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Abstract. The low accuracy of satellite cloud fraction (CF) data over the Arctic seriously restricts 13 

the accurate assessment of the regional and global radiative energy balance under a changing climate. 14 

Previous studies have reported that no individual satellite CF product could satisfy the needs of accuracy 15 

and spatio-temporal coverage simultaneously for long-term applications over the Arctic. Merging 16 

multiple CF products with complementary properties can provide an effective way to produce a 17 

spatiotemporally complete CF data record with higher accuracy. This study proposed a spatiotemporal 18 

statistical data fusion framework based on cumulative distribution function (CDF) matching and the 19 

Bayesian maximum entropy (BME) method to produce a synthetic 1°×1° CF dataset in the Arctic during 20 

2000–2020. The CDF matching was employed to remove the systematic biases among multiple passive 21 

sensor datasets through the constraint of using CF from an active sensor. The BME method was employed 22 

to combine adjusted satellite CF products to produce a spatiotemporally complete and accurate CF 23 

product. The advantages of the presented fusing framework are that it not only uses the spatiotemporal 24 

autocorrelations but also explicitly incorporates the uncertainties of passive sensor products 25 

benchmarked with reference data, i.e., active sensor product and ground-based observations. The 26 

inconsistencies of Arctic CF between passive sensor products and the reference data were reduced by 27 

about 10–20% after fusing, with particularly noticeable improvements in the vicinity of Greenland. 28 

Compared with ground-based observations, R2 increased by about 0.20–0.48 and the root mean square 29 

error (RMSE) and bias reductions averaged about 6.09% and 4.04% for land regions, respectively; these 30 

metrics for ocean regions were about 0.05–0.31, 2.85%, and 3.15%, respectively. Compared with active 31 

sensor data, R2 increased by nearly 0.16, and RMSE and bias declined by about 3.77% and 4.31%, 32 

respectively, in land; meanwhile, improvements in ocean regions were about 0.3 for R2, 4.46% for RMSE 33 

and, 3.92% for bias. The results of the comparison with the ERA5 and the MRI-AGCM3-2-S climate 34 

model suggest an obvious improvement in the consistency between the satellite-observed CF and the 35 

reanalysis and model data after fusion. This serves as a promising indication that the fused CF results 36 

hold the potential to deliver reliable satellite observations for modeling and reanalysis data. Moreover, 37 

the fused product effectively supplements the temporal gaps of AVHRR-based products caused by 38 

satellite faults and the data missing from MODIS-based products prior to the launch of Aqua, and extends 39 
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the temporal range better than the active product; it addresses the spatial insufficiency of the active sensor 40 

data and the AVHRR-based products acquired at latitudes greater than 82.5°N. A continuous monthly 1-41 

degree CF product covering the entire Arctic during 2000–2020 was generated and is freely available to 42 

the public at https://doi.org/10.5281/zenodo.7624605 (Liu et al., 2022). This is of great importance for 43 

reducing the uncertainty in the estimation of surface radiation parameters and thus helps researchers to 44 

better understand the earth’s energy imbalance. 45 

1 Introduction 46 

Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by 47 

restricting emissions of thermal radiation into space (Ramanathan et al., 1989; Van Tricht et al., 2016; 48 

Danso et al., 2020). Clouds are also an essential variable in the climate system because they are directly 49 

associated with precipitation and aerosol loading (Toll et al., 2019; Poulsen et al., 2016). The cloud 50 

fraction (CF), which represents the amount of sky estimated to be covered by a specified cloud type or 51 

level (partial CF) or by all cloud types and levels (total CF), has long been recognized as a major source 52 

of uncertainty when estimating radiation flux and future climate change (Xie et al., 2010; Liu et al., 2011a; 53 

Qian et al., 2012; Danso et al., 2020). An accurate representation of CF is essential for the evaluation of 54 

regional and global energy budgets as well as for predicting future climatic conditions. However, 55 

variances in CF definitions and system differences commonly exist among different sources of data. As 56 

a solution, the fused product provides a higher level of definition consistency and accuracy in comparison 57 

to alternative datasets. 58 

By making spatially continuous observations, satellites provided us with an unprecedented 59 

advantage in assessing regional and global cloud effects. In the last few decades, increased effort has 60 

been made to develop, analyze, and validate global or regional cloud property datasets that are based on 61 

long-term satellite observations (Heidinger et al., 2014; Hollmann et al., 2013; Karlsson and Devasthale, 62 

2018; Marchant et al., 2016; Rossow and Schiffer, 1999; Stubenrauch et al., 2013; Enriquez-Alonso et 63 

al., 2016; Sun et al., 2015; Tzallas et al., 2019; Wu et al., 2014). Studies have also shown that although 64 

different cloud datasets were derived from different observation instruments and algorithms, most of 65 

them provide quite consistent CF observations in middle and lower-latitude regions (Karlsson and 66 

Devasthale, 2018; Stengel et al., 2017; Claudia, 2012). However, systematic errors and artifacts exist in 67 

CF data, so some inconsistencies inevitably occur among different datasets (Sun et al., 2015; Tzallas et 68 

al., 2019; Wu et al., 2014), especially in the polar regions (Liu et al., 2022). Perennial snow/ice coverage 69 

coupled with frequent moisture inversions in Arctic has limited the cloud detection capabilities of passive 70 

sensor datasets, where the differences between these various datasets tend to be about two-fold in 71 

magnitude when compared with datasets acquired at other latitudes (Karlsson and Devasthale, 2018; Liu 72 

et al., 2022; Stubenrauch et al., 2013). The uncertainties of the annual global surface downward longwave 73 

(LW) and shortwave (SW) fluxes caused by satellite-derived cloud properties were calculated at about 74 

2% (7 Wm−2 and 4 Wm−2, respectively) and those for global surface upward LW and SW were about 75 

0.8% (about 3 Wm−2) and 13% (also 3 Wm−2), respectively (Kato et al., 2011; Kato et al., 2012; Kim 76 

and Ramanathan, 2008). It should be noted that the differences in CF may have a more obvious impact 77 

on the surface radiation budget in high-latitude polar regions. Kennedy et al. (2012) found that the CF 78 

bias might cause monthly biases in Arctic surface SW and LW fluxes over 90 and 60 Wm−2 for some 79 

reanalyses, respectively (Kennedy et al., 2012). Walsh et al. (2009) proposed that the bias of summer 80 

low-level CF would create deviations of about 160 Wm−2 in estimated SW radiation (Walsh et al., 2009). 81 
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Some other related studies have also found that the variances of annual Arctic surface radiation 82 

estimation caused by CF uncertainty were higher than 10 Wm−2 (Hakuba et al., 2017; Kato et al., 2018b; 83 

Huang et al., 2017). Therefore, relying on a single CF dataset may introduce large uncertainty when 84 

analyzing the cloud dynamics over the Arctic, further affecting the estimated energy budget and related 85 

climate applications. 86 

Each cloud dataset has its own advantages and disadvantages in Arctic CF detection. The Advanced 87 

Very High Resolution Radiometer (AVHRR) offers the longest continuous satellite observation records 88 

extending from 1978 to the present and provides daily global coverage based on data from several 89 

AVHRRs. With the successful operation of new generations of satellites, the frequency of global view 90 

has increased to more than eight each day, which provides richer angular information for CF observations 91 

(Heidinger et al., 2014; Karlsson et al., 2017). Many cloud products exist that are based on AVHRR 92 

sensors. The International Satellite Cloud Climatology Project (ISCCP) H-series product relies on newer 93 

passive imagers with higher spectral, spatial, radiometric, and temporal resolutions; it provides revised 94 

daytime cloud detection over snow and ice in polar regions (Young et al., 2018). Moreover, the ISCCP 95 

is largely unaffected by the AVHRR orbital drifts (Loyola R et al., 2010; Liu et al., 2022). The CM SAF 96 

cLoud, Albedo, and RAdiation datasets (CLARA-A1/A2) systematically use CALIPSO-CALIOP cloud 97 

information for development and validation purposes, and it optimizes the detection conditions during 98 

the polar day over snow- and ice-covered surfaces (Karlsson et al., 2017; Karlsson and Hakansson, 2018). 99 

The AVHRR Pathfinder Atmospheres - Extended (PATMOS-x) product is the first multi-parameter 100 

dataset that is making use of all AVHRR channels. This product has a relatively finer spatial resolution 101 

than other AVHRR-based records, and it also improves cloud detection based on active sensor data 102 

(Heidinger et al., 2012; Heidinger et al., 2014). However, the AVHRR-based products are often reported 103 

to underestimate Arctic CF because of the limitations in radiation correction and spatial bands (Stengel 104 

et al., 2017; Kotarba, 2015). In addition, the United States National Oceanic and Atmospheric 105 

Administration’s (NOAA’s) archiving of data has its own problems with intermittent occurrences of gaps, 106 

duplications, and corrupt data as well as the orbit drifts of satellites (Karlsson et al., 2017). Beginning in 107 

2000, the higher resolution, higher calibration accuracy, and larger number of spectral bands used in the 108 

