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Abstract: Global products of remote sensing Normalized Difference Vegetation Index (NDVI) are critical to assessing the
vegetation dynamic and its impacts and feedbacks on climate change from local to global scales. The previous versions of the
Global Inventory Modelling and Mapping Studies (GIMMS) NDVI product derived from the Advanced Very High Resolution
Radiometer (AVHRR) provide global biweekly NDVI data starting from the 1980s, being a reliable long-term NDVI time
series that has been widely applied in Earth and environmental sciences. However, the GIMMS NDVI products have several
limitations (e.g., orbital drift and sensor degradation) and cannot provide continuous data for the future. In this study, we
presented a machine learning model that employed massive high-quality global Landsat NDVI samples and a data
consolidation method to generate a new version of the GIMMS NDVI product, i.e., PKU GIMMS NDVI (1982-2022), based
on AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) data. A total of 3.6 million Landsat NDVI samples
that were well spread across the globe were extracted for vegetation biomes in all seasons. The PKU GIMMS NDVI exhibits
higher accuracy than its predecessor (GIMMS NDVI3g) in terms of R?(0.97 over 0.94), Root Mean Squared Error (RMSE:
0.05 over 0.09), Mean Absolute Error (MAE: 0.03 over 0.07), and Mean Absolute Percentage Error (MAPE: 9% over 20%).
Notably, PKU GIMMS NDVI effectively eliminates the evident orbital drift and sensor degradation effects in tropical areas.
The consolidated PKU GIMMS NDVI has a high consistency with MODIS NDVI in terms of pixel value (R? = 0.956, RMSE
=0.048, MAE = 0.034, and MAPE = 6.0%) and global vegetation trend (0.9x10- yr!). The PKU GIMMS NDVI product can
potentially provide a more solid data basis for global change studies. The theoretical framework that employs Landsat data
samples can facilitate the generation of remote sensing products for other land surface parameters.

Keywords: PKU GIMMS NDVI; Landsat; MODIS; Back Propagation Neural Network
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1 Introduction

The Normalized Difference Vegetation Index (NDVI) characterizes the biophysical, biochemical, and physiological
conditions of vegetation (Rouse et al., 1974; Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). As a normalized ratio
of the Near-infrared (NIR) and red bands, it minimizes many forms of multiplicative noise, including soil background,
atmosphere, and sun—target—sensor geometry (Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). Due to the long
archive, simplicity, and robustness, NDVI is one of the most popular vegetation indices (VIs) that have been widely used in
the quantification of vegetation dynamics (Badgley et al., 2017; Gamon et al., 2016; Joiner et al., 2018; Li et al., 2019),
ecosystems carbon and water cycles (Zhu et al., 2021; Wang et al., 2021; Schubert et al., 2012; Cui et al., 2021), and
environmental stress and disturbances (Aghakouchak et al., 2015; Qin et al., 2021; Peng et al., 2020). NDVI can be acquired
from satellite sensors since the 1970s, but it wasn't until the late 1990s that NDVI data of different temporal and spatial
resolutions became steadily available from better designed and calibrated sensors such as the Moderate-Resolution Imaging
Spectroradiometer (MODIS) (Didan, 2021), 'Satellite Pour 1'Observation de la Terre' (SPOT) VEGETATION (SPOT-VGT)
(Maisongrande et al., 2004), and Visible Infrared Imaging Radiometer (VIIRS) (Cao et al., 2014). For a long time before the
late 1990s, the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard NOAA satellites has been the only
NDVI data source that provides frequent and continuous global observations. Several sets of global long-term time-series
NDVI products have been released based on AVHRR, such as the Global Inventory Modelling and Mapping Studies (GIMMS)
NDVI3g (Pinzon and Tucker, 2014), Long Term Data Record version 4 (LTDR4) NDVI (Pedelty et al., 2007), and Vegetation
Index and Phenology version 3 (VIP3) NDVI (Pedelty et al., 2007). These products have provided great insights into how
ecological processes of vegetation influence and respond to ongoing climate change (Wang et al., 2021; Zhu et al., 2021;
Zhang et al., 2017; Piao et al., 2020; Myers-Smith et al., 2020; Chen et al., 2019). However, uncertainties in the NDVI products
have also led to inconsistency not only between different products but also for the same product in different periods, placing
many studies in a dilemma, particularly when characterizing long-term changes (Wang et al., 2022; Zeng et al., 2022; Fensholt
and Proud, 2012; Shen et al., 2022).

There are several sources of uncertainties in AVHRR-based NDVI products. The first comes from the discrepancies in
band settings (e.g., center wavelength and spectral response function) within AVHRR sensors (i.e., AVHRR-2 and AVHRR-
3) as well as with other sensors (such as MODIS and VIIRS) (Yang et al., 2021; Trishchenko et al., 2002; Pinzon and Tucker,
2014; Fan and Liu, 2016). Second, NDVI inconsistencies could also occur between the same AVHRR sensors onboard
different NOAA satellites. In this case, the sensors would have different image acquisition times and sun—target—sensor
geometries, yielding a "jump" (a sudden change in values) phenomenon in the NDVI time series (Tian et al., 2015; Frankenberg
et al., 2021; Jiang et al., 2017; Los, 1998). For example, the AVHRR sensor onboard NOAA-11 has a considerably larger
NDVI than preceding and subsequent AVHRR sensors (Beurs and Henebry, 2004). Third, uncertainties could be introduced
by the NOAA satellite orbital drift and AVHRR sensor degradation due to the harsh environments in space (Wang et al., 2022).
Artificial signals from the orbital drift in humid areas were evident for the AVHRR-based NDVI products (e.g., VIP3 NDVI,
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LTDR4 NDVI, and GIMMS NDVI3g) and downstream products such as the GIMMS Leaf Area Index (LAI)3g (Zhu et al.,
2013).

