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Abstract. There is a scientific consensus on the need for spatially detailed information on urban landscapes at a global scale.

This data can support a range of environmental services, since cities are places of intense resource consumption and waste

generation, and of concentrated infrastructure and human settlement exposed to multiple hazards of natural and anthropogenic

origin. In the face of climate change, urban data is also required to explore future urbanisation pathways and urban design

strategies, in order to lock in long-term resilience and sustainability, protecting cities from future decisions that could under-5

mine their adaptability and mitigation role. To serve this purpose, we present a 100m resolution global map of Local Climate

Zones (LCZs), an universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical

combination of micro-scale land-covers and associated physical properties. The global LCZ map, composed of 10 built and

7 natural land cover types, is generated by feeding an unprecedented amount of labelled training areas and earth observation

imagery into lightweight random forest models. Its quality is assessed using a bootstrap cross validation alongside a thematic10

benchmark for 150 selected functional urban areas using independent global and open-source data on surface cover, surface

imperviousness, building height, and anthropogenic heat. As each LCZ type is associated with generic numerical descriptions

of key urban canopy parameters that regulate atmospheric responses to urbanisation, the availability of this globally consistent

and climate-relevant urban description is an important prerequisite for supporting model development and creating evidence-

based climate-sensitive urban planning policies. This dataset can be downloaded from http://doi.org/10.5281/zenodo.636459415

(Demuzere et al., 2022a).

1 Introduction

Cities are at the forefront of global climate change science owing to their emissions of greenhouse gases and their exposure

to projected hazards, such as sea-level rise and climate warming (IPCC, 2022). As a result, they are focus for mitigation and

adaptation policies and, as they have governance structures in place, are an ideal scale to affect change. The crucial role that20

cities can play in this arena is recognised at the international level: the new United Nations Agenda and the 11th Sustainable
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Development Goal focus on urban resilience, climate and environment sustainability of cities; two of the four challenges iden-

tified by the World Meteorological Organisation (WMO) World Weather Research Program are urban related: high-impact

weather, including impacts in cities, and urbanisation; the Intergovernmental Panel on Climate Change Cities and Climate

Change Scientific Committee identified six research priorities for science to have a stronger role in urban policy and practice;25

and advocacy groups like C401 play an increasingly important role in achieving national emission targets and enhancing re-

silience (Creutzig et al., 2016; Bai et al., 2018; Masson et al., 2020).

Cities are simultaneously drivers of regional and local climate changes. The conversion of Earth’s land surface to urban

areas is one of the most irreversible human impacts on the global ecosystem (Grimm et al., 2008; Reba and Seto, 2020). In30

addition to the many modifications to bio-, hydro-, and lithosphere (Seto et al., 2012; D’Amour et al., 2017; Liu et al., 2019;

van Vliet, 2019; Zhang et al., 2019; McDonough et al., 2020), urbanisation affects energy demand (Creutzig et al., 2015; Gün-

eralp et al., 2017), releases anthropogenic heat emissions and pollutants (Patella et al., 2018; Takane et al., 2019), and alters

the urban climate (Oke et al., 2017). Current and future climate changes represent significant risks to urban populations and to

the natural and physical infrastructure systems of cities (Costello et al., 2009; UN, 2019; Wang et al., 2021). In this context,35

the WMO has advocated the development on integrated urban services (IUS) – using observations (remote and on-site) and

models - that addresses the panoply of hazards that cities face and the needs of service providers, including emergency ser-

vices, public health bodies, energy produces, urban designers and planners, etc. (Baklanov et al., 2018; Grimmond et al., 2020).

Despite their importance as a spatial nexus of climate drivers and of governance, cities are largely excluded from global cli-40

mate science owing to their relatively small extent and our limited knowledge of their spatial structures. Global-scale climate

models have only recently evolved to accommodate urban-scale landscapes, even though the urban parameters that are used by

these models are limited in scope (Zhao et al., 2021). At regional and urban scales, model developments use far more detailed

parameters that include descriptions of the net impacts of buildings in creating distinct urban canopy and boundary layers.

While some theoretical challenges remain, it is now possible to simulate urban effects on climate, between and above buildings45

at sub-urban scales (Barlow, 2014). Scientific advances will soon allow variable-resolution modelling that will incorporate the

hierarchy of climate processes and impacts. However, the absence of suitable and universal global urban landscape data to

inform these models represents a serious impediment to progress (Zhao et al., 2021; Hertwig et al., 2021). Hence a compre-

hensive database is needed on cities globally that supports multi-scale modelling, provides a spatial framework for interpreting

on-site and remote measurements and allows the meaningful transfer of knowledge among and within cities (Rosenzweig et al.,50

2010; Hidalgo et al., 2018).

The critical data needed to support urban climate science includes information on urban form and functions. Measures of

form include e.g. building density, street widths, building heights, construction materials and fraction of vegetated areas. These

attributes largely influence the local climate and the ’adaptation’ capacity of a city (e. g. to ensure a comfortable thermal55

1https://www.c40.org/cop26/
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environment to its inhabitants). Urban functions describe the emissions of waste heat, materials and gases into the overlying

atmosphere. Appropriate measures would include the anthropogenic heat flux (AHF) and CO2 emissions. Form and function

are correlated, for example: population density regulates energy consumption, and therefore the potential to mitigate global

warming by reducing the greenhouse gas emissions; variations in building layout and heights moderates surface roughness

and contributes to the atmospheric dispersive conditions, and so the air quality (Martilli, 2014). Models are needed to assess60

the net benefits of climate-based interventions that may have unintended outcomes. For example, densely built and occupied

cities (so called compact 15-minute cities) will reduce traffic, energy demand and CO2 emissions, and in some cases improve

air quality (Stone et al., 2007; McDonough et al., 2020; Williams et al., 2010), but will enhance warming and heat stress by

reducing vegetative cover and sky view factor in the street canyons, and increase the spatial density of the anthropogenic heat

(Demuzere et al., 2014; Lai et al., 2019). Understanding how different urban forms interact with the atmosphere is key to re-65

designing cities, and, more importantly, plan future urbanisation. It is therefore essential to have information that differentiates

between urban forms that can be used by atmospheric models to simulate the future climatic conditions and different urban

form scenarios. Our objective here is to generate these data to support model evolution and stimulate research on multi-scale

climate projections to manage urban risks.

70

Acquiring urban data at a global scale is not a trivial exercise owing to the operational definition of ‘urban’, the scattered

extents of cities globally and their complex intra-urban geographies; for example, the Global Human Settlement Layer Urban

Centres Database identifies over 13.000 settlements (Florczyk et al., 2019), while Li et al. (2020b) generated over 60.000 global

urban boundaries. At the global scale, there are several datasets that identify the extent of contiguous urban areas, based on

built-up or impervious surface cover (Zhou et al., 2015; Corbane et al., 2017; Esch et al., 2017; Marconcini et al., 2020; Gong75

et al., 2020; Zhang et al., 2020a; Zhao et al., 2022) but none that provide intra-urban morphological details (green cover, built

density, building heights, etc.) that are needed by scientists to generate the urban canopy parameters (UCPs) to run models

and by urban policy-makers to make informed decisions based on analyses of risk. For many cities, relevant information may

be gleaned from local sources that maintain municipal geographic databases (e.g. Biljecki et al., 2021), but these data vary

in terms of their quality, consistency, and accessibility, which limits their wider applicability (Zhu et al., 2019). The 100 m80

resolution global Local Climate Zone (LCZ) map presented here addresses this need for more detailed intra-urban data. This

product is the outcome of more than a decade of research on how best to acquire, evaluate and deploy urban data in support of

climate science (Stewart and Oke, 2012; Bechtel and Daneke, 2012; Ching et al., 2018).

The LCZ typology is currently the only universal classification that categorises urban landscapes using a scheme that iden-85

tifies readily recognisable neighbourhood types based on their form and function, which modify the surface energy and water

budgets. Critically, each LCZ type is linked to meaningful UCP value ranges that can be used for physically-based modelling

(Stewart and Oke, 2012; Ching et al., 2019; Demuzere et al., 2020a). It goes beyond the urban mask and enables the assessment

of the spatial impact of urban planning decisions that will alter UCPs and their climate outcomes. The LCZ scheme is distin-

guished from other LULC schemes by its focus on urban and rural landscape types, which can be described by any of the 1790
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classes in the scheme (Fig. 1). The scheme was originally designed to encourage climate change researchers to step away from

their computers and get acquainted with the field sites that support their work, to capture the character of the urban landscape

responsible for the urban heat island (UHI), and to ensure consistent reporting of metadata about the sites used to measure the

heat island effect (Stewart, 2018; Stewart and Mills, 2021). The World Urban Database and Access Portal Tools (WUDAPT)

project has adopted the scheme in pursuit of its goal ‘to capture consistent information on cities worldwide that can support95

urban weather, climate, hydrology and air quality modelling’ (Ching et al., 2018). The global LCZ product for the first time

captures the intra-urban heterogeneity across the whole surface of the Earth, capturing cities of all sizes. It complements the

LCZ maps for individual cities created by the WUDAPT community, the LCZ Generator 2 (Demuzere et al., 2021b) or that are

available via other sources (e.g. Taubenböck et al., 2020; Zhu et al., 2022). In addition, as each LCZ type is associated with

generic numerical descriptions of key UCPs, the availability of this globally consistent and climate-relevant urban description100

is an important prerequisite to advance our capacity to assess climate risks at urban scales, and enable the development of

fit-for-purpose climate mitigation and adaptation strategies.

2https://lcz-generator.rub.de/
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2
Dense mix of midrise buildings (3–9 stories). Few 
or no trees. Land cover mostly paved. Stone, 
brick, tile, and concrete construction materials.

Compact midrise

1
Dense mix of tall buildings to tens of stories. Few 
or no trees. Land cover mostly paved. Concrete, 
steel, stone, and glass construction materials. 

Compact highrise

4
Open arrangement of tall buildings to tens of 
stories. Abundance of pervious land cover (low 
plants, trees). Concrete, steel, stone, and glass 
construction materials.

