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Abstract: Global products of remote sensing Normalized Difference Vegetation Index (NDVI) are critical to assessing the 15 

vegetation dynamic and its impacts and feedbacks on climate change from local to global scales. The previous versions of the 

Global Inventory Modelling and Mapping Studies (GIMMS) NDVI product derived from the Advanced Very High Resolution 

Radiometer (AVHRR) provide global biweekly NDVI data starting from the 1980s, being a reliable long-term NDVI time 

series that has been widely applied in Earth and environmental sciences. However, the GIMMS NDVI products have several 

limitations (e.g., orbital drift and sensor degradation) and cannot provide continuous data for the future. In this study, we 20 

presented a machine learning model that employed massive high-quality global Landsat NDVI samples and a data 

consolidation method to generate a new version of the GIMMS NDVI product, i.e., PKU GIMMS NDVI (1982−2022), based 

on AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) data. A total of 3.6 million Landsat NDVI samples 

that were well spread across the globe were extracted for vegetation biomes in all seasons. The PKU GIMMS NDVI exhibits 

higher accuracy than its predecessor (GIMMS NDVI3g) in terms of R2 (0.97 over 0.94), Root Mean Squared Error (RMSE: 25 

0.05 over 0.09), Mean Absolute Error (MAE: 0.03 over 0.07), and Mean Absolute Percentage Error (MAPE: 9% over 20%). 

Notably, PKU GIMMS NDVI effectively eliminates the evident orbital drift and sensor degradation effects in tropical areas. 

The consolidated PKU GIMMS NDVI has a high consistency with MODIS NDVI in terms of pixel value (R2 = 0.956, RMSE 

= 0.048, MAE = 0.034, and MAPE = 6.0%) and global vegetation trend (0.9×10-3 yr-1). The PKU GIMMS NDVI product can 

potentially provide a more solid data basis for global change studies. The theoretical framework that employs Landsat data 30 

samples can facilitate the generation of remote sensing products for other land surface parameters. 
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1 Introduction 

The Normalized Difference Vegetation Index (NDVI) characterizes the biophysical, biochemical, and physiological 

conditions of vegetation (Rouse et al., 1974; Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). As a normalized ratio 35 

of the Near-infrared (NIR) and red bands, it minimizes many forms of multiplicative noise, including soil background, 

atmosphere, and sun–target–sensor geometry (Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022). Due to the long 

archive, simplicity, and robustness, NDVI is one of the most popular vegetation indices (VIs) that have been widely used in 

the quantification of vegetation dynamics (Badgley et al., 2017; Gamon et al., 2016; Joiner et al., 2018; Li et al., 2019), 

ecosystems carbon and water cycles (Zhu et al., 2021; Wang et al., 2021; Schubert et al., 2012; Cui et al., 2021), and 40 

environmental stress and disturbances (Aghakouchak et al., 2015; Qin et al., 2021; Peng et al., 2020). NDVI can be acquired 

from satellite sensors since the 1970s, but it wasn't until the late 1990s that NDVI data of different temporal and spatial 

resolutions became steadily available from better designed and calibrated sensors such as the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) (Didan, 2021), 'Satellite Pour l'Observation de la Terre' (SPOT) VEGETATION (SPOT-VGT) 

(Maisongrande et al., 2004), and Visible Infrared Imaging Radiometer (VIIRS) (Cao et al., 2014). For a long time before the 45 

late 1990s, the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard NOAA satellites has been the only 

NDVI data source that provides frequent and continuous global observations. Several sets of global long-term time-series 

NDVI products have been released based on AVHRR, such as the Global Inventory Modelling and Mapping Studies (GIMMS) 

NDVI3g (Pinzon and Tucker, 2014), Long Term Data Record version 4 (LTDR4) NDVI (Pedelty et al., 2007), and Vegetation 

Index and Phenology version 3 (VIP3) NDVI (Pedelty et al., 2007). These products have provided great insights into how 50 

ecological processes of vegetation influence and respond to ongoing climate change (Wang et al., 2021; Zhu et al., 2021; 

Zhang et al., 2017; Piao et al., 2020; Myers-Smith et al., 2020; Chen et al., 2019). However, uncertainties in the NDVI products 

have also led to inconsistency not only between different products but also for the same product in different periods, placing 

many studies in a dilemma, particularly when characterizing long-term changes (Wang et al., 2022; Zeng et al., 2022; Fensholt 

and Proud, 2012; Shen et al., 2022). 55 

There are several sources of uncertainties in AVHRR-based NDVI products. The first comes from the discrepancies in 

band settings (e.g., center wavelength and spectral response function) within AVHRR sensors (i.e., AVHRR-2 and AVHRR-

3) as well as with other sensors (such as MODIS and VIIRS) (Yang et al., 2021; Trishchenko et al., 2002; Pinzon and Tucker, 

2014; Fan and Liu, 2016). Second, NDVI inconsistencies could also occur between the same AVHRR sensors onboard 

different NOAA satellites. In this case, the sensors would have different image acquisition times and sun–target–sensor 60 

geometries, yielding a "jump" (a sudden change in values) phenomenon in the NDVI time series (Tian et al., 2015; Frankenberg 

et al., 2021; Jiang et al., 2017; Los, 1998). For example, the AVHRR sensor onboard NOAA-11 has a considerably larger 

NDVI than preceding and subsequent AVHRR sensors (Beurs and Henebry, 2004). Third, uncertainties could be introduced 

by the NOAA satellite orbital drift and AVHRR sensor degradation due to the harsh environments in space (Wang et al., 2022). 

Artificial signals from the orbital drift in humid areas were evident for the AVHRR-based NDVI products (e.g., VIP3 NDVI, 65 
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LTDR4 NDVI, and GIMMS NDVI3g) and downstream products such as the GIMMS Leaf Area Index (LAI)3g (Zhu et al., 

2013).  

For long-term vegetation trend analysis, an accurate global NDVI product requires us to well address the abovementioned 

uncertainties, particularly the ones related to temporal inconsistency. Some efforts have thus been made in past years (Tucker 

et al., 2005; Jiang et al., 2008; Doelling et al., 2007; Cao et al., 2004). One strategy performed NDVI calibration using the data 70 

acquired when NOAA orbital drift or AVHRR sensor degradation had not occurred. For example, Jiang et al. (2008) used 

NDVI in the inaugural year of NOAA satellites as a baseline to calibrate NDVI of other years. The other strategy calibrated 

AVHRR NDVI with other sensors with overlapping observation periods with AVHRR. Pinzon et al. (2014) used SeaWiFS 

NDVI data as a benchmark to evaluate the consistency of GIMMS NDVIg data with a Bayesian approach. Other studies have 

employed SPOT-VGT NDVI data (Tucker et al., 2005), Meteosat-8 NDVI data (Doelling et al., 2007), MODIS NDVI data 75 

(Cao et al., 2004), or VIIRS data (Yang et al., 2021) to calibrate the other NDVI products derived from AVHRR sensors. The 

basic assumption behind the two strategies is that the calibration models and parameters derived from one or more overlapping 

periods must be static through time. This is not necessarily true because the performance of satellite sensors could be a function 

of multiple factors that are not limited to their internal settings and seasonality (Kogan, 1995). Without a sufficient 

understanding of product accuracy in all periods, uncertainties in AVHRR NDVI calibration can hardly be determined. 80 

The Landsat data have the potential to evaluate and calibrate global NDVI products in all periods. As one of the earliest 

satellite missions, Landsat satellite series have provided the longest space-based record of Earth's land since the 1970s (Roy 

et al., 2016; Wulder et al., 2019; Wulder et al., 2016). Landsat sensors have a high spatial resolution, low frequencies of sensor 

change, and in particular, high accuracy and consistency in geometric and radiometric properties (Zhang et al., 2021; Weng et 

al., 2014; Dong et al., 2020; Storey et al., 2014). Verification results from Pseudo-Invariant Calibration Points (PICS) (such 85 

as desert, water, ice, and snow) showed that the temporal variations of Top-Of-Atmosphere (TOA) reflectance were less than 

2% for most Landsat sensors (except for Landsat 5 TM at SWIR 2 which is 3%) during their orbit time (Helder et al., 2013). 

Although the relatively small field-of-view and long revisit period has limited Landsat for global applications (Maisongrande 

et al., 2004), its excellent temporal consistency has aided some important studies of vegetation trend via sample analysis, such 

as in the Arctic region from 1984 to 2016 (Berner et al., 2020). In recent years, an increasing number of studies have used 90 

Landsat data for global dataset production via tools such as the Google Earth Engine (GEE) platform (Zhang et al., 2022; Cao 

et al., 2021). 

In this context, this study uses the long-term Landsat data to develop a new version of the GIMMS NDVI product (PKU 

GIMMS NDVI) (1982–2022) from the GIMMS NDVI3g (current version) (1982–2015) and MODIS NDVI products (2003–

2022). We first cross-calibrate NDVI data from different Landsat missions and extract a mass of high-quality Landsat NDVI 95 

samples worldwide for all periods (1984–2015). Based on the samples, we generate the PKU GIMMS NDVI using biome-

specific Back Propagation Neural Network (BPNN) models with GIMMS NDVI3g data and selected explanatory variables 

(the longitude and latitude, associated month, and the NOAA number and years since launch). Then, the temporal coverage of 

PKU GIMMS NDVI is extended to the year 2022 by consolidating with the MODIS NDVI product using a pixel-by-pixel 
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linear regression method. Results of Landsat NDVI cross-calibration are reported. We directly validate PKU GIMMS NDVI's 100 

accuracy via individual Landsat NDVI samples and compare it with GIMMS NDVI3g. We also examine the accuracy 

distribution in space for both products and demonstrate the performance of PKU GIMMS NDVI in alleviating uncertainties 

from the orbital drift and sensor degradation. The consolidation of PKU GIMMS NDVI with MODIS NDVI, and the 

performance of consolidated PKU GIMMS NDVI in characterizing vegetation trends are also evaluated. 