For long-term vegetation trend analysis, an accurate global NDVI product requires us to well address the abovementioned
uncertainties, particularly the ones related to temporal inconsistency. Some efforts have thus been made in past years (Tucker
et al., 2005; Jiang et al., 2008; Doelling et al., 2007; Cao et al., 2004). One strategy performed NDVI calibration using the data
acquired when NOAA orbital drift or AVHRR sensor degradation had not occurred. For example, Jiang et al. (2008) used
NDVI in the inaugural year of NOAA satellites as a baseline to calibrate NDVI of other years. The other strategy calibrated
AVHRR NDVI with other sensors with overlapping observation periods with AVHRR. Pinzon et al. (2014) used SeaWiFS
NDVI data as a benchmark to evaluate the consistency of GIMMS NDVIg data with a Bayesian approach. Other studies have
employed SPOT-VGT NDVI data (Tucker et al., 2005), Meteosat-8 NDVI data (Doelling et al., 2007), MODIS NDVI data
(Cao et al., 2004), or VIIRS data (Yang et al., 2021) to calibrate the other NDVI products derived from AVHRR sensors. The
basic assumption behind the two strategies is that the calibration models and parameters derived from one or more overlapping
periods must be static through time. This is not necessarily true because the performance of satellite sensors could be a function
of multiple factors that are not limited to their internal settings and seasonality (Kogan, 1995). Without a sufficient
understanding of product accuracy in all periods, uncertainties in AVHRR NDVI calibration can hardly be determined.

The Landsat data have the potential to evaluate and calibrate global NDVI products in all periods. As one of the earliest
satellite missions, Landsat satellite series have provided the longest space-based record of Earth's land since the 1970s (Roy
et al., 2016; Wulder et al., 2019; Wulder et al., 2016). Landsat sensors have a high spatial resolution, low frequencies of sensor
change, and in particular, high accuracy and consistency in geometric and radiometric properties (Zhang et al., 2021; Weng et
al., 2014; Dong et al., 2020; Storey et al., 2014). Verification results from Pseudo-Invariant Calibration Points (PICS) (such
as desert, water, ice, and snow) showed that the temporal variations of Top-Of-Atmosphere (TOA) reflectance were less than
2% for most Landsat sensors (except for Landsat 5 TM at SWIR 2 which is 3%) during their orbit time (Helder et al., 2013).
Although the relatively small field-of-view and long revisit period has limited Landsat for global applications (Maisongrande
et al., 2004), its excellent temporal consistency has aided some important studies of vegetation trend via sample analysis, such
as in the Arctic region from 1984 to 2016 (Berner et al., 2020). In recent years, an increasing number of studies have used
Landsat data for global dataset production via tools such as the Google Earth Engine (GEE) platform (Zhang et al., 2022; Cao
etal., 2021).

In this context, this study uses the long-term Landsat data to develop a new version of the GIMMS NDVI product (PKU
GIMMS NDVI) (1982-2022) from the GIMMS NDVI3g (current version) (1982-2015) and MODIS NDVI products (2003—
2022). We first cross-calibrate NDVI data from different Landsat missions and extract a mass of high-quality Landsat NDVI
samples worldwide for all periods (1984-2015). Based on the samples, we generate the PKU GIMMS NDVI using biome-
specific Back Propagation Neural Network (BPNN) models with GIMMS NDVI3g data and selected explanatory variables
(the longitude and latitude, associated month, and the NOAA number and years since launch). Then, the temporal coverage of

PKU GIMMS NDVI is extended to the year 2022 by consolidating with the MODIS NDVI product using a pixel-by-pixel
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linear regression method. Results of Landsat NDVI cross-calibration are reported. We directly validate PKU GIMMS NDVTI's
accuracy via individual Landsat NDVI samples and compare it with GIMMS NDVI3g. We also examine the accuracy
distribution in space for both products and demonstrate the performance of PKU GIMMS NDVI in alleviating uncertainties
from the orbital drift and sensor degradation. The consolidation of PKU GIMMS NDVI with MODIS NDVI, and the

performance of consolidated PKU GIMMS NDVI in characterizing vegetation trends are also evaluated.

2 Data

Four global satellite products were used in this study: Landsat Surface Reflectance data (Collection 1 Tier 1) (Masek
et al., 2006; Vermote et al., 2016), MODIS Land-Cover Type product (V6.1) (Friedl et al., 2002), GIMMS NDVI3g product
(V1.0) (Pinzon and Tucker, 2014), and MODIS NDVI product (V6.1) (Didan, 2021). The Landsat Surface Reflectance data
were used to generate NDVI samples. The MODIS Land-Cover Type product was used to label NDVI samples with vegetation
biome types. The GIMMS NDVI3g was the main data source from which our PKU GIMMS NDVI product would be created.
The MODIS NDVI product was used to extend the temporal coverage of the generated PKU GIMMS NDVI product.