Moderate Resolution Imaging SpectroRadiometer (MODIS) cloud products resulted in more robust, but 109 

shorter-length products than AVHRR (Kennedy et al., 2012; Claudia, 2012; Stengel et al., 2017), 110 

including MOD08/MYD08 (Marchant et al., 2016) and the Clouds and the Earth’s Radiant Energy 111 

System (CERES) (Kato et al., 2018b; Minnis et al., 2011). Meanwhile, the MODIS-based products are 112 

usually reported to overestimate the CF in the Arctic (Trepte et al., 2019; Liu et al., 2022). Although 113 

passive sensor data provide a long time series of continuous CF data covering the entire Arctic region, 114 

the limitations of visible and thermal channels in distinguishing clouds from snow and ice cause the cloud 115 

results of passive sensor data in the high-latitude bright cold polar regions to have questionable accuracy 116 

(Eastman and Warren, 2010; Liu et al., 2010; Liu et al., 2012a; Philipp et al., 2020). Active instruments, 117 

such as CALIOP, do not rely on thermal or visible contrasts in detecting clouds, so they are regarded as 118 

an excellent reference for passive data collection in transient and zonular scenarios (Stubenrauch et al., 119 

2013; Stengel et al., 2017). However, the number of CALIPSO spatial samplings is too low to overlap 120 

large areas repeatedly in a short time, and the CALIPSO imagers only cover the regions within 82.5°N 121 

latitudes, which greatly reduced spatial and temporal coverages when compared with passive sensor 122 

sensors (Liu et al., 2022; Claudia, 2012; Stubenrauch et al., 2013). Moreover, differences in 123 

instrumentation impose these different cloud definitions, which further larged the biases between the 124 

passive sensor data and the active sensor data. Therefore, an effective method for blending the advantages 125 
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of multiple satellite products should yield more accurate Arctic CF products based on a variety of 126 

observations and algorithms. 127 

Several studies have been dedicated to correcting passive sensor data based on active sensor data 128 

with the goal of improving the accuracy of CF products. Philipp et al. (2020) corrected passive sensor 129 

CF data by constructing a function of the sea ice concentration in different seasons and the CF bias in 130 

data acquired from active and passive sensors, which showed reliable results for low-level cloud cover 131 

identification where the sea ice concentration was known (Philipp et al., 2020). Kotarba (2020) matched 132 

the CALIPSO profile data and the MODIS instantaneous field of view to correct passive sensor data 133 

(Kotarba, 2020). This method can be used as an important reference for short-term research that focused 134 

a small area, while the efficiency of the algorithm is also important for the correction of long-time series 135 

and large-scale data. Given that passive sensor CFs exhibit seasonal fluctuations similar to those of active 136 

sensor data (peaking in September and minimizing in April in the Arctic), an approach based on 137 

cumulative distribution function (CDF) matching using time series data may be able to improve both the 138 

accuracy and efficiency of CF detection. Using CDF matching can reduce the systematic bias and root 139 

mean square errors (RMSEs) between target and reference datasets while maintaining the relative 140 

relationship, which has been successfully applied in the study of soil moisture, surface emissivity spectra, 141 

precipitation, and land surface temperature (Drusch, 2005; Brocca et al., 2011; Liu et al., 2011b; Zhang 142 

et al., 2018; Nie et al., 2016; Xu and Cheng, 2021). 143 

In the field of meteorology, to obtain more accurate cloud coverage information, multi-source data 144 

fusion is usually performed based on spectral bands and scale geometry information of instantaneous 145 

satellite images. Examples include various transforms including the contourlet(Miao and Wang, 2006; 146 

Jin et al., 2011), curvelet (Li and Yang, 2008; Liu et al., 2015), NSCT (Wang et al., 2012), and tetrolet 147 

transforms (Zhang et al., 2014). Alternatively, based on the field of view of different observation 148 

instruments used to acquire satellite images and of ground-based stations, methods such as the stepwise 149 

revision method (Kenyon et al., 2016) and data assimilation technology (Hu and Xue, 2007) have been 150 

used. However, in the climate domain, the estimation of a radiative energy budget on a large scale over 151 

a long time series usually requires monthly climate model grid data (Kato et al., 2018a; Sledd and 152 

L’ecuyer, 2021). Using fused instantaneous data to extrapolate climate-scale data may result in a large 153 

accumulation of errors. In recent decades, the fusion of multi-sensor thematic products in climate-scale 154 

studies has been widely used and developed. Two main types of methods exist for merging multiple 155 

satellite thematic products based on the principle of calculation. One type of fusing approach provides 156 

spatiotemporal data fusion by spectral correlation, which is more suitable for the regions where the spatial 157 

information of objects has no obvious change, such as the Spatial and Temporal Adaptive Reflectance 158 

Fusion Model (STARFM) and the improved STARFM (Gao et al., 2006; Hilker et al., 2009; Zhu et al., 159 

2010; Zhang et al., 2014). The other type of spatiotemporal data fusing method is data-driven, which 160 

involves developing geostatistical models to solve the problem created when the same parameter is 161 

inconsistent among different satellite products. This method includes the Kriging family of techniques 162 

(Chatterjee et al., 2010; Li et al., 2014; Savelyeva et al., 2008), the spatiotemporal interpolation method  163 

(Yang and Hu, 2018), and the Bayesian melding framework (Fuentes and Raftery, 2005; Christakos, 164 

2010). However, these methods rely on Gaussian assumptions and linear models, which limits their 165 

estimation accuracy  (Nazelle et al., 2010; He and Kolovos, 2017). A nonlinear spatiotemporal 166 

geostatistical method, Bayesian maximum entropy (BME), has been proposed to fuse the parameters that 167 

have apparent spatiotemporal variations (Nazelle et al., 2010). The BME method can integrate 168 

information from different sources and then consider the data uncertainties in achieving improved 169 
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prediction accuracy. The most important advantage of BME is that it does not restrict the complex 170 

stochastic relationship between predictions/observations and ‘true’ values to the Gaussian linearized 171 

model; this is an obvious breakthrough over approaches restricted to using normal distributions (Nazelle 172 

et al., 2010; Li et al., 2013; Xu et al., 2019). The BME method has broad application in the assessment 173 

of many different atmosphere parameters, such as ozone concentration (Nazelle et al., 2010; Bogaert et 174 

al., 2009; Christakos et al., 2004), PM2.5, PM10 (Yu and Wang, 2010; Beckerman et al., 2013), and aerosol 175 

optical depth (Xia et al., 2022; Tang et al., 2016). These parameters have similar spatiotemporal 176 

properties to CF, i.e., they vary rapidly in both time and space. Therefore, BME has the potential for use 177 

in merging multiple satellite CF products to produce spatiotemporally complete, accurate, and coherent 178 

Arctic CF products. 179 

In this paper, we present a spatiotemporal data fusion framework based on a CDF matching 180 

approach and BME methodology to generate a fused monthly CF product with 1°× 1° resolution in the 181 

Arctic region from 2000 to 2020. The CDF matching approach is used to correct the bias of passive 182 

sensor data based on active sensor data, thereby improving the quality of the passive data. The BME 183 

method is used to produce spatiotemporally complete monthly CF data from corrected multiple-satellite 184 

CF products. The uncertainties of passive sensor CF products benchmarked with active sensor data and 185 

ground-based data are all considered in the fusing process. The study area was in the Arctic region above 186 

60°N, including land and marine areas. The structure of this paper is as follows. Section 2 describes the 187 

data, while Section 3 introduces the data preprocessing and methods. The results and discussion are 188 

presented in Sections 4 and 5, respectively. Finally, the conclusions are provided in Section 6. 189 

2 Data 190 

2.1 Satellite Data 191 

In view of the complementarity among the AVHRR-based, MODIS-based, and active sensor 192 

products, this study involved ten passive-satellite-derived products from MODIS and AVHRR, with the 193 

time period spanning from 2000 to 2020 along with an active-satellite-derived product from CALIPSO, 194 

with the time period spanning from 2006 to 2016. The experimental period only included the sunlit 195 

months from April to September because of the darkness of the Arctic winter. All the data are briefly 196 

described in Table 1. Our study aimed to provide accurate and reliable measurements of cloud fraction 197 

during the daytime in the Arctic region. To achieve this objective, we utilized cloud fraction data labeled 198 

as "daytime" from multiple satellite datasets. 199 

The AVHRR sensors are onboard sun-synchronous orbit satellites collecting data in the morning or 200 

afternoon (NOAA, Metop-A/B). The morning (afternoon) orbits cross the equator on their descending 201 

(ascending) node at approximately 0730 (1330) local time (LT). Starting with NOAA-17 and all MetOp 202 

satellites, AVHRR data are available from a midmorning orbit with the equator crossing time at 203 

approximately 0930 LT. However, complications arose from changes in the equatorial crossing times of 204 

individual AVHRR sensors due to satellite drift (Heidinger et al., 2014; Karlsson et al., 2013). The 205 