2 Data 105 

Four global satellite products were used in this study: Landsat Surface Reflectance data (Collection 1 Tier 1) (Masek 

et al., 2006; Vermote et al., 2016), MODIS Land-Cover Type product (V6.1) (Friedl et al., 2002), GIMMS NDVI3g product 

(V1.0) (Pinzon and Tucker, 2014), and MODIS NDVI product (V6.1) (Didan, 2021). The Landsat Surface Reflectance data 

were used to generate NDVI samples. The MODIS Land-Cover Type product was used to label NDVI samples with vegetation 

biome types. The GIMMS NDVI3g was the main data source from which our PKU GIMMS NDVI product would be created. 110 

The MODIS NDVI product was used to extend the temporal coverage of the generated PKU GIMMS NDVI product. 

2.1 Landsat Surface Reflectance Data (Collection 1 Tier 1) 

We obtained Landsat Surface Reflectance data between 1984 and 2015 with a spatial resolution of 30 m from the 

Google Earth Engine (GEE) platform. These data comprised the Collection 1 (Tier 1) datasets of Landsat 5 (TM), 7 (ETM+), 

and 8 (OLI), produced by the United States Geological Survey (USGS). Landsat 5 was launched in March 1984 and retired in 115 

January 2013. Landsat 7 and 8 were launched in April 1999 and February 2013, respectively, and are still in operation. The 

USGS uses the Landsat Ecosystem Disturbance Adaptive Processing System (Masek et al., 2006) to perform atmospheric and 

terrain corrections for Landsat 5 and Landsat 7 and uses the Landsat 8 Surface Reflection Code (Vermote et al., 2016) to 

perform corrections for Landsat 8. Previous studies have revealed that Landsat reflectance data have good temporal consistency 

that can be used to produce a set of long-term stable benchmarks (Helder et al., 2013). However, this study found a systematic 120 

deviation between Landsat 5/Landsat 8 and Landsat 7. The correction method for the systematic deviation is described in 

Section 3.1. 

2.2 GIMMS NDVI3g (V1.0) Product 

This study selected the latest version (third generation) of the GIMMS NDVI dataset (GIMMS NDVI3g, V1.0) 

generated from AVHRR sensors onboard a series of NOAA satellites (NOAA 7, 9, 11, 14, 16, 17, and 18) (Pinzon and Tucker, 125 

2014). The GIMMS NDVI3g dataset has a spatial resolution of 1/12°. Half-month maximum NDVI composite was used to 

eliminate the atmospheric effects on the NDVI magnitude. This compositing scheme resulted in two maximum NDVI values 

per month. The GIMMS NDVI3g record extending from January 1981 to December 2015 was used in this study. Pixels with 
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negative NDVI values referred to snow and other contaminated data (e.g., pixels with large inland water bodies) and pixels of 

bad quality, determined by the Quality control (QC) layer, were removed from all analyses. 130 

2.3 MODIS Vegetation Index Product (MOD13C1, V6.1) 

The MODIS Vegetation Index product (MOD13C1) (Didan, 2021) is accessible at NASA's Earth Observing System 

Data and Information System (EOSDIS) (https://search.earthdata.nasa.gov/). Compared to old versions, the latest MOD13C1 

version 6.1 provides several algorithmic improvements and well corrects the sensor degradation effect (Didan et al., 2015). As 

the MODIS NDVI product was used to consolidate with PKU GIMMS NDVI, we chose MOD13C1 over other MODIS 135 

Vegetation Index products because it was derived from MODIS Terra, which has been available since 2000 and it has a close 

temporal (16 days) and spatial resolution (0.05°) to those of PKU GIMMS NDVI (half-month and 1/12°). This study employed 

the year-round global MOD13C1 during 2003−2022. MOD13C1 provides a pixel reliability layer that distinguishes good-

quality data from no data, marginal data, snow/ice, and cloudy and estimated data. To match the temporal and spatial 

resolutions, we first performed a time-weighted aggregation method on MOD13C1 to produce an NDVI product at a temporal 140 

resolution of half-month. The method was adopted from Zhu et al. (2013). Its central idea is to assign weights to all MOD13C1 

scenes that could temporally intersect with a particular half-month interval, where the weight depends on the possibility of 

intersection. The half-month NDVI product was finally calculated as the weighted sum of the scenes. We then performed 

nearest neighbor sampling to upscale the spatial resolution to 1/12°.  

2.4 MODIS Land-Cover Type products (MCD12Q1 and MCD12C1, V6.1)  145 

The MODIS Land-Cover Type products provide global maps of land cover for each year between 2001–2019 (Friedl 

et al., 2002). It has five legacy classification schemes, including International Geosphere-Biosphere Program (IGBP) 

classification system, University of Maryland (UMD) classification system, Leaf Area Index (LAI) classification system, 

BIOME-Biogeochemical Cycles (BGC) classification system, Plant Functional Types (PFT) classification system, and FAO-

Land Cover Classification System (LCCS) classification system. The LAI classification scheme was used in this study. The 150 

LAI classification scheme has 11 classes, including eight natural vegetation types (evergreen needleleaf forests [ENF], 

evergreen broadleaf forests [EBF], deciduous needleleaf forests [DNF], deciduous broadleaf forests [DBF], shrublands [SHR], 

savannas [SAV], grasslands [GRA], croplands [CRO]) and three non-vegetated lands (water bodies [WAT], non-vegetated 

lands [NVG), and urban and built-up lands [URB]). In data analysis, we also merged the natural vegetation types into one 

global vegetation biome [GLO]. This study employed two MODIS Land-Cover Type products with different spatial 155 

resolutions, i.e., 500 m (MCD12Q1) and 0.05° (MCD12C1). The MCD12Q1 was used to select sample locations for Landsat 

NDVI cross-calibration (Section 3.1.1). The MCD12C1 was used to establish biome-specific BPNN models with GIMMS 

NDVI3g after being spatially aggregated to 1/12° using the nearest neighbor resampling method (Section 3.2.2). The vegetation 

biome type with the highest frequency from 2001–2019 was considered as the vegetation biome type from 1982–2022. This 

could be a margin of error but it is the best option. 160 
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3 Methodology 

A schematic overview of the methodology involves four key steps as illustrated in Figure 1: 1) Landsat sensor cross-

calibration to create temporally consistent Landsat data as a benchmark; 2) Generation of PKU GIMMS NDVI from GIMMS 

NDVI3g using per-biome Landsat NDVI samples, Back Propagation Neural Network (BPNN) models and other explanatory 

variables; 3) Consolidation of PKU GIMMS NDVI with MODIS NDVI to extend the temporal coverage of PKU GIMMS 165 

NDVI to the year 2022; and 4) Evaluation of PKU GIMMS NDVI in terms of its performance in temporal and spatial accuracies 

and in eliminating the orbital drift and sensor degradation. 

 
Figure 1. Schematic diagram of the generation and evaluation of the PKU GIMMS NDVI product. 

3.1 Cross-calibrating NDVIs among Landsat Sensors  

Systematic deviation exists in NDVI between Landsat 5, Landsat 7, and Landsat 8 (Berner et al., 2020). Specifically, 

NDVI derived from Landsat 5 is smaller than that from Landsat 7 and NDVI from Landsat 7 is smaller than that of Landsat 8 170 

(Berner et al., 2020) (Figure 2a and Figure 2c). The systematic deviations were first removed as the Landsat NDVI served as 

a benchmark in this study. We adopted the method by Berner et al. (2020) that used BPNN to calibrate Landsat 5 and Landsat 
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8 to the Landsat 7 level. The reason for considering Landsat 7 as the benchmark is that Landsat 7 has overlapping periods with 

both Landsat 5 and Landsat 8. 

3.1.1 Sample locations 175 

For the Landsat sensor cross-calibration, one hundred thousand (100,000) sample locations were randomly selected for 

each vegetation biome type from the MCD12Q1. For each sample (500 m resolution), a matrix of 20 × 20 Landsat pixels (30 

m resolution) was extracted at the sample center from Landsat 5, Landsat 7, and Landsat 8 images acquired between 1984 and 

2015. The Landsat pixels at each sample location were further refined to guarantee that only high-quality clear-sky 

measurements were included in our study. 180 

First, all Landsat data during August 1991 and December 1992 when Mount Pinatubo erupted were excluded. Second, 

the abundance of aerosols and thin clouds was used to determine the quality of the sample location (and associated Landsat 

pixels). If many of the pixels had a high atmospheric opacity (provided by Landsat products), the whole sample location was 

removed. For Landsat 5 and Landsat 7, the threshold of average atmospheric opacity was set to 0.3. For Landsat 8, the 

percentage of clear pixels (which have an atmospheric opacity index of 1) must be higher than 80% (320 pixels). Third, the 185 

quality of the Landsat scene, cloud contamination, and radiation magnitude were used to determine the quality of individual 

pixels. A pixel was marked as low-quality if (1) the associated Landsat scene had excessive cloud coverage (> 80 %), (2) the 

pixel was contaminated by clouds, cloud shadows, water, or snow judged by the CF Mask algorithm (Foga et al., 2017; Zhu 

et al., 2015), or (3) the pixel had implausibly high (>1) or extremely low (0.001) surface reflectance due to radiation saturation 

and atmospheric adjustment. This study removed the whole sample location if the percentage of high-quality pixels was lower 190 

than 90% (360 pixels). 