2.1 Landsat Surface Reflectance Data (Collection 1 Tier 1)

We obtained Landsat Surface Reflectance data between 1984 and 2015 with a spatial resolution of 30 m from the
Google Earth Engine (GEE) platform. These data comprised the Collection 1 (Tier 1) datasets of Landsat 5 (TM), 7 (ETM+),
and 8 (OLI), produced by the United States Geological Survey (USGS). Landsat 5 was launched in March 1984 and retired in
January 2013. Landsat 7 and 8 were launched in April 1999 and February 2013, respectively, and are still in operation. The
USGS uses the Landsat Ecosystem Disturbance Adaptive Processing System (Masek et al., 2006) to perform atmospheric and
terrain corrections for Landsat 5 and Landsat 7 and uses the Landsat 8 Surface Reflection Code (Vermote et al., 2016) to
perform corrections for Landsat 8. Previous studies have revealed that Landsat reflectance data have good temporal consistency
that can be used to produce a set of long-term stable benchmarks (Helder et al., 2013). However, this study found a systematic
deviation between Landsat 5/Landsat 8 and Landsat 7. The correction method for the systematic deviation is described in

Section 3.1.

2.2 GIMMS NDVI3g (V1.0) Product

This study selected the latest version (third generation) of the GIMMS NDVI dataset (GIMMS NDVI3g, V1.0)
generated from AVHRR sensors onboard a series of NOAA satellites (NOAA 7,9, 11, 14, 16, 17, and 18) (Pinzon and Tucker,
2014). The GIMMS NDVI3g dataset has a spatial resolution of 1/12°. Half-month maximum NDVI composite was used to
eliminate the atmospheric effects on the NDVI magnitude. This compositing scheme resulted in two maximum NDVI values

per month. The GIMMS NDVI3g record extending from January 1981 to December 2015 was used in this study. Pixels with
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negative NDVI values referred to snow and other contaminated data (e.g., pixels with large inland water bodies) and pixels of

bad quality, determined by the Quality control (QC) layer, were removed from all analyses.

2.3 MODIS Vegetation Index Product (MOD13C1, V6.1)

The MODIS Vegetation Index product (MOD13C1) (Didan, 2021) is accessible at NASA's Earth Observing System
Data and Information System (EOSDIS) (https://search.earthdata.nasa.gov/). Compared to old versions, the latest MOD13Cl1
version 6.1 provides several algorithmic improvements and well corrects the sensor degradation effect (Didan et al., 2015). As
the MODIS NDVI product was used to consolidate with PKU GIMMS NDVI, we chose MOD13C1 over other MODIS
Vegetation Index products because it was derived from MODIS Terra, which has been available since 2000 and it has a close
temporal (16 days) and spatial resolution (0.05°) to those of PKU GIMMS NDVI (half-month and 1/12°). This study employed
the year-round global MODI13C1 during 2003—2022. MOD13C1 provides a pixel reliability layer that distinguishes good-
quality data from no data, marginal data, snow/ice, and cloudy and estimated data. To match the temporal and spatial
resolutions, we first performed a time-weighted aggregation method on MOD13C1 to produce an NDVI product at a temporal
resolution of half-month. The method was adopted from Zhu et al. (2013). Its central idea is to assign weights to all MOD13Cl1
scenes that could temporally intersect with a particular half-month interval, where the weight depends on the possibility of
intersection. The half-month NDVI product was finally calculated as the weighted sum of the scenes. We then performed

nearest neighbor sampling to upscale the spatial resolution to 1/12°.

2.4 MODIS Land-Cover Type products (MCD12Q1 and MCD12C1, V6.1)

The MODIS Land-Cover Type products provide global maps of land cover for each year between 2001-2019 (Friedl
et al., 2002). It has five legacy classification schemes, including International Geosphere-Biosphere Program (IGBP)
classification system, University of Maryland (UMD) classification system, Leaf Area Index (LAI) classification system,
BIOME-Biogeochemical Cycles (BGC) classification system, Plant Functional Types (PFT) classification system, and FAO-
Land Cover Classification System (LCCS) classification system. The LAI classification scheme was used in this study. The
LAI classification scheme has 11 classes, including eight natural vegetation types (evergreen needleleaf forests [ENF],
evergreen broadleaf forests [EBF], deciduous needleleaf forests [DNF], deciduous broadleaf forests [DBF], shrublands [SHR],
savannas [SAV], grasslands [GRA], croplands [CRO]) and three non-vegetated lands (water bodies [WAT], non-vegetated
lands [NVG), and urban and built-up lands [URB]). In data analysis, we also merged the natural vegetation types into one
global vegetation biome [GLO]. This study employed two MODIS Land-Cover Type products with different spatial
resolutions, i.e., 500 m (MCD12Q1) and 0.05° (MCD12C1). The MCD12Q1 was used to select sample locations for Landsat
NDVI cross-calibration (Section 3.1.1). The MCD12C1 was used to establish biome-specific BPNN models with GIMMS
NDVI3g after being spatially aggregated to 1/12° using the nearest neighbor resampling method (Section 3.2.2). The vegetation
biome type with the highest frequency from 2001-2019 was considered as the vegetation biome type from 1982-2022. This

could be a margin of error but it is the best option.
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3 Methodology