AVHRR has a nominal spatial resolution of 1.1 km at the nadir point, facilitating full global coverage 206 

twice daily (daytime and nighttime), but the products this study employed provide global area coverage 207 

data with a nadir footprint size of 1.1 km × 4.4 km (Stengel et al., 2017). Cloud detection algorithms of 208 

these latest satellite data have improved greatly in polar regions. However, some data gaps exist as a 209 

result of AVHRR scan motor errors (e.g., the NOAA-15 orbits were blacklisted in 2000 and 2001) and 210 
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limitations of observation conditions (e.g., CLARA-A2 could not cover the central Arctic Sea in 211 

September). 212 

A MODIS sensor is onboard both the morning satellite Terra and the afternoon satellite Aqua, with 213 

overpass times at the equator of approximately 1030 LT and 1330 LT, respectively. The MODIS produces 214 

complete near-global coverage in less than 2 days. The 36 channels from the visible to thermal infrared 215 

spectrum provide abundant spectral information for cloud parameter retrieval. The new version datasets 216 

have improved the cloud detection algorithms in polar regions, whereas some researchers found 217 

overestimated CF in snow/ice surface in the new datasets when compared with active sensor data 218 

(Marchant et al., 2020; Marchant et al., 2016; Paul, 2017; Trepte et al., 2019). Although some differences 219 

exist between Terra and Aqua, the consistency between these two satellites cannot be ignored (Trepte et 220 

al., 2019). 221 

The CALIPSO satellite combines an active light detection and ranging (lidar) instrument (Cloud-222 

Aerosol Lidar with Orthogonal Polarization - CALIOP Lidar) with passive infrared (Imaging Infrared 223 

Radiometer) and visible imagers (Wide Field Camera) to probe the vertical structure and properties of 224 

thin clouds and aerosols worldwide (Winker et al., 2007; Vaughan et al., 2004; Hunt et al., 2009; Vaughan 225 

et al., 2009; Winker et al., 2009). As the most accurate currently active space-borne instrument for 226 

detecting clouds, CALIPSO has a 16-day repeat cycle with equatorial overpass time at 1:30 PM. The 227 

CAL_LID_L3_GEWEX_Cloud-Standard-V1-00 is a widely used grid cloud product with a spatial 228 

resolution of an equal angle grid 1°×1° (Claudia, 2012). 229 

Table 1. Satellite cloud fraction products used in this research. 230 

Products 

Cloud detect 

method 
Satellite Sensor 

Overpass 

time 
Time range 

Temporal 

resolution 

Spatial 

resolution 

MOD08-M3 

Terra MOD 35 Terra MODIS 1030am 2000.2-2020.12 daily 1°x 1° 

MYD08-M3 

Aqua MYD 35 Aqua MODIS 1330pm 2002.7-2020.12 daily 1°x 1° 

CERES-SSF 

Terra 
CERES Edition 4 Terra MODIS 1030am 2000.3-2020.12 daily 1°x 1° 

CERES-SSF 

Aqua 
CERES Edition 4 Aqua MODIS 1330pm 2002.7-2020.12 daily 1°x 1° 

CLARA-A2 

AM 

EUMETSAT 

NWC SAF PPS 

NOAA-15 AVHRR3 0730am 

2000.1-2000.7 

2001.3-2002.7 

 

daily 

 

0.25°x 

0.25° 
NOAA-17 AVHRR3 0930am 2002.8-2007.6 

METOPA AVHRR3 0930am 2007.7-2019.6 

CLARA-A2 

PM 

 
EUMETSAT 

NWC SAF PPS 

NOAA-14 AVHRR2 1330pm 2000.1-2000.12  
daily 

 
0.25°x 

0.25° 
NOAA-16 AVHRR3 1400pm 

2001.1-2003.5 

2003.6-2005.7 

NOAA-18 AVHRR3 1330pm 2005.8-2009.5 

NOAA-19 AVHRR3 1330pm 2009.6-2019.6 

 

 

PATMOS-x 

AM 

 
 

Naive Bayesian NOAA-15 AVHRR3 0730am 

2000.1-2000.7 
2001.3-2002.8 

 
daily 

 
0.1°x 0.1° 

NOAA-17 AVHRR3 0930am 2002.9-2007.6 

METOPA AVHRR3 0930am 2007.7-2020.12 

 

 

PATMOS-x 

PM 

 

 
Naive Bayesian 

NOAA-14 AVHRR2 1330pm 2000.1-2001.3  

daily 

 

0.1°x 0.1° 

NOAA-16 AVHRR3 1400pm 

2001.4-2003.5 

2003.6-2005.7 

NOAA-18 AVHRR3 1330pm 2005.8-2009.5 

NOAA-19 AVHRR3 1330pm 2009.6-2020.12 



7 

 

ISCCP-H 

AM 

IR and VIS 

threshold 

NOAA-14- 

NOAA-19; 
METOPA 

AVHRR2

/ 
AVHRR3 

9000am 

2000.1-2017.6 daily 1°x 1° ISCCP-H 

PM 

1500pm 

CALIPSO-

GEWEX 

5km merged layer 

product level 2 
CALIPSO CALIOP 1330pm 2006.6-2016.12 Monthly 1°x 1° 

2.2 Ground Observation Data 231 

2.2.1 Climatic Research Unit Gridded Time Series 232 

The Climatic Research Unit gridded Time Series (CRU TS) is a widely used climate dataset 233 

covering all land surfaces except Antarctica, which uses angular distance weighting to interpolate 234 

monthly climate anomalies from extensive networks of weather station observations onto a 0.5° grid 235 

(Harris et al., 2020; Harris et al., 2014). This dataset was first published in 2000, and the latest version, 236 

CRU TS4.05, contains ten variables including cloud cover for the period 1901–2020 (Harris et al., 2020). 237 

The percentage of cloud cover was derived from observations of sunlit hours, and CRU TS4.05 output 238 

files are actual values, not anomalies. 239 

2.2.2 International Comprehensive Ocean-Atmosphere Data Set 240 

The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is the most extensive 241 

freely available archive of global surface marine data, which has been assimilated into all major 242 

atmospheric, oceanic, and coupled reanalysis (Freeman et al., 2017). The ICOADS report is derived 243 

from synthetical observations of ships, buoys, coastal platforms, or oceanographic instruments. This 244 

dataset offers a gridded monthly summary for 2° latitude × 2° longitude boxes dating back to 1800 (and 245 

1°×1° boxes since 1960) (Woodruff et al., 2005). The available climatic variables include cloud cover 246 

and other atmospheric parameters (Bojinski et al., 2014). In this study, we used the 1°×1° cloud cover 247 

data in sunlight months (April to September) spanning 2000 to 2020. In particular, we obtained the 248 

"fraction of observations in daylight" data from the ICOADS dataset, which allowed us to select only 249 

the data points corresponding to daytime observations. During our analysis, we imposed a threshold of 250 

0.8 for the fraction of observations in daylight, ensuring that we only included the data with high 251 

confidence in our study.  252 

2.3 Reanalysis Data and Model Data  253 

In recent decades, atmospheric reanalysis datasets have emerged as a valuable resource for studying 254 

climate processes and predictability, offering a long-term, gridded depiction of atmospheric conditions. 255 

These datasets rely on state-of-the-art data assimilation systems, which integrate observational data and 256 

underlying models to create a continuous record of historical weather patterns. Through the use of 257 

various atmospheric variables, they provide insight into past weather phenomena. The utilization of 258 

these datasets could prove imperative in conducting research within areas that are limited in data 259 

availability, such as the Arctic. Several studies have investigated the performance of reanalyses over 260 

the Arctic for a variety of fields including CF (Yeo et al., 2022; Kennedy et al., 2012; Huang et al., 261 

2017). However, the systematic errors of climatological reanalysis CF are substantial for Arctic clouds 262 

because of the complexity of cloud microphysical processes and lack of good observation. In-depth 263 

comparisons, as conducted by Walsh, have identified difficulties in adequately depicting persistent low-264 
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level CF in summer via reanalysis models (Walsh et al., 2009). 265 

ERA5 is an advanced atmospheric reanalysis product developed by the European Centre for 266 

Medium-Range Weather Forecasts (ECMWF). It provides information on cloud properties, including 267 

cloud fraction, cloud ice, cloud liquid, rain, and snow water content, which are estimated using the 268 

prognostic equations developed by Tiedtke in 1993(Tiedtke, 1993). This method accounts for physical 269 

processes that act as sources or sinks of clouds, such as convection and condensation. In addition, the 270 

outdated diagnostic temperature-dependent approach for phase partitioning in mixed-phase clouds has 271 

been replaced with a more sophisticated, prognostic method developed by Forbes and Ahlgrimm in 272 

