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Abstract: Global products of remote sensing Normalized Difference Vegetation Index (NDVI) are critical to assessing the 

vegetation dynamic and its impacts and feedbacks on climate change from local to global scales. The previous versions of the 

Global Inventory Modelling and Mapping Studies (GIMMS) NDVI product derived from the Advanced Very High Resolution 10 

Radiometer (AVHRR) provide global biweekly NDVI data starting from the 1980s, being a reliable long-term NDVI time 

series that has been widely applied in Earth and environmental sciences. However, the GIMMS NDVI products have several 

limitations (e.g., orbital drift and sensor degradation) and cannot provide continuous data for the future. In this study, we 

presented a machine learning model that employed massive high-quality and global-wide Landsat NDVI samples and a data 

consolidation method to generate a new version of the GIMMS NDVI product, i.e., PKU GIMMS NDVI (1982−2020), based 15 

on AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) data. A total of 3.6 million Landsat NDVI samples 

that well spread across the globe were extracted for vegetation biomes in all seasons. The PKU GIMMS NDVI exhibits higher 

accuracy than its predecessor (GIMMS NDVI3g) in terms of R2 (0.975 over 0.942), mean absolute error (MAE: 0.033 over 

0.074), and mean absolute percentage error (MAPE: 9% over 20%). Notably, PKU GIMMS NDVI effectively eliminates the 

evident orbital drift and sensor degradation effects in tropical areas. The consolidated PKU GIMMS NDVI has a high temporal 20 

consistency with MODIS NDVI in describing vegetation trends (R2 = 0.962, MAE = 0.032, and MAPE = 6.5%). The PKU 

GIMMS NDVI product can potentially provide a more solid data basis for global change studies. The theoretical framework 

that employs Landsat data samples can facilitate the generation of remote sensing products for other land surface parameters. 
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1 Introduction 25 

The Normalized Difference Vegetation Index (NDVI) characterizes the biophysical, biochemical, and physiological 

conditions of vegetation (Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). As a normalized ratio of the Near-infrared 

(NIR) and red bands, it minimizes many forms of multiplicative noise, including soil background, atmosphere, and sun–target–

sensor geometry (Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). Due to the long archive, simplicity, and robustness, 
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NDVI is one of the most popular vegetation indices (VIs) that have been widely used in the quantification of vegetation 30 

dynamics (Badgley et al., 2017; Gamon et al., 2016; Joiner et al., 2018; Li et al., 2019), ecosystems carbon and water cycles 

(Zhu et al., 2021; Wang et al., 2021; Schubert et al., 2012; Cui et al., 2021), and environmental stress and disturbances 

(Aghakouchak et al., 2015; Qin et al., 2021; Peng et al., 2020). NDVI can be acquired from satellite sensors since the 1970s, 

but it wasn’t until the late 1990s that NDVI data of different temporal and spatial resolutions became steadily available from 

better designed and calibrated sensors such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) (Didan, 2021), 35 

‘Satellite Pour l'Observation de la Terre’ (SPOT) VEGETATION (SPOT-VGT) (Maisongrande et al., 2004), and Visible 

Infrared Imaging Radiometer (VIIRS) (Cao et al., 2014). For a long time before the late 1990s, the Advanced Very High 

Resolution Radiometer (AVHRR) sensor onboard NOAA satellites has been the only NDVI data source that provides frequent 

and continuous global observations. Several sets of global long-term time-series NDVI products have been released based on 

AVHRR, such as the Global Inventory Modelling and Mapping Studies (GIMMS) NDVI3g (Pinzon and Tucker, 2014), Long 40 

Term Data Record version 4 (LTDR4) NDVI (Pedelty et al., 2007), and Vegetation Index and Phenology version 3 (VIP3) 

NDVI (Pedelty et al., 2007). These products have provided great insights into how ecological processes of vegetation influence 

and respond to ongoing climate change (Wang et al., 2021; Zhu et al., 2021; Zhang et al., 2017; Piao et al., 2020; Myers-Smith 

et al., 2020; Chen et al., 2019). However, uncertainties in the NDVI products have also led to inconsistency not only between 

different products but also for the same product in different time periods, placing many studies in a dilemma (Wang et al., 45 

2022; Zeng et al., 2022; Fensholt and Proud, 2012). 

There are several sources of uncertainties in AVHRR-based NDVI products. The first comes from the discrepancies in 

band settings (e.g., center wavelength and spectral response function) within AVHRR sensors (i.e., AVHRR-2 and AVHRR-

3) as well as with other sensors (such as MODIS and VIIRS) (Yang et al., 2021; Trishchenko et al., 2002; Pinzon and Tucker, 

2014; Fan and Liu, 2016). Second, NDVI inconsistencies could also occur between the same AVHRR sensors onboard 50 

different NOAA satellites. In this case, the sensors would have different image acquisition times and sun–target–sensor 

geometries, yielding a "jump" (a sudden change in values) phenomenon in NDVI time series (Tian et al., 2015; Frankenberg 

et al., 2021; Jiang et al., 2017; Los, 1998). For example, the AVHRR sensor onboard NOAA-11 has a considerably larger 

NDVI than preceding and subsequent AVHRR sensors (Beurs and Henebry, 2004). Third, uncertainties could be introduced 

by the NOAA satellite orbital drift and AVHRR sensor degradation due to the harsh environments in space (Wang et al., 2022). 55 

Artificial signals from the orbital drift in humid areas were evident for the AVHRR-based NDVI products (e.g., VIP3 NDVI, 

LTDR4 NDVI, and GIMMS NDVI3g) and downstream products such as the GIMMS Leaf Area Index (LAI)3g (Zhu et al., 

2013).  