A schematic overview of the methodology involves four key steps as illustrated in Figure 1: 1) Landsat sensor cross-
calibration to create temporally consistent Landsat data as a benchmark; 2) Generation of PKU GIMMS NDVI from GIMMS
NDVI3g using per-biome Landsat NDVI samples, Back Propagation Neural Network (BPNN) models and other explanatory
variables; 3) Consolidation of PKU GIMMS NDVI with MODIS NDVI to extend the temporal coverage of PKU GIMMS
NDVI to the year 2022; and 4) Evaluation of PKU GIMMS NDVI in terms of its performance in temporal and spatial accuracies

and in eliminating the orbital drift and sensor degradation.
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Figure 1. Schematic diagram of the generation and evaluation of the PKU GIMMS NDVI product.

3.1 Cross-calibrating NDVIs among Landsat Sensors

Systematic deviation exists in NDVI between Landsat 5, Landsat 7, and Landsat 8 (Berner et al., 2020). Specifically,
NDVI derived from Landsat 5 is smaller than that from Landsat 7 and NDVI from Landsat 7 is smaller than that of Landsat 8
(Berner et al., 2020) (Figure 2a and Figure 2c). The systematic deviations were first removed as the Landsat NDVI served as

a benchmark in this study. We adopted the method by Berner et al. (2020) that used BPNN to calibrate Landsat 5 and Landsat
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8 to the Landsat 7 level. The reason for considering Landsat 7 as the benchmark is that Landsat 7 has overlapping periods with

both Landsat 5 and Landsat 8.

3.1.1 Sample locations

For the Landsat sensor cross-calibration, one hundred thousand (100,000) sample locations were randomly selected for
each vegetation biome type from the MCD12Q1. For each sample (500 m resolution), a matrix of 20 x 20 Landsat pixels (30
m resolution) was extracted at the sample center from Landsat 5, Landsat 7, and Landsat 8 images acquired between 1984 and
2015. The Landsat pixels at each sample location were further refined to guarantee that only high-quality clear-sky
measurements were included in our study.

First, all Landsat data during August 1991 and December 1992 when Mount Pinatubo erupted were excluded. Second,
the abundance of aerosols and thin clouds was used to determine the quality of the sample location (and associated Landsat
pixels). If many of the pixels had a high atmospheric opacity (provided by Landsat products), the whole sample location was
removed. For Landsat 5 and Landsat 7, the threshold of average atmospheric opacity was set to 0.3. For Landsat §, the
percentage of clear pixels (which have an atmospheric opacity index of 1) must be higher than 80% (320 pixels). Third, the
quality of the Landsat scene, cloud contamination, and radiation magnitude were used to determine the quality of individual
pixels. A pixel was marked as low-quality if (1) the associated Landsat scene had excessive cloud coverage (> 80 %), (2) the
pixel was contaminated by clouds, cloud shadows, water, or snow judged by the CF Mask algorithm (Foga et al., 2017; Zhu
et al., 2015), or (3) the pixel had implausibly high (>1) or extremely low (0.001) surface reflectance due to radiation saturation
and atmospheric adjustment. This study removed the whole sample location if the percentage of high-quality pixels was lower
than 90% (360 pixels).

NDVI was calculated and averaged from high-quality pixels at the remaining sample locations. The sample locations

were divided into 80% for model training and 20% for model evaluation.

3.1.2 Cross-calibration using BPNN models

BPNN is one of the most popular and established Artificial Neural Network (ANN) algorithms used in ecological
studies (Hong et al., 2021; Meng et al., 2020; Yang et al., 2018). An ANN is a machine-learning algorithm inspired by the
structure and function of biological neural networks. A typical ANN comprises input (explanatory variables), output (target
variable), and hidden layers, each containing artificial neurons whose numbers range from several to hundreds. In the model
training of BPNN, signals flow from the input layer to the output layer, after likely passing through several hidden layers.
Errors in the output layer propagate backward to the previous layers until they satisfy the user-defined threshold, and the
network attempts to minimize the discrepancies between observations and predictions.

This study used NDVI sample locations (500 m resolution) in the overlapping periods between Landsat 7 and Landsat
5/Landsat 8 to train BPNN models. The models were then extrapolated to calibrate Landsat 5 and Landsat 8 in non-overlapping

periods. The extrapolation to non-overlapping periods was reliable on the basis that the optical sensors onboard Landsat

7



205

210

215

220

225

230

235

satellites are temporally consistent with themselves and the reflectance data have been well geometrically and radiometrically
calibrated (Irons et al., 2012; Wulder et al., 2019; Wulder et al., 2016). Specifically, NDVI values from Landsat 7 and Landsat
5/Landsat 8 were paired at each sample location (Section 3.1.1) if their acquisition times were less than 10 days. In total,
12,718,863 sample pairs were obtained for all vegetation biome types. When training the BPNN model, NDVI of Landsat
5/Landsat 8 was used as the explanatory variable, and NDVI of Landsat 7 was the target variable. We also included the image
acquisition time (day of the year) and the sample location's spatial coordinates (longitude and latitude) as covariates to explain

potential seasonal and regional variations in the samples.