2014 (Forbes and Ahlgrimm, 2014). The updated radiation scheme in ERA5 employs the Monte Carlo 273 

independent column approximation with generalized overlap for sub-grid cloud representation, 274 

enhancing the accuracy of the product.  275 

This study uses the CF of ‘ERA5 hourly data on single levels from 1959 to present,’ and the CF 276 

parameter has been regridded to a regular lat-long grid of 0.25° and calculated by making assumptions 277 

about the degree of overlap/randomness between clouds at different heights.  278 

The climate model is also a valuable tool for climate studying. However, comparisons of climate 279 

models to Arctic observations over the past three decades have revealed persistent challenges 280 

simulating Arctic climate that partially attribute to imprecise cloud fraction (English et al. 2014). The 281 

sixth phase Coupled Model Intercomparison Project (CMIP6) models have been used in many research 282 

papers about climate. Among them the simulation data of the MRI-AGCM3-2-S climate model 283 

provides a basis for climate research designed to answer fundamental scientific questions and serves as 284 

a resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate 285 

Change (IPCC-AR6). The model employed in this study is derived from the operational weather 286 

prediction model of the Japan Meteorological Agency (JMA). It integrates quasiconservative semi-287 

Lagrangian dynamics, a radiation scheme, and a land surface scheme that was initially designed for a 288 

climate model. Utilizing observed sea surface temperature (SST) as well as SST alterations forecasted 289 

by atmosphere-ocean coupled models, we carried out simulations of both present-day and future 290 

climate conditions. This model was released in 2017 and provided CF parameters at native nominal 291 

resolutions of 25 km. This resolution employed in the model is as fine as that employed by regional 292 

climate models (RCMs) in recent studies. Smallscale phenomena are realistically simulated in the high-293 

resolution model, with keeping the same quality of global-scale climate representation as the lower-294 

resolution models. 295 

The study involved a comparison of pre- and post-fusion CF data with reanalysis and model data. 296 

The aim was to underscore the significant role of fused data in improving the consistency of CF 297 

between satellite observations, reanalysis data, and model data. 298 

3 Data Preprocessing and Methodology 299 

In this study, we propose a fusion algorithm framework that combines data from multiple satellites 300 

to provide CF datasets with high spatiotemporal coverage and improved accuracy. Figure 1 shows a 301 

flowchart of the general process, which includes four parts. First, the original data were preprocessed 302 

before data fusion, a process that included data quality control and data resampling. Second, bias 303 

correction of passive sensor data was conducted using active data with the CDF matching method. Third, 304 

to comply with BME's stationarity prerequisite that assumes constancy of mean and variance, we 305 

removed the spatiotemporal trend of the original satellite CF data over the study area using the 306 
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spatiotemporal moving window filter method. Fourth, the spatiotemporal covariance function was 307 

modeled based on the isotropic residual data, and then the entropy was maximized with covariance 308 

constraint. All the satellite-based CF data were treated as soft data so that the associated uncertainties 309 

were incorporated into the fusing process. 310 

 311 

Figure 1. Flowchart for merging the multiple satellite cloud fraction products based on cumulative 312 

distribution function matching and the Bayesian maximum entropy method. 313 

 314 

3.1 Data Preprocessing 315 

Over the Arctic, the cloud detection capabilities of passive sensors are always limited by spectral 316 

channels, while active sensors are not susceptible to these effects (Liu et al., 2010; Liu et al., 2012b; 317 

Kotarba, 2020; Shupe et al., 2013). To obtain more accurate fused CF results, it is necessary to correct 318 

these passive sensor products using active sensor data before merging. 319 

For satellite datasets, statistics always have the Scientific Data Set (SDS) name suffix 320 

“_Standard_Deviation” and which are computed by calculating an unweighted standard deviation of all 321 

pixels or samples within a given 1° grid cell. The large CF standard deviations (STDs) of satellite datasets 322 

represent the large uncertainties of CF detection (Ackerman et al., 2008; Stengel et al., 2017). In this 323 

study, we calculated the relationship between differences in STDs and CFs of passive/active sensor 324 

datasets and found that the larger the standard deviation, the more serious the underestimation of passive 325 

sensors. For the products with standard deviation flags, including MOD08 Terra/Aqua, CLARA-A2 326 

AM/PM, and the PATMOS-x AM/PM, we used the 90 percentile of the daily standard deviation as scene-327 
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based dynamic thresholds to screen CF data. 328 

However, no standard deviation information was available for CERES-SSF Terra/Aqua and the 329 

ISCCP-H AM/PM datasets. Based on research that shows ignoring optically very thin clouds could 330 

increase the agreement between passive sensor data and the CALIPSO data, the 0.15 COT dataset was 331 

selected as the quality threshold in this study. 332 

3.2 CDF Matching 333 

A widely used scaling strategy known as CDF matching can be used to adjust the distribution of the 334 

target dataset to the range of reference data under the constant relative relationship. Several studies have 335 

proved that the process of adjusting this distribution does not change the variation of original satellite-336 

based products, but rather aligns the value range with that of the reference data (Liu et al., 2011b; Brocca 337 

et al., 2011; Xu and Cheng, 2021). Based on similar seasonal fluctuations of the passive sensor CFs and 338 

active sensor data, the time series of passive sensor data from each grid box in the Arctic region were 339 

adjusted to the values of the paired CALIPSO-GEWEX latitude and longitude grid. However, the 340 

CALIPSO-GEWEX data could not cover regions with a latitude greater than 82.5°N and the temporal 341 

range only covers 2006–2016. To correct the CF bias over the entire Arctic region, two strategies were 342 

considered. 343 

First, for the regions with enough reference data, the CF data of all passive sensors were directly 344 

adjusted by CDF matching. The matching approach includes three steps: (1) constructing the cumulative 345 

distribution function, (2) deriving regression parameters, and (3) adjusting the original data with 346 

regression parameters. In our study, we use a three-month moving mean to eliminate the uncertainties in 347 

CALIPSO-GEWEX data caused by the limitation of sampling quantities and frequencies. The filtered 348 

daily passive sensor datasets were resampled as monthly mean data, and then the CDFs were constructed 349 

for every dataset based on the same method used for the active data. A least-square fit was used to derive 350 

the relationship between the reference and the target datasets. Based on the analysis of Liu et al.(2022), 351 

the seasonal variation of CF for multiple satellites was greater than the interannual changes in CF (Liu 352 

et al., 2022). We propose an additional assumption that the CDF ratio between active and passive sensor 353 

data remains constant over the years in a 1°×1° grid cell. 354 

Second, it was difficult to implement the CDF matching strategy for areas beyond the coverage of 355 

active sensor data. Considering the relationship among the CF bias before and after CDF correction, the 356 

cumulative percentage of CF (CPCF, the average CF over an interval of SIC), and the sea ice 357 

concentration (SIC), a fitting function is proposed to correct the CF data. 358 

After executing the abovementioned steps, we obtained the corrected multiple satellite data. 359 

3.3 Spatiotemporal Trend Analysis and Removal 360 

The BME theory was constructed based on the hypothesis of spatiotemporal random field (S/TRF) 361 

(Nazelle et al., 2010; Christakos, 2000; He and Kolovos, 2017), which means that all the variables used 362 

for this process are homogeneous and isotropous. However, a natural process that evolves in space–time, 363 

such as the distribution of CF, can be divided into a heterogenetic global spatiotemporal trend and a 364 

spatiotemporally isotropous residual, following Eq. (1): 365 

      ,, ,s ts t res s t
CF CF CF 

, (1) 366 

where (s, t) represents the space and time, 𝐶𝐹(𝑠,𝑡) represents the global spatiotemporal trend, and CFres(S,t) 367 
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represents the stochastic anomalies of the variable. To meet the second-order stationarity assumption 368 

(constant mean and variance), it is necessary to remove the global spatiotemporal trend before estimating 369 

the spatiotemporally autocorrelated structure of the data (Spadavecchia and Williams, 2009; Tang et al., 370 

2016). In this study, the global spatiotemporal trend was calculated using a spatiotemporal filter window 371 

with a size of 5° (longitude) × 5° (latitude) × 3 (months). 372 

Figure 2 shows a histogram of the original combined satellite CF data, the global spatiotemporal 373 

trend, and the residual spatiotemporally isotropous component. From these distributions of the histogram, 374 

the residual is approximately normally distributed, which meets the requirement for modeling the 375 

structure of the spatiotemporal autocovariance. 376 

 377 
Figure 2. Histograms of (a) original combined satellite cloud fraction, (b) global spatiotemporal trend, and (c) 378 

spatiotemporally isotropous component, for the entire Arctic area (Example using 2010 data). 379 

 380 

3.4 BME Fusion 381 

3.4.1 Spatiotemporal Covariance Modelling 382 

In spatiotemporal geostatistics, a covariance function indicates the spatial and temporal dependency 383 

of the data, which decreases as distance/time increases (Griffith, 1993). The spatiotemporal variation of 384 

the CF also can be expressed by a spatiotemporal covariance function. In the BME method, the 385 

experimental covariance can be calculated from the point pairs at specific distances and then modeled by 386 

the commonly used covariance model (Cressie, 2015). This study uses a nested covariance model with 387 

two spatiotemporal exponential models to model the spatiotemporal covariance of the detrended 388 

combined CF data, following Eq. (2): 389 

 
1 2

1 1 2 2

3 3 3 3
cov( , ) exp exp exp exp

s t s t

d d
d c c

a a a a

 


       
            

       