Open highrise

G
Large, open water bodies such as seas and lakes, 
or small bodies such as rivers, reservoirs, and 
lagoons.

Water

E
Featureless landscape of rock or paved cover. 
Few or no trees or plants. Zone function is 
natural desert (rock) or urban transportation.

Bare rock or paved

D
Featureless landscape of grass or herbaceous 
plants/crops. Few or no trees. Zone function is 
natural grassland, agriculture, or urban park.

Low plants

A
Heavily wooded landscape of deciduous and/or 
evergreen trees. Land cover mostly pervious (low 
plants). Zone function is natural forest, tree 
cultivation or urban park.

Dense trees

F
Featureless landscape of soil or sand cover. Few 
or no trees or plants. Zone function is natural 
desert or agriculture.

Bare soil or sand

VARIABLE LAND COVER PROPERTIES
Variable or ephemeral land cover properties that change significantly with 
synoptic weather patterns, agricultural practices, and/or seasonal cycles.

b. bare trees Leafless deciduous trees (e.g., winter). Increased 
sky view factor. Reduced albedo.

s. snow cover Snow cover >10 cm in depth. Low admittance. 
High albedo.

d. dry ground Parched soil. Low admittance. Large Bowen ratio. 
Increased albedo.

w. wet ground Waterlogged soil. High admittance. Small Bowen 
ratio. Reduced albedo.

Built types Land cover types

6
Open arrangement of lowrise buildings (1–3 
stories). Abundance of pervious land cover (low 
plants, scattered trees). Wood, brick, stone, tile, 
and concrete construction materials.

Open lowrise

7
Dense mix of single-story buildings. Few or no 
trees. Land cover mostly hard-packed. 
Lightweight construction materials (e.g., wood, 
thatch, corrugated metal).

Lightweight lowrise

8
Open arrangement of large lowrise buildings (1–
3 stories). Few or no trees. Land cover mostly 
paved. Steel, concrete, metal, and stone 
construction materials.

Large lowrise

9
Sparse arrangement of small or medium-sized 
buildings in a natural setting. Abundance of 
pervious land cover (low plants, scattered trees).

Sparsely built

10
Lowrise and midrise industrial structures 
(towers, tanks, stacks). Few or no trees. Land 
cover mostly paved or hard-packed. Metal, steel, 
and concrete construction materials.

Heavy industry

B
Lightly wooded landscape of deciduous and/or 
evergreen trees. Land cover mostly pervious (low 
plants). Zone function is natural forest, tree 
cultivation, or urban park. 

Scattered trees

C
Open arrangement of bushes, shrubs, and short, 
woody trees. Land cover mostly pervious (bare 
soil or sand). Zone function is natural scrubland 
or agriculture.

Bush, scrub

3
Dense mix of lowrise buildings (1–3 stories). Few 
or no trees. Land cover mostly paved. Stone, 
brick, tile, and concrete construction materials.

Compact lowrise

5
Open arrangement of midrise buildings (3–9 
stories). Abundance of pervious land cover (low 
plants, scattered trees). Concrete, steel, stone, 
and glass construction materials.

Open midrise

Figure 1. Definitions of built (1-10) and land cover types (A-G) for the Local Climate Zone scheme (Stewart and Oke, 2012; Demuzere

et al., 2020a). 5



2 Methods and Data

Whilst many LCZ mapping methodologies are currently available (see e.g. review by Jiang et al., 2021), the methodology for

the global LCZ map follows WUDAPT’s default protocol that was launched by Bechtel et al. (2015), sequentially improved105

by Demuzere et al. (2019b, a, 2020a), ultimately leading to the LCZ Generator (Demuzere et al., 2021b), a web application

that makes single-city LCZ mapping fast and easy. The procedure requires labelled training areas, earth observation input data,

and a random forest classifier, discussed in-depth in Sections 2.1, 2.2 and 2.3 respectively. In addition, in line with previous

continental-scale LCZ mapping efforts by Demuzere et al. (2019b, 2020a), the quality of the resulting LCZ map is assessed in

two ways: 1) a traditional quality assessment using multiple accuracy metrics, and 2) a thematic benchmark, by translating the110

LCZ map into its corresponding LCZ-based urban canopy parameters, and comparing these against (semi-)independent global

and open-source databases reflecting urban forms and functions (Section 2.4).

2.1 Training areas

Training areas (TAs) are LCZ-labelled polygons that represent typical examples of built or natural LCZs in a region of interest

(ROI). By design, they are compiled in a crowd-sourced manner, either by urban experts (Bechtel et al., 2015) or alterna-115

tive crowd-sourcing platforms such as MTurk (https://www.mturk.com) (Demuzere et al., 2020a; Xu et al., 2021) using good

practice guidelines for digitising TAs (see Appendix A and Demuzere et al. (2021b)). While the training area polygons and

corresponding LCZ maps created by individuals are often of poor to moderate quality, The Human Influence Experiment

(HUMINEX) (Bechtel et al., 2017; Verdonck et al., 2019a) demonstrated large accuracy improvements (up to 20%) when

multiple (poor to moderate quality) training datasets were used together to create a single LCZ map. In the current study, TAs120

are compiled from multiple sources. First, well-trained (inspired by HUMINEX findings) students assistants from the Ruhr-

University Bochum produced TA sets for more than 100 global ROIs (labelled as RUB). Second, archived TA (labelled as

ARC) sets were collected from previously published research and collaborations, including the samples hosted on the original

WUDAPT portal (https://www.wudapt.org/the-wudapt-portal/). Finally, the RUB and ARC TA sets are supplemented with the

TA samples available from the LCZ Generator (Demuzere et al., 2021b) (labelled as GEN).125

Before being used in the classification procedure, all TA sets are curated. First, all RUB and ARC training area sets are

submitted to the LCZ Generator: in case of multiple entries for one submission, only the submission with the highest overall

accuracy is retained. Second, only TA samples mapped to LCZs with an overall accuracy greater than 50% are kept. Third,

in case of duplicate regions across the different sources, the following priority is used: RUB > ARC > GEN. Fourth, only the130

original seventeen LCZ classes are kept, thereby removing non-standardized classes available in some of the samples, such as

LCZ W - Wetlands (Brousse et al., 2019, 2020b, a) and LCZ H - Agricultural greenhouses (Vandamme et al., 2019). Third, in

order to maintain computational efficiency, and to avoid redundancy and mixed spectral characteristics, the surface area of large

polygons (>1.5 km2) is reduced, and too small or too complex TA polygons are removed (Demuzere et al., 2021b). Finally,

all pixels embedded within the ROIs are assigned to urban ecoregions (ER), which are regional clusters based on climate,135
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vegetation, and urban topology (Schneider et al., 2010)). This is based on the finding of Demuzere et al. (2019b) that ERs can

provide a basis for intelligent learning between cities and allow upscaling from individual cities to regional and global levels.

2.2 Earth observation input data

In addition to the TAs, earth observation (EO) input data is also required to feed into the LCZ supervised random forest classi-

fier (Breiman, 2001; Bechtel et al., 2015). The 33 global earth observation input features used by default in the LCZ Generator140

(see Table 2 in Demuzere et al., 2021b) serve as a baseline. However, some EO input features are updated or added. The origi-

nal 1 km global forest canopy height representative for 2005 (Simard et al., 2011) is replaced by the 30 m global forest canopy

height dataset representative for 2019, developed by Potapov et al. (2021) through the integration of the Global Ecosystem

Dynamics Investigation (GEDI) lidar instrument data (April–October 2019) and multi-temporal metrics derived from Landsat.

Also the ALOS Digital Surface Model (DSM) data is updated to version 3.2, an improved version that reconsiders the format145

in the high latitude area, auxiliary data, and processing method (Tadono et al., 2016). In addition, the Shuttle Radar Topog-

raphy Mission (SRTM) Digital Elevation Model (DEM) information is replaced by the MERIT DEM (Multi-Error-Removed

Improved-Terrain Digital Elevation Model, Yamazaki et al. (2017)), from which also the slope and aspect are added. Because

of the changes in the DSM and DEM, also the Canopy Height Model CHM (=DSM-DEM) data is updated. Building fur-

ther upon the findings of Brousse et al. (2020a), Hay Chung et al. (2021) and Chen et al. (2021a), two more sets of input150

features are added, including: 1) Gray Level Co-occurrence Matrix (GLCM) texture features (contrast, dissimilarity, inertia,

sum average, and cluster shade) derived from PALSAR (Phased Array type L-band Synthetic Aperture Radar) for both HH

and HV polarisations with a 4 by 4 kernel size (matching the LCZ 100 m spatial resolution), and 2) NANTLI, a Landsat 8

NDVI-adjusted (Normalized Difference Vegetation Index) Night-Time Light Index based on VIIRS (Visible Infrared Imaging

Radiometer Suite) data, analogous to EANTLI (Zhuo et al., 2015, 2018; Zhang et al., 2020a). See Appendix B for more details155

on these additional input features. Combined, this results in a set of 46 earth observation input features, derived from Landsat

8 (16), Sentinel-1 (5), Sentinel-2 (8), PALSAR (10), VIIRS (1) and other sources (6).

2.3 Lightweight global random forest models

To date, the pixel-based LCZ mapping methods have used a wide variety of machine learning algorithms to classify LCZs (see160

e.g. Section 3.1.4 in Jiang et al. (2021) for more details). Here, WUDAPT’s initial and default random forest classifier algo-

rithm is used (Bechtel et al., 2015), building further upon the classification procedure of the LCZ Generator (Demuzere et al.,

2021b), that uses Breiman’s random forest implementation in Google’s Earth Engine (EE), in combination with an automated

cross-validation approach using 25 bootstraps (Breiman, 2001; Bechtel et al., 2015; Gorelick et al., 2017; Demuzere et al.,

2019a, 2020a, 2021b). Yet since the sheer size of the classification problem (2+ million labels and 46 input features) leads to165

exceeding EE’s user memory limit or to computational time outs, two sequential pathways (Figure 2) are developed that lead to

lightweight global random forest models that balance optimal learning with accuracy, computational feasibility and efficiency
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(Corbane et al., 2021).