3.2 Generation of the PKU GIMMS NDVI
3.2.1 Landsat NDVI samples

The cross-calibrated Landsat data were used to calibrate the GIMMS NDVI3g product. Landsat data is known for its
unparalleled radiometric and geometric accuracy and stability, as well as the longest continuity, global coverage, and relatively
high spatial resolution (Wulder et al., 2019; Wulder et al., 2016). A total of 40,000 sample locations were randomly selected
from the GIMMS NDVI3g product with a spatial resolution of 1/12°. Then at a time step of half-month, we identified sample
locations with high-quality GIMMS NDVI3g data (QC=0) and uniformly placed 9 matrices of 20 x 20 Landsat pixels within
each location (1/12°). Landsat pixel values were extracted from all available scenes. Their quality was examined in the same
way as Section 3.1.1. We removed all matrices whose proportion of high-quality pixels < 90% (360 pixels). The sample
locations at a particular time were treated as Landsat NDVI samples if more than half (i.e. >=5) of 9 matrices remained. The
sample value was calculated as the average NDVI from high-quality Landsat pixels. The samples were also divided into 80%

for model training and 20% for NDVI product evaluation.

3.2.2 BPNN models with GIMMS NDVI3g and other explanatory variables

With the Landsat NDVI samples (1/12° resolution), the BPNN model was also used to calibrate the GIMMS NDVI3g
product. In the BPNN model, GIMMS NDVI3g data from 1984 to 2015 were used as an explanatory variable, and the Landsat
NDVI was the target variable. We also included other explanatory variables associated with spatial, temporal, and satellite
information. The spatial information (longitude and latitude) accounts for the spatial autocorrelation in image samples;
temporal information (month) accounts for vegetation dynamics; and satellite information (NOAA satellite number and years
since its launch) accounts for issues from NOAA orbit drift and AVHRR sensor degradation. One BPNN model was built for
each of the eight vegetation biome types. GIMMS NDVI3g was first explored as a single explanatory variable in the BPNN
model, and other explanatory variables were added in an enumerative order. In detail, five feature combinations were set up
to evaluate their impacts on the BPNN model: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude);
(S3) NDVI, spatial information, and time information (month); (S4) NDVI, spatial information, time information, and NOAA

satellite number; and (S5) NDVI, spatial information, time information, NOAA satellite number and years since its launch.



240

245

250

255

260

265

The optimal parameters for each enumeration were derived through ten-fold cross-verification. The final BPNN model for

NDVI calibration was determined with an appropriate set of explanatory variables and the optimal parameters.

3.3 Consolidation of the PKU GIMMS NDVI and MODIS NDVI

Over the past two decades, GIMMS NDVI3g products have been extensively utilized for spatiotemporal dynamic
monitoring of vegetation, carbon and water cycles of ecosystems, and other related studies. They have provided powerful data
support for several significant conclusions in Earth and environmental sciences. However, the latest data in GIMMS NDVI3g
is until 2015 and no further upgrades will be provided. This study extended the temporal coverage of GIMMS NDVI3g so that
the investigation of recent responses and feedback of vegetation to climate change can be possible. The MODIS NDVI product
has excellent precision, temporal consistency, and a long-time span. It is considered the best medium-high resolution global
NDVI produced over the past two decades. It could be utilized as an effective extension of the PKU GIMMS NDVI.

However, the band settings of MODIS are different from that of AVHRR. A simple combination of these two products
would lead to systematic inconsistencies in NDVI values. Some methods have been proposed to deal with this issue, such as
maximum-minimum stretching (Yang et al., 2021), histogram matching (Jiang et al., 2008), and machine learning (Berner et
al., 2020). In this study, we used a pixel-wise method inspired by Mao et al. (2012) to splice the PKU GIMMS NDVI product
(1982-2015) and MODIS NDVI product (2003—-2022). The pixel-wised method has been demonstrated more accurate than
the global models (Yang et al., 2021). Specifically, the MODIS NDVI was first resampled to have the same spatial resolution
(1/12°) and temporal resolution (half a month) as the PKU GIMMS NDVI (see Section 2.3). Then, during the overlapping
periods (2003-2015), an 11 x 11 moving window (approximately 1° equivalent) was placed around each pixel. All the same
vegetation biome type with the pixel were identified, and their NDVI values were extracted from both products. This resulted
in at most 1573 GIMMS-MODIS NDVI sample pairs (11 x 11 pixels per year in 13 years) for each pixel location. The sample
pairs were further screened based on the data quality of PKU GIMMS NDVI (quality information adopted from GIMMS
NDVI3g; see Section 2.2) and MODIS NDVI (see Section 2.3). Based on the sample pairs, the Random Forests (RF) regression
model was constructed (Breiman, 2001), with explanatory variables of the PKU GIMMS NDVI and the longitude and latitude
of samples and target variable of the MODIS NDVI. This study found that the significance of the RF model largely depended
on the data quality of PKU GIMMS NDVI and MODIS NDVI. As such, we used 90% of the sample pairs for RF establishment
and 10% for validation. R? was calculated. The pixel-wise RF model was applied to the non-overlapping period only when R?
> 0.2 with p <0.001; otherwise, the PKU GIMMS NDVI was adjusted by aligning its mean value to that of the MODIS NDVI.
The final PKU GIMMS NDVI product comprised the NDVI product derived from GIMMS NDVI3g between 1982 and 2002
and the MODIS NDVI product between 2003 and 2022.