For long-term vegetation trend analysis, an accurate global NDVI product requires us to well address the abovementioned 

uncertainties, particularly the ones related to temporal inconsistency. Some efforts have thus been made in past years (Tucker 60 

et al., 2005; Jiang et al., 2008; Doelling et al., 2007; Cao et al., 2004). One strategy performed NDVI calibration using the data 

acquired when NOAA orbital drift or AVHRR sensor degradation had not occurred. For example, Jiang et al. (2008) used 

NDVI in the inaugural year of NOAA satellites as a baseline to calibrate NDVI of other years. The other strategy calibrated 
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AVHRR NDVI with other sensors that have overlapping periods of observation with AVHRR. Pinzon et al. (2014) used 

SeaWiFS NDVI data as a benchmark to evaluate the consistency of GIMMS NDVIg data with a Bayesian approach. Other 65 

studies have employed SPOT-VGT NDVI data (Tucker et al., 2005), Meteosat-8 NDVI data (Doelling et al., 2007), MODIS 

NDVI data (Cao et al., 2004), or VIIRS data (Yang et al., 2021) to calibrate the other NDVI products derived from AVHRR 

sensors. The basic assumption behind the two strategies is that the calibration models and parameters derived from one or 

more overlapping periods must be static through time. This is not necessarily true because the performance of satellite sensors 

could be a function of multiple factors that are not limited to their internal settings and the seasonality (Kogan, 1995). Without 70 

a sufficient understanding of product accuracy in all periods, uncertainties in AVHRR NDVI calibration can hardly be 

determined. 

The Landsat data have the potential to evaluate and calibrate global NDVI products in all periods. As one of the earliest 

satellite missions, Landsat satellite series have provided the longest space-based record of Earth's land since the 1970s (Roy 

et al., 2016; Wulder et al., 2019; Wulder et al., 2016). Landsat sensors have a high spatial resolution, low frequencies of sensor 75 

change, and in particular, high temporal consistency in reflectance (Zhang et al., 2021; Weng et al., 2014; Dong et al., 2020). 

Verification results from Pseudo-Invariant Calibration Points (PICS) (such as desert, water, ice, and snow) showed that the 

temporal variations of Top-Of-Atmosphere (TOA) reflectance were less than 2% for most Landsat sensors (except for Landsat 

5 TM at SWIR 2 which is 3%) during their orbit time (Helder et al., 2013). Although the relatively small field-of-view and 

long revisit period has limited Landsat for global applications (Maisongrande et al., 2004), its excellent temporal consistency 80 

has aided some important studies of vegetation trend via sample analysis, such as in the Arctic region from 1984 to 2016 

(Berner et al., 2020). In recent years, an increasing number of studies have used Landsat data for global dataset production via 

tools such as the Google Earth Engine (GEE) platform (Zhang et al., 2022; Cao et al., 2021). 

In this context, this study uses the long-term Landsat sample data to develop a new version of the GIMMS NDVI product 

(PKU GIMMS NDVI) (1982–2020) from the GIMMS NDVI3g (current version) (1982–2015) and MODIS NDVI products 85 

(2001–2020). We first cross-calibrate NDVI data from different Landsat missions and extract a mass of high-quality Landsat 

NDVI samples worldwide for all time periods (1984–2015). Based on the samples, we generate the PKU GIMMS NDVI using 

biome-specific Back Propagation Neural Network (BPNN) models with GIMMS NDVI3g data and selected explanatory 

variables (the longitude and latitude, associated month, and the NOAA number and years since launch). Then, the temporal 

coverage of PKU GIMMS NDVI is extend to the year 2020 by consolidating with the MODIS NDVI product using a pixel-90 

by-pixel linear regression method. Results of Landsat NDVI cross-calibration are reported. We directly validate PKU GIMMS 

NDVI’s accuracy via individual Landsat NDVI samples and compare it with GIMMS NDVI3g. We also examine the accuracy 

distribution in space for both products and demonstrate the performance of PKU GIMMS NDVI in alleviating uncertainties 

from the orbital drift and sensor degradation. The consolidation of PKU GIMMS NDVI with MODIS NDVI, and the 

performance of consolidated PKU GIMMS NDVI in characterizing vegetation trends are also evaluated. 95 
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2 Data 

Four global satellite products were used in this study: Landsat Surface Reflectance data (Collection 1 Tier 1), MODIS 

Land-Cover Type product (V6.1), GIMMS NDVI3g product (V1.0), and MODIS NDVI product (V6.1). The Landsat Surface 

Reflectance data were used to generate NDVI samples. The MODIS Land-Cover Type product was used to label NDVI 

samples with vegetation biome types. The GIMMS NDVI3g was the main data source from which our PKU GIMMS NDVI 100 

product would be created. The MODIS NDVI product was used to extend the temporal coverage of the generated PKU GIMMS 

NDVI product. 

2.1 Landsat Surface Reflectance Data (Collection 1 Tier 1) 

We obtained Landsat Surface Reflectance data between 1984 and 2015 with a spatial resolution of 30 m from the 

Google Earth Engine (GEE) platform. These data comprised the Collection 1 (Tier 1) datasets of Landsat 5 (TM), 7 (ETM+), 105 

and 8 (OLI), produced by the United States Geological Survey (USGS). Landsat 5 was launched in March 1984 and retired in 

January 2013. Landsat 7 and 8 were launched in April 1999 and February 2013, respectively, and are still in operation. The 

USGS uses the Landsat Ecosystem Disturbance Adaptive Processing System (Masek et al., 2006) to perform atmospheric and 

terrain corrections for Landsat 5 and Landsat 7 and uses the Landsat 8 Surface Reflection Code (Vermote et al., 2016) to 

perform corrections for Landsat 8. Previous studies have revealed that Landsat reflectance data have good temporal consistency 110 

that can be used to produce a set of long-term stable benchmarks (Helder et al., 2013). However, this study found a systematic 

deviation between Landsat 5/Landsat 8 and Landsat 7. The correction method for the systematic deviation is described in 

Section 3.1. 