Figure 2. Schematic representation of the sequential pathways to develop the global LCZ map.

In a first pathway, earth observation data are extracted from all input features and for all pixels embedded within the training170

area polygons. Then, using Python’s random forest from the scikit-learn 0.24.2 package (Pedregosa et al., 2011) and the RF

parameters used in previous work by Demuzere et al. (2019b, a, 2020a, 2021b), a feature importance ranking is performed on

all 46 earth observation input features, for the global TA set and 15 distinct TA sets stratified by urban ecoregion. Simultane-

ously, the quality of these random forest classifications are assessed (see Section 2.4 for more information) by bootstrapping

the classification 25 times, for the global TA set and the 15 urban ecoregions, each time using a stratified (LCZ class) random175

TA sampling of 70 / 30% for training / testing. In addition, a hyperparameter tuning on EE’s random forest parameters (e.g.
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number of trees, maximum number of leaf nodes in each tree, minimum leaf population) was applied using Python’s Ran-

domSearchCV and GridSearchCV (Pedregosa et al., 2011) packages (not shown). But as the effect of different random forest

parameters on the overall accuracy was insignificant, the default random forest parameters were kept in pathway two.

180

The second pathway ingests the results from the first pathway to develop multiple lightweight global random forest models

within EE. First, the reduced final input feature set is composed of the input features that belong at least 5 times (out of 16,

reflecting the global and 15 urban ecoregions) to the top 50% of most important features, obtained in pathway 1. Second, TA

polygons are sampled in a double cross-folding manner, using 5 seeds (random samples) and 10% of all selected TA samples

(Section 2.1). This is repeated 10 times, each time extracting a different 10% from the corresponding seed, resulting in 50 LCZ185

labels per pixel. Note that this random sampling is balanced across LCZ labels and urban ecoregions, a sampling approach that

meets the three criteria as outlined by (Corbane et al., 2021; Xu et al., 2021): class balance, diversity, and representativeness. In

a final step, the modal LCZ class is selected as the final LCZ label, and the resulting global modal LCZ map is post-processed

using the morphological Gaussian filter described in (Demuzere et al., 2020a, 2021b). In addition, a classification probability

layer is produced that identifies how often the modal LCZ was modelled per pixel (e.g. a classification probability of 60%190

means that the modal LCZ class was mapped 30 times out of 50 LCZ models).

2.4 Quality assessment and benchmarking

2.4.1 Traditional quality assessment

In order to assess the quality of the global LCZ map, the accuracy assessment from pathway 1 is repeated in pathway 2

using the final selected earth observation features only. Also here, the pixel-based random forest classification is repeated 50195

times (5 seeds × 10 distinct TA samples), and for each iteration, the TA sample is randomly split in a balanced manner (by

urban ecoregion and LCZ class) using 70 / 30% for training / testing. In order to avoid spatial autocorrelation that can lead to

inflated accuracies, the ‘splitting the polygon pool’ approach is used (Xu et al., 2021), in which the polygons (rather than the

individual pixels) are randomly sampled into 70/30 training / testing groups. The quality assessment is done using a range of

well-accepted LCZ accuracy metrics, including: overall accuracy (OA), overall accuracy for the urban LCZ classes only (OAu),200

overall accuracy of the built versus natural LCZ classes only (OAbu), a weighted accuracy (OAw), and the class-wise metric

F1 (Chinchor, 1992; Bechtel et al., 2017; Verdonck et al., 2017; Demuzere et al., 2019b, a; Bechtel et al., 2020). The overall

accuracy denotes the percentage of independent test pixels that were assigned the same class as the test label. OAu reflects

this percentage for the urban LCZ classes only, and OAbu is the overall accuracy for the built versus natural LCZ classes only,

ignoring their internal differentiation. The weighted accuracy (OAw) is obtained by applying weights to the confusion matrix205

and accounts for the (dis)similarity between LCZ types (Bechtel et al., 2017, 2020). As such, confusion between dissimilar

types (e.g. LCZs 1 A) is penalised more than confusion between similar classes (e.g. LCZs 1 and 2). The class-wise accuracy

is evaluated using the F1 metric, which is a harmonic mean of the user’s and producer’s accuracy (Chinchor, 1992; Verdonck

et al., 2017). It is important to note that these accuracy metrics reflect the consistency of the TA samples, but do not guarantee
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that the TA polygons are semantically correct. However, since a huge TA database from various sources and cities was used,210

this gives much more confidence than using a TA set for a single city.

2.4.2 Thematic benchmark

A drawback of the traditional accuracy assessment is that only pixels within TA polygons are evaluated, and those outside are

not quality-controlled. In addition, high overall accuracies do not automatically mean that the resulting LCZ map is correct,

as e.g. an insufficient discrimination of LCZ types in the training sample can lead to an artificially high OA. To accommodate215

such limitations, the resulting LCZ map can be converted to its corresponding urban canopy parameters (Table 1), that are

key in urban ecosystem processes (Stewart and Oke, 2012; Oke et al., 2017; Ching et al., 2018, 2019), and that offer an

indirect thematic evaluation of the mapped LCZ quality. These UCP value ranges are not site-specific, but are designed to be

universally applicable to all cities, since they are based on data gathered from a large sample of measurement studies, modelling

studies, existing land-cover classifications, and urban climate literature reviews (Stewart, 2011a; Stewart and Oke, 2012). And220

even though this strategy gives rise to other limitations and challenges (e.g. having only indirect observations available, or

bumping into spatial and temporal resolution mismatches), it does however reveal the holistic nature of the LCZ typology

that distinguish urban surfaces accounting for their typical combination of micro-scale land-covers and associated physical

properties (Demuzere et al., 2020a).

Table 1. A selection of urban canopy parameter data associated with built LCZ types, sourced from Stewart and Oke (2012). Columns

represent the urban canopy parameters included in the thematic benchmark: the percentage of built (λB [%], ratio of building plan area to

total plan area), impervious (λI [%], ratio of impervious plan area (paved, rock) to total plan area), and total impervious (λT [%], defined as

the ratio of the sum of the building and impervious plan areas to the total plan area) surface area, the mean height of roughness elements H

[m] (geometric average of building heights), and the mean annual anthropogenic heat flux AHF [W m−2]. Maximum values for H (LCZs

1 and 4∗) and AHF (LCZ 10∗∗) are not available and are arbitrarily set to 200 m and 1000 W m−2 respectively.

LCZ λB λI λT H AHF

1. Compact high-rise 40–60 40–60 >80 >25∗ 50–300

2. Compact midrise 40–70 30–50 >70 10–25 <75

3. Compact low-rise 40–70 20–50 >60 3–10 <75

4. Open high-rise 20–40 30–40 50–80 >25∗ <50

5. Open midrise 20–40 30–50 50–90 10–25 <25

6. Open low-rise 20–40 20–50 40–90 3–10 <25

7. Lightweight low-rise 60–90 <20 >60 2–4 <35

8. Large low-rise 30–50 40–50 >70 3–10 <50

9. Sparsely built 10–20 <20 10-40 3–10 <10

10. Heavy industry 20–30 20–40 40-70 5–15 >300∗∗
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This approach is in line with previous regional works, that used datasets available for specific regions only, such as for Europe225

(Demuzere et al., 2019a) or the continental United States (Demuzere et al., 2020a). For the current study, (semi-)independent,

consistent and open-source datasets with global coverage are selected, that are critical to distinguish the LCZ classes (surface

cover, packing and height of roughness elements, and thermal properties), and that are ideally representative for the year 2018.

The various products are described first, followed by an explanation on how the thematic benchmark is performed.

• Surface cover is sourced from the Copernicus Global Land Cover Layers - Collection 3 (CGLCL3), a global discrete230

land cover map at 100 m resolution, available on a yearly basis from 2015 to 2019, of which 2018 is selected (Buchhorn

et al., 2020a, b). These maps describe the Earth’s terrestrial surface in up to 23 distinct land cover classes following

the United Nations Land Cover Classification System (Di Gregorio, 2005). In contrast to the natural classes, which are

primarily obtained via PROBA-V sensor data, the single urban class is largely identified using the World Settlement

Footprint (WSF, Marconcini et al. (2020)) from DLR (German Aerospace Center), a global map of human settlements235

on Earth for the year 2015.

• Packing of the roughness elements can be characterised by the building (λB), impervious (λI ), or total impervious

(λT = λB + λI ) surface. Recent literature reports on a variety of products that claim to represent global impervious

surfaces (e.g. Gong et al., 2020; Marconcini et al., 2020; Zhang et al., 2020a). These datasets generally adopt an urban

mask approach; here we follow the European Environmental Agency’s (EEA) definition of imperviousness density as240

‘the percentage of sealed artificial surface’ (European Environment Agency, 2018a). In contrast, the global and high-

resolution Sentinel-2 based probability of built-up areas (GHS-S2Net) provides a valuable alternative Corbane et al.

(2021). GHS-S2Net is produced using a Convolution Neural Networks architecture for pixel-wise image classification

that automatically extracts built-up areas at a spatial resolution of 10 m from a global composite of Sentinel-2 imagery

(Corbane et al., 2020), representative for 2018. The dataset reports about built-up areas in the form of probabilities,245

indicating the probability of a pixel (values between 0-100) to belong to the built-up class. Moreover, based on an

evaluation using building footprints from 277 regions across the globe (Corbane et al., 2019), Corbane et al. (2021)

indicated that there is a strong relationship between the output probabilities and the building densities, suggesting that

the model outputs can be used as a proxy for λB . As an additional test, we regress the GHS-S2net built-up probabilities

against EEA’s 100 m imperviousness density (IMD, reflecting λT ) and share of built-up (SBU, reflecting λB) layers for250

the year 2018 (European Environment Agency, 2018a, b), for the thirty largest European functional urban areas (FUAs,

Schiavina et al. (2019), see also Appendix C for more information). The results (described in Appendix D) indicate that

the GHS-S2net built-up probabilities on average explain >90% of the observed λT and λB variability, with regression

slopes closer to 1 for λB . Therefore, GHS-S2net built-up probabilities are used in this study as a proxy for λB .