3.4 Evaluation of the PKU GIMMS NDVI Product

This study used a direct verification method to evaluate our product of PKU GIMMS NDVI (Justice et al., 2000). The
PKU GIMMS NDVI (before consolidation) product was compared to Landsat NDVI values at the remaining 20% of the

9
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sample locations (1/12°) for different vegetation biome types. As a comparison, the GIMMS NDVI3g was evaluated in the
same manner. Four metrics were calculated for accuracy assessment, i.e., sample number (N), R?, Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). R? measures the percentage of
variations that models can explain, RMSE measures the variance of errors, and MAE and MAPE measure absolute and relative
error values at the sample level.
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The spatial distribution of R? was analysed for the PKU GIMMS NDVI and GIMMS NDVI3g products in 2°x2° grids. To
highlight the differences between AVHRR-2 and AVHRR-3, NDVI products were evaluated in two separate periods (AVHRR-
2: 1982-2000 and AVHRR-3: 2001-2015).

We also evaluated the performance of our PKU GIMMS NDVI (before consolidation) product in alleviating the effects
of orbital drift and sensor degradation; and compared it to the GIMMS NDVI3g product. Tian et al. (2015) observed that the
GIMMS NDVI3g product showed a noticeable artefact in humid areas, which may have been caused by the NOAA satellite
orbit drift and AVHRR sensor degradation. Zhu et al. (2013) also documented the significant orbital drift in the tropics.
However, their conclusions either lacked a quantitative analysis or were solely based on statistical observations at a regional
scale because long-term, continuous, and time-consistent benchmark data before 2000 were lacking. This study used NDVI
bias in the tropical vegetation type of EBF to measure the magnitude of the orbital drift and sensor degradation effect. The

bias was calculated as the mean value of NDVI deviation relative to Landsat NDVTI in percentage (Helder et al., 2013) (Eq. 5).

N
1 (NDVIgimms — NDVIgnasat)
b' 0, = — X 1000 5
ias % N NDVI gnasat . v

i=1
If there is orbital drift or sensor degradation, the bias will drastically fluctuate; otherwise, it remains constant. Seasonal
fluctuations in the time series of NDVI bias were first removed by subtracting the multi-year average at a particular time of
the year, i.e.,
bias_deseason,, = bias_originy't — mean(bias_origin,) (6)
Where bias_origin,, . is the original NDVI bias at the time t of the year y (e.g., the first half-month of January in 2005);

mean(bias_origin,) is the multi-year average at the time t (e.g., the first half-month of January for all years); and
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bias_deseason,,; is the NDVI bias after removing the seasonal fluctuation. Then, inter-annual trends of the bias were
extracted via the Ensemble Empirical Mode Decomposition (EEMD) approach (Huang et al., 1998).

The consolidation of PKU GIMMS NDVI with MODIS NDVI was evaluated at 1,000 random points for each
vegetation biome type. Using MODIS NDVI as the reference, R, RMSE, MAE, MAPE, and bias for PKU GIMMS NDVI
before and after consolidation were calculated and compared during the overlap period (2003-2015). To evaluate the
performance of PKU GIMMS NDVI in characterizing vegetation trends (greening or browning), we performed linear
regression analysis on the time series of annual average NDVI at each pixel. The linear regression slope could represent a
green trend (positive slope value) or a browning trend (negative slope value). Trends from multiple NDVI products, i.e.,
GIMMS NDVI3g, MODIS NDVI, and PKU GIMMS NDVI (before and after consolidation), were compared over their
overlapping period. The PKU GIMMS NDVI before consolidation was included because it represents the version of our NDVI
product that is solely based on AVHRR data, and it can provide a more direct evaluation of the efficacy of the BPNN model
and Landsat NDVI samples.

4 Results
4.1 Cross-calibration between Landsat 7 and Landsat 5/Landsat 8

More than 12 million Landsat sample pairs (600 m resolution) were acquired for Landsat sensor cross-calibration.
Based on the samples, sixteen BPNN models were established to calibrate Landsat 5 NDVI and Landsat 8 NDVI for eight
vegetation biome types. Figure 2b and Figure 2d show the NDVI calibration results of Landsat 5 and Landsat 8 against Landsat
7. Both relationships were strong with high R? (R? = 0.981 for Landsat 5 and 0.985 for Landsat 8), low RMSE (RMSE = 0.034
for Landsat 5 and 0.031 for Landsat 8), low MAE (MAE = 0.020 for Landsat 5 and 0.017 for Landsat 8), and low MAPE
(MAPE = 5.87% for Landsat 5 and 5.14% for Landsat 8). Compared to uncalibrated data (Figure 2a and Figure 2¢), negative

deviation in Landsat 5 NDVI and positive deviation in Landsat 8 NDVI have been efficiently eliminated.
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Figure 2. The efficiency of NDVI cross-calibration between Landsat sensors. (a) Landsat 7 NDVI vs. uncalibrated Landsat 5 NDVI. (b)

Landsat 7 NDVI vs. calibrated Landsat 5 NDVI. (¢) Landsat 7 NDVI vs. uncalibrated Landsat 8 NDVI. (d) Landsat 7 NDVI vs. calibrated
Landsat 8 NDVI. The red line is the regression line and the orange diagonal line represents a 1:1 relationship. The size of the NDVI

interval in the maps is 0.01. NDVI intervals with sample number < 10 were omitted.