2.2 GIMMS NDVI3g (V1.0) Product 

This study selected the latest version (third generation) of the GIMMS NDVI dataset (GIMMS NDVI3g, V1.0) 115 

generated from AVHRR sensors onboard a series of NOAA satellites (NOAA 7, 9, 11, 14, 16, 17, and 18) (Pinzon and Tucker, 

2014). The GIMMS NDVI3g dataset has a spatial resolution of 1/12°. Half-month maximum NDVI composite was used to 

eliminate the atmospheric effects on the NDVI magnitude. This compositing scheme resulted in two maximum NDVI values 

per month. The entire available GIMMS NDVI3g record, which extends from July 1981 to December 2015, was used in this 

study. Pixels with negative NDVI values referred to snow and other contaminated data (e.g., pixels with large inland water 120 

bodies) and pixels of bad quality, determined by the Quality control (QC) layer, were removed from all analyses. 

2.3 MODIS Vegetation Index Product (MOD13C1, V6.1) 

The MODIS Vegetation Index product (MOD13C1) (Didan, 2021) is accessible at NASA's Earth Observing System 

Data and Information System (EOSDIS) (https://search.earthdata.nasa.gov/). The product has a temporal resolution of 16 days 

and a spatial resolution of 0.05°. To match the temporal and spatial resolutions with the GIMMS NDVI3g product, we first 125 
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performed time-weighted aggregation on MODIS NDVI to produce an NDVI product at a temporal resolution of half-month. 

Then we performed nearest neighbour sampling to downscale the spatial resolution to 1/12°. 

2.4 MODIS Land-Cover Type Product (MCD12Q1, V6.1)  

The MODIS Land-Cover Type product (MCD12Q1) provides global maps of land cover with a spatial resolution of 

500 m for each year between 2001–2019 (Friedl et al., 2002). It has five legacy classification schemes, including International 130 

Geosphere-Biosphere Program (IGBP) classification system, University of Maryland (UMD) classification system, Leaf Area 

Index (LAI) classification system, BIOME-Biogeochemical Cycles (BGC) classification system, Plant Functional Types (PFT) 

classification system, and FAO-Land Cover Classification System (LCCS) classification system. The LAI classification 

scheme was used in this study. The LAI classification scheme has 11 classes, including eight natural vegetation types 

(evergreen needleleaf forests [ENF], evergreen broadleaf forests [EBF], deciduous needleleaf forests [DNF], deciduous 135 

broadleaf forests [DBF], shrublands [SHR], savannas [SAV], grasslands [GRA], croplands [CRO]) and three non-vegetated 

lands (water bodies [WAT], non-vegetated lands [NVG), and urban and built-up lands [URB]). In data analysis, we also 

merged the natural vegetation types into one global vegetation biome [GLO]. The original spatial resolution of MCD12Q1 

was 500 m, but it was spatially aggregated with Landsat NDVI samples to 1/12° to match the GIMMS NDVI3g product 

(Section 3.2). The vegetation biome type with the highest frequency from 2001–2019 was considered as the vegetation biome 140 

type from 1982–2020. This could be a margin of error but it is the best option. 

3 Methodology 

A schematic overview of the methodology involves four key steps as illustrated in Figure 1: 1) Landsat sensor cross-

calibration to create temporal consistent Landsat data as a benchmark; 2) Generation of PKU GIMMS NDVI from GIMMS 

NDVI3g using per-biome Landsat NDVI samples, Back Propagation Neural Network (BPNN) models and other explanatory 145 

variables; 3) Consolidation of PKU GIMMS NDVI with MODIS NDVI to extend the temporal coverage of PKU GIMMS 

NDVI to the year 2020; and 4) Evaluation of PKU GIMMS NDVI in terms of its performance in temporal and spatial accuracies 

and in eliminating the orbital drift and sensor degradation. 
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Figure 1. Schematic diagram of the generation and evaluation of the PKU GIMMS NDVI product. 

3.1 Cross-calibrating NDVIs among Landsat Sensors  

Systematic deviation exists in NDVIs between Landsat 5, Landsat 7, and Landsat 8 (Berner et al., 2020). Specifically, 150 

NDVI derived from Landsat 5 is smaller than that from Landsat 7 and NDVI from Landsat 7 is smaller than that of Landsat 8 

(Berner et al., 2020) (Figure 2a and Figure2c). As the Landsat NDVI served as a benchmark in this study, the systematic 

deviations were first removed. We adopted the method by Berner et al. (2020) that used BPNN to calibrate Landsat 5 and 

Landsat 8 to the Landsat 7 level. The reason for considering Landsat 7 as the benchmark is that Landsat 7 has overlapping 

periods with both Landsat 5 and Landsat 8. 155 

3.1.1 Sample locations 

For the Landsat sensor cross-calibration, one hundred thousand (100,000) sample locations were randomly selected for 

each vegetation biome type from the MCD12Q1. For each sample (500 m resolution), a matrix of 20 × 20 Landsat pixels (30 

m resolution) was extracted at the sample centre from Landsat 5, Landsat 7, and Landsat 8 images acquired between 1984 and 

https://doi.org/10.5194/essd-2023-1
Preprint. Discussion started: 21 February 2023
c© Author(s) 2023. CC BY 4.0 License.



7 
 

2015. The Landsat pixels at each sample location were further refined to guarantee that only high-quality clear-sky 160 

measurements were included in our study. 

First, all Landsat data during August 1991 and December 1992 when Mount Pinatubo erupted were excluded. Second, 

the abundance of aerosols and thin clouds was used to determine the quality of the sample location (and associated Landsat 

pixels). If many of the pixels had a high atmospheric opacity (provided by Landsat products), the whole sample location was 

removed. For Landsat 5 and Landsat 7, the threshold of average atmospheric opacity was set to 0.3. For Landsat 8, the 165 

percentage of clear pixels (which have an atmospheric opacity index of 1) must be higher than 80% (320 pixels). Third, the 

quality of the Landsat scene, cloud contamination, and radiation magnitude were used to determine the quality of individual 

pixels. A pixel was marked as low-quality if (1) the associated Landsat scene had excessive cloud coverage (> 80 %), (2) the 

pixel was contaminated by clouds, cloud shadows, water, or snow judged by the CF Mask algorithm (Foga et al., 2017; Zhu 

et al., 2015), or (3) the pixel had implausibly high (>1) or extremely low (0.001) surface reflectance due to radiation saturation 170 

and atmospheric adjustment. In this study, the whole sample location was removed if the percentage of high-quality pixels was 

lower than 90% (360 pixels). 