• Height of the roughness elements (building height, H) data is taken from the 3D building structure data (unpublished255

data, based on Li et al. (2020a)), a global 1 km2 resolution database of building height, building footprint, and building

volume estimated for the nominal year of 2015. The data is estimated using a random forest algorithm, based on a wide

range input layers, including optical imagery (different Landsat bands), synthetic-aperture radar data from Sentinel-1,
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derivatives of remote sensing products (such as the enhanced vegetation and normalized difference vegetation indices),

and other socio-economic data (road networks, DEM, Gross Domestic Product and Gini indices reflecting economic260

inequalities within cities, etc). In this product, building height denotes the average height of all buildings in a pixel,

weighted by the area of each building. As such, it does not consider ground surfaces (roads, parking places, etc.) and

excludes other tall features such as trees. Building height is estimated only for areas (pixels) that include built-up land in

the year 2015, according to the WSF data (Marconcini et al., 2020).

• Anthropogenic heat (AHF ) is the final LCZ attribute that can be evaluated; unfortunately there are no global databases265

of thermal and radiative properties of the urban fabric that can be used. Here, the recent 1 km2 global AHF dataset

from Varquez et al. (2021) is selected (hereafter referred to as AH4GUC) to benchmark the global LCZ map. AH4GUC

is a freely available database (Varquez et al., 2020), contains maps of hourly and annual mean anthropogenic heat

emissions representing the periods 2010s and 2050s (2010’s annual mean is used here), and integrates anthropogenic

heat emissions from primary energy consumption (e.g. industrial, agricultural, commercial, residential and transport270

sectors) and metabolic processes.

The thematic benchmark is performed for 150 selected urban regions (Fig. C1), which are identified by selecting the 10

most populated FUAs per urban ecoregion that are covered by the global LCZ map. In order to compare the surface cover

(built versus natural) from CGLCL3 with the LCZ map, the latter is converted into a binary product; all built LCZs (except

LCZ 9 - Sparsely built, which is predominantly natural) are converted to a single ‘urban’ class, and all remaining classes are275

considered as natural. A per-pixel quality assessment is then performed for each FUA, and is described in terms of the balanced

accuracy (BA) - providing information about the rate of correctly classified pixels in an unbalanced setting where natural pix-

els are predominant compared to urban pixels - and Cohen’s Kappa (CK) - that compensates for random chance in the pixels

assignment (Corbane et al., 2021).

280

As can be seen from Table 1, the benchmark UCPs λB , H , and AHF are characterised by value ranges (e.g. λB for LCZ 1

ranges between 40 and 60%), so that a one-to-one evaluation is not possible. As such, for each of the UCPs, the mapped LCZ

classes are replaced by their corresponding minimum, mean and maximum UCP values, which are then regressed against the

reference products described above. As observed H and AHF products are available on a 1 km2 resolution, the 100 m LCZ-

based minimum, mean and maximum UCP maps and 10 m GHS-S2Net urban probabilities are all resampled to a common 1285

km2 resolution. The resulting coefficients of determination (R2) and slopes are reported as measures for the LCZ-based UCP

explanatory power.
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3 Results

3.1 Global LCZ map

Applying the TA curation procedure explained in Section 2.1 resulted in 410 ROIs, consisting out of 63.847 polygons and290

2.018.916 pixels. Their distribution between ER varies (e.g. number of ROIs ranging between 8 and 100, for ER 11 - Tropical,

sub-tropical grassland and ER 8 - Tropical, sub-tropical forest in Asia, respectively), in line with global population density

patterns (Fig. 3). The number of TA polygons are well distributed across the different LCZ classes (Fig. E1), with lowest

numbers for LCZs 7 (Lightweight lowrise) and 1 (Compact highrise), and highest numbers for LCZs D (Low plants) and 6

(Open lowrise). It is interesting to note that, for most LCZ classes, the biggest share of TA polygons per LCZ class and urban295

ecoregion comes from ROIs in ER 3 - Temperate forest in East Asia (Fig. E1), even though this ER only has an average amount

of ROIs. This is in part caused by a small number of LCZ Generator submissions with a very high number of TAs, such as the

3000+ TAs for the larger Nanjing - Bengbu - Huai’an (People’s Republic of China) submission (Pan, 2021).
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Figure 3. Spatial distribution of global training area (TA) sets on top of the urban ecoregions (ER), only showing the centroid of each region

of interest (ROI). Marker type reflects the amount of TA polygons per ROI, marker colours the TA source. Values between brackets in the TA

source and ER legend indicate the number of ROIs per source and per ER, respectively. Note that ER colours and names are adopted from

Schneider et al. (2010).
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Alongside the curated TA samples, thirty earth observation input features are used in the classification procedure, an outcome

of the feature importance ranking procedure (Section 2.3). The sum average (savg) GLCM texture feature derived from PAL-300

SAR’s HV polarisation backscattering coefficients is found to be most important, followed by the newly developed NANTLI

metric and the 90th percentile of the Normalized Difference Vegetation Index (NDVI) multi-annual composite (Fig. F1). The

remainder of the selected features contain information about topography, Landsat 8 bands and band ratios, Sentinel-2 NDVI

band ratios, Sentinel-1 VV and VH composites, some other PALSAR HH and HV GLCM textures, and the Global Canopy

Forest Height (GCFH). For clarity, a final list of selected features and their description is provided in the Table F1. Finally, it305

is worthwhile to note that the 16 discarded features only indicate a very limited contribution to the LCZ map quality across

all urban ecoregions. For example, six features never belong to the top 50% of the most important features (VVH, PAL-

SAR_HH_SHADE, ASPECT, S2_sei_median, S2_csi_median, and CHM), and another five only one time (S2_B6_median,

S2_B7_median, S2_rep_median, VV_HH and EBBI) (please refer to Table 2 in Demuzere et al. (2021b) for abbreviations).

This indicates the generic character of the selected earth observation input feature space that is able to cover the global (urban)310

land surface heterogeneity representative for different clusters of climate, vegetation, and urban topology.

The resulting 100 m spatial resolution global LCZ classification, based on all TAs and selected input features, is shown in Fig.

4. As LCZs were originally designed as a new framework for UHI studies (Stewart and Oke, 2012), they also contain a limited

set of ‘natural’ land-cover classes (LCZs A to G) that can be used as ‘control’ or ‘natural reference’ areas, which dominate the315

global view. However, the seven natural classes in the LCZ scheme can not capture the heterogeneity of the world’s existing

natural ecosystems, and thus cannot match other products such as the 20, 36 or 75 layers that describe the Earth’s terrestrial

surface in the Copernicus Global Land-Cover Layers (Buchhorn et al., 2020a, b), the European Space Agency Climate Change

Initiative land-cover map (ESA, 2017), or the global map of terrestrial habitat types (Jung et al., 2020) respectively. In contrast,

the added value of the LCZ framework (and map) is the diversity of urban classes, which are easily interpretable and globally320

consistent, capturing the intra-urban variability of surface forms and land functions.
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Figure 4. Global map of Local Climate Zones. Detailed views of the pink bounding boxes are shown in Figures 5, 6 and 7.

This is show-cased by zooming into the largest FUAs per urban ecoregion in Figures 5, 6 and 7, simultaneously showing the

LCZ classification probabilities (discussed in Section 3.2) and corresponding binary CGLCL3 surface cover. The LCZ map for

e.g. New York (ER1, Fig. 5) illustrates the compact high- and mid-rise areas clustered in and around Manhattan, more open

and lower-rise areas outwards of the city, and large-scale low-rise and industrial urban urban land cover around the Port of325

Newark west of Manhattan. A second example is the city of Moscow (ER2, Fig. 5) in which its concentric layout mainly hosts

LCZs 1, 2 and 4 in the centre, and LCZs 5 and 6 when moving to the suburbs and its satellite cities. Such information is crucial

to e.g. characterise the UHI, as was recently demonstrated by Varentsov et al. (2020, 2021). More in general, the global LCZ

map allows to make such type of assessments for any global urban area, by moving away from the traditional urban mask and

incorporating cities’ internal make-up (Bechtel et al., 2017; Ching et al., 2018).330
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Figure 5. LCZ map, its classification probability and the corresponding binary Copernicus urban land cover (CGLCL3) for the largest

functional urban areas in urban ecoregions (ER) 1 to 5.
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Figure 6. As Fig. 5 but for the largest functional urban areas in urban ecoregions 6 to 10.
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Figure 7. As Fig. 5 but for the largest functional urban areas in urban ecoregions 11 to 15.
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Historic urbanisation patterns are the consequence of countless decisions made at building, neighbourhood and city scales.

As such, cities have unique fingerprints reflecting distinct topographic, cultural and economic contexts. To assess the global

differences of built forms and functions, the LCZ frequencies are first categorised in groups reflecting their degree of total

impervious fraction. The HIGH-λT cluster (LCZs 1, 2, 3 and 8) is characterised by average λT > 85%, whilst the MEDIUM-

λT cluster (LCZs 4, 5, 6 and 9) typically has average λT values between 25% and 70%. A third cluster is added that groups335

LCZs 7 and 10, two LCZ classes that are distinct for their materials (LCZ 7) and anthropogenic heating (LCZ 10). The

distribution of these clusters is then aggregated and visualised per urban ecoregion, enriched by their corresponding underlying

LCZ classes and their building height properties (Fig. 8). It is clear that there are fundamental geographic differences in the

urban layout of cities: cities in e.g. ER 1 (Temperate forest in North America) are dominated by the open cluster, and more

specifically LCZ 6. The small fraction taken by the compact cluster is in turn dominated by LCZ 8. In contrast, cities in ER 11340

(Tropical, sub-tropical grassland) have a more balanced distribution of compact and open classes. Here, the compact class is

mostly occupied by LCZs 3 and 8, and the open cluster by LCZs 6 and 9. One consistent pattern is however apparent: a clear

domination of low-rise built forms across all urban ecoregions. The two most contrasting examples in this respect are ER 3,

with a relevant share of LCZs 1, 2, 4 and 5, and ER 10 (Tropical, sub-tropical savannah in Africa) that is almost completely

dominated by low-rise built forms.345
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ER1. Temperate forest in North America
ER2. Temperate forest in Europe
ER3. Temperate forest in East Asia
ER4. Temperate grassland in North-South America
ER5. Temperate grassland in Middle East, Asia

ER6. Tropical broadleaf forest in South America
ER7. Tropical broadleaf forest in Africa
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Figure 8. Distribution of the built LCZ classes for all 13.135 urban centres in the Urban Centre Database, aggregated per urban ecoregion

(ER). The inner rings indicate the HIGH (LCZs 1, 2, 3, and 8), MEDIUM (LCZs 4, 5, 6, and 9) and OTHER (LCZs 7 and 10) degree of total

imperviousness (λT ) clusters. The outer rings depict the actual LCZ classes. The expansion of individual LCZ wedges visually reflects the

differences in building height across LCZ classes (see Table 1).