NDVI was calculated and averaged from high-quality pixels at the remaining sample locations. The sample locations 

were divided into 80% for model training and 20% for model evaluation. 

3.1.2 Cross-calibration using BPNN models 

BPNN is one of the most popular and established Artificial Neural Network (ANN) algorithms used in ecological 195 

studies (Hong et al., 2021; Meng et al., 2020; Yang et al., 2018). An ANN is a machine-learning algorithm inspired by the 

structure and function of biological neural networks. A typical ANN comprises input (explanatory variables), output (target 

variable), and hidden layers, each containing artificial neurons whose numbers range from several to hundreds. In the model 

training of BPNN, signals flow from the input layer to the output layer, after likely passing through several hidden layers. 

Errors in the output layer propagate backward to the previous layers until they satisfy the user-defined threshold, and the 200 

network attempts to minimize the discrepancies between observations and predictions.  

This study used NDVI sample locations (500 m resolution) in the overlapping periods between Landsat 7 and Landsat 

5/Landsat 8 to train BPNN models. The models were then extrapolated to calibrate Landsat 5 and Landsat 8 in non-overlapping 

periods. The extrapolation to non-overlapping periods was reliable on the basis that the optical sensors onboard Landsat 
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satellites are temporally consistent with themselves and the reflectance data have been well geometrically and radiometrically 205 

calibrated (Irons et al., 2012; Wulder et al., 2019; Wulder et al., 2016). Specifically, NDVI values from Landsat 7 and Landsat 

5/Landsat 8 were paired at each sample location (Section 3.1.1) if their acquisition times were less than 10 days. In total, 

12,718,863 sample pairs were obtained for all vegetation biome types. When training the BPNN model, NDVI of Landsat 

5/Landsat 8 was used as the explanatory variable, and NDVI of Landsat 7 was the target variable. We also included the image 

acquisition time (day of the year) and the sample location's spatial coordinates (longitude and latitude) as covariates to explain 210 

potential seasonal and regional variations in the samples. 

3.2 Generation of the PKU GIMMS NDVI 

3.2.1 Landsat NDVI samples 

The cross-calibrated Landsat data were used to calibrate the GIMMS NDVI3g product. Landsat data is known for its 

unparalleled radiometric and geometric accuracy and stability, as well as the longest continuity, global coverage, and relatively 215 

high spatial resolution (Wulder et al., 2019; Wulder et al., 2016). A total of 40,000 sample locations were randomly selected 

from the GIMMS NDVI3g product with a spatial resolution of 1/12°. Then at a time step of half-month, we identified sample 

locations with high-quality GIMMS NDVI3g data (QC=0) and uniformly placed 9 matrices of 20 × 20 Landsat pixels within 

each location (1/12°). Landsat pixel values were extracted from all available scenes. Their quality was examined in the same 

way as Section 3.1.1. We removed all matrices whose proportion of high-quality pixels < 90% (360 pixels). The sample 220 

locations at a particular time were treated as Landsat NDVI samples if more than half (i.e.  >= 5) of 9 matrices remained. The 

sample value was calculated as the average NDVI from high-quality Landsat pixels. The samples were also divided into 80% 

for model training and 20% for NDVI product evaluation. 

3.2.2 BPNN models with GIMMS NDVI3g and other explanatory variables 

With the Landsat NDVI samples (1/12° resolution), the BPNN model was also used to calibrate the GIMMS NDVI3g 225 

product. In the BPNN model, GIMMS NDVI3g data from 1984 to 2015 were used as an explanatory variable, and the Landsat 

NDVI was the target variable. We also included other explanatory variables associated with spatial, temporal, and satellite 

information. The spatial information (longitude and latitude) accounts for the spatial autocorrelation in image samples; 

temporal information (month) accounts for vegetation dynamics; and satellite information (NOAA satellite number and years 

since its launch) accounts for issues from NOAA orbit drift and AVHRR sensor degradation. One BPNN model was built for 230 

each of the eight vegetation biome types. GIMMS NDVI3g was first explored as a single explanatory variable in the BPNN 

model, and other explanatory variables were added in an enumerative order. In detail, five feature combinations were set up 

to evaluate their impacts on the BPNN model: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); 

(S3) NDVI, spatial information, and time information (month); (S4) NDVI, spatial information, time information, and NOAA 

satellite number; and (S5) NDVI, spatial information, time information, NOAA satellite number and years since its launch. 235 
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The optimal parameters for each enumeration were derived through ten-fold cross-verification. The final BPNN model for 

NDVI calibration was determined with an appropriate set of explanatory variables and the optimal parameters. 

3.3 Consolidation of the PKU GIMMS NDVI and MODIS NDVI 

Over the past two decades, GIMMS NDVI3g products have been extensively utilized for spatiotemporal dynamic 

monitoring of vegetation, carbon and water cycles of ecosystems, and other related studies. They have provided powerful data 240 

support for several significant conclusions in Earth and environmental sciences. However, the latest data in GIMMS NDVI3g 

is until 2015 and no further upgrades will be provided. This study extended the temporal coverage of GIMMS NDVI3g so that 

the investigation of recent responses and feedback of vegetation to climate change can be possible. The MODIS NDVI product 

has excellent precision, temporal consistency, and a long-time span. It is considered the best medium–high resolution global 

NDVI produced over the past two decades. It could be utilized as an effective extension of the PKU GIMMS NDVI.  245 

However, the band settings of MODIS are different from that of AVHRR. A simple combination of these two products 

would lead to systematic inconsistencies in NDVI values. Some methods have been proposed to deal with this issue, such as 

maximum-minimum stretching (Yang et al., 2021), histogram matching (Jiang et al., 2008), and machine learning (Berner et 

al., 2020). In this study, we used a pixel-wise method inspired by Mao et al. (2012) to splice the PKU GIMMS NDVI product 

(1982–2015) and MODIS NDVI product (2003–2022). The pixel-wised method has been demonstrated more accurate than 250 

the global models (Yang et al., 2021). Specifically, the MODIS NDVI was first resampled to have the same spatial resolution 

(1/12°) and temporal resolution (half a month) as the PKU GIMMS NDVI (see Section 2.3). Then, during the overlapping 

periods (2003–2015), an 11 × 11 moving window (approximately 1° equivalent) was placed around each pixel. All  the same 

vegetation biome type with the pixel were identified, and their NDVI values were extracted from both products. This resulted 

in at most 1573 GIMMS-MODIS NDVI sample pairs (11 × 11 pixels per year in 13 years) for each pixel location. The sample 255 

pairs were further screened based on the data quality of PKU GIMMS NDVI (quality information adopted from GIMMS 

NDVI3g; see Section 2.2) and MODIS NDVI (see Section 2.3). Based on the sample pairs, the Random Forests (RF) regression 

model was constructed (Breiman, 2001), with explanatory variables of the PKU GIMMS NDVI and the longitude and latitude 

of samples and target variable of the MODIS NDVI. This study found that the significance of the RF model largely depended 

on the data quality of PKU GIMMS NDVI and MODIS NDVI. As such, we used 90% of the sample pairs for RF establishment 260 

and 10% for validation. R2 was calculated. The pixel-wise RF model was applied to the non-overlapping period only when R2 

> 0.2 with p < 0.001; otherwise, the PKU GIMMS NDVI was adjusted by aligning its mean value to that of the MODIS NDVI. 

The final PKU GIMMS NDVI product comprised the NDVI product derived from GIMMS NDVI3g between 1982 and 2002 

and the MODIS NDVI product between 2003 and 2022. 

3.4 Evaluation of the PKU GIMMS NDVI Product 265 

This study used a direct verification method to evaluate our product of PKU GIMMS NDVI (Justice et al., 2000). The 

PKU GIMMS NDVI (before consolidation) product was compared to Landsat NDVI values at the remaining 20% of the 
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sample locations (1/12°) for different vegetation biome types. As a comparison, the GIMMS NDVI3g was evaluated in the 

same manner. Four metrics were calculated for accuracy assessment, i.e., sample number (N), R2, Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). R2 measures the percentage of 270 

variations that models can explain, RMSE measures the variance of errors, and MAE and MAPE measure absolute and relative 

error values at the sample level.  
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The spatial distribution of R2 was analysed for the PKU GIMMS NDVI and GIMMS NDVI3g products in 2°×2° grids. To 

highlight the differences between AVHRR-2 and AVHRR-3, NDVI products were evaluated in two separate periods (AVHRR-

2: 1982–2000 and AVHRR-3: 2001–2015). 275 

We also evaluated the performance of our PKU GIMMS NDVI (before consolidation) product in alleviating the effects 

of orbital drift and sensor degradation; and compared it to the GIMMS NDVI3g product. Tian et al. (2015) observed that the 

GIMMS NDVI3g product showed a noticeable artefact in humid areas, which may have been caused by the NOAA satellite 

orbit drift and AVHRR sensor degradation. Zhu et al. (2013) also documented the significant orbital drift in the tropics. 

However, their conclusions either lacked a quantitative analysis or were solely based on statistical observations at a regional 280 

scale because long-term, continuous, and time-consistent benchmark data before 2000 were lacking. This study used NDVI 

bias in the tropical vegetation type of EBF to measure the magnitude of the orbital drift and sensor degradation effect. The 

bias was calculated as the mean value of NDVI deviation relative to Landsat NDVI in percentage (Helder et al., 2013) (Eq. 5). 