NDVI was calculated and averaged from high-quality pixels at the remaining sample locations. The sample locations 

were divided into eighty percent for model training and twenty percent for model evaluation. 

3.1.2 Cross-calibration using BPNN models 175 

BPNN is one of the most popular and established Artificial Neural Network (ANN) algorithms used in ecological 

studies (Hong et al., 2021; Meng et al., 2020; Yang et al., 2018). An ANN is a machine-learning algorithm inspired by the 

structure and function of biological neural networks. A typical ANN comprises input (explanatory variables), output (target 

variable), and hidden layers, each containing artificial neurons whose numbers range from several to hundreds. In the model 

training of BPNN, signals flow from the input layer to the output layer, after likely passing through several hidden layers. 180 

Errors in the output layer propagate backward to the previous layers until they satisfy the user-defined threshold, and the 

network attempts to minimize the discrepancies between observations and predictions.  

This study used NDVI sample locations (500 m resolution) in the overlapping periods between Landsat 7 and Landsat 

5/Landsat 8 to train BPNN models. The models were then extrapolated to calibrate Landsat 5 and Landsat 8 in non-overlapping 

periods. The extrapolation to non-overlapping periods was reliable on the basis that the optical sensors onboard Landsat 185 

satellites are temporally consistent with themselves and the reflectance data have been well geometrically and radiometrically 

calibrated (Irons et al., 2012; Wulder et al., 2019; Wulder et al., 2016). Specifically, NDVI values from Landsat 7 and Landsat 

5/Landsat 8 were paired at each sample location (Section 3.1.1) if their acquisition times were less than 10 days. In total, 

12,718,863 sample pairs were obtained for all vegetation biome types. When training the BPNN model, NDVI of Landsat 

5/Landsat 8 was used as the explanatory variable, and NDVI of Landsat 7 was the target variable. We also included the image 190 

acquisition time (day of the year) and the sample location’s spatial coordinates (longitude and latitude) as covariates to explain 

potential seasonal and regional variations in the samples. 
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3.2 Generation of the PKU GIMMS NDVI 

3.2.1 Landsat NDVI samples 

The cross-calibrated Landsat data were used to calibrate the GIMMS NDVI3g product. A total of 40,000 sample 195 

locations were randomly selected from the GIMMS NDVI3g product with a spatial resolution of 1/12°. Then, nine Landsat 

pixels from all available single Landsat 5, Landsat 7, and Landsat 8 scenes were uniformly placed within each sample pixel 

(1/12°). The Landsat pixel quality was examined in the same way as Section 3.1.1. The sample location was considered valid 

if the number of high-quality pixels exceeded 5 (out of nine). Its NDVI value was calculated as the average from high-quality 

Landsat pixels. The samples were also divided into eighty/twenty percent for model training and evaluation. 200 

3.2.2 BPNN models with GIMMS NDVI3g and other explanatory variables 

With the Landsat NDVI samples (1/12° resolution), the BPNN model was also used to calibrate the GIMMS NDVI3g 

product. In the BPNN model, GIMMS NDVI3g data from 1984 to 2015 were used as an explanatory variable, and the Landsat 

NDVI was the target variable. We also included other explanatory variables associated with spatial, temporal, and satellite 

information. The spatial information (longitude and latitude) accounts for the spatial autocorrelation in image samples; 205 

temporal information (month) accounts for vegetation dynamics; and satellite information (NOAA satellite number and years 

since its launch) accounts for issues from NOAA orbit drift and AVHRR sensor degradation. One BPNN model was built for 

each of the eight vegetation biome types. GIMMS NDVI3g was first explored as a single explanatory variable in the BPNN 

model, and other explanatory variables were added in an enumerative order. In detail, five feature combinations were set up 

to evaluate their impacts on the BPNN model: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); 210 

(S3) NDVI, spatial information, and time information (month); (S4) NDVI, spatial information, time information, and NOAA 

satellite number; and (S5) NDVI, spatial information, time information, NOAA satellite number and years since its launch. 

The optimal parameters for each enumeration were derived through ten-fold cross-verification. The final BPNN model for 

NDVI calibration was determined with an appropriate set of explanatory variables and the optimal parameters. 

3.3 Consolidation of the PKU GIMMS NDVI and MODIS NDVI 215 

Over the past two decades, GIMMS NDVI3g products have been extensively utilized for spatiotemporal dynamic 

monitoring of vegetation, carbon and water cycles of ecosystems, and other related studies. They have provided powerful data 

support for several significant conclusions in Earth and environmental sciences. However, the latest data in GIMMS NDVI3g 

is until 2016 and no further upgrades will be provided. This study extended the temporal coverage of GIMMS NDVI3g so that 

the investigation of recent responses and feedback of vegetation to climate change can be possible. The MODIS NDVI product 220 

has excellent precision, temporal consistency, and a long-time span. It is considered the best medium–high resolution global 

NDVI produced over the past two decades. It could be utilized as an effective extension of the PKU GIMMS NDVI.  
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However, the band settings of MODIS are different from that of AVHRR. A simple combination of these two products 

would lead to systematic inconsistencies in NDVI values. Some methods have been proposed to deal with this issue, such as 

maximum-minimum stretching (Yang et al., 2021), histogram matching (Jiang et al., 2008), and machine learning ((Berner et 225 

al., 2020)). In this study, we selected a pixel-scale linear fusion method (Mao et al., 2012) to splice the PKU GIMMS NDVI 

product (1982–2015) and MODIS NDVI product (2001–2020). This pixel-wised method has demonstrated more accurate than 

the global models (Yang et al., 2021). The MODIS NDVI was first resampled to have the same spatial resolution (1/12°) and 

temporal resolution (half a month) as the PKU GIMMS NDVI. Then, NDVI data in the overlapping periods (2004–2015) were 

extracted from both products. The pixel-wised linear regression model was constructed based on the extracted NDVI. This 230 

study found that the linear regression model might not be significant in EBF due to frequent clouds. As such, we applied the 

regression model to the non-overlapping periods only when R2 > 0.2 with p < 0.001; otherwise, the PKU GIMMS NDVI was 

adjusted by aligning its mean value to that of the MODIS NDVI. The final PKU GIMMS NDVI product comprised the NDVI 

product derived from GIMMS NDVI3g between 1982 and 2003 and the MODIS NDVI product between 2004 and 2020. 