, (2) 390 

where d is the spatial lag and τ is the temporal lag between point pairs at coordinates p(s, t) and 391 

coordinates p′(s′, t′); c1 and c2 are the partial sill variances of the two exponential models; as1and as2 are 392 

the spatial ranges of the two exponential models; at1 and at2 are the temporal ranges of the two exponential 393 

models. When the S/TRF is characterized by spatial and temporal stationarity, it is only the relative 394 

distance between any couple of locations that affects the covariance function. Specifically then, the 395 

covariance function has the same value cx(p, p′) = cx(r ,t) for any location pair (p, p′) separated by the 396 

same spatial distance vector r = s′ - s and same temporal distance lag τ= t′- t (Christakos and Serre 2000). 397 

In this study, the parameters for spatiotemporal covariance are modeled separately for each year. The 398 

modelled results shown that the model has a spatial range of 2°, a temporal range of 3 months, and a 399 

partial sill variance of 0.85 for local scale CF (the first nested covariance model). And for the large range 400 
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CF the model has a spatial range of 30°, a temporal range of 6 months, and a partial sill variance of 0.15 401 

(the second nested covariance model). 402 

 403 

3.4.2 Construction of Soft Data 404 

BME treated the informative content with uncertainty from different sources as soft data (He and 405 

Kolovos, 2017). For example, the observed data that accompanied by obvious sources of uncertainty 406 

such as inaccuracy in measuring devices, modeling uncertainties, and human error. In this study, the CF 407 

data of passive sensor products are viewed as soft data. For the BME method, a key conceptual aspect is 408 

that the framework does not impose any restrictive assumptions about the PDFs of soft data. Hence, a 409 

parameterized statistical distribution of different sources of information can be used to replace the real 410 

PDFs (Nazelle et al., 2010). Soft data could be probabilistic or interval soft data (Christakos, 2000). In 411 

this study, the differences between satellite data and ground observations followed normal distributions 412 

approximately. Therefore, the passive sensor data used for fusion were all treated as soft data with a 413 

Gaussian distribution, following Eq. (3): 414 

 
, ,sate x ground x xCF CF   , (3) 415 

where CFsate ,x and CFground ,x are the satellite CF data and the corresponding ground observation, 416 

respectively, and εx is an independent random error, following Eq. (4): 417 

  2,N     , (4) 418 

where 𝜇𝜀 represents the mean of random error and 𝜎𝜀
2 represents the variance (Tang et al., 2016). 419 
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Figure 3. Gaussian probability density functions of the random errors between each type of satellite data and 420 

ground observations at six randomly selected regions of interest from April to September. 421 

 422 

Because the uncertainties in each satellite CF data vary at different spatial and temporal scales, using 423 

the average uncertainty of the entire dataset to construct soft data over the entire study area will 424 

undoubtedly neglect the spatiotemporal variation of uncertainties. In this study, six regions were 425 

randomly selected to analyze the probability density functions (PDF) of random errors (Fig. 3). Large 426 

inconsistencies were observed for the PDF in land and ocean regions, and the temporal variation was 427 

also an important factor in inconsistencies. We constructed the soft data for CF data over land and ocean 428 

regions in every month separately. Considering the large errors in the Greenland Ice Sheet (GrIS), we 429 

calculated the PDF of random error separately for that region. 430 

For each grid box, the CFs of different satellite data were converted into a Gaussian distribution 431 

probability soft data, individually (Tang et al., 2016). The soft data were expressed as: 432 

  2

, ,soft sate sateCF N CF    , (5) 433 

where CFsate is the detrended CF value of multiple satellite datasets; the mean and variance of the 434 

Gaussian distribution probability soft data were expressed by CFsate+με and 𝜎𝜀
2, respectively. 435 

3.4.3 Using the BME Method for Multiple CF Data Fusion 436 

The BME method can be used to merge continuous variables of satellite data for some atmospheric 437 
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parameters. To simplify the heterogeneity and anisotropic variability, the residuals were considered only 438 

in the fusion process. Assuming that various adjacent observations from satellites were available with 439 

irregular spatial and temporal gaps, the nonlinear mean estimation 𝑥𝑘̅̅ ̅ of CF at the location (sx, sy) at 440 

time t was estimated as: 441 

  ,1 ,2 ,, ...k k k soft soft soft n kx x f x x x x dx  , (6) 442 

where f (xk|xsoft,1, xsoft,2…xsoft,n) is a posterior PDF over the spatiotemporal adjacent grid observations, and 443 

xsoft,1, xsoft,2…xsoft,n are the probabilistic Gaussian soft data derived from multiple satellite data. The 444 

posterior PDF at the estimation point updates from the prior PDF in the Bayesian rule when soft data are 445 

involved, so the relationship can be expressed as: 446 

  
 
 

,1 ,2 ,

,1 ,2 ,

,1 ,2 ,

, ... ,
| , ...

, ...

soft soft soft n k

k soft soft soft n

soft soft soft n

f x x x x
f x x x x

f x x x
 , (7) 447 

where f (xsoft,1, xsoft,2…xsoft,n) represents the prior PDF of the spatiotemporally isotropous CF at the adjacent 448 

grid, f (xsoft,1, xsoft,2…xsoft,n, xk) is the joint PDF without specific information. Generally, the joint PDF is 449 

represented by fg(xmap), which can be calculated by maximizing the entropy under the constraint of the 450 

general knowledge g (Jaynes, 1957). When predicting the probability distribution of a random event, the 451 

larger the information entropy, the larger the amount of information obtained, and the result is closer to 452 

the actual situation under a most uniform probability distribution. In this study, general knowledge is the 453 

spatiotemporal covariance model, and to maximize the entropy, we introduce a Lagrange multiplier λ 454 

(Xia et al., 2022). 455 
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, (8) 456 

Finally, the expectation of spatiotemporally CF isotropous component can be calculated by solving 457 

these equations. Then the anisotropic spatiotemporal trend component of each grid was added to the 458 

expectation at the corresponding point to obtain the merged CF product. 459 

4 Results 460 

4.1 Result of CDF Matching 461 

Figure 4 shows the scatter plots of the CF distribution before and after CDF matching from multiple 462 

passive and active sensors at the valid grid boxes with a latitude of less than 82.5°N. Based on the fact 463 

that the assumption that the correction coefficient does not vary over time, the training datasets (T) were 464 

processed from 2008 to 2014 and the validation datasets (V) were processed in 2006, 2007, 2015, and 465 

2016. In Fig. 4, the ‘Original CF (T)’ and ‘Original CF (V)’ indicate the comparison of CALIPSO-466 

GEWEX CF and that of the original passive sensor data, so that the ‘CDF CF (T)’ and ‘CDF CF (V)’ 467 

represent the comparison between CALIPSO-GEWEX CF and the corrected CF. In general, for all the 468 

passive sensor datasets, the CFs after CDF matching were closer to the 1:1 line than before CDF matching. 469 

R2 increased by about 0.07–0.15, while that for ISCCP-H products was over 0.45. The RMSEs decreased 470 

to one-third to one-half of what they were, and the biases decreased to approximately zero, which means 471 

that the CDF matching obviously corrected outliers and eliminated the average differences between the 472 
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passive and active sensor CFs. From these scatter plots, we also understand that CDF matching plays an 473 

important role in low CFs (less than 60%), which was always seen in April or on the GrIS(Liu et al., 474 

2022). 475 

MOD08 

 

MYD08 

 

CERES-SSF Terra 

 

CERES-SSF Aqua 

 

ISCCP-H AM 
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ISCCP-H PM 

 

CLARA-A2 AM 

 

CLARA-A2 PM 

 

PATMOS-x AM 

 

PATMOS-x PM 

 

 476 

Figure 4. The scatter plots of the cloud fraction comparison between the passive and active sensor datasets at 477 

regions with latitudes less than 82.5°N before and after cumulative distribution function matching: (T) means 478 

training data with time ranges from 2008 to 2014 and (V) means validation data from 2006, 2007, 2015, and 2016. 479 

 480 

In the sea ice regions, the relationships between CF bias of passive sensor data after and before CDF 481 
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matching, CPCF, and SIC are shown in Fig. 5. The results indicated that the mean of bias increased with 482 

the SIC. Moreover, the CPCF appeared to decrease with increasing SIC, a negative correlation between 483 

CPCF and bias was also evident.  484 
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Figure 5. The relationship between cloud fraction bias of passive sensor data after and before cumulative 485 

distribution function matching, the cumulative percentage of cloud fraction, and the sea ice concentration in sea ice 486 

regions with latitude less than 82.5°N. 487 

 488 

By virtue of this association, SIC and CPCF are modeled as dependent variables of the bias. Due to 489 

the predominant presence of sea ice over the domain located above 82.5N, we employ this functional 490 

association to remediate CF inaccuracies in the region, called C-SIC Corrected CF. Figure 6's initial two 491 

panels depict a comparison between the CF of active data and passive data before and after correction by 492 