 
𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿 % =  

1
𝑁𝑁
�

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑁𝑁
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 × 100% (5) 

If there is orbital drift or sensor degradation, the bias will drastically fluctuate; otherwise, it remains constant. Seasonal 

fluctuations in the time series of NDVI bias were first removed by subtracting the multi-year average at a particular time of 285 

the year, i.e.,  

 𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝑦𝑦,𝐿𝐿  =  𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝐿𝐿𝑦𝑦,𝐿𝐿 − 𝑚𝑚𝑑𝑑𝐿𝐿𝐿𝐿(𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝐿𝐿𝐿𝐿) (6) 

Where 𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝐿𝐿𝑦𝑦,𝐿𝐿 is the original NDVI bias at the time 𝐿𝐿 of the year 𝑦𝑦 (e.g., the first half-month of January in 2005); 

𝑚𝑚𝑑𝑑𝐿𝐿𝐿𝐿(𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝑑𝑑𝑜𝑜𝑏𝑏𝑜𝑜𝑏𝑏𝐿𝐿𝐿𝐿)  is the multi-year average at the time 𝐿𝐿  (e.g., the first half-month of January for all years); and 
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𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿_𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿𝑑𝑑𝐿𝐿𝑦𝑦,𝐿𝐿  is the NDVI bias after removing the seasonal fluctuation. Then, inter-annual trends of the bias were 

extracted via the Ensemble Empirical Mode Decomposition (EEMD) approach (Huang et al., 1998). 290 

The consolidation of PKU GIMMS NDVI with MODIS NDVI was evaluated at 1,000 random points for each 

vegetation biome type. Using MODIS NDVI as the reference, R2, RMSE, MAE, MAPE, and bias for PKU GIMMS NDVI 

before and after consolidation were calculated and compared during the overlap period (2003–2015). To evaluate the 

performance of PKU GIMMS NDVI in characterizing vegetation trends (greening or browning), we performed linear 

regression analysis on the time series of annual average NDVI at each pixel. The linear regression slope could represent a 295 

green trend (positive slope value) or a browning trend (negative slope value). Trends from multiple NDVI products, i.e., 

GIMMS NDVI3g, MODIS NDVI, and PKU GIMMS NDVI (before and after consolidation), were compared over their 

overlapping period. The PKU GIMMS NDVI before consolidation was included because it represents the version of our NDVI 

product that is solely based on AVHRR data, and it can provide a more direct evaluation of the efficacy of the BPNN model 

and Landsat NDVI samples. 300 

4 Results 

4.1 Cross-calibration between Landsat 7 and Landsat 5/Landsat 8 

More than 12 million Landsat sample pairs (600 m resolution) were acquired for Landsat sensor cross-calibration. 

Based on the samples, sixteen BPNN models were established to calibrate Landsat 5 NDVI and Landsat 8 NDVI for eight 

vegetation biome types. Figure 2b and Figure 2d show the NDVI calibration results of Landsat 5 and Landsat 8 against Landsat 305 

7. Both relationships were strong with high R2 (R2 = 0.981 for Landsat 5 and 0.985 for Landsat 8), low RMSE (RMSE = 0.034 

for Landsat 5 and 0.031 for Landsat 8), low MAE (MAE = 0.020 for Landsat 5 and 0.017 for Landsat 8), and low MAPE 

(MAPE = 5.87% for Landsat 5 and 5.14% for Landsat 8). Compared to uncalibrated data (Figure 2a and Figure 2c), negative 

deviation in Landsat 5 NDVI and positive deviation in Landsat 8 NDVI have been efficiently eliminated. 
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Figure 2. The efficiency of NDVI cross-calibration between Landsat sensors. (a) Landsat 7 NDVI vs. uncalibrated Landsat 5 NDVI. (b) 

Landsat 7 NDVI vs. calibrated Landsat 5 NDVI. (c) Landsat 7 NDVI vs. uncalibrated Landsat 8 NDVI. (d) Landsat 7 NDVI vs. calibrated 

Landsat 8 NDVI. The red line is the regression line and the orange diagonal line represents a 1:1 relationship. The size of the NDVI 

interval in the maps is 0.01. NDVI intervals with sample number < 10 were omitted. 

4.2 The PKU GIMMS NDVI product 310 

4.2.1 Spatiotemporal Representativeness of the Landsat NDVI Samples 

Approximately 3.6 million Landsat NDVI samples (1/12°) from 1984 to 2015 were obtained for GIMMS NDVI3g 

calibration. The count and spatiotemporal distribution of the samples primarily depended on the availability of Landsat images, 

which were affected by clouds, cloud shadows, aerosols, climatic conditions, and other factors. The sample count per 

vegetation biome type was approximately proportional to its total area of coverage (Figure 3a and Figure 3b). 315 

In the spatial domain, our samples covered most vegetated regions worldwide (Figure 3a). Meanwhile, in some regions, 

the number of high-quality samples was relatively small. These regions include (1) northern high latitudes, where suffer the 

polar night phenomenon, high solar zenith angle, and high observation zenith angle, (2) tropical rainforest areas with abundant 

precipitation and clouds which lower the quality of remote sensing data, and (3) the Sichuan Basin in Southwest China and 
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areas with a temperate marine climate (e.g., Western European continent, British Isles, and west coast of North and South 320 

America). In the time domain (Figure 3b), the samples of vegetation biome types showed single (for most biomes except CRO) 

or double (CRO) peaks depending on the time of their growing seasons. This guaranteed sufficient samples for accurate NDVI 

prediction with BPNN in the growing season. For the biomes of ENF and DNF that are primarily distributed in the high 

northern latitudes, the number of samples in winter (October to April) was < 500. We resolved this problem by reducing the 

explanatory variables in the BPNN model. During 1984−2015, the Landsat NDVI sample size generally increased from 325 

Landsat 5 to Landsat 7 and Landsat 8 except for two periods. Between 1999 and 2003, the sample size was significantly larger 

as both Landsat 5 and Landsat 7 were available; and between November 2011 and May 2012, very few images were acquired 

when Landsat 5 was decommissioning (https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-

landsat-4-5-thematic-mapper-tm-level-1-data) and Landsat 8 was not available yet (Figure 3c). 

 
Figure 3. Spatial and temporal distribution of refined Landsat NDVI samples (3.6 million). (a) Distribution of Landsat NDVI samples 

within the 2° × 2° grid. (b) Percentage of samples among the eight vegetation biome types in each month. (c) Annual variation of Landsat 

NDVI sample size. 
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4.2.2 Selection of Explanatory Variables for the BPNN Model 330 

The accuracy of BPNN models under different combinations of explanatory variables (S1 to S5) is shown in Figure 4. 

The addition of spatial location significantly improved the accuracy of predicted NDVI for the vegetation biome types that are 

distributed worldwide. The improvement has not been observed for vegetation biome types that are relatively concentrated 

(e.g., ENF and DNF). The addition of temporal information improved the accuracy of vegetation types with prominent seasonal 

variations such as DBF and DNF. Finally, adding the NOAA satellite number and orbit time could also improve the accuracy 335 

of BPNN models, especially for SHR. 
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For the combination containing all explanatory variables (S5), the R2 of most vegetation biome types except for EBF 

and ENF was > 0.8. For vegetation biomes overall, the R2 reached 0.96, and the relative error was only 11.35%. Therefore, all 

available explanatory variables, i.e., the NDVI, longitude, latitude, month, NOAA satellite number, and years since the NOAA 340 

satellite's launch, contributed to the BPNN model in this study. 

4.2.3 Direct Validation of PKU GIMMS NDVI and GIMMS NDVI3g 

Our PKU GIMMS NDVI product (before consolidation) and the GIMMS NDVI3g product were directly verified with 

the remaining 20% of the Landsat NDVI samples from 1984 to 2015 (Figure 5). Overall, the accuracy of the PKU GIMMS 

NDVI (R2 = 0.97, RMSE = 0.05, MAE = 0.03, MAPE = 9%) was higher than that of the GIMMS NDVI3g (R2 = 0.94, RMSE 345 

= 0.09, MAE = 0.07, MAPE = 20%) in all metrics. Among different vegetation biome types, the NDVI quality of SHR 

(GIMMS NDVI3g: R2 = 0.89, RMSE = 0.06, MAE = 0.05, MAPE = 26% and PKU GIMMS NDVI: R2 = 0.92, RMSE = 

0.03, MAE = 0.02, MAPE = 12%) was higher than that of other biome types. The accuracy of the EBF was relatively low for 

both products (GIMMS NDVI3g: R2 = 0.16, RMSE = 0.09, MAE = 0.07, MAPE = 9% and PKU GIMMS NDVI: R2 = 0.47, 

RMSE = 0.04, MAE = 0.02, MAPE = 3%). The reason was that EBF is primarily distributed in tropical areas where the quality 350 

of remote sensing data is poor due to frequent clouds and rains. 

For the GIMMS NDVI3g product, the accuracy differences between vegetation biome types were evident (Figure 5). 

NDVI of SHR (RMSE = 0.06, MAE = 0.05), SAV (RMSE = 0.10, MAE = 0.08), ENF (RMSE = 0.10, MAE = 0.08), and DNF 

(RMSE = 0.12, MAE = 0.09) has been systematically overestimated (Figure 5a). GRA and CRO were also overestimated, 

mainly when NDVI values were high (Figure 5a). NDVI of the EBF has a rather low accuracy in the GIMMS NDVI3g 355 

products, with an R2 of only 0.16. For the PKU GIMMS NDVI product, its performance in different vegetation biome types 

was more stable (R2: 0.47 to 0.92; RMSE: 0.03 to 0.07; MAE: 0.02 to 0.05; MAPE: 3% to 15%) and the scatter points remained 

near the 1:1 line (Figure 5). In particular, the R2 of the EBF was improved to 0.47 in the PKU GIMMS NDVI. 