4.2 The PKU GIMMS NDVI product
4.2.1 Spatiotemporal Representativeness of the Landsat NDVI Samples

Approximately 3.6 million Landsat NDVI samples (1/12°) from 1984 to 2015 were obtained for GIMMS NDVI3g
calibration. The count and spatiotemporal distribution of the samples primarily depended on the availability of Landsat images,
which were affected by clouds, cloud shadows, aerosols, climatic conditions, and other factors. The sample count per
vegetation biome type was approximately proportional to its total area of coverage (Figure 3a and Figure 3b).

In the spatial domain, our samples covered most vegetated regions worldwide (Figure 3a). Meanwhile, in some regions,
the number of high-quality samples was relatively small. These regions include (1) northern high latitudes, where suffer the
polar night phenomenon, high solar zenith angle, and high observation zenith angle, (2) tropical rainforest areas with abundant

precipitation and clouds which lower the quality of remote sensing data, and (3) the Sichuan Basin in Southwest China and
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areas with a temperate marine climate (e.g., Western European continent, British Isles, and west coast of North and South
America). In the time domain (Figure 3b), the samples of vegetation biome types showed single (for most biomes except CRO)
or double (CRO) peaks depending on the time of their growing seasons. This guaranteed sufficient samples for accurate NDVI
prediction with BPNN in the growing season. For the biomes of ENF and DNF that are primarily distributed in the high
northern latitudes, the number of samples in winter (October to April) was < 500. We resolved this problem by reducing the
explanatory variables in the BPNN model. During 1984-2015, the Landsat NDVI sample size generally increased from
Landsat 5 to Landsat 7 and Landsat 8 except for two periods. Between 1999 and 2003, the sample size was significantly larger
as both Landsat 5 and Landsat 7 were available; and between November 2011 and May 2012, very few images were acquired
when Landsat 5 was decommissioning (https:/www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-

landsat-4-5-thematic-mapper-tm-level-1-data) and Landsat 8 was not available yet (Figure 3c).
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Figure 3. Spatial and temporal distribution of refined Landsat NDVI samples (3.6 million). (a) Distribution of Landsat NDVI samples

within the 2° x 2° grid. (b) Percentage of samples among the eight vegetation biome types in each month. (c) Annual variation of Landsat

NDVI sample size.
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The accuracy of BPNN models under different combinations of explanatory variables (S1 to S5) is shown in Figure 4.
The addition of spatial location significantly improved the accuracy of predicted NDVI for the vegetation biome types that are
distributed worldwide. The improvement has not been observed for vegetation biome types that are relatively concentrated
(e.g., ENF and DNF). The addition of temporal information improved the accuracy of vegetation types with prominent seasonal
variations such as DBF and DNF. Finally, adding the NOAA satellite number and orbit time could also improve the accuracy

of BPNN models, especially for SHR.
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Figure 4. Performance of different combinations of explanatory variables (S1 to S5) for BPNN models. (a), (b), (c), and (d) show the R?,
RMSE, MAE, and MAPE of the BPNN models, respectively. GLO represents the global vegetation biome. The combinations of
explanatory variables are: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); (S3) NDVI, spatial information,
and time information (month); (S4) NDVI, spatial information, time information, and NOAA satellite number; and (S5) NDVI, spatial

information, time information, NOAA satellite number and years since its launch.

For the combination containing all explanatory variables (S5), the R? of most vegetation biome types except for EBF
and ENF was > 0.8. For vegetation biomes overall, the R?reached 0.96, and the relative error was only 11.35%. Therefore, all
available explanatory variables, i.e., the NDVI, longitude, latitude, month, NOAA satellite number, and years since the NOAA

satellite's launch, contributed to the BPNN model in this study.

4.2.3 Direct Validation of PKU GIMMS NDVI and GIMMS NDVI3g

Our PKU GIMMS NDVI product (before consolidation) and the GIMMS NDVI3g product were directly verified with
the remaining 20% of the Landsat NDVI samples from 1984 to 2015 (Figure 5). Overall, the accuracy of the PKU GIMMS
NDVI (R*=0.97, RMSE = 0.05, MAE = 0.03, MAPE = 9%) was higher than that of the GIMMS NDVI3g (R?=0.94, RMSE
= 0.09, MAE = 0.07, MAPE = 20%) in all metrics. Among different vegetation biome types, the NDVI quality of SHR
(GIMMS NDVI3g: R?=0.89, RMSE = 0.06, MAE = 0.05, MAPE = 26% and PKU GIMMS NDVI: R? = 0.92, RMSE =
0.03, MAE = 0.02, MAPE = 12%) was higher than that of other biome types. The accuracy of the EBF was relatively low for
both products (GIMMS NDVI3g: R?=0.16, RMSE = 0.09, MAE = 0.07, MAPE = 9% and PKU GIMMS NDVI: R? = 0.47,
RMSE = 0.04, MAE = 0.02, MAPE = 3%). The reason was that EBF is primarily distributed in tropical areas where the quality
of remote sensing data is poor due to frequent clouds and rains.