C-SIC in sea ice regions below 82.5°N. The results indicate that R2 of the corrected scatter plots increased 493 

slightly, but the RMSEs and bias were greatly reduced. In particular, the CF underestimated by passive 494 

sensors was similar to that of active sensors after correction. In our previous study, we have proven that 495 

this type of underestimation is very common(Liu et al., 2022). The third panel of Figure 6 shows the 496 

comparison of C-SIC Corrected CF and the CDF matching CF in sea ice regions with latitude less than 497 

82.5°N. The results also showed that the C-SIC Corrected CFs have high degree of consistency with the 498 

CFs corrected by the CDF matching, with R2 over 0.75, RMSE less than 3.6, and bias less than 0.5. 499 

However, although the correction has improved the ISCCP-H CFs, they also showed large 500 

inconsistencies with the passive sensor data and the CDF matching data. Therefore, the ISCCP-H CFs in 501 

regions north of 82.5°N were not included in the following fusion process.  502 
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Figure 6. The scatter plots of the cloud fraction (CF) comparison between the passive sensor datasets and the 503 

active sensor dataset before (the first panel) and after (the second panel) using the method of CF corrected by the 504 

cumulative percentage of CF and SIC (C-SIC). And the scatter plots of the results comparison between C-SIC and 505 

cumulative distribution function matching (the third panel). 506 

 507 

Accompanying the decreases in the CF differences of the active and passive sensor data, the 508 

accuracy of individual passive sensor datasets for the entire Arctic during the experimental period was 509 

also generally improved. Moreover, the consistency of multiple satellite data has improved greatly. 510 

Figure 7 displays the standard deviation between 1° × 1° passive sensor CF data before and after the 511 

application of cumulative distribution function matching (latitude≤82.5°N) and C-SIC correction 512 

(latitude >82.5°N). The results obtained from different regions indicate an obvious decrease in the 513 

inconsistency between multiple passive sensor data after the correction with the aforementioned methods. 514 

In the Holarctic region, multiple passive sensor CFs saw a decrease in mean STD from 9.18% to 5.75%, 515 

with more than 50% of the corrected data displaying a standard deviation within 5%. The sea ice region 516 

saw the largest reduction rate of the mean STD, approximately 4.5%. This reduction was mainly derived 517 

from a STD value range of 10–15%, due to the limited detection capacity of passive sensor data in sea 518 

ice areas. Regions with latitude less than 82.5°N saw a decrease in mean STD of only 3.02%. In contrast 519 

to the sea ice region, these land regions saw a smaller standard deviation between multiple satellite data. 520 

The distribution of STD frequency in regions over 82.5°N and the entire sea ice area appeared similar, 521 
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indicating that the C-SIC correction method was highly effective in 82.5°N regions. Although the relative 522 

values showed improvement, the absolute change appeared inconspicuous. 523 

 524 

Figure 7. Standard deviation between 1° × 1° passive sensor cloud fraction before and after cumulative distribution 525 

function matching (latitude<82.5°N) and C-SIC Corrected (latitude >82.5°N). 526 

 527 

4.2 Result of BME Fusing 528 

4.2.1 Spatial and Temporal Distribution of the Fused CF 529 

Figure 8 shows the spatial distribution of Arctic CF from the fused product, multiple satellite data, 530 

and ground observations. The results indicate that although most satellite-based products agreed 531 

relatively well with the ground-based observations in both the geographical distribution and the zonal 532 

average of Arctic CF at first glance, large disparities also appeared in some specific regions, whereas the 533 

fused product we proposed reduced these disparities apparently. For instance, nearly all the passive and 534 

active sensor products show the CFs over the GrIS were less than 60%. However, CFs of ground-based 535 

observations over this region were reported as nearly 70%, which is closer to that of the fused product. 536 

The sea regions of the central Arctic, which are covered by perennial sea ice/snow, are another area where 537 

the passive sensor products always underestimate CF. From these figures, some passive sensor products, 538 

especially for the AVHRR-based datasets, have CFs that are about 10–20% lower than those of active 539 

sensor data and ground-based observations. However, the fused CF has a similar magnitude to these two 540 

referred datasets. 541 
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 542 

Figure 8. Distribution of the average cloud fraction of different datasets over the Arctic from 2000 to 2020. The 543 

time ranges for ISCCP-H and CALIPSO-GEWEX were from 2000 to 2017 and from 2006 to 2016, respectively. 544 

 545 

By contrast, the ground-based CF products have a large data gap because ground weather stations 546 

are sparsely distributed in the Arctic, so the limitation of sampling quantities and frequencies had the 547 

effect of limiting the spatial and temporal ranges of active sensor data. Moreover, the AVHRR-based 548 

products often suffer from missing data as a result of satellite failures or band switching (Hollmann, 549 

2018); in addition, some passive sensor products such as CLARA-A2 have some spatial gaps over the 550 

Arctic Sea during autumn (Karlsson et al., 2017). Although we have eliminated a large number of low-551 

precision daily data in preprocessing, the completeness of the merged multiple-satellite CF products is 552 

obviously higher than those of the original satellite-based data and ground-based observations in both 553 

spatiality and temporality, especially in regions of the Arctic Ocean. The spatial completeness (the ratio 554 

of available data to the CF grids of the entire Arctic) of the fused CF product was nearly 100%, which is 555 

much larger than 54.09% of ground-based products and 73.15% of the active sensor product. Therefore, 556 

the fusion algorithm proposed by this study can not only obviously reduce the inconsistencies of Arctic 557 

CF between multiple satellite products and reference datasets but also effectively compensate for the data 558 

gaps caused by the lack of reference data. 559 

It is well known that the CF in the Arctic regions fluctuates apparently with the change in seasons. 560 

To show the temporal accuracy of the fusion products, we analyzed the long time series area-weighted 561 

mean of the CF. Figure 9 depicts the fluctuation of the mean value on a monthly basis for all data 562 

during sunshine periods (April to September) before and after fusion, as demonstrated by the time 563 

series. It is clear that the CF peaks in September and reaches a minimum in April. However, only the 564 

fused product always maintains a high level of consistency with the reference data, with the monthly 565 
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mean CF varying from 62% to 79%. The overall area-weighted mean of the differences between fused 566 

CF and CALIPSO-GEWEX CF and between fused CF and ground-based CF was about 0.91% and 567 

0.40%, respectively, which are about one-third of the differences for MODIS-based products and 568 

reference products and about one-fifth to one-twentieth of the differences for AVHRR-based products 569 

and reference products. In land and ocean areas, the fusion algorithm clearly corrects the outliers with 570 

large deviations, such as the CF from CLARA-A2, PATMOS-x products, and the CERES-SSF 571 

products. The first two datasets are well-known for underestimating the Arctic CF dramatically 572 

(Karlsson et al., 2017; Karlsson and Dybbroe, 2010). In this study, the underestimation mainly occurred 573 

in April, with approximately 8% and 3% for those two datasets, respectively. The latter has often been 574 

reported to overestimate CF (Doelling et al., 2016; Trepte et al., 2019), and in this study the CERES-575 

SSF products nearly overmeasure CF all year long from April to September. However, the fusion 576 

framework proposed by this study scales these underestimated values or overestimated values to a 577 

range similar to that of active sensor data by CDF matching; meanwhile, it takes into account the 578 

deviation from ground observations in the BME fusion process. The fused CFs can not only reduce the 579 

overestimation of CF by MODIS-based products but also decrease the underestimation of CF for 580 

AVHRR-based products, which obviously improves the consistency of CF between the active sensor, 581 

passive sensor, and ground observation dataset compared with the original data. 582 

 

Figure 9. The area-weighted means of cloud fraction over (a) Holarctic, (b) Land, and (c) Sea for different 583 

products in the Arctic from April to September during 2000 to 2020. The time ranges for ISCCP-H and CALIPSO-584 

GEWEX were from 2000 to 2017 and from 2006 to 2016, respectively. 585 

 586 

4.2.2 Quantitative Assessment of Fused CF 587 

To validate the fused CF and compare the accuracy of the fused results to that of several original 588 

satellite CFs, all the passive sensor CF products and the merged CF product were spatiotemporally 589 

compared with the CRU TS4.05 in land regions and ICOADS measurements in sea regions. The 590 

correlation coefficient (R2), root-mean-square error (RMSE), and mean bias (bias) were used to 591 

quantitatively evaluate the accuracies of the original and merged CF products. As Fig. 10 indicates, the 592 

scatters of the fused CF product and ground-based observations were closer to the 1:1 line than that of 593 

the original satellite data. In this case, the fused data had the largest R2 (0.51), lowest RMSE (6.95%), 594 
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and the lowest bias (0.35%) for land regions. In addition, the fused data had the largest R2 (0.42), the 595 

lowest RMSE (5.62%), and the lowest bias (0.55%) for sea regions. 596 

 597 
Figure 10. Validation of the fused cloud fraction and the original passive sensor datasets against the (a) CRU 598 

TS4.05 and (b) ICOADS datasets. 599 

 600 

For land, it can be also seen that the fusion results have a strong ability to correct the satellite CF 601 

that is less than 30%. These values were mainly found on the GrIS, in the Canadian Islands, and on the 602 

central Eurasian continent. In addition, the RMSE of CF after fusion was only one-half of the original 603 

satellite data, which means that the overall distribution of the fused CF is better fitted to the reference 604 

data, and most of the CFs with differences over 30% were well-corrected. 605 

The observations of ICOADS come from multiple observation platforms, and most of these 606 

platforms operate in open waters. The open water regions varied mostly with the growth and decline of 607 

the SIC, which brings great spatiotemporal heterogeneity for the sampling of ICOADS. Therefore, in the 608 

verification process, the first step was to spatiotemporally collocate the satellite data with ocean site. 609 