Figure 4. Performance of different combinations of explanatory variables (S1 to S5) for BPNN models. (a), (b), (c), and (d) show the R2, 

RMSE, MAE, and MAPE of the BPNN models, respectively. GLO represents the global vegetation biome. The combinations of 

explanatory variables are: (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); (S3) NDVI, spatial information, 

and time information (month); (S4) NDVI, spatial information, time information, and NOAA satellite number; and (S5) NDVI, spatial 

information, time information, NOAA satellite number and years since its launch. 
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Figure 5. Direct validation of the (a) GIMMS NDVI3g and (b) PKU GIMMS NDVI (before consolidation) products. Individual Landsat 

NDVI samples from 1984 to 2015 were used in the validation at a 1/12° resolution. Orange lines represent a 1:1 line. GLO represents the 

global vegetation biome. 
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4.2.4 Accuracy of PKU GIMMS NDVI and GIMMS NDVI3g in space 

The accuracies of the PKU GIMMS NDVI (before consolidation) and GIMMS NDVI3g products exhibited strong 360 

spatial heterogeneity (Figure 6). The low-accuracy areas were primarily concentrated in the tropics and high northern latitudes, 

and the high-accuracy regions were concentrated in the mid-latitudes of the Eurasian continent, the Great Plains of the United 

States, and savanna-dominated areas of Africa and Australia. In the tropical rainforest area where both products had relatively 

low accuracies, the PKU GIMMS NDVI better performed especially in Southeast Asia and the northwestern Amazon region. 

However, the improvement of PKU GIMMS NDVI over GIMMS NDVI3g was not significant along the western coast of the 365 

European continent and Southeast China, probably due to the small number of training samples. 

Probability density diagrams were drawn to show NDVI differences between two periods (before and after 2000) 

(Figure 6e) and between two products (Figure 6f). The accuracy of both NDVI products after 2000 was generally higher than 

before 2000. The difference was more evident for the GIMMS NDVI3g product (Figure 6e). The PKU GIMMS NDVI 

improved the accuracies over the GIMMS NDVI3g, especially for the period before 2000 (Figure 6f). 370 

 
Figure 6. Accuracies of the GIMMS NDVI3g and PKU GIMMS NDVI (before consolidation) products measured by R2 for pre-MODIS 

(1982–2000) and MODIS (2001–2015) period. The R2 was calculated between the NDVI products and Landsat NDVI samples. (a) to (d) 

shows the spatial distributions of R2 in 2°× 2° grids. Non-vegetated grids and grids with less than 20 validation samples are marked in 
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white. (e) and (f) shows the probability distribution of R2 differences between the two periods (before 2000 and after 2000) and between 

the two products (GIMMS NDVI3g and PKU GIMMS NDVI), respectively. 

4.2.5 Alleviation of the Orbital Drift and Sensor Degradation Effect 

As shown in Figure 7, the GIMMS NDVI3g product exhibited evident false signals in the EBF region, which agreed 

with the previous findings (Tian et al., 2015). The NDVI bias from different NOAA satellites significantly varied, which may 

cause the "jump" phenomenon between NOAA missions. Before 2000, the effect of orbital drift and sensor degradation were 

evident at the last phases of satellite launch. This is especially true for the NOAA 11 satellite (Figure 7a). The effect became 375 

relatively small for NOAA satellites launched after 2000. In the PKU GIMMS NDVI (before consolidation) product, the 

impact from orbital drift and sensor degradation has been effectively rectified (Figure 7b). NDVI bias did not change 

significantly over time, indicating that the PKU GIMMS NDVI product had good temporal consistency. 

 
Figure 7. Temporal variations of NDVI bias% in EBF for (a) the GIMMS NDVI3g product and (b) the PKU GIMMS NDVI (before 

consolidation) product. The black dash line represents the interannual trend extracted by the EEMD method. Values from different NOAA 

satellite missions are distinguished with colors. 

4.3 Consolidated PKU GIMMS NDVI 

4.3.1 Comparison with MODIS NDVI 380 

The consolidation process improved the consistency level between PKU GIMMS NDVI and MODIS NDVI from 

acceptable (R2 = 0.899, RMSE = 0.092, MAE = 0.069, and MAPE = 12.3%) (Figure 8a-9) to high (R2 = 0.956, RMSE = 0.048, 

MAE = 0.034, and MAPE = 6.0%) (Figure 8b-9). Specifically, the PKU GIMMS NDVI before data consolidation was 

systematically lower than MODIS NDVI; but the relationship approached 1:1 after consolidation. The improvement in 
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consistency was different among vegetation biome types. CRO and GRA had the greatest improvement, as their MAPE 385 

decreased from 24.3% and 20.0% to 9.3% and 9.5%, respectively (Figure 8a and Figure 8b). The probability distribution 

densities of R2, MAPE, and bias were also analysed based on NDVI values before and after consolidation at all samples (8,000) 

(Figure 9). The results show that the R2 was improved (Figure 9a), and the MAPE was significantly decreased (Figure 9b) 

after consolidation. 
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Figure 8. Validation of the PKU GIMMS NDVI product (a) before and (b) after consolidation. The validation was performed using 1,000 

MODIS NDVI samples at a 1/12° resolution for each vegetation biome type from 2003 to 2015. 
 390 

For EBF, the improvement in consistency after consolidation was relatively small (MAPE: 4.9% to 3.2%). The pixel-

wised RF regression model for data consolidation was significant for selected EBF locations (Figure 10a and Figure 10b); but 

it was not for other locations. Due to frequent clouds and rains, both PKU GIMMS NDVI and MODIS NDVI could present 

maximum noises (Figure 10c and Figure 10d). In this case, it was determined that individual MODIS NDVI values were no 

longer reliable as benchmark in the regression model and a simple mean-value aligning method was adopted. 395 

 

 
Figure 9. Distribution of the accuracy metrics before and after consolidation. The accuracy metrics include (a) R2, (b) MAPE, and (c) 

bias. The distribution was calculated using 8,000 random sample points from 2003 to 2015 with MODIS NDVI as the true value. 
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Figure 10. Selected EBF locations illustrating the consistency between the PKU GIMMS NDVI product (before and after consolidation) 

and the MODIS NDVI product. (a) and (b) showcase the locations with significant pixel-wised RF regression models. (c) and (d) 

showcase the locations with insignificant models. NDVI values outside two standard deviations were treated as outliers and removed. 

 

4.3.2 Vegetation trend analysis 

Figure 11 shows the distribution of slopes in the linear regression for the GIMMS NDVI3g, MODIS NDVI, and PKU 

GIMMS NDVI (before and after consolidation) products at 1/12° grids. Overall, these products showed similar spatial patterns 
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in some global hot spots. For example, all of them capture the greening trend in China and India. However, the GIMMS 400 

NDVI3g products showed the opposite trend against MODIS NDVI and PKU GIMMS NDVI products in the tropical 

evergreen broadleaf forest regions of Africa and Southeast Asia (Figure 11). 

 
Figure 11. Distribution of the NDVI trend from 2003 to 2015. The NDVI trend is calculated based on the time series of annual average 

NDVI from (a) MODIS NDVI, (b) GIMMS NDVI3g, (c) PKU GIMMS NDVI (before consolidation), and (d) PKU GIMMS NDVI (after 

consolidation). Non-vegetation area is marked in white. 

 

The time series of annual NDVI anomalies and trends from different products are shown in Figure 12. All products 

presented a similar shape of anomalies in their overlapping periods. During 1982−2015, PKU GIMMS NDVI before 405 

consolidation had a similar trend with GIMMS NDVI3g (0.4×10-3 yr-1 vs. 0.5×10-3 yr-1). During 2003−2015 when all NDVI 

products were available, PKU GIMMS NDVI after consolidation (0.9×10-3 yr-1) and MODIS NDVI (0.9×10-3 yr-1) had a same 

vegetation trend (trend values not shown in the Figure), slightly higher than PKU GIMMS NDVI before consolidation (0.7×10-

3 yr-1), followed by GIMMS NDVI3g (0.5×10-3 yr-1). In the EBF area, GIMMS NDVI3g showed a browning trend since 2003 

due to the impact of orbital drift and sensor degradation (Figure A1), which was consistent with the research by Wang et al. 410 

(2022). In PKU GIMMS NDVI products, the effect of orbital drift and sensor degradation has been alleviated. It showed a 

greening trend in EBF, consistent with MODIS NDVI (Figure A1). 
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Figure 12. Annual anomalies and trends of PKU GIMMS NDVI (before consolidation), PKU GIMMS NDVI (after consolidation), 

MODIS NDVI, and GIMMS NDVI3g. The NDVI anomalies were calculated as area-weighted annual averages. 

5. Discussion and Conclusion 

5.1 Improvements over other long-term Global NDVI Products 

The generation of long-term global NDVI products has been challenging due to the uncertainties associated with the 415 

impacts of satellite orbital drift and sensor degradation/calibration, artefacts related to data processing and analysis, and effects 

from the atmosphere, BRDF, scale, topography, etc. (Zeng et al., 2022). While a lot of work remains to do, the current NDVI 

products have made substantial progress in dealing with selected uncertainties and improving the data quality. Depending on 

the type of uncertainty, many methods and data have been introduced with different degrees of succession. For example, the 

GIMMS NDVI3g product has primarily focused on identifying the systematic deviations between AVHRR-2 and AVHRR-3 420 

caused by differences in the sensor characteristics, and on resolving the inconsistency between AVHRR NDVI products 

(Pinzon and Tucker, 2014). 