For the GIMMS NDVI3g product, the accuracy differences between vegetation biome types were evident (Figure 5).
NDVI of SHR (RMSE = 0.06, MAE = 0.05), SAV (RMSE =0.10, MAE = 0.08), ENF (RMSE = 0.10, MAE = 0.08), and DNF
(RMSE = 0.12, MAE = 0.09) has been systematically overestimated (Figure 5a). GRA and CRO were also overestimated,
mainly when NDVI values were high (Figure 5a). NDVI of the EBF has a rather low accuracy in the GIMMS NDVI3g
products, with an R? of only 0.16. For the PKU GIMMS NDVI product, its performance in different vegetation biome types
was more stable (R?: 0.47 to 0.92; RMSE: 0.03 to 0.07; MAE: 0.02 to 0.05; MAPE: 3% to 15%) and the scatter points remained
near the 1:1 line (Figure 5). In particular, the R? of the EBF was improved to 0.47 in the PKU GIMMS NDVL.
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Figure 5. Direct validation of the (a) GIMMS NDVI3g and (b) PKU GIMMS NDVI (before consolidation) products. Individual Landsat
NDVI samples from 1984 to 2015 were used in the validation at a 1/12° resolution. Orange lines represent a 1:1 line. GLO represents the

global vegetation biome.
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4.2.4 Accuracy of PKU GIMMS NDVI and GIMMS NDVI3g in space

The accuracies of the PKU GIMMS NDVI (before consolidation) and GIMMS NDVI3g products exhibited strong

spatial heterogeneity (Figure 6). The low-accuracy areas were primarily concentrated in the tropics and high northern latitudes,

and the high-accuracy regions were concentrated in the mid-latitudes of the Eurasian continent, the Great Plains of the United

States, and savanna-dominated areas of Africa and Australia. In the tropical rainforest area where both products had relatively

low accuracies, the PKU GIMMS NDVI better performed especially in Southeast Asia and the northwestern Amazon region.
However, the improvement of PKU GIMMS NDVI over GIMMS NDVI3g was not significant along the western coast of the

European continent and Southeast China, probably due to the small number of training samples.

Probability density diagrams were drawn to show NDVI differences between two periods (before and after 2000)

(Figure 6e) and between two products (Figure 6f). The accuracy of both NDVI products after 2000 was generally higher than
before 2000. The difference was more evident for the GIMMS NDVI3g product (Figure 6¢). The PKU GIMMS NDVI

improved the accuracies over the GIMMS NDVI3g, especially for the period before 2000 (Figure 6f).
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Figure 6. Accuracies of the GIMMS NDVI3g and PKU GIMMS NDVI (before consolidation) products measured by R? for pre-MODIS
(1982-2000) and MODIS (2001-2015) period. The R? was calculated between the NDVI products and Landsat NDVI samples. (a) to (d)

shows the spatial distributions of R? in 2°x 2° grids. Non-vegetated grids and grids with less than 20 validation samples are marked in
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white. (¢) and (f) shows the probability distribution of R? differences between the two periods (before 2000 and after 2000) and between
the two products (GIMMS NDVI3g and PKU GIMMS NDVI), respectively.

4.2.5 Alleviation of the Orbital Drift and Sensor Degradation Effect

As shown in Figure 7, the GIMMS NDVI3g product exhibited evident false signals in the EBF region, which agreed
with the previous findings (Tian et al., 2015). The NDVI bias from different NOAA satellites significantly varied, which may
cause the "jump" phenomenon between NOAA missions. Before 2000, the effect of orbital drift and sensor degradation were

375 evident at the last phases of satellite launch. This is especially true for the NOAA 11 satellite (Figure 7a). The effect became
relatively small for NOAA satellites launched after 2000. In the PKU GIMMS NDVI (before consolidation) product, the
impact from orbital drift and sensor degradation has been effectively rectified (Figure 7b). NDVI bias did not change
significantly over time, indicating that the PKU GIMMS NDVI product had good temporal consistency.
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Figure 7. Temporal variations of NDVI bias% in EBF for (a) the GIMMS NDVI3g product and (b) the PKU GIMMS NDVI (before
consolidation) product. The black dash line represents the interannual trend extracted by the EEMD method. Values from different NOAA

satellite missions are distinguished with colors.

4.3 Consolidated PKU GIMMS NDVI
380 4.3.1 Comparison with MODIS NDVI

The consolidation process improved the consistency level between PKU GIMMS NDVI and MODIS NDVI from
acceptable (R?=0.899, RMSE = 0.092, MAE = 0.069, and MAPE = 12.3%) (Figure 8a-9) to high (R?=0.956, RMSE = 0.048,
MAE = 0.034, and MAPE = 6.0%) (Figure 8b-9). Specifically, the PKU GIMMS NDVI before data consolidation was
systematically lower than MODIS NDVI; but the relationship approached 1:1 after consolidation. The improvement in
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consistency was different among vegetation biome types. CRO and GRA had the greatest improvement, as their MAPE
decreased from 24.3% and 20.0% to 9.3% and 9.5%, respectively (Figure 8a and Figure 8b). The probability distribution
densities of R%, MAPE, and bias were also analysed based on NDVI values before and after consolidation at all samples (8,000)
(Figure 9). The results show that the R? was improved (Figure 9a), and the MAPE was significantly decreased (Figure 9b)

after consolidation.
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