3.4 Evaluation of the PKU GIMMS NDVI Product 235 

This study used a direct verification method to evaluate our product of PKU GIMMS NDVI (Justice et al., 2000). For 

different vegetation biome types, the PKU GIMMS NDVI product was compared to Landsat NDVI values at the remaining 

twenty percent of the sample locations (1/12°). As a comparison, the GIMMS NDVI3g was also evaluated in the same manner. 

Five metrics were calculated for accuracy assessment, i.e., sample number (N), R2, Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and bias. R2 measures the percentage of variations that models can explain; MAE and 240 

MAPE measure absolute and relative error values at the sample level; and bias measures errors at the global level. The spatial 

distribution of R2 was analysed for the PKU GIMMS NDVI and GIMMS NDVI3g products in 2°×2° grids. To highlight the 

differences between AVHRR-2 and AVHRR-3, NDVI products were evaluated in two separate periods (AVHRR-2: 1982–

2000 and AVHRR-3: 2001–2015). 

We also evaluated the performance of our PKU GIMMS NDVI product in alleviating the effects of orbital drift and 245 

sensor degradation; and compared it to the GIMMS NDVI3g product. Tian et al. (2015) observed that the GIMMS NDVI3g 

product showed a noticeable artefact in humid areas, which may have been caused by the NOAA satellite orbit drift and 

AVHRR sensor degradation. Zhu et al. (2013) also documented the significant orbital drift in the tropics. However, their 

conclusions either lacked a quantitative analysis or were solely based on statistical observations at a regional scale because 

long-term, continuous, and time-consistent benchmark data before 2000 were lacking. This study used NDVI bias in the 250 

tropical vegetation type of EBF to measure the magnitude of the orbital drift and sensor degradation effect. The bias was 

calculated as the mean value of NDVI deviation relative to Landsat NDVI in percentage (Helder et al., 2013) (Eq. 1). 

 
���� % =  

1

�
�

(��������� − �����������)

�����������

�
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 × 100% (1) 
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where N denotes the number of Landsat NDVI samples. If there is orbital drift or sensor degradation, the bias will drastically 

fluctuate; otherwise, it remains constant. Seasonal fluctuations in the time series of NDVI bias were first removed via the 

multi-year averaging method. Then, inter-annual trends of the bias were extracted via the Ensemble Empirical Mode 255 

Decomposition (EEMD) approach (Huang et al., 1998). 

The consolidation of PKU GIMMS NDVI with MODIS NDVI was evaluated by 1,000 random points for each 

vegetation biome type. Using MODIS NDVI as the reference, R2, MAE, and MAPE for PKU GIMMS NDVI before and after 

consolidation were calculated and compared during the overlap period (2003–2015). To evaluate the performance of PKU 

GIMMS NDVI in characterizing vegetation trends (greening or browning), we performed linear regression analysis on the 260 

time series of annual average NDVI between 2004 and 2015 at each pixel. The linear regression slope could represent a green 

trend (positive slope value) or a browning trend (negative slope value). Trends from multiple NDVI products, i.e., GIMMS 

NDVI3g, MODIS NDVI, and PKU GIMMS NDVI (before and after consolidation), were compared. 

4 Results 

4.1 Cross-calibration between Landsat 7 and Landsat 5/Landsat 8 265 

More than 12 million Landsat sample pairs (600 m resolution) were acquired for Landsat sensor cross-calibration. 

Based on the samples, sixteen BPNN models were established to calibrate Landsat 5 NDVI and Landsat 8 NDVI for eight 

vegetation biome types. Figure 2b and Figure 2d show the NDVI calibration results of Landsat 5 and Landsat 8 against Landsat 

7. Both relationships were strong with high R2 (R2 = 0.981 for Landsat 5 and 0.985 for Landsat 8), low MAE (MAE = 0.020 

for Landsat 5 and 0.017 for Landsat 8), and low MAPE (MAPE = 5.87% for Landsat 5 and 5.14% for Landsat 8). Compared 270 

to uncalibrated data (Figure 2a and Figure 2c), negative deviation in Landsat 5 NDVI and positive deviation in Landsat 8 

NDVI have been efficiently eliminated. 
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Figure 2. Efficiency of NDVI cross-calibration between Landsat sensors. (a) Landsat 7 NDVI vs. uncalibrated Landsat 5 NDVI. (b) 

Landsat 7 NDVI vs. calibrated Landsat 5 NDVI. (c) Landsat 7 NDVI vs. uncalibrated Landsat 8 NDVI. (d) Landsat 7 NDVI vs. calibrated 

Landsat 8 NDVI. Orange diagonal line represents a 1:1 relationship. The size of NDVI interval in the maps is 0.01. NDVI intervals with 

sample number < 10 were omitted. 

4.2 The PKU GIMMS NDVI product 

4.2.1 Spatiotemporal Representativeness of the Landsat NDVI Samples 

Approximately 3.6 million Landsat NDVI samples (1/12°) from 1984 to 2015 were obtained for GIMMS NDVI3g 275 

calibration. The count and spatiotemporal distribution of the samples primarily depended on the availability of Landsat images, 

which were affected by clouds, cloud shadows, aerosols, climatic conditions, and other factors. The sample count per 

vegetation biome type was approximately proportional to its total area of coverage (Figure 3a and Figure 3b). 