Figure10 (b) shows that R2 of the fused CF only improved by about 0.05–0.08 when compared with most 610 

satellite data. However, the fusion algorithm reduces the RMSEs and bias obviously. The RMSEs of the 611 

fusion CF were about one-fourth to one-third of the original MODIS-based products and one-third to 612 

three-fifths of the original AVHRR-based products. The reductions of bias were about 4–5% for MODIS-613 



25 

 

based products and about 2–5.4% for AVHRR-based products. 614 

 615 
Figure 11. Validation of the fused cloud fraction and the original passive sensor datasets against the CALIPSO-616 

GEWEX dataset over (a) land and (b) sea regions, with a temporal range from 2006 to 2016. 617 

 618 

As the accepted reference for passive sensor products, CALIPSO-based products are 619 

considered to provide excellent data and are always used to validate the accuracy of cloud datasets. 620 

In Fig. 11, we compare the CFs of passive sensor products before and after fusion with that of the 621 

CALIPSO-GEWEX product. The results show that when compared with the original satellite data, 622 

the consistencies between the fused product and the active sensor product were further improved in 623 

both land and sea regions. The RMSEs were reduced to about one-third to one-half of the original 624 

values, or approximately 5.69% and 4.58% for land and sea regions, respectively. Actually, the 625 

consistency of CFs between passive and active sensor datasets was higher than that between satellite 626 

data and ground observations. Except for the ISCCP-H products, R2 of original satellite data was 627 

over 0.63; that of fused CF only improved obviously in sea regions (about 0.12–0.21), while it 628 

improved slightly but in inconspicuously in land regions (about −0.01–0.1). This can be explained 629 

by the fact that the fusion algorithm greatly improves the low-value CFs in the land areas (especially 630 

on the GrIS) to levels similar to that of ground-based observations, while the CF of the active sensor 631 

data was no more than 60%. Therefore, some overestimations for the fused CF existed when 632 
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compared with the CALIPSO-GEWEX CF data. From the bias of Fig. 11 (a), we also see that the 633 

fusion algorithm can obviously improve the CF underestimated by the original satellite data. 634 

However, in the sea regions, the MODIS-based datasets seem to overidentify CF, especially when 635 

the CF was over 80%. Meanwhile, the AVHRR-based datasets show underestimation when CF was 636 

less than 80%. Obviously, the fused product corrected these CFs to a more suitable range. 637 

 638 

Figure 12. Validation of the fused cloud fraction (CF) and the original passive sensor datasets against (a) ERA5 CF 639 

dataset and (b) CMIP6 CF dataset over the Holarctic. 640 

Reanalysis data and the climate model data are commonly used to provide a consistent and 641 

continuous dataset for long-term climate trends and variability studies. These datasets can provide 642 

insights into the behavior of the climate system that would be difficult to obtain from direct observations 643 

alone. To further show the advantages of the fusion results, we analyzed the difference in CFs between 644 

different satellite data, ERA5 reanalysis datasets and the MRI-AGCM3-2-S climate model. As can be 645 

seen from Fig. 12, the fusion product greatly reduced the deviation in CF between the satellite data and 646 

the reanalysis dataset and the model data. When compared with the ERA5 CF dataset, the scatters of 647 

fused CFs were more concentrated around the 1:1 line than those of the original satellite data. R2 of the 648 

fusion product was about 1.5 times higher (improved about 0.18) than that of the original data, and the 649 

RMSEs and bias decreased to one-third of their original values (decreases of about 3.08–8.68% and 1.45–650 

15.88%, respectively). This means that the distributions of the CFs over the entire Arctic of the fusion 651 
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product were more consistent with those of the reanalysis CF dataset than the original satellite. However, 652 

the low absolute values also indicated that there were inescapable inconsistencies in some grids. The 653 

ERA5 dataset has usually been reported to overestimate CF in some regions of the Arctic, especially in 654 

the ocean regions (Yeo et al., 2022). In these regions the fused CF has lightly higher values than that of 655 

the ERA5 data. 656 

The comparison results with the MRI-AGCM3-2-S CF show that when compared with the original 657 

satellite data, the fusion method reduced the CF underestimation partly; these underestimations were 658 

often seen in April or over the central and western GrIS. In addition, R2 was improved by about 0.14, and 659 

the RMSEs were reduced to one-fourth of their values of original satellite data (about 2.60–8.20% 660 

reduction). However, although the fusion data relieve some CF overestimations that occurred in original 661 

passive sensor datasets, the scatter plot in Fig. 12 shows that the fusion CFs in some grids were 662 

significantly higher than the CF of model data (with bias by 4.26%). These grids are usually found in the 663 

open water areas of Arctic Ocean, central Alaska, central Eurasia, and along the eastern margin of 664 

Greenland. Several studies have shown that the climate models underestimate the CF over these regions 665 

(Vignesh et al., 2020). 666 

5 Discussion 667 

5.1 The Efficacy of CDF Matching in CF Fusion 668 

The CDF matching approach was operated based on a time series CF considering the time-varying 669 

process of CF products at a specific longitude–latitude grid box. Compared with the metrics for the 670 

traditional approach, the CF of multiple passive sensor products was scaled to a level similar to the active 671 

sensor CF after CDF matching, so that the inconsistencies among multiple passive sensor CF datasets 672 

were reduced. To further evaluate the efficacy of CDF matching in the CF fusion process, we 673 

quantitatively evaluated the deviation between satellite data before and after CDF correction with ground 674 

observation data. 675 

By comparing Fig. 10 and Fig. 13, we can infer that CDF matching can obviously improve the low 676 

value of CFs typical of satellite data, making such data more similar to that observed by ground-based 677 

sites. These improvements were more obvious for CFs over land regions. Among them, the largest bias 678 

correction was seen for the ISCCP-H products (about 7.9% improvement) and the CLARA-A2 products 679 

(about 6.5% improvement); the former always underestimated CF in the Arctic (Kotarba, 2015; Liu et 680 

al., 2022) and the latter have often been reported to under-identify CF over northern Canada, northern 681 

Russia, and across the entire GrIS in land regions and over the entire Arctic Ocean in April (Karlsson 682 

and Dybbroe, 2010). Note that the bias of CERES-SSF changes from 0.4% to −0.72% after CDF 683 

matching, because CERES-SSF products are usually reported to overestimate CF and these 684 

overestimations were corrected reasonably. For the ocean regions, the ground references used in this 685 

paper were derived from multiple platform observations, which have great spatio-temporal heterogeneity. 686 

Therefore, a large CF discrepancy existed between satellite data and ocean observations. Almost all the 687 

passive sensor data have RMSEs and bias that would decrease after CDF correction by about 0.8–1.7% 688 

and 0.68–5.26%, respectively. The CDF matching mainly improves the CF in the high-value grid boxes 689 

of MODIS-based data and PATMOS-x data as well as in the CF in low-value grid boxes of ISCCP-H and 690 

CLARA-A2. Satellite observation covering open sea areas typically presents a higher CF compared to 691 

station observation. Consequently, partial overestimation may persist despite correction by the CDF 692 
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matching approach. In the subsequent fusion process, the difference between satellite CF and ground CF 693 

was taken into account, which can play a certain extent role in overfitting correction. 694 

 695 
Figure 13. Validation of the corrected cloud fraction of passive sensor datasets after cumulative distribution 696 

function matching against (a) CRU TS4.05 dataset over land regions and against (b) ICOADS dataset over sea 697 

regions. 698 

 699 

In addition, in the land area, CDF matching was directly carried out grid by grid. However, the short 700 

temporal range (2006–2016) of the reference data limits the production of long time-series CF products. 701 

In this study, we proposed a hypothesis that the matching parameter in a specific grid box does not change 702 

over time. To prove the validity of this hypothesis, we conducted sensitivity analysis on the matching 703 

parameters from the fifth to the eleventh year at one-year intervals. The findings indicate that any 704 

deviations in matching parameters were under 0.05% when the time horizon exceeded 8 years. This 705 

demonstrates a level of stability in the correction coefficient when utilizing data for a period exceeding 706 

11 years (Figure A1). Figure 14 displays the variation in differences between satellite data and ground 707 

observations before and after conducting CDF matching throughout the duration of the study. These 708 

differences are calculated by subtracting the deviation between satellite data and ground observations 709 

subsequent to CDF matching from that prior to CDF matching. Clearly, the differences remained steady 710 

over time, and the maximum average annual difference was no more than 1.56%, while part of it was 711 
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derived from the orbit drift of satellite and variations in the spectral channel. 712 