3.2 Quality assessment and benchmarking

As part of the multiple lightweight global random forest models procedure described in Section 2.3, a global LCZ classification

probability layer is produced that identifies how often the modal LCZ was mapped (out of a total of 50 random forest results),

indicating a first measure of robustness of the classification. This classification probability layer (in %) is shown in the middle

panels of Fig. 5 for the largest FUAs per urban ecoregion. Yet in order to get a more comprehensive overview, LCZ-based350

classification probabilities are aggregated over all 13.135 cities in the Global Human Settlement Layer Urban Centres Database

(GHS-UCDB, Florczyk et al. (2019)), and displayed per LCZ class (Fig. 9) and ER (Fig. H1). Mean classification probabilities

across the globe are greater than 50% for all LCZ classes, meaning that the resulting modal LCZ class was mapped by more

than half of the 50 LCZ models. Highest classification probability values are obtained for LCZs 6, 8, A (Dense trees) and

G (Water) (∼80 to 100 %), and lowest values are found for LCZs 1, 4, 5 and 7, which can be due to a variety of reasons.355
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First, these LCZ types are typically characterised by a lower number of TAs, decreasing its potential weight in the random

forest models. Second, some of these LCZ classes are characterised by similar building footprints and impervious surface

areas (e.g. LCZs 4 and 5), yet differ mainly in the height of their roughness elements (see Table 1). As a conscious decision

was made to use the lower resolution building height dataset as a semi-independent benchmark dataset (described in Section

2.4.2), currently no input feature directly represents the roughness of buildings (See also Demuzere et al., 2019b, 2020a). In360

terms of the ER-stratified values (Fig. H1), all classification probabilities per LCZ class are in line with the global values,

demonstrating the universality of the LCZ typology and the robustness of the classifiers and input features across the urban

ecoregions. Classification probabilities for LCZ 7 deviate from this behaviour (values < 40% for ER’s 11 and 12), which might

be due to relatively low number of ROIs and concurring lower number of TA polygons for LCZ 7. In addition, as this LCZ class

includes informal settlements - often consisting of lightweight materials and densely packed buildings inter-spaced with hard-365

packed surfaces - these pixels present a challenge for the classifier because of their mixed spectral signature (Stewart, 2011b;

Brousse et al., 2020a; Van de Walle et al., 2021, 2022). For this LCZ type, future versions of the global map might benefit and

built further upon recent efforts dedicated to map informal urban settlements (see e.g. Kuffer et al., 2020; Assarkhaniki et al.,

2021; Owusu et al., 2021; Abascal et al., 2022).
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Figure 9. Classification probabilities of the mapped LCZ classes, aggregated over all urban centres from GHS-UCDB. The grey boxplots

depict the classification probability distribution for all global urban centres, per LCZ class, with boxes and whiskers spanning the 25-75 and

5-95 percentiles respectively, and means and medians indicated by the white dots and black lines respectively. The vertical lines in the colours

of the urban ecoregions (ER, color legend as in Fig. 3) indicate the 25 to 75th percentile range averaged over the urban centres, stratified per

ER. ER-colored dots indicate the mean. Results stratified per urban ecoregion are available in Appendix H.

The traditional accuracy assessment using the independent training / test samples obtained via the ‘splitting the polygon370

pool’ approach (Xu et al., 2021) and the fifty lightweight random forest models results in scores of >70% for all OA metrics

(Fig. G1). The variability across the fifty random forest models is small, indicating the robustness of the global classification
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protocol. Interestingly, the global OA values using the reduced set of final input features is higher compared to the accuracy

assessment using all input features (74.5% ± 15.1, Fig. F1), supporting the valid removal of uninformative input features

from the multi-dimensional input feature space. The class-wise F1 metric shows larger variability with values for the built375

LCZs between 50% (LCZ 1 - Compact highrise) and 78% (LCZ 6 - Open lowrise), and >60% for all natural classes. The low-

est accuracy is obtained for LCZs 1, 4, 5, 7 and 10, in line with the results of the classification probability layer discussed above.

Since the LCZ typology is a representation of urban form - defined via the corresponding universal LCZ-based canopy pa-

rameters - a thematic benchmark allows to indirectly assess the quality of the LCZ map for continuous land surfaces, including380

those pixels not part of the TA samples used in the traditional accuracy assessment. Fig. 10(A) reveals a good correspon-

dence between the built LCZ classes and the urban class from the CGLCL3 - taken from the World Settlement Footprint data

(Marconcini et al., 2020) - with an average Balanced Accuracy (BA) and Cohen’s Kappa (CK) of 90% and 73%, respectively.

Stratifying the BA results per urban ecoregion indicates a similar performance, with mean BA values ranging between 83%

(ER3) and 93 % (ER4) (Fig. I1). A similar variability can be observed for the CK results stratified per urban ecoregion, with385

mean CK values ranging between 65% (ER8) and 80% (ER9). These results indicate that the global LCZ map presents a good

correspondence with a state-of-the-art and dedicated built-up land data product, and is thus able to correctly discriminate be-

tween built-up and natural land cover (confirmed independently by an OAbu of ∼95%, an accuracy metric that evaluates the

built versus natural LCZ classes only (Fig. G1)).
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Figure 10. Results for the thematic benchmark, for the urban mask from the Copernicus Global Land Cover Layer (A) and the building

surface fraction, building height and anthropogenic heat flux (λB , H , and AHF respectively) (B and C). All accuracies are derived for the

150 global LCZ functional urban areas. For built-up land, accuracy is expressed using the Balanced accuracy (BA) and Cohen’s Kappa (CK).

For λB , H , and AHF , the coefficients of determination (R2) (B) and slopes (C) result from the regression between the reference datasets

and their corresponding universal LCZ-based values from Stewart and Oke (2012), using minimum (Min), mean and maximum (Max) values

(colours). For all panels, boxes and whiskers span the 25–75 and 5–95 percentiles respectively. The means and medians are indicated by the

black dots and lines respectively. Results stratified per urban ecoregion are available in Appendix I.

For λB , H , and AHF - characterized by UCP value ranges (Table 1) - a one-to-one evaluation with their reference datasets390

(described in Section 2.4.2) is not possible. As such, minimum, mean and maximum UCP values are regressed against these

reference products, from which the coefficients of determination (R2) and slopes represent the measures of explanatory power

of the LCZ map (Fig. 10B,C and Fig. I2 for results stratified per urban ecoregion). The LCZ-based building surface fraction

λB is in very good agreement with the GHS-S2Net proxies, with mean R2 values close to 0.9 for the whole value range. Slope

values provide a slightly more nuanced result, with average values 0.69, 1 and 1.22 when targeting the minimum, mean and395

maximum λB UCP values. In other words, assigning the means of the λB value ranges to each corresponding LCZ class is a

very good approximation for the building surface fraction for global cities. Results for building heightsH and the anthropogenic

heat fluxAHF can be interpreted in the same way (Fig. 10B,C and Figures I3 and I4 for results stratified per urban ecoregion).

For H , R2 / slope values range between 0.42 / 2.5 and 0.5 / 0.59 for the maximum and minimum LCZ-based H values. Also

here, the best results are obtained using the mean of the LCZ-based value ranges, even though only ∼50% of the observed400

building height is explained, and the mean LCZ-based values tend to overestimate the reference values. For AHF , it is clear

that assigning the minimum of the LCZ-based AHF range to the LCZ map has little explanatory power: R2 is 0.1 with a

slope of ∼0.1. Sightly better results are obtained when using the maximum and especially the mean of the AHF value range,

but also here only 30% of the observed AHF variability can be explained by the LCZ map. From previous anthropogenic
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heat flux works (Oke et al., 2017) it is clear that this is not surprising. The AHF values provided by Stewart and Oke (2012)405

are fixed ranges, reflecting the mean annual heat flux density from fuel combustion and human activity (transportation, space

cooling/heating, industrial processing, human metabolism) at the local scale. Yet as also indicated in their Table 4 (footnote c),

these values vary significantly with latitude, season, and population density. LCZs have previously been shown to indirectly

capture information on population densities (Demuzere et al., 2020a), and also the role of seasonality with respect to LCZ-

based annual AHF values has been discussed elsewhere (e.g. Varentsov et al. (2020)). Yet it is obvious that the observed410

zonal AHF variability in AH4GUC (Varquez et al., 2021, their Fig. 5) is neglected completely in this thematic benchmark.

This means that, for example, an LCZ 6 neighbourhood in tropical Singapore will be assigned the same mean annual AHF

values as an LCZ 6 area in the high-latitude city of Helsinki (Finland), even though it is clear that their building cooling /

heating patterns will be completely different (Quah and Roth, 2012; Karsisto et al., 2016). This reveals a strong limitation of

using AHF as an independent benchmark of the global LCZ map. Unfortunately, as there are currently no globally explicit415

databases on thermal and radiative properties of the urban fabric, AHF is currently the only available proxy to indirectly

assess the ‘thermal’ signature of a built environment. Finally, there are a number of other elements that might affect deviations

between the LCZ-based UCP parameters and their benchmark products and comparison methods: some benchmark products

are merely indirect observations (e.g. GHS-S2Net urban probabilities being used as a measure for λB), UCPs might have

dissimilar definitions (e.g. geometric average of buildings heights versus average of building heights weighted by building420

footprint), or data matching differences as a consequence of different resolutions and map projections leading to potential

artefacts from resampling.

