconsistencies in results. In this study, we constructed soft data for CF over land, ocean, and GrIS 650 

regions every month separately by analyzing the PDF differences for different regions and different 651 

months. The comparison results of the two methods show that the method of replacing the uncertainty of 652 

the entire datasets with the average differences will lead to serious overestimation of CF, while the 653 

proposed algorithm in this study realized more consistent results with the ground observations. 654 

6 Data Availability 655 

The fused CF product is available on the Zenodo repository at https://doi.org/ 656 

10.5281/zenodo.7624605 (Liu et al., 2022). The gridded CF data are provided both in *.mat format 657 

(Fused_CF_Arctic_MAT, with file size 9.91 MB) and netCDF format (Fused_CF_Arctic_netCDF, with 658 

file size 10.7MB) at 1° spatial resolution and monthly temporal resolution during 2000–2020 in 659 

percentages. The results in these two folders are exactly the same, someone can download either format 660 

as needed.  661 

https://doi.org/10.5194/essd-2023-10
Preprint. Discussion started: 13 February 2023
c© Author(s) 2023. CC BY 4.0 License.



28 

 

7 Conclusions 662 

The spatiotemporal inconsistency in existing satellite CF products would inhibit their application in 663 

climatological and energy budget studies. Over the Arctic region, the special climatic conditions and 664 

underlying surface characteristics limit the cloud detection abilities of passive/optical satellite sensors. 665 

The complementary features of the CF products derived from multiple satellite sensors in spatial 666 

completeness and accuracy make it possible to produce an improved CF product by merging data from 667 

multi-sensor satellite CF products. 668 

In this paper, we propose a data fusion strategy for producing high-quality monthly CF data over 669 

the entire Arctic with a latitude larger than 60°N during sunlit months from 2000 to 2020. Four key steps 670 

were involved in the proposed strategy: (1) data quality control; (2) correct the bias of passive sensor 671 

data using CDF matching; (3) obtain the spatiotemporally isotropous component by removing the 672 

spatiotemporal trends; and (4) produce very accurate CF data by fusing multiple satellite products and 673 

considering the uncertainty between satellite data and ground observations with the BME approach. 674 

The fusion algorithm proposed by this study significantly reduced inconsistencies in the Arctic CF 675 

data acquired by multiple satellite products and the reference products spatiotemporally, resulting in 10–676 

20% reductions of CF differences between fused satellite products and the reference data, and a 677 

significant improvement was seen across the GrIS and in the central Arctic Ocean. The results from 21-678 

year data sets in the study areas demonstrate that the monthly mean CF of the fusion product varied from 679 

62% (April) to 79% (September) during the study period, which is similar to that of the two reference 680 

datasets. After CDF matching, the inconsistencies of multiple satellite CF products were reduced by 681 

about 3.43% for the entire Arctic, with a larger reduction (4.46%) for sea ice regions. The overestimation 682 

of MODIS-based products and the underestimation of AVHRR-based products have been effectively 683 

corrected, with the CERES-SSF bias changing from 0.4% to −0.72% and the bias of ISCCP-H and 684 

CLARA-A2 decreasing by about 7.9% and 6.5%, respectively. After BME fusing, comparisons with the 685 

ground-based observations (CRU TS4.05 in land and ICOADS in marine areas) and the active sensor 686 

data CALIPSO-GEWEX show that R2 improved by about 0.05–0.48 for different products; meanwhile, 687 

the overall RMSEs and bias of fusion product were reduced by about 2.08–7.75% and 1.6–12.54%, with 688 

reductions of nearly 50% and 67% when compared with that of the original passive sensor data, 689 

respectively. When compared with the two independent verification datasets (the reanalysis CF dataset 690 

ERA5 and the model CF dataset CMIP6), R2 increased by about 0.18 and 0.14, RMSE and bias for ERA5 691 

decreased by about one-third of that for the original data, with reductions about 3.08–8.68% and 1.45–692 

15.88% for different data, respectively, and the RMSEs for CMIP6 dropped to one-fourth of their original 693 

values (about a 2.60–8.20% reduction). These mean that the proposed fusion algorithm effectively 694 

removed CF data with differences greater than 30% and made the fused Arctic CF estimation more robust 695 

than those data from a single satellite. Nevertheless, the fused product could completely cover the entire 696 

Arctic, especially the ocean regions, where the active sensor data and the ground-based data have large 697 

data gaps. Temporally, the fused data can complement the missing data caused by the faults of satellites 698 

carrying AVHRR sensors and the absence of Aqua data before 2002 as well as the temporal limitation of 699 

passive sensors. 700 

In general, the proposed fusion algorithm combines the complementary features of multiple satellite 701 

CF datasets; it not only takes full advantage of the spatiotemporal autocorrelation among neighboring 702 

grids but also incorporates uncertainty estimates of multi-sensor CFs, such as the uncertainties of each 703 

passive sensor dataset, the uncertainties between passive and active sensor datasets, as well as the 704 
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uncertainties between satellite data and ground-based observations. Through temporal and spatial 705 

expansion schemes, this fusion framework makes up for the disadvantages in spatiotemporal ranges of 706 

reference data. Finally, the fusion algorithm can generate monthly 1° × 1° CF product covering the entire 707 

Arctic region during 2000 to 2020, which has positive significance for reducing the uncertainties of 708 

assessment of surface radiation flux and improving the accuracy of research related to climate change 709 

and energy budgets both regionally and globally. However, some overestimations were observed, 710 

especially in ocean regions. This may be attributed to the fact that the ocean stations are too sparse to 711 

play a certain role in correcting the overfitting of CDF. Although ICOADS is a widely used ocean 712 

validation dataset, it has great spatiotemporal heterogeneity because it comes from a variety of different 713 

observation platforms and the sampling is affected by the extent of sea ice. Better reference data should 714 

be explored to further improve the uncertainty involved in the assessment of the fused product. 715 
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