 713 

Figure 14. The difference in results between satellite data and ground observations before and after cumulative 714 

distribution function matching over the Arctic from 2000 to 2020. 715 

 716 

5.2 The Uncertainties of the original Satellite Data 717 

CF products from different sensors have different degree of uncertainties. As a knowledge-centered 718 

approach, Bayesian maximum entropy approach could integrate informative content with uncertainty 719 

from different sources based on a rigorous theoretical support of considerable generality to achieve 720 

improved prediction accuracy. For example, the observed data that accompanied by obvious sources of 721 

uncertainty such as inaccuracy in measuring devices, modeling uncertainties, and human error are treated 722 

as soft data in BME strategy. For the CF datasets of multiple satellite, the uncertainties come from 723 

calibration error, orbit drift, signal degradation as well as the errors of cloud detection algorithms (Liu et 724 

al., 2022). To achieve optimum estimation of CFs by combining data from multiple sensors, it is 725 

imperative to explicitly consider the uncertainties associated with the CF data that is being merged. In 726 

our study, the CF data of passive sensor products are viewed as soft data, and the uncertainty associated 727 

with different error sources can be expressed explicitly by probability distribution. 728 

Specifically, the soft data of multiple satellite CF datasets were constructed by comparing the 729 

spatiotemporally collocated satellite CFs and the ground-based records from CRU TS4.05 over land and 730 

from ICOADS over sea. Traditionally, the deviations between each satellite dataset and ground site 731 

observations at different times and different regions have been averaged to the entire datasets, and then 732 

used to calculate the average uncertainty of these data. In this way, the spatial variation of uncertainty in 733 

each satellite dataset was ignored. Because the conditions that cause uncertainty are variable in time and 734 

space, the uncertainties in each satellite dataset were definitely not the same everywhere (Tang et al., 735 

2016). This is especially true for the ICOADS data, which come from different platforms and introduce 736 

large inconsistencies in results. In this study, we constructed soft data for CF over land, ocean, and GrIS 737 

regions every month separately by analyzing the PDF differences for different regions and different 738 

months, which realized more consistent results with the ground observations. However, despite concerted 739 

efforts, determining the uncertainty for each grid remains challenging in light of the substantial temporal 740 

and spatial gaps of the reference data, particularly that which pertains to the marine domain. 741 

5.3 The Uncertainties of the Fusion CF 742 

To assess the fusion algorithm's reliability, we used the standard deviation of error within each grid value 743 

in the fusion process to quantify the uncertainties. Specifically, we determined the standard deviation of 744 

the predicted posterior probability density function on each grid point. Our findings demonstrate that, 745 
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with the exception of the northern region of Greenland and part of the margin error, the standard deviation 746 

of error in other areas was within 3% (Fig 15). We attribute these discrepancies primarily to the 747 

underestimation of ground and satellite observations by satellite data, particularly ISCCP-H data, by 748 

around 10-30% in the central zone of Greenland. Moreover, the CF of ISCCP-H was significantly 749 

overestimated beyond the Greenland margin. Such significant inconsistencies can adversely affect the 750 

fusion results. In addition, because the CF of satellite data, particularly satellite data based on AVHRR, 751 

was significantly lower than that of ground observation data and active sensor data in April, and a 752 

significant difference existed between different datasets, the standard deviation of error after fusion 753 

marginally increased in April, with some areas at approximately 4%. 754 

 755 

Figure 15. The mean error standard deviation of the fusion results 756 

6 Data Availability 757 

The fused CF product is available on the Zenodo repository at https://doi.org/ 758 

10.5281/zenodo.7624605 (Liu et al., 2022). The gridded CF data are provided both in *.mat format 759 

(Fused_CF_Arctic_MAT, with file size 9.91 MB) and netCDF format (Fused_CF_Arctic_netCDF, with 760 

file size 10.7MB) at 1° spatial resolution and monthly temporal resolution during 2000–2020 in 761 

percentages. The results in these two folders are exactly the same, someone can download either format 762 

as needed.  763 

7 Conclusions 764 

The spatiotemporal inconsistency in existing satellite CF products would inhibit their application in 765 

climatological and energy budget studies. Over the Arctic region, the special climatic conditions and 766 

underlying surface characteristics limit the cloud detection abilities of passive/optical satellite sensors. 767 

The complementary features of the CF products derived from multiple satellite sensors in spatial 768 

completeness and accuracy make it possible to produce an improved CF product by merging data from 769 

multi-sensor satellite CF products. 770 

In this paper, we propose a data fusion strategy for producing high-quality monthly CF data over 771 

the entire Arctic with a latitude larger than 60°N during sunlit months from 2000 to 2020. Four key steps 772 

were involved in the proposed strategy: (1) data quality control; (2) correct the bias of passive sensor 773 

data using CDF matching; (3) obtain the spatiotemporally isotropous component by removing the 774 

spatiotemporal trends; and (4) produce very accurate CF data by fusing multiple satellite products and 775 

considering the uncertainty between satellite data and ground observations with the BME approach. 776 
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The fusion algorithm proposed by this study apparently reduced inconsistencies in the Arctic CF 777 

data acquired by multiple satellite products and the reference products spatiotemporally, resulting in 10–778 

20% reductions of CF differences between fused satellite products and the reference data, and an obvious 779 

improvement was seen across the GrIS and in the central Arctic Ocean. The results from 21-year data 780 

sets in the study areas demonstrate that the monthly mean CF of the fusion product varied from 62% 781 

(April) to 79% (September) during the study period, which is similar to that of the two reference datasets. 782 

After CDF matching, the inconsistencies of multiple satellite CF products were reduced by about 3.43% 783 

for the entire Arctic, with a larger reduction (4.46%) for sea ice regions. The overestimation of MODIS-784 

based products and the underestimation of AVHRR-based products have been effectively corrected, with 785 

the CERES-SSF bias changing from 0.4% to −0.72% and the bias of ISCCP-H and CLARA-A2 786 

decreasing by about 7.9% and 6.5%, respectively. After BME fusing, comparisons with the ground-based 787 

observations (CRU TS4.05 in land and ICOADS in marine areas) and the active sensor data CALIPSO-788 

GEWEX show that R2 improved by about 0.05–0.48 for different products; meanwhile, the overall 789 

RMSEs and bias of fusion product were reduced by about 2.08–7.75% and 1.6–12.54%, with reductions 790 

of nearly 50% and 67% when compared with that of the original passive sensor data, respectively. When 791 

compared with the reanalysis CF dataset ERA5 and the model dataset MRI-AGCM3-2-S, R2 increased 792 

by about 0.18 and 0.14, RMSE and bias for reanalysis data decreased by about one-third of that for the 793 

original data, with reductions about 3.08–8.68% and 1.45–15.88% for different data, respectively. The 794 

RMSEs for model data dropped to one-fourth of their original values (about a 2.60–8.20% reduction). 795 

These mean that the proposed fusion algorithm effectively removed CF data with differences greater than 796 

30% and made the fused Arctic CF estimation more robust than those data from a single satellite. 797 

Nevertheless, the fused product could completely cover the entire Arctic, especially the ocean regions, 798 

where the active sensor data and the ground-based data have large data gaps. Temporally, the fused data 799 

can complement the missing data caused by the faults of satellites carrying AVHRR sensors and the 800 

absence of Aqua data before 2002 as well as the temporal limitation of passive sensors. 801 

In general, the proposed fusion algorithm combines the complementary features of multiple satellite 802 

CF datasets; it not only takes full advantage of the spatiotemporal autocorrelation among neighboring 803 

grids but also incorporates uncertainty estimates of multi-sensor CFs, such as the uncertainties of each 804 

passive sensor dataset, the uncertainties between passive and active sensor datasets, as well as the 805 

uncertainties between satellite data and ground-based observations. Through temporal and spatial 806 

expansion schemes, this fusion framework makes up for the disadvantages in spatiotemporal ranges of 807 

reference data. Finally, the fusion algorithm can generate monthly 1° × 1° CF product covering the entire 808 

Arctic region during 2000 to 2020, which has positive significance for reducing the uncertainties of 809 

assessment of surface radiation flux and improving the accuracy of research related to climate change 810 

and energy budgets both regionally and globally. However, some overestimations were observed, 811 

especially in ocean regions. This may be attributed to the fact that the ocean stations are too sparse to 812 

play a certain role in correcting the overfitting of CDF. Although ICOADS is a widely used ocean 813 

validation dataset, it has great spatiotemporal heterogeneity because it comes from a variety of different 814 

observation platforms and the sampling is affected by the extent of sea ice. Better reference data should 815 

be explored to further improve the uncertainty involved in the assessment of the fused product. 816 
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Appendix A 817 

 818 

Figure A1. The sensitivity analysis on the CDF matching parameters from the fifth (2011) to the eleventh year (2017) 819 

of CALIPSO time at one-year intervals. The Coefficient a, b and c are calculated by the least-square fit method. And 820 

the time period only contains sunlight month from April to September. 821 
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