4 Serving earth system modelling and urban scale environmental science

Despite the new focus on cities as a critical scale for climate change risk management, we know very little about most cities

on the planet - being generally ignorant of their extent, how they are constructed and how they are occupied (Demuzere et al.,425

2020a). This knowledge gap is especially true for urban areas in low and middle income countries, where 90% of the projected

world population growth of 2.5 billion over the next couple of decades will occur. This is in strong contrast with current urban

knowledge that is predominantly shaped by research on and from high income countries (Nagendra et al., 2018). The global

Local Climate Zone map presented here provides a globally consistent and climate-relevant urban description, that is an impor-

tant prerequisite for developing fit-for-purpose integrated climate-sensitive urban planning policies (Georgescu et al., 2015).430

As LCZs are developed from generalised perspectives of built forms and land cover types that are universally recognised and

applicable (Stewart and Oke, 2012), this global LCZ map provides standardised and harmonised data of all cities, allowing to

consistently assess the heterogeneous nature of cities’ urban forms and functions, and providing the much-needed platform for

comparative analyses, systematic learning and horizontal knowledge exchange between cities and regions (Raven et al., 2018;

Ching et al., 2018; Bai et al., 2018; Creutzig et al., 2019; Reba and Seto, 2020).435
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As cities are complex systems and their components are difficult to understand in isolation, scaling - a general analytical

framework used by many disciplines - is often put forward to understand and describe cities’ dynamics, growth and evolution

in scientifically predictable, quantitative and universal laws (Bettencourt et al., 2007, 2020). Some works for example represent

city growth, structures and functions (e.g. urban area, albedo, population density, building density, building heights, anthro-440

pogenic heat flux, and sky view factor) completely by population (Schläpfer et al., 2015b; Manoli et al., 2019; Martilli et al.,

2020). Other work has explored the correspondence between population density and carbon dioxide emissions (Ribeiro et al.,

2019) and the allometric-scaling relationships between settlement population and non-point-source emissions of air pollutants

(MacKenzie et al., 2019). In reality, the global universality of these scaling laws is unknown as many are created based on

regional information only, mostly for data rich parts of the world (Bettencourt and West, 2010). Currently, city population is445

often used as proxy for urban form (e.g. Schläpfer et al., 2015a; Manoli et al., 2019) but the global LCZ map offers a richer

alternative. In addition, the combination of population and LCZ may provide deeper insights into the variations of form in

different cultural, socioeconomic and climatic contexts, and help guide future urban development. Since LCZs distinguish

urban areas based on their form, the global map provides the means to assess the universality of the above-mentioned scaling

laws, and refine/improve them. In addition, the global LCZ map has value beyond climate applications when combined with450

other spatially resolved urban information (Reba and Seto, 2020), like flooding hazard, biodiversity and air quality, for example.

Since the LCZ typology was initially designed for urban temperature studies (Stewart and Oke, 2012), typical applications

focus on the UHI, usually providing the context for designing and analysing observations from urban meteorological networks

(Skarbit et al., 2017; Beck et al., 2018; Chieppa et al., 2018; Verdonck et al., 2018; Yang et al., 2018; Leconte et al., 2020;455

Milošević et al., 2021; Zhang et al., 2020b; Zong et al., 2021), from crowdsourced data (Fenner et al., 2017; Varentsov et al.,

2021; Fenner et al., 2021; Potgieter et al., 2021; Brousse et al., 2022) or from remote sensing (Wang and Ouyang, 2017; Bechtel

et al., 2019b; Eldesoky et al., 2021; Stewart et al., 2021). However, the typology has been used for other purposes (see also

Lehnert et al. (2021) for European applications), such as urban heat (risk) assessment studies (Verdonck et al., 2019b; Van de

Walle et al., 2022), climate sensitive design, land use/land cover change, and urban planning (policies) (Perera and Emmanuel,460

2018; Aminipouri et al., 2019; Vandamme et al., 2019; Maharoof et al., 2020; Chen et al., 2021b; Zhi et al., 2021), anthro-

pogenic heat, building energy demand and consumption, and carbon emissions (Wu et al., 2018; Santos et al., 2020; Yang

et al., 2020; Benjamin et al., 2021; Kotharkar et al., 2022), quality of life (Sapena et al., 2021), urban ventilation (Zhao et al.,

2020b), air quality (Steeneveld et al., 2018; Lu et al., 2021a), urban vegetation phenology and ecosystem patterns, functions

and dynamics (Kabano et al., 2021; Zhao et al., 2022), and epidemiological studies (Brousse et al., 2019, 2020a).465

The LCZ scheme is a core element of the WUDAPT project to provide consistent urban data to support climate science

(Ching et al., 2018, 2019) and many modelling systems nowadays ingest the LCZ typology, such as e.g. the Surface Urban

Energy and Water Balance Scheme (SUEWS, Alexander et al. (2015, 2016)), UrbClim (Verdonck et al., 2018, 2019b; Sharma

et al., 2019; Gilabert et al., 2020), the Vertical City Weather Generator (Moradi et al., 2022), ENVI-met (Middel et al., 2014;470

Lyu et al., 2019; Bande et al., 2020), the urban multi-scale environmental predictor (UMEP, Lindberg et al. (2018)), MUK-
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LIMO_3 (Bokwa et al., 2019; Matsaba et al., 2020; Gál et al., 2021), COSMO-CLM and the WUDAPT-TO-COSMO tool

(Wouters et al., 2016; Brousse et al., 2019, 2020b; Varentsov et al., 2020; Van de Walle et al., 2021), the Weather Research

and Forecasting model (WRF, Brousse et al. (2016); Hammerberg et al. (2018); Molnár et al. (2019); Pellegatti Franco et al.

(2019); Wong et al. (2019); Mu et al. (2020); Zonato et al. (2020); Patel et al. (2020); Hirsch et al. (2021); Patel et al. (2022))475

and WUDAPT-TO-WRF tool (Demuzere et al., 2021a). Most studies focus on individual cities, with the work of Patel et al.

(2022) being an exception as it uses the European LCZ map (Demuzere et al., 2019a) to simulate a continental-scale heat wave

event. The LCZ map presented here allows the extraction of urban data suited to the scale of study and can support global

climate and earth system modellings.

480

Regional climate models are expected to remain indispensable tools that complement global models for understanding phys-

ical processes governing regional climate variability and change (Gutowski et al., 2020). Yet at the same time, regional climate

model developments also serve as a precursor for the evolution of global climate models, and major efforts are currently un-

derway to increase ESMs to kilometre-scale resolutions (Schär et al., 2020; Bauer et al., 2021). Recently, Fuhrer et al. (2018)

performed a near-global climate simulation at a horizontal grid spacing of just 930 m. Such advancements will represent a485

quantum jump in (urban) global climate modelling, enabling the explicit treatment of the complex interactions between the

fine-grained urban heterogeneity and its atmosphere (Martilli et al., 2020). To date however, climate projections focused on

built landscapes are absent, partly owing to the lack of climate-relevant urban data for ESMs (Zhao et al., 2021; Hertwig et al.,

2021). Only one ESM included details of urban form in CMIP53 (Zhao et al., 2021), and a few more in CMIP6: except for

GFDL-ESM (Dunne et al., 2020), these CMIP6 ESMs all use the Community Land Model-Urban (CLMU) urban canopy pa-490

rameterisation (Oleson and Feddema, 2020). Yet despite its pole position, CLMU’s lead developers indicate that transitioning

to the LCZ urban classes and their corresponding UCPs will likely be beneficial for better simulating the interactions between

the urban fabric and the climate system (Oleson and Feddema, 2020). Eventually, a more close connection between the global

LCZ map and the ESM community might have a direct impact on climate change policies, via IPCC’s4 upcoming 7th cycle of

Assessment Reports and its planned Special Reports on Cities and Climate Change.495

Even though the LCZ typology presents a leap forward in describing intra-urban heterogeneity in a universal manner, its

generalisation of course also has its limitations. In the words of Stewart and Oke (2012): "its view of the landscape universe

is highly reductionist [...] and LCZs represent a simple composition of buildings, roads, plants, soils, rock, and water, each in

varying amounts and each arranged uniformly into 17 recognisable patterns. The 17 patterns should nevertheless be familiar to500

users in most cities, and should be adaptable to the local character of most sites". This multi-urban class typology follows the

discourse of most categorical mapping efforts discussed elsewhere (Coops and Wulder, 2019), such that individual LCZ classes

are each physically discrete in surface structure and land cover, leading to well-defined boundaries separating most classes.

However, users of LCZs must always accept that the internal homogeneity portrayed by each class is unlikely to be found

3Coupled Model Intercomparison Project, led by the World Climate Research Programme (https://www.wcrp-climate.org/wgcm-cmip)
4The Intergovernmental Panel on Climate Change
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in the real world, but that the attempt to classify surface complexity in cities represents a key advancement in urban climate505

science (Stewart and Oke, 2012). It also represents a helpful starting point for more detailed studies of urban form and function

at smaller spatial scales. Likewise, due to its reductionist character, the landscape universe represented by the 17 LCZ classes

is not complete for several reasons. First we do not apply LCZ sub-classes, that represent combinations of built types, land

cover types, and land cover properties (Stewart and Oke, 2012), allowing for a mixture of several LCZ types but reducing its

universality. Secondly, some landscapes such as extensive greenhouses are not included in the scheme, since they are unlikely510

to be selected for urban heat island studies. Moreover, the scale of real urban structures does not always match the climatic

definition of local scale. However, we are convinced that the scheme is the best compromise between climatic variation and

generic description of urban structures.