In the spatial domain, our samples covered most vegetated regions worldwide (Figure 3a). Meanwhile in some regions, 

the number of high-quality samples was relatively small. These regions include (1) northern high latitudes, where suffer the 280 

polar night phenomenon, high solar zenith angle, and high observation zenith angle, (2) tropical rainforest areas with abundant 

precipitation and clouds which lower the quality of remote sensing data, and (3) the Sichuan Basin in Southwest China and 
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areas with a temperate marine climate (e.g., Western European continent, British Isles, and west coast of North and South 

America). In the time domain (Figure 3b), the samples of vegetation biome types showed single (for most biomes except CRO) 

or double (CRO) peaks depending on the time of their growing seasons. This guaranteed sufficient samples in the growing 285 

season for accurate NDVI prediction with BPNN. For the biomes of ENF and DNF that are primarily distributed in the high 

northern latitudes, the number of samples in winter (October to April) was < 500. We resolved this problem by reducing the 

explanatory variables in the BPNN model. We did not select samples from non-vegetated regions because we were not 

concerned with non-vegetated areas. 

 

Figure 3. Spatial and temporal distribution of refined Landsat NDVI samples (3.6 million). (a) Distribution of Landsat NDVI samples 

within the 2° × 2° grid. (b) Percentage of samples among the eight vegetation biome types in each month. 

4.2.2 Selection of Explanatory Variables for the BPNN Model 290 

The accuracy of BPNN models under different combinations of explanatory variables (S1 to S5) is shown in Figure 4. 

The addition of spatial location significantly improved the accuracy of predicted NDVI for the vegetation biome types that are 

distributed worldwide. The improvement has not been observed for vegetation biome types that are relatively concentrated 

(e.g., ENF and DNF). The addition of temporal information improved the accuracy of vegetation types with prominent seasonal 
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variations such as DBF and DNF. Finally, adding the NOAA satellite number and orbit time could also improve the accuracy 295 

of BPNN models, especially for SHR. 

For the combination containing all explanatory variables (S5), the R2 of most vegetation biome types except for EBF 

and ENF was > 0.8. For vegetation biomes overall, the R2 reached 0.96, and the relative error was only 11.35%. Therefore, all 

available explanatory variables, i.e., the NDVI, longitude, latitude, month, NOAA satellite number, and years since the NOAA 

satellite's launch, contributed to the BPNN model in this study. 300 
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Figure 4. Performance of different combinations of explanatory variables (S1 to S5) for BPNN models. (a), (b) and (c) show the R2, 

MAE, and MAPE of the BPNN models, respectively. GLO represents the global vegetation biome. The combinations of explanatory 

variables are: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); (S3) NDVI, spatial information, and time 
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information (month); (S4) NDVI, spatial information, time information, and NOAA satellite number; and (S5) NDVI, spatial information, 

time information, NOAA satellite number and years since its launch. 

4.2.3 Direct Validation of PKU GIMMS NDVI and GIMMS NDVI3g 

Our PKU GIMMS NDVI product and the GIMMS NDVI3g product were directly verified with the remaining twenty 

percent of the Landsat NDVI samples from 1984 to 2015 (Figure 5). Overall, the accuracy of the PKU GIMMS NDVI (R2 = 

0.97, MAE = 0.03, MAPE = 9%) was higher than that of the GIMMS NDVI3g (R2 = 0.94, MAE = 0.07, MAPE = 20%) in all 

metrics. Among different vegetation biome types, the NDVI quality of SHR (R2 = 0.88 for GIMMS NDVI3g and 0.92 for 305 

PKU GIMMS NDVI) was higher than that of other biome types. The accuracy of the EBF was relatively low for both products 

(R2 = 0.08 and 0.50). The reason was that EBF is primarily distributed in tropical areas where the quality of remote sensing 

data is poor due to frequent clouds and rains. 

For the GIMMS NDVI3g product, the accuracy differences between vegetation biome types were evident (Figure 5). 

NDVI of SHR (MAE = 0.05), SAV (MAE = 0.08), ENF (MAE = 0.07), and DNF (MAE = 0.08) has been systematically 310 

overestimated (Figure 5a). GRA and CRO were also overestimated, mainly when NDVI values were high (Figure 5a). NDVI 

of the EBF has a rather low accuracy in the GIMMS NDVI3g products, with an R2 of only 0.08. For the PKU GIMMS NDVI 

product, its performance in different vegetation biome types was more stable (R2: 0.50 to 0.92; MAE: 0.05 to 0.10; MAPE: 

2% to 15%) and the scatter points remained near the 1:1 line (Figure 5). In particular, the R2 of the EBF was improved to 0.50 

in the PKU GIMMS NDVI. 315 
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Figure 5. Direct validation of the (a) GIMMS NDVI3g and (b) PKU GIMMS NDVI products. Individual Landsat NDVI samples from 

1984 to 2015 were used in the validation at a 1/12° resolution. Orange lines represent a 1:1 line. GLO represents the global vegetation 

biome. 

4.2.4 Accuracy of PKU GIMMS NDVI and GIMMS NDVI3g in space 

The accuracies of the PKU GIMMS NDVI and GIMMS NDVI3g products exhibited strong spatial heterogeneity 

(Figure 6). The low-accuracy areas were primarily concentrated in the tropics and high northern latitudes, and the high-

accuracy regions were concentrated in the mid-latitudes of the Eurasian continent, the Great Plains of the United States, and 

savanna-dominated areas of Africa and Australia. In the tropical rainforest area where both products had relatively low 320 

accuracies, the PKU GIMMS NDVI better performed especially in Southeast Asia and the northwestern Amazon region. 

However, the improvement of PKU GIMMS NDVI over GIMMS NDVI3g was not significant along the western coast of the 

European continent and Southeast China, probably due to the small number of training samples. 

Probability density diagrams were drawn to show NDVI differences between two periods (before and after 2000) 

(Figure 6e) and between two products (Figure 6f). The accuracy of both NDVI products after 2000 was generally higher than 325 

before 2000. The difference was more evident for the GIMMS NDVI3g product (Figure 6e). The PKU GIMMS NDVI 

improved the accuracies over the GIMMS NDVI3g, especially for the period before 2000 (Figure 6f). 
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Figure 6. Comparison of R2 between the GIMMS NDVI3g and PKU GIMMS NDVI products in pre-MODIS (1982–2000) and MODIS 

(2001–2015) period. (a) to (d) shows the spatial distributions of R2 in 2°× 2° grids. Non-vegetated grids and grids with less than 20 

validation samples are marked in white. (e) and (f) shows the probability distribution of R2 differences between the two periods (before 

2000 and after 2000) and between the two products (GIMMS NDVI3g and PKU GIMMS NDVI), respectively. 