The significance of the PKU GIMMS NDVI product was the use of massive representative high-quality Landsat NDVI 

samples across the globe from 1984 to 2015. More than 12 million samples of different vegetation biome types were extracted 

to create temporally consistent Landsat data (Figure 2), and approximately 3.6 million Landsat NDVI samples were obtained 425 

to generate PKU GIMMS NDVI. The number, temporal coverage, and spatial coverage of the samples (Figure 3) have been 

unparalleled compared to preceding long-term NDVI products that also employed samples from other sensors, most of which 

became available only after the late 1990s (e.g., SeaWiFS: 1997−2010; SPOT-VGT: 1999−2014; MODIS: since 2001; VIIRS: 

since 2012). The massive Landsat NDVI samples paved the way for accurate Landsat sensor cross-calibration (Figure 2) and 

PKU GIMMS NDVI generation (Figure 5 and Figure 6). They helped efficiently remove the uncertainties from NOAA orbital 430 

drift and AVHRR sensor degradation (Figure 7). While this is out of the scope of the current study, future evaluation work is 
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suggested to comprehensively compare the PKU GIMMS NDVI to other global long-term NDVI products such as the LTDR4 

and VIP3. 

The improvements in PKU GIMMS NDVI may help to clarify some discrepancies between existing NDVI products, 

for instance, the vegetation trend in humid tropical regions after 2000. In these regions, current findings from multiple studies 435 

suggested that GIMMS-based NDVI presented a decreasing trend while MODIS-based NDVI presented an increasing trend 

(Fensholt and Proud, 2012; Tian et al., 2015; Wang et al., 2022). Possible reasons could be the uncertainties from NDVI 

saturation or lack of high-quality data (Fensholt and Proud, 2012; Wang et al., 2022) and orbital drift effects for GIMMS 

NDVI (Tian et al., 2015). In the generation of PKU GIMMS NDVI, these uncertainties have been well accounted for and we 

found an increasing NDVI trend in tropical regions after 2000, both before and after data consolidation with MODIS NDVI. 440 

5.2 Uncertainty Source 

Despite our efforts to improve the number and quality of the Landsat NDVI samples, uncertainties remain. Besides 

those related to the Landsat NDVI itself (such as the geometric and radiometric errors), one major source of uncertainty is the 

sample size. For certain vegetation biomes, the number of samples in some regions (such as EBF and northern high latitudes) 

may be insufficient due to the constraints in solar zenith angle and environmental conditions. Our results indicated that the 445 

accuracy of BPNN models was lower (despite being acceptable) in the regions with fewer samples (Figure 3 and Figure 6). 

Future research in these regions should include samples from other satellite data as supplements.  

Another source of uncertainty is the BNPP model. We developed individual BPNN models for vegetation biome types. 

As such, errors in the static vegetation biome map and in the MODIS land cover product, and the heterogeneity of the earth 

surface might all diminish the model performance. As input in the BNPP model, GIMMS NDVI3g could also transmit its 450 

uncertainties to the PKU GIMMS NDVI. Furthermore, subsequent research can include other explanatory variables in the 

BPNN such as the environmental variables (e.g., solar radiation, temperature, and precipitation) better explain NDVI 

variations. 

5.3 A summary of the PKU GIMMS NDVI product 

In this study, a new version of GIMMS NDVI product, i.e., the PKU GIMMS NDVI, was developed using the BPNN 455 

model featured by employing a large number of global high-quality Landsat NDVI samples and a data consolidation method 

that employed MODIS NDVI. The PKU GIMMS NDVI covers a time span of 1982 to 2022, with a spatial resolution of 1/12° 

and a temporal resolution of half-month. The high reliability and high accuracy of the PKU GIMMS NDVI product is 

demonstrated by: 

 The Landsat NDVI samples used to generate the PKU GIMMS NDVI were abundant (3.6 million), well 460 

distributed, representative, and high-quality. The inter-comparison between NDVI of different Landsat sensors 

after calibration showed high R2 (> 0.98), low RMSE (< 0.04), low MAE (< 0.02), and low MAPE (< 6%). 
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 Assessing against the Landsat NDVI, the PKU GIMMS NDVI had high overall accuracies (R2 = 0.97, RMSE = 

0.05, MAE = 0.03, MAPE = 9%) and high accuracies for individual vegetation biomes (R2: 0.47 to 0.92; RMSE: 

0.03 to 0.07; MAE: 0.02 to 0.05; MAPE: 3% to 15%). It better performed than the GIMMS NDVI3g (overall: R2 465 

= 0.94, RMSE = 0.09, MAE = 0.07, MAPE = 20%), especially for the tropical evergreen broadleaf forests (EBF) 

(R2 = 0.16 in the GIMMS NDVI3g; R2 = 0.47 in the PKU GIMMS NDVI). 

 The PKU GIMMS NDVI efficiently removed the effects of NOAA orbital drift and AVHRR sensor degradation.  

 During the overlapping period, the consolidated PKU GIMMS NDVI has a good agreement with MODIS NDVI 

in values (R2 = 0.956, RMSE = 0.048, MAE = 0.034, and MAPE = 6.0%) and in vegetation trend (0.9×10-3 yr-1).  470 

The long-term, continuous, and reliable PKU GIMMS NDVI for the past 40 years can provide more accurate vegetation 

monitoring in the context of climate change. The framework proposed in this study which used high-quality Landsat samples 

with BPNN and other explanatory variables (the longitude and latitude, associated month, and the NOAA number and years 

since launch) can also benefit the development of other remote sensing products of land surface parameters (e.g., the 

development of LAI products). 475 
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Appendix A 

 
Figure A1. Annual anomalies and trends of PKU GIMMS NDVI (before consolidation), PKU GIMMS NDVI (after consolidation), 

MODIS NDVI, and GIMMS NDVI3g for different vegetation biome types. The NDVI anomalies were calculated as area-weighted annual 

averages. 

Data availability 

The spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS 

NDVI) generated in this study is openly available at https://doi.org/10.5281/zenodo.8253971 (Li et al., 2023). It covers the 

whole global vegetation area at half month temporal resolution and 1/12° spatial resolution from 1982 to 2022. It is available 480 

in Geographic Lat/Lon projection and TIFF format. In the same repository, we have also provided the version of PKU GIMMS 

NDVI before consolidation with MODIS NDVI (1982−2015). We strongly recommend an adequate use of the quality control 

layer when applying the PKU GIMMS NDVI product (see the Readme file in the repository for more details). 



27 
 

 

Author contributions. ZZ conceptualized and supervised the project. ZZ, ML, and SC designed the workflow of methodology 485 

to produce the dataset. ML and ZW led most of the work in data acquisition and processing. ML, ZZ, SC, and ZW performed 

data analysis. ML, SC, ZZ, RM, and SP prepared the manuscript. ZZ, SC, RM, and SP reviewed and edited the draft. All 

authors contributed to the interpretation of the results. 

 

Competing interests. The authors declare that they have no known competing financial interests or personal relationships that 490 

could have influenced the work reported in this study. 

 

Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps 

and institutional affiliations. 

 495 

Acknowledgments. We would like to thank NASA for providing MODIS data products, C. J. Tucker and J. Pinzon of NASA 

GSFC for providing GIMMS NDVI3g data. We gratefully acknowledge the Landsat data support from USGS and Google 

Earth Engine (https://earthengine.google.com/). We thank C. J. Tucker for his help during the data production. We are also 

grateful to the anonymous reviewers for their constructive comments and suggestions. The updated algorithm with the 

reviewers' suggestions has been used for generating the PKU GIMMS NDVI product. 500 

 

Financial support. This study was supported by the National Natural Science Foundation of China (42271104, 41901122, 

42001355), the Shenzhen Fundamental Research Program (GXWD20201231165807007-20200814213435001) and the 

Shenzhen Science and Technology Program (JCYJ20220531093201004). 

Reference 505 

AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., and Hain, C. R.: Remote 
sensing of drought: Progress, challenges and opportunities, Rev geophys, 53, 452-480, 
https://doi.org/10.1002/2014rg000456, 2015. 

Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial photosynthesis, Sci Adv, 3, 
e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. 510 

Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M., Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-
Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D'Arrigo, R., and Goetz, S. J.: Summer warming explains widespread 
but not uniform greening in the Arctic tundra biome, Nat Commun, 11, 1-12, https://doi.org/10.1038/s41467-020-18479-
5, 2020. 

Beurs, K. M. d. and Henebry, G. M.: Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of 515 
central Asia, IEEE Geosci Remote S, 1, 282-286, https://doi.org/10.1109/LGRS.2004.834805, 2004. 

Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in 
China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth syst sci data, 13, 
2437-2456, https://doi.org/10.5194/essd-13-2437-2021, 2021. 



28 
 

Cao, C., Weinreb, M., and Xu, H.: Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites 520 
for the Intersatellite Calibration of Radiometers, J Atmos Ocean Tech, 21, 537-542, https://doi.org/10.1175/1520-
0426(2004)021<0537:PSNOAP>2.0.CO;2, 2004. 