This first version of the global LCZ map itself also has limitations. For example, LCZ 7 requires more attention and alter-515

native mapping strategies, as discussed in Section 3.2. Confusion may also exist between classes with similar impervious and

built-up surface fractions, characterised by similar spectral characteristics (not shown), which can lead to confusion between

these classes (see e.g. the confusion between LCZs 3 and 8 in the LCZ map for Lima (Peru, ER11), Fig 7). Similarly, also the

confusion between classes with similar surface fractions yet different height of roughness elements might be improved in the

future. More in general, the results of the thematic benchmark reveal that two-dimensional information (urban land cover and520

building surface fractions) is well represented, but that the corresponding three-dimensional (3D) information requires more

attention. Ongoing developments such as the work on the Digital Synthetic City (Ching et al., 2019), tailored towards providing

more detailed information on the urban landscape (WUDAPT Levels 1 and 2), or global 3D building information (Li et al.,

2020a; Esch et al., 2022; Kamath et al., 2022) might contribute to improve the quality of future LCZ map releases. It is also

important to note that the LCZ map also inherits shortcomings of the many global earth observation input features upon which525

it is built, such as for example, some missing data in areas that are frequently covered in clouds, or gaps in coverage because of

changing satellite duty cycles. Such limitations can be addressed in future releases of the map, e.g. by harvesting the growing

number of TA samples submitted to the LCZ Generator (which received more than 1.500 submissions in less than one year of

operation), ingesting more and new high-resolution (earth observation) datasets when available, or by implementing alternative

scalable classification algorithms (e.g. Yokoya et al., 2018; Yoo et al., 2020; Rosentreter et al., 2020). Nevertheless, from many530

above-mentioned examples and applications it is clear that this global LCZ map has a lot of potential serving urban and climate

sciences at various scales. The map is universal and allows for comparisons between global regions. Yet at the same time it is

flexible enough to allow anyone to adapt it to suit their purpose, using for example user- and site-specific LCZ-based UCP value

if available (Ching et al., 2018). In other words, the global LCZ map describes all the cities of the world in the same, universal

language, but interested users can read it in their own dialect. In addition, interested users are invited to actively contribute to535

future releases of this product, by submitting city-specific training area sets to the LCZ Generator. This community engagement

will not only improve the quality of next LCZ map releases, but also contributes to the overall WUDAPT philosophy to provide

urban canopy information and modelling infrastructure to facilitate urban-focused climate, weather, air quality, and energy-use

modelling application studies (Ching et al., 2018). Finally, this development will also support future large-scale dynamic LCZ
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mapping efforts. Such examples to date are rare and focus on targeted cities (e.g. Vandamme et al., 2019; Wang et al., 2019;540

Demuzere et al., 2020b; Zhao et al., 2020a; Lu et al., 2021b; Zhi et al., 2021), yet they reveal a large potential in terms of

characterising the temporal transformations of urban morphologies across and within different cities, identify the main drivers

of such changes, and bridge the gap between policy making and urbanisation patterns, required to come up with informed,

data-driven and rational urban planning strategies toward sustainable city developments.

5 Conclusions545

Since their introduction in 2012, Local Climate Zones (LCZs) have become a standard for characterising urban landscapes ac-

cording to climate-relevant properties of the surface. From that point forward, the number of applications using this universal

urban typology has been growing exponentially, revealing the relevance and potential for a wide range of urban sciences. One

of the typology’s most popular uses is digital mapping, which can generate UCPs at the city scale for input to numerical climate

models. However, the lack of available and consistent global data on the form and function of cities has impeded progress in550

urban climate sciences so far, limiting applications to cities or regions for which LCZ maps are currently available.

The 100 m resolution global LCZ map presented here is the first of its kind depicting the much needed global intra-urban

heterogeneity in an universal language. It allows easy access to Local Climate Zone data for regional and global scale analysis

and provides a seamless integration into existing topographic, natural land cover, and other global scale data products. The map555

is generated building further upon previous studies, whilst adding new methodological features that balance optimal learning

across global climates and urban typologies with accuracy, computational feasibility and efficiency.

Since this global map identifies the relevant data for planning and climate on neighbourhood, city and global scales, its

designed to become part of a basic infrastructure to support a host of studies on exposure to environmental hazards, energy560

demand, climate adaptation and mitigation solutions and human health, as examples.

6 Data availability

The global Local Climate Zone map, representative for the nominal year 2018 and with a spatial resolution of ∼100 m

(EPSG:4326), is available from http://doi.org/10.5281/zenodo.6364594 (Demuzere et al., 2022a). The dataset contains vari-

ous layers stored as separate GeoTIFF files, including: (1) lcz_filter, the recommended global LCZ map after applying the565

morphological Gaussian filter described in Demuzere et al. (2020a), (2) lcz, as (1), but presenting the raw LCZ map before

applying the morphological Gaussian filter, and (3) the LCZ classification probability layer (%) that identifies how often the

modal LCZ from (2) was chosen per pixel. The LCZ maps have the default WUDAPT LCZ color scheme embedded (Fig.

1), and all imagery can be processed using (free) GIS software, e.g. QGIS. In addition, a teaser sample is provided to ease

accessibility, providing the LCZ map information for the 15 largest functional urban areas stratified by urban ecoregion. These570
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GeoTIFF files reflect the underlying data used in Figures 5, 6 and 7 of the manuscript. This teaser dataset is available from

https://doi.org/10.5281/zenodo.6364705 (Demuzere et al., 2022b).
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Appendix1085

Appendix A: WUDAPT’s digitisation guidelines

In order to guide a user in the digitisation of LCZ training area polygons, a set of digitisation guidelines are provided on the

WUDAPT webpage (www.wudapt.org/digitize-training-areas/). This information is split in two parts, discussing: 1) how to

digitize a LCZ polygon using Google Earth and the provided .kml template, and 2) good practice guidelines for digitisation

(Figure A1).1090
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Figure A1. Good practice guidelines for digitising LCZ training area polygons (© Google Earth 2020).
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Appendix B: GLCM texture and NANTLI input features

To date, very few studies tested the added value of texture features (derived from the Gray-Level Co-occurrence Matrix,

GLCM) in the LCZ classification procedure. Forget et al. (2018) found that combining features computed from both Sentinel-1

VV and VH backscatter polarisations consistently led to better LCZ classification performances in twelve Sub-Saharan African

urban areas, even though the introduction of textures computed from different spatial scales did not improve the classification1095

performances. Along the same lines, Hu et al. (2018) found that Sentinel-1 dual-Pol SAR data (including texture features) can

contribute to the classification of transcontinental cities into several LCZ classes. Also Brousse et al. (2020a) successfully used

Sentinel-1 GLCM texture features with an 11 by 11 kernel window size to map nine Sub-Saharan African urban areas, in order

to better capture the heterogeneities of built up surfaces.

1100

Since Sentinel-1 backscatter information is already available in the input feature space, and inspired by the findings of Hay

Chung et al. (2021), PALSAR (Phased Array type L-band Synthetic Aperture Radar, Shimada et al. (2014)) backscattering

information was added. Yet not the pure HH and HV backscatter information as in Hay Chung et al. (2021), but rather the

GLCM texture features derived from them (Haralick et al., 1973; Conners et al., 1984; Chen et al., 2021a), as follows:

1. a median 2017-2019 PALSAR composite is created for both the HH and HV polarisation backscattering coefficients;1105

2. for each polarisation, the eighteen GLCM texture features are derived, with a 2 by 2 and 4 by 4 kernel window, corre-

sponding to a 50 and 100 m spatial resolution, respectively;

3. only the contrast, dissimilarity, inertia, sum average, and cluster shade texture measures are retained, as the remaining

textures indicated little added value in the LCZ mapping (not shown).

In addition, also the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB), provided by Mills et al.1110

(2013), was used as follows:

1. a median 2017-2019 composite is created from the monthly VIIRS Stray Light Corrected Nighttime Day/Night Band

Composites (NTL);

2. this median NTL image is smoothed with a convolution filter using a radius of 300 meter;

3. afterwards, the smoothed NTL image as normalised (hereafter referred to as NTLnorm);1115

4. NANTLI is calculated, a Normalized Difference Vegetation Index (NDVI) adjusted NTL Index, according to Eq. B1.

NANTLI =
1+ (NTLnorm −NDV I)

1− (NTLnorm −NDV I)
×NTL (B1)
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Note that NANTLI is analogous to EANTLI (Zhuo et al., 2015), yet uses the Landsat 8 NDVI input feature available from1120

Demuzere et al. (2021b) instead of EVI (Enhanced Vegetation Index), introduced to mitigate both saturation problems and

blooming effects of VIIRS data (Zhuo et al., 2018; Zhang et al., 2020a).

The added value of these features are evaluated by mapping 45 cities (three cities per urban ecoregion, characterised by large

TA samples with a large number of different LCZ classes) into LCZs, following the procedure of the LCZ Generator (Demuzere1125

et al., 2021b), but each time using a different set of earth observation input features. This results in four experiments:

– GEN: the default 33 input features available from the LCZ Generator;

– GEN+NANTLI: GEN and NANTLI

– GEN+NANTLI+P2: GEN, NANTLI and the PALSAR texture features derived with kernel size 2 by 2

– GEN+NANTLI+P4: GEN, NANTLI and the PALSAR texture features derived with kernel size 4 by 4.1130

Results are evaluated in terms of the overall accuracy metrics (OAs) described in Section 2.4. Figure B1(A) displays the

OAs for the GEN experiment for each individual city sorted by urban ecoregion (ER 1 - 15). Figures B1(B), B1(C) and B1(D)

indicate the change in OAs for GEN+NANTLI, GEN+NANTLI+P2, and GEN+NANTLI+P4 respectively, compared to GEN.