4.2.5 Alleviation of the Orbital Drift and Sensor Degradation Effect 

As shown in Figure 7, the GIMMS NDVI3g product exhibited evident false signals in the EBF region, which agreed 

with the previous findings (Tian et al., 2015). The NDVI bias from different NOAA satellites significantly varied, which may 330 

cause the "jump" phenomenon between NOAA missions. Before 2000, the effect of orbital drift and sensor degradation were 

evident at the last phases of satellite launch. This is especially true for the NOAA11 satellite (Figure 7a). The effect became 

relatively small for NOAA satellites launched after 2000. In the PKU GIMMS NDVI product, the impact from orbital drift 

and sensor degradation has been effectively rectified (Figure 7b). NDVI bias did not change significantly over time, indicating 

that the PKU GIMMS NDVI product had good temporal consistency. 335 
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Figure 7. Temporal variations of NDVI bias% in EBF for (a) the GIMMS NDVI3g product and (b) the PKU GIMMS NDVI product. 

The black dash line represents the interannual trend extracted by the EEMD method. Values from different NOAA satellite missions were 

distinguished with colors. 

4.3 Consolidated PKU GIMMS NDVI 

4.3.1 Direct Validation with MODIS NDVI 

The consolidation process improved the consistency level between PKU GIMMS NDVI and MODIS NDVI from 

acceptable (R2 = 0.829, MAE = 0.083, and MAPE = 16.6%) (Figure 8a-9) to high (R2 = 0.962, MAE = 0.032, and MAPE = 

6.5%) (Figure 8b-9). Specifically, the PKU GIMMS NDVI before data consolidation was systematically lower than MODIS 340 

NDVI; but the relationship approached 1:1 after consolidation. The improvement in consistency was different among 

vegetation biome types. CRO, GRA, and ENF had the greatest improvement, as their MAPE decreased from 26.5%, 22.9%, 

and 20.9% to 7.7%, 8.6%, and 8.5%, respectively (Figure 8a and Figure 8b). The probability distribution densities of R2, 

MAPE, and bias were also analysed based on NDVI values before and after consolidation at all samples (8,000) (Figure 9). 

The results show that the R2 was slightly improved (Figure 9a), and the MAPE was significantly decreased (Figure 9b) after 345 

consolidation. 

For EBF, the improvement in consistency after consolidation was relatively small (5.9% to 4.2%). The pixel-wised 

linear regression model for data consolidation was significant for selected EBF locations (Figure 10a and Figure 10b); but it 

was not for most locations. Due to frequent clouds and rains, both PKU GIMMS NDVI and MODIS NDVI could present 

maximum noises (Figure 10c and Figure 10d). In this case, it was determined that individual MODIS NDVI values were no 350 

longer reliable as benchmark in the regression model and a simple mean-value aligning method was adopted. 
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Figure 8. Direct validation of the PKU GIMMS NDVI product (a) before and (b) after consolidation. The validation was performed using 

1,000 MODIS NDVI samples at a 1/12° resolution for each vegetation biome type from 2004 to 2015. 
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Figure 9. Distribution of the accuracy metrics before and after consolidation. The accuracy metrics include (a) R2, (b) MAPE, and (c) 

bias. The distribution was calculated using 8,000 random sample points from 2004 to 2015 with MODIS NDVI as the true value. 
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Figure 10. Selected EBF locations illustrating the consistency between the PKU GIMMS NDVI product (before and after consolidation) 

and the MODIS NDVI product. (a) and (b) showcase the locations with significant pixel-wised linear regression models. (c) and (d) 

showcase the locations with insignificant models. NDVI values outside two standard deviations were treated as outliers and removed. 

 

4.3.2 Vegetation trend analysis 

Figure 11 shows the distribution of slopes in the linear regression for the GIMMS NDVI3g, MODIS NDVI, and PKU 355 

GIMMS NDVI (before and after consolidation) products at 1/12° grids. Overall, these products showed similar spatial patterns 
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in some global hot spots. For example, all of them capture the greening trend in China and India. However, the GIMMS 

NDVI3g products showed the opposite trend against MODIS NDVI and PKU GIMMS NDVI products in the tropical 

evergreen broadleaf forest regions of Africa and Southeast Asia (Figure 11). 

 

Figure 11. Distribution of the NDVI trend from 2004 to 2015. The NDVI trend is calculated based on the time series of annual average 

NDVI from (a) MODIS NDVI, (b) GIMMS NDVI3g, (c) PKU GIMMS NDVI (before consolidation), and (d) PKU GIMMS NDVI (after 

consolidation). Non-vegetation area is marked in white. 

 360 

The time series of annual NDVI anomalies that were calculated as an area-weighted average for each vegetation biome 

type are shown in Figure 12. Overall, PKU GIMMS NDVI (before consolidation) (0.757×10-3 yr-1) shows a similar trend to 

MODIS NDVI (0.883×10-3 yr-1) (Figure 12i). The trend of GIMMS NDVI3g was slightly lower (0.502×10-3 yr-1). Among 

vegetation biome types except for EBF, GIMMS NDVI3g, PKU GIMMS NDVI (before consolidation) and MODIS NDVI 

showed consistent greening or browning trends and interannual fluctuation characteristics (Figure 12). In EBF area, GIMMS 365 

NDVI3g showed a browning trend due to the impact of orbital drift and sensor degradation (Figure 12e and Figure 11a), which 

was consistent with the research by Wang et al. (2022). In PKU GIMMS NDVI products, the effect of orbital drift and sensor 

degradation has been alleviated. It showed a greening trend in EBF, consistent with MODIS NDVI (Figure 12e). 
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Figure 12. Biome-specific NDVI anomalies from 2004 to 2015 in MODIS, GIMMS NDVI3g, PKU GIMMS NDVI (before 

consolidation), and PKU GIMMS NDVI (after consolidation). The NDVI anomalies were calculated as area-weighted annual averages. 