Cao, C., De Luccia, F. J., Xiong, X., Wolfe, R., and Weng, F.: Early On-Orbit Performance of the Visible Infrared Imaging 
Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite, IEEE T Geosci Remote, 52, 
1142-1156, https://doi.org/10.1109/tgrs.2013.2247768, 2014. 525 

Chen, C., Park, T., Wang, X. H., Piao, S. L., Xu, B. D., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., 
Tommervik, H., Bala, G., Zhu, Z. C., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world 
through land-use management, Nat sustain, 2, 122-129, https://doi.org/10.1038/s41893-019-0220-7, 2019. 

Cui, Y. K., Jia, L., and Fan, W. J.: Estimation of actual evapotranspiration and its components in an irrigated area by integrating 
the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization 530 
algorithm, Agr forest meteorol, 307, 108488, https://doi.org/10.1016/j.agrformet.2021.108488, 2021. 

Didan, K., Munoz, A., Solano, R., and Huete, A.: MODIS Vegetation Index User's Guide, Version 3.00, Collection 6, 2015. 
Didan, K.: MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V061 (V061), NASA EOSDIS Land 

Processes DAAC [dataset], https://doi.org/10.5067/MODIS/MOD13C2.061, 2021. 
Doelling, D. R., Garber, D. P., Avey, L. A., Nguyen, L., and Minnis, P.: The calibration of AVHRR visible dual gain using 535 

Meteosat-8 for NOAA-16 to 18, Conference on Atmospheric and Enviromental Remote Sensing Data Processing and 
Utilization III: Readiness for GEOSS, San Diego, CA, Aug 17-30, WOS:000251483900008, 61-71,  
https://doi.org/10.1117/12.736080, 2007. 

Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of 
winter wheat in China based on Landsat and Sentinel images, Earth syst sci data, 12, 3081-3095, 540 
https://doi.org/10.5194/essd-12-3081-2020, 2020. 

Fan, X. and Liu, Y.: A global study of NDVI difference among moderate-resolution satellite sensors, ISPRS J Photogramm, 
121, 177-191, https://doi.org/10.1016/j.isprsjprs.2016.09.008, 2016. 

Fensholt, R. and Proud, S. R.: Evaluation of Earth Observation based global long term vegetation trends - Comparing GIMMS 
and MODIS global NDVI time series, Remote Sens Environ, 119, 131-147, https://doi.org/10.1016/j.rse.2011.12.015, 545 
2012. 

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Hughes, M. J., and 
Laue, B.: Cloud detection algorithm comparison and validation for operational Landsat data products, Remote Sens 
Environ, 194, 379-390, https://doi.org/10.1016/j.rse.2017.03.026, 2017. 

Frankenberg, C., Yin, Y., Byrne, B., He, L. Y., and Gentine, P.: Comment on "Recent global decline of CO2 fertilization 550 
effects on vegetation photosynthesis" COMMENT, Science, 373, eabg2947, https://doi.org/10.1126/science.abg2947, 
2021. 

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., 
Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS: algorithms 
and early results, Remote Sens Environ, 83, 287-302, https://doi.org/10.1016/s0034-4257(02)00078-0, 2002. 555 

Gamon, J. A., Huemmrich, K. F., Wong, C. Y. S., Ensminger, I., Garrity, S., Hollinger, D. Y., Noormets, A., and Penuelas, J.: 
A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers, P Natl Acad Sci USA, 113, 
13087-13092, https://doi.org/10.1073/pnas.1606162113, 2016. 

Gao, X., Huete, A. R., Ni, W. G., and Miura, T.: Optical-biophysical relationships of vegetation spectra without background 
contamination, Remote Sens Environ, 74, 609-620, https://doi.org/10.1016/s0034-4257(00)00150-4, 2000. 560 

Helder, D., Thome, K. J., Mishra, N., Chander, G., Xiong, X. X., Angal, A., and Choi, T.: Absolute Radiometric Calibration 
of Landsat Using a Pseudo Invariant Calibration Site, IEEE T Geosci Remote, 51, 1360-1369, 
https://doi.org/10.1109/tgrs.2013.2243738, 2013. 

Hong, X.-C., Wang, G.-Y., Liu, J., Song, L., and Wu, E. T. Y.: Modeling the impact of soundscape drivers on perceived 
birdsongs in urban forests, J clean prod, 292, 125315, https://doi.org/10.1016/j.jclepro.2020.125315, 2021. 565 

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N., Yen, N. C., Tung, C. C., and Liu, H. H.: The 
empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, P Roy Soc 
a-math phy, 454, 903-995, https://doi.org/10.1098/rspa.1998.0193, 1998. 



29 
 

Irons, J. R., Dwyer, J. L., and Barsi, J. A.: The next Landsat satellite: The Landsat Data Continuity Mission, Remote Sens 
Environ, 122, 11-21, https://doi.org/10.1016/j.rse.2011.08.026, 2012. 570 

Jiang, C. Y., Ryu, Y., Fang, H. L., Myneni, R., Claverie, M., and Zhu, Z. C.: Inconsistencies of interannual variability and 
trends in long-term satellite leaf area index products, Global Change Biol, 23, 4133-4146, 
https://doi.org/10.1111/gcb.13787, 2017. 

Jiang, L., Tarpley, J. D., Mitchell, K. E., Zhou, S., Kogan, F. N., and Guo, W.: Adjusting for long-term anomalous trends in 
NOAA's global vegetation index data sets, IEEE T Geosci Remote, 46, 409-422, 575 
https://doi.org/10.1109/tgrs.2007.902844, 2008. 

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., Wang, Y. J., and Tucker, C. J.: Estimation of 
Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data, 
Remote Sens, 10, 1346, https://doi.org/10.3390/rs10091346, 2018. 

Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J., and Baret, F.: Developments in the 'validation' of satellite sensor 580 
products for the study of the land surface, Int J Remote Sens, 21, 3383-3390, 
https://doi.org/10.1080/014311600750020000, 2000. 

Kogan, F. N.: Application of vegetation index and brightness temperature for drought detection, in: Natural Hazards: 
Monitoring and Assessment Using Remote Sensing Technique, edited by: Singh, R. P., and Furrer, R., Advances in Space 
Research-Series, 11, 91-100, https://doi.org/10.1016/0273-1177(95)00079-t, 1995. 585 

Li, M., Cao, S., Zhu, Z., Wang, Z., Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS 
Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022 (V1.2), zenodo [dataset], 
https://doi.org/10.5281/zenodo.8253971, 2023. 

Li, X., Zhou, Y., Meng, L., Asrar, G. R., Lu, C., and Wu, Q.: A dataset of 30 m annual vegetation phenology indicators (1985-
2015) in urban areas of the conterminous United States, Earth syst sci data, 11, 881-894, https://doi.org/10.5194/essd-11-590 
881-2019, 2019. 

Los, S. O.: Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI 
composites, IEEE T Geosci Remote, 36, 206-213, https://doi.org/10.1109/36.655330, 1998. 

Maisongrande, P., Duchemin, B., and Dedieu, G.: VEGETATION/SPOT: an operational mission for the Earth monitoring; 
presentation of new standard products, Int J Remote Sens, 25, 9-14, https://doi.org/10.1080/0143116031000115265, 595 
2004. 

Mao, D., Wang, Z., Luo, L., and Ren, C.: Integrating AVHRR and MODIS data to monitor NDVI changes and their 
relationships with climatic parameters in Northeast China, Int j appl earth obs, 18, 528-536, 
https://doi.org/10.1016/j.jag.2011.10.007, 2012. 

Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T. K.: A 600 
Landsat surface reflectance dataset for North America, 1990-2000, IEEE Geosci Remote S, 3, 68-72, 
https://doi.org/10.1109/lgrs.2005.857030, 2006. 

Meng, X., Bao, Y., Liu, J., Liu, H., Zhang, X., Zhang, Y., Wang, P., Tang, H., and Kong, F.: Regional soil organic carbon 
prediction model based on a discrete wavelet analysis of hyperspectral satellite data, Int j appl earth obs, 89, 102111, 
https://doi.org/10.1016/j.jag.2020.102111, 2020. 605 

Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Assmann, J. J., John, C., Andreu-Hayles, L., 
Angers-Blondin, S., Beck, P. S. A., Berner, L. T., Bhatt, U. S., Bjorkman, A. D., Blok, D., Bryn, A., Christiansen, C. T., 
Cornelissen, J. H. C., Cunliffe, A. M., Elmendorf, S. C., Forbes, B. C., Goetz, S. J., Hollister, R. D., de Jong, R., Loranty, 
M. M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T. C., Parmentier, F. J. W., Post, E., 
Schaepman-Strub, G., Stordal, F., Sullivan, P. F., Thomas, H. J. D., Tommervik, H., Treharne, R., Tweedie, C. E., Walker, 610 
D. A., Wilmking, M., and Wipf, S.: Complexity revealed in the greening of the Arctic, Nat clim change, 10, 106-117, 
https://doi.org/10.1038/s41558-019-0688-1, 2020. 

Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., Roy, D., Ju, J. C., Vermote, E., Prince, S., Nagol, 
J., Justice, C., Schaaf, C., Liu, J. C., Privette, J., Pinheiro, A., and Ieee: Generating a Long-term Land Data Record from 
the AVHRR and MODIS instruments, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 615 
Barcelona, SPAIN, Jul 23-27, WOS:000256657301039, 1021-1024,  https://doi.org/10.1109/igarss.2007.4422974, 2007. 

Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., and Funk, C.: A pan-African high-
resolution drought index dataset, Earth syst sci data, 12, 753-769, https://doi.org/10.5194/essd-12-753-2020, 2020. 



30 
 

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tommervik, H., Nemani, R. R., and 
Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nat rev earth env, 1, 14-27, 620 
https://doi.org/10.1038/s43017-019-0001-x, 2020. 

Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series, Remote Sens, 6, 6929-6960, 
https://doi.org/10.3390/rs6086929, 2014. 

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., Doughty, R., Zhang, Y., Liu, F., 
Sitch, S., and Moore, B.: Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon, 625 
Nat clim change, 11, 442-448, https://doi.org/10.1038/s41558-021-01026-5, 2021. 

Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted vegetation indices, Remote Sens Environ, 55, 95-107, 
https://doi.org/10.1016/0034-4257(95)00186-7, 1996. 

Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W.: Monitoring vegetation systems in the Great Plains with ERTS, 
NASA Spec. Publ, 351, 309, 1974. 630 

Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: Characterization of Landsat-
7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens Environ, 185, 
57-70, https://doi.org/10.1016/j.rse.2015.12.024, 2016. 

Schubert, P., Lagergren, F., Aurela, M., Christensen, T., Grelle, A., Heliasz, M., Klemedtsson, L., Lindroth, A., Pilegaard, K., 
Vesala, T., and Eklundh, L.: Modeling GPP in the Nordic forest landscape with MODIS time series data-Comparison 635 
with the MODIS GPP product, Remote Sens Environ, 126, 136-147, https://doi.org/10.1016/j.rse.2012.08.005, 2012. 

Shen, M. Wang, S., Jiang, N., Sun, J., Cao, R., Ling, X., Fang, B., Zhang, Lei, Zhang, Lihao, Xu, X., Lv, W., Li, B., Sun, Q., 
Meng, F., Jiang, Y., Dorji, T., Fu, Y., Iler, A., Vitasse, Y., Steltzer, H., Ji, Z., Zhao, W., Piao, S., and Fu, B.: Plant 
phenology changes and drivers on the Qinghai–Tibetan Plateau, Nat Rev Earth Environ, 3, 633–651, 
https://doi.org/10.1038/s43017-022-00317-5, 2022. 640 

Storey, J., Choate, M., and Lee, K.: Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance, 
Remote Sens, 6, 11127–11152. https://doi.org/10.3390/rs61111127, 2014 

Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., and Wang, Y. J.: Evaluating temporal consistency of long-term 
global NDVI datasets for trend analysis, Remote Sens Environ, 163, 326-340, https://doi.org/10.1016/j.rse.2015.03.031, 
2015. 645 

Trishchenko, A. P., Cihlar, J., and Li, Z.: Effects of spectral response function on surface reflectance and NDVI measured with 
moderate resolution satellite sensors, Remote Sens Environ, 81, 1-18, https://doi.org/10.1016/S0034-4257(01)00328-5, 
2002. 

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F., and El Saleous, N.: An 
extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, Int J Remote Sens, 26, 650 
4485-4498, https://doi.org/10.1080/01431160500168686, 2005. 

Vermote, E., Justice, C., Claverie, M., and Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land 
surface reflectance product, Remote Sens Environ, 185, 46-56, https://doi.org/10.1016/j.rse.2016.04.008, 2016. 

Wang, S. H., Zhang, Y. G., Ju, W. M., Chen, J. M., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M. S., Berry, J. A., Campbell, 
J. E., Fernandez-Martinez, M., Alkama, R., Sitch, S., Smith, W. K., Yuan, W. P., He, W., Lombardozzi, D., Kautz, M., 655 
Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Kruger, I., Wang, R., Zeng, N., Tian, H. Q., Vuichard, N., 
Jain, A. K., Wiltshire, A., Goll, D. S., and Penuelas, J.: Response to Comments on "Recent global decline of CO2 
fertilization effects on vegetation photosynthesis" COMMENT, Science, 373, eabg7484, 
https://doi.org/10.1126/science.abg7484, 2021. 

Wang, Z., Wang, H., Wang, T., Wang, L., Liu, X., Zheng, K., and Huang, X.: Large discrepancies of global greening: 660 
Indication of multi-source remote sensing data, Glob ecol conserv, 34, e02016, 
https://doi.org/10.1016/j.gecco.2022.e02016, 2022. 

Weng, Q., Fu, P., and Gao, F.: Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS 
data, Remote Sens Environ, 145, 55-67, https://doi.org/10.1016/j.rse.2014.02.003, 2014. 

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., 665 
Masek, J. G., and Roy, D. P.: The global Landsat archive: Status, consolidation, and direction, Remote Sens Environ, 
185, 271-283, https://doi.org/10.1016/j.rse.2015.11.032, 2016. 



31 
 

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., 
Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosillo, T., Hipple, J. D., Hostert, 
P., Hughes, M. J., Huntington, J., Johnson, D. M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, 670 
N., Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J. C., Wynne, R. 
H., and Zhu, Z.: Current status of Landsat program, science, and applications, Remote Sens Environ, 225, 127-147, 
https://doi.org/10.1016/j.rse.2019.02.015, 2019. 

Yang, S., Feng, Q., Liang, T., Liu, B., Zhang, W., and Xie, H.: Modeling grassland above-ground biomass based on artificial 
neural network and remote sensing in the Three-River Headwaters Region, Remote Sens Environ, 204, 448-455, 675 
https://doi.org/10.1016/j.rse.2017.10.011, 2018. 

Yang, W., Kogan, F., Guo, W., and Chen, Y.: A novel re-compositing approach to create continuous and consistent cross-
sensor/cross-production global NDVI datasets, Int J Remote Sens, 42, 6025-6049, 
https://doi.org/10.1080/01431161.2021.1934597, 2021. 

Yin, G., Verger, A., Descals, A., Filella, I., and Peñuelas, J.: A Broadband Green-Red Vegetation Index for Monitoring Gross 680 
Primary Production Phenology, Journal of Remote Sensing, 2022, 9764982, https://doi.org/10.34133/2022/9764982, 
2022. 

Zeng, Y. L., Hao, D. L., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, 
Y., Xiao, J. F., Asrar, G. R., and Chen, M.: Optical vegetation indices for monitoring terrestrial ecosystems globally, Nat 
rev earth env, 3, 477-493, https://doi.org/10.1038/s43017-022-00298-5, 2022. 685 

Zhang, X., Liu, L., Chen, X., Gao, Y., and Jiang, M.: Automatically Monitoring Impervious Surfaces Using Spectral 
Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta, Journal of Remote 
Sensing, 2021, 9873816, https://doi.org/10.34133/2021/9873816, 2021. 

Zhang, X., Xu, M., Wang, S., Huang, Y., and Xie, Z.: Mapping photovoltaic power plants in China using Landsat, random 
forest, and Google Earth Engine, Earth syst sci data, 14, 3743-3755, https://doi.org/10.5194/essd-14-3743-2022, 2022. 690 

Zhang, Y., Song, C., Band, L. E., Sun, G., and Li, J.: Reanalysis of global terrestrial vegetation trends from MODIS products: 
Browning or greening?, Remote Sens Environ, 191, 145-155, https://doi.org/10.1016/j.rse.2016.12.018, 2017. 

Zhu, Z., Wang, S. X., and Woodcock, C. E.: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and 
snow detection for Landsats 4-7, 8, and Sentinel 2 images, Remote Sens Environ, 159, 269-277, 
https://doi.org/10.1016/j.rse.2014.12.014, 2015. 695 

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R. R., and Myneni, R. B.: Global Data 
Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived 
from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) 
for the Period 1981 to 2011, Remote Sens, 5, 927-948, https://doi.org/10.3390/rs5020927, 2013. 

Zhu, Z. C., Zeng, H., Myneni, R. B., Chen, C., Zhao, Q., Zha, J. J., Zhan, S. M., and MacLachlan, I.: Comment on "Recent 700 
global decline of CO2 fertilization effects on vegetation photosynthesis" COMMENT, Science, 373, eabg5673, 
https://doi.org/10.1126/science.abg5673, 2021. 


	1 Introduction
	2 Data
	2.1 Landsat Surface Reflectance Data (Collection 1 Tier 1)
	2.2 GIMMS NDVI3g (V1.0) Product
	2.3 MODIS Vegetation Index Product (MOD13C1, V6.1)
	2.4 MODIS Land-Cover Type products (MCD12Q1 and MCD12C1, V6.1)

	3 Methodology
	3.1 Cross-calibrating NDVIs among Landsat Sensors
	3.1.1 Sample locations
	3.1.2 Cross-calibration using BPNN models

	3.2 Generation of the PKU GIMMS NDVI
	3.2.1 Landsat NDVI samples
	3.2.2 BPNN models with GIMMS NDVI3g and other explanatory variables

	3.3 Consolidation of the PKU GIMMS NDVI and MODIS NDVI
	3.4 Evaluation of the PKU GIMMS NDVI Product

	4 Results
	4.1 Cross-calibration between Landsat 7 and Landsat 5/Landsat 8
	4.2 The PKU GIMMS NDVI product
	4.2.1 Spatiotemporal Representativeness of the Landsat NDVI Samples
	4.2.2 Selection of Explanatory Variables for the BPNN Model
	4.2.3 Direct Validation of PKU GIMMS NDVI and GIMMS NDVI3g
	4.2.4 Accuracy of PKU GIMMS NDVI and GIMMS NDVI3g in space
	4.2.5 Alleviation of the Orbital Drift and Sensor Degradation Effect

	4.3 Consolidated PKU GIMMS NDVI
	4.3.1 Comparison with MODIS NDVI
	4.3.2 Vegetation trend analysis


	5. Discussion and Conclusion
	5.1 Improvements over other long-term Global NDVI Products
	5.2 Uncertainty Source
	5.3 A summary of the PKU GIMMS NDVI product

	Appendix A
	Data availability
	Reference