GLO represents the global vegetation biome. 

5. Discussion and Conclusion 

5.1 Improvements over other long-term Global NDVI Products 370 

The generation of long-term global NDVI products has been challenging due to the uncertainties associated with the 

impacts of satellite orbital drift and sensor degradation/calibration, artefacts related to data processing and analysis, and effects 

from atmosphere, BRDF, scale, topography, etc. (Zeng et al., 2022). While a lot of work remains to do, the current NDVI 

products have made substantial progress in dealing with selected uncertainties and improving the data quality. Depending on 

the type of uncertainty, many methods and data have been introduced with different degrees of succession. For example, the 375 

GIMMS NDVI3g product has primarily focused on identifying the systematic deviations between AVHRR-2 and AVHRR-3 

caused by differences in the sensor characteristics, and on resolving the inconsistency between AVHRR NDVI products 

(Pinzon and Tucker, 2014). 

The significance of the PKU GIMMS NDVI product, was the use of massive representative high-quality Landsat NDVI 

samples across the globe from 1984 to 2015. More than 12 million samples of different vegetation biome types were extracted 380 

to create temporally consistent Landsat data (Figure 2); and approximately 3.6 million Landsat NDVI samples were obtained 

to generate PKU GIMMS NDVI. The number, temporal coverage, and spatial coverage of the samples (Figure 3) have been 

unparalleled compared to preceding long-term NDVI products that also employed samples from other sensors, most of which 
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became available only after late 1990s (e.g., SeaWiFS: 1997−2010; SPOT-VGT: 1999-2014; MODIS: since 2001; VIIRS: 

since 2012). The massive Landsat NDVI samples paved the way for accurate Landsat sensor cross-calibration (Figure 2) and 385 

PKU GIMMS NDVI generation (Figure 5 and Figure 6). They helped efficiently remove the uncertainties from NOAA orbital 

drift and AVHRR sensor degradation (Figure 7). 

5.2 Uncertainty Source 

Despite our efforts to improve the number and quality of the Landsat NDVI samples, uncertainties remain. Besides 

those related to the Landsat NDVI itself (such as the geometric and radiometric errors), one major source of uncertainty is the 390 

sample size. For certain vegetation biomes, the number of samples in some regions (such as EBF and northern high latitudes) 

may be insufficient due to the constraints in solar zenith angle and environmental conditions. Our results indicated that the 

accuracy of BPNN models was lower (despite acceptable) in the regions with fewer samples (Figure 3 and Figure 6). Future 

research in these regions should include samples from other satellite data as supplements.  

Another source of uncertainty is the BNPP model. We developed individual BPNN models for vegetation biome types. 395 

As such, errors in the static vegetation biome map and in the MODIS land cover product, and the heterogeneity of earth surface 

might all diminish the model performance. As an input in the BNPP model, GIMMS NDVI3g could also transmit its 

uncertainties to the PKU GIMMS NDVI. Furthermore, subsequent research can include other explanatory variables in the 

BPNN such as the environmental variables (e.g., solar radiation, temperature, and precipitation) better explain NDVI 

variations. 400 

5.3 A summary of the PKU GIMMS NDVI product 

In this study, a new version of GIMMS NDVI product, i.e., the PKU GIMMS NDVI, was developed using the BPNN 

model featured by employing a large number of global high-quality Landsat NDVI samples and a data consolidation method 

that employed MODIS NDVI. The PKU GIMMS NDVI covers a time span of 1982 to 2020, with a spatial resolution of 1/12° 

and a temporal resolution of half-month. The high reliability and high accuracy of the PKU GIMMS NDVI product is 405 

demonstrated by: 

 The Landsat NDVI samples used to generate the PKU GIMMS NDVI were abundant (3.6 million), well 

distributed, representative, and high-quality. The inter-comparison between NDVI of different Landsat sensors 

after calibration showed high R2 (> 0.98), low MAE (< 0.02) and low MAPE (< 6%). 

 Assessing against the Landsat NDVI, the PKU GIMMS NDVI had high overall accuracies (R2 = 0.97, MAE = 410 

0.03, MAPE = 9%) and high accuracies for individual vegetation biomes (R2: 0.50 to 0.92; MAE: 0.05 to 0.10; 

MAPE: 2% to 15%). It better performed than the GIMMS NDVI3g (overall: R2 = 0.94, MAE = 0.07, MAPE = 

20%), especially for the tropical evergreen broadleaf forests (EBF) (R2 = 0.08 in the GIMMS NDVI3g; R2 = 0.50 

in the PKU GIMMS NDVI). 

 415 
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 The PKU GIMMS NDVI efficiently removed the effects of NOAA orbital drift and AVHRR sensor degradation.  

 During the overlapping period, the consolidated PKU GIMMS NDVI has a good agreement with MODIS NDVI 

in values (R2 = 0.962, MAE = 0.032, MAPE = 6.5%) and in vegetation trend (MODIS NDVI: 0.883×10-3 yr-1; 

PKU GIMMS NDVI: 0.757×10-3 yr-1).  

 420 

The long-term, continuous, and reliable PKU GIMMS NDVI for the past 40 years can provide a more accurate 

vegetation monitoring in the context of climate change. The framework proposed in this study which used high-quality Landsat 

samples with BPNN and other explanatory variables (the longitude and latitude, associated month, and the NOAA number and 

years since launch) can also benefit the development of other remote sensing products of land surface parameters (e.g., the 

development of LAI products). 425 

Data availability 

The spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS 

NDVI) generated in this study is openly available at https://doi.org/10.5281/zenodo.7441559 (Li et al., 2022). It covers the 

whole global vegetation area at half month temporal resolution and 1/12° spatial resolution from 1982 to 2020. It is available 

in Geographic Lat/Lon projection and TIFF format. 430 
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