Adding NANTLI increases the average OAs between 0.3 and 2%, with individual city values ranging between -1 and 5.8%

(for Constantine - ER12 and Cologne - ER2, respectively). Adding PALSAR texture features further increases the average OAs1135

between 0.8 and 3.2% (GEN+NANTLI+P2, Fig. B1(C)) and 0.9 and 3.8% (GEN+NANTLI+P4, Fig. B1(D)). Here, individual

city values range between -0.3 (Itanagar, ER14) and 7.8% (Rosario, ER4) for GEN+NANTLI+P2 and -0.9 (Havana, ER6) and

13.8% (Rosaria) for GEN+NANTLI+P4. As such, the VIIRS-based NANTLI input feature together with the PALSAR-BASED

GLCM texture features, using a 4 by 4 kernel size, are selected as additional earth observation for the LCZ mapping procedure.

47



74
.4

71
.5

94
.2

93
.9

OA
OA u

OA bu
OAw

(A)

Auckland (ER1)

Houston (ER1)

Quebec City (ER1)

Saint Petersburg (ER2)

Cologne (ER2)

Katowice (ER2)

Beijing (ER3)

Tokyo (ER3)

Harbin (ER3)

Rosario (ER4)

Phoenix (ER4)

Perth (ER4)

Dnipro (ER5)

Amman (ER5)

Volgograd (ER5)

Mexico City (ER6)

Guadalajara (ER6)

Havana (ER6)

Kumasi (ER7)

Yaounde (ER7)

Abidjan (ER7)

Cixi (ER8)

Mangaluru (ER8)

Singapore (ER8)

Santos (ER9)

Cordoba (ER9)

Santa Cruz de la Sierra (ER9)

Ouagadougou (ER10)

Lusaka (ER10)

Lome (ER10)

Port Elizabeth (ER11)

Santiago de Chile (ER11)

Johannesburg (ER11)

Valencia (ER12)

Rome (ER12)

Constantine (ER12)

Dammam (ER13)

Illizi (ER13)

Mashhad (ER13)

Lhasa (ER14)

Pasighat (ER14)

Itanagar (ER14)

Chita (ER15)

Reykjavik (ER15)

Yakutsk (ER15)

1.3 2.0 0.4 0.3

OA
OA u

OA bu
OAw

(B)

2.7 3.2 1.3 0.8

OA
OA u

OA bu
OAw

(C)

3.2 3.8 1.3 0.9

OA
OA u

OA bu
OAw

(D)

50

60

70

80

90

100

OA
 [G

EN
, %

]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

OA
 [(

GE
N+

NA
NT

LI
) -

 G
EN

, %
]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

OA
 [(

GE
N+

NA
NT

LI
+P

2)
 - 

GE
N,

 %
]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

OA
 [(

GE
N+

NA
NT

LI
+P

4)
 - 

GE
N,

 %
]

Figure B1. Overall accuracies for the various input feature experiments: absolute overall accuracies for all cities for GEN (A), and differences

in overall accuracies for experiments GEN+NANTLI (B), GEN+NANTLI+P2 (C), and GEN+NANTLI+P4 (D), compared to GEN. Numbers

on the top x-axis indicate the average overall accuracy (change) across all cities. ER refers to urban ecoregion.

48



Appendix C: Selected functional urban areas for thematic benchmark1140

Functional urban areas (FUAs), as defined by the Organisation for Economic Co-operation and Development (OECD) and

the European Union, are sets of contiguous local (administrative) units composed of a city and its surrounding, less densely

populated local units that are part of the city’s labour market (commuting zone). As such, these units not only offer the

opportunity to evaluate more densely built city centres, yet also their sparsely built or natural neighbouring landscapes. The 10

most populated FUAs per urban ecoregion used in the thematic benchmark are depicted in Fig. C1.1145
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Figure C1. Spatial distribution of the 10 most populated functional urban areas per urban ecoregion. Note that ER colours are adopted from

Schneider et al. (2010).
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Appendix D: GHS-S2Net versus EEA

Corbane et al. (2021) illustrated that there is a strong relationship between the output probabilities pg GHS-S2Net and ob-

served building densities, suggesting that the model outputs can be used as proxy for impervious surface fractions. As an

additional benchmark, we evaluate the GHS-S2Net built-up probabilities for the thirty largest (in surface area) European FUAs

(Paris, London, Dortmund, Katowice, Oslo, Madrid, Budapest, Warsaw, Berlin, Lyon, Copenhagen, Milan, Frankfurt am Main,1150

Toulouse, Cologne, Hamburg, Vienna, Helsinki, Leeds, Rotterdam, Prague, Belfast, Liège, Rome, Nantes, Gothenburg, Mu-

nich, Krakow, Zurich, and Istanbul) against two products from the European Environmental Agency (EEA):

1. the 100 m Copernicus High Resolution Imperviousness Density (IMD) layer for 2018 (European Environment Agency,

2018a), a thematic product that indicates the total sealing density (λT ), ranging from 0-100%,

2. the 100 m Share of Built-up (SBU) layer for 2018 (European Environment Agency, 2018b), an aggregated version of the1155

10 m Impervious Built-up map that indicates the building surface fraction (λB), ranging from 0-100%

In line with Bechtel et al. (2019a), all data layers are resampled to a common 1 km grid. Afterwards, EEA’s IMD (λT )

and SBU (λB) land-only pixels are regressed against the GHS-S2Net built-up probabilities for all thirty European FUAs (see

Figure D1 as an illustration), and the corresponding coefficients of determination (R2) and slopes are reported for λT and λB

separately (Figure D2). Most R2 values exceed 0.9 for both λT and λB , confirming that GHS-S2net is able to explain most1160

of the observed EEA impervious surface fractions. On average, the slopes of the regression between the built-up probabilities

of GHS-S2Net and EEA’s IMD and SBU products are 0.6 and 0.7 respectively. These results confirm the findings of Corbane

et al. (2021) that the GHS-S2net built-up probabilities can serve as a proxy for λB .

50



0 20 40 60 80 100
EEA IMD [%]

0

20

40

60

80

100

GH
S-

S2
ne

t [
%

]

y = 0.69x + 0.17 (R² = 0.98)
T

0 20 40 60 80 100
EEA SBU [%]

y = 0.97x + 1.27 (R² = 0.96)
B

100

101

102

103

Fr
eq

ue
nc

y

Figure D1. Hexbin illustration of the EEA Imperviousness Density (IMD, reflecting λT ) and Share of Built-up (SBU, reflecting λB) against

GHS-S2Net built-up probabilities for the European Functional Urban Area (FUA) of Dortmund (Germany). Linear regression equations

and R2 values are provided for both λT (left panel) and λB (right panel). The logarithmic colorbar represents the number of pixels in each

imperviousness bin.
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Figure D2. Distribution of R2 values and slopes for the regressions between between GHS-S2Net and EEA’s IMD (λT ) and SBU (λB)

datasets, for the thirty selected European FUA boundaries. Grey boxes and whiskers span the 25–75 and 5–95 percentiles respectively. The

means and medians are indicated by the black dots and lines respectively.
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Appendix E: Final number training area polygons per LCZ class
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Figure E1. Number of training area polygons per LCZ class and ER (colours as in Fig. 3).
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Appendix F: Final input features1165
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Figure F1. Feature importance ranking for the globe and per urban ecoregion (ER). Bars in bright orange depict the input features (per spatial

unit) that belong to the top 50% of most important variables. Numbers on top depict the overall accuracy ± the standard deviation (%). Blue

numbers on the right-hand side describe how often an input feature belongs to the top half of most important features. Features with a value

≥ 5 are used in pathway 2 to create the global LCZ map and are indicated by the blue dot in the global panel on the left. These features are

described in more detail in Table F1.
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Table F1. Final set of input features used in the global LCZ mapping process. The information is structured by sensor, with the input feature

names referring to the abbreviations used in the feature importance ranking shown in Fig. F1.

Sensor Input feature Description

PALSAR HH_contrast Contrast GCLM texture parameter from the HH polarisation backscatter

HH_dist Dissimilarity GCLM texture parameter from the HH polarisation backscatter

HH_savg Sum average GCLM texture parameter from the HH polarisation backscatter

HV_contrast Contrast GCLM texture parameter from the HV polarisation backscatter

HV_diss Dissimilarity GCLM texture parameter from the HV polarisation backscatter

HV_intertia Inertia GCLM texture parameter from the HV polarisation backscatter

HV_savg Sum average GCLM texture parameter from the HV polarisation backscatter

Landsat 8 B2_median Band 2 (blue) surface reflection median composite

B3_median Band 3 (green) surface reflection median composite

B4_median Band 4 (red) surface reflection median composite

B7_median Band 7 (shortwave infrared 2) surface reflection median composite

B10_median Band 10 (brightness temperature) median composite

B11_median Band 11 (brightness temperature) median composite

bci_median Biophysical Composition Index median composite

ndbi_median Normalized Difference Built Index median composite

ndbai_median Normalized Difference BAreness Index median composite

ndvi_p10 10th percentile of the Normalized Difference Vegetation Index composite

ndvi_median Normalized Difference Vegetation Index median composite

ndvi_p90 90th percentile of the Normalized Difference Vegetation Index composite

ndwi_median Normalized Difference Water Index median composite

Sentinel-1 VV Single co-polarization, vertical transmit/vertical receivemedian composite

VH Single co-polarization, horizontal transmit/horizontal receive median composite

S1_StdDev Standard deviation of VV and VH combined

Sentinel-2 S2_ndvi_re1_median Normalized Difference Vegetation Index Red Edge 1 median composite

S2_ndvi_re2_median Normalized Difference Vegetation Index Red Edge 2 median composite

Other DEM High accuracy global DEM at 3 arc second resolution from MERIT (Multi-Error-Removed

Improved-Terrain Digital Elevation Model), version 1.0.3

DSM Global digital surface model (DSM) dataset with a horizontal resolution of approximately 30

meters from ALOS World 3D, version 3.2

SLOPE Slope derived from the MERIT DEM

GCFH Global forest canopy height data

VIIRS NANTLI Normalized Difference Vegetation Index adjusted Night-time Light Index, based on Landsat’s

NDVI and VIIRS Day/Night Band
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Appendix G: Traditional accuracy assessment
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Figure G1. Overall and class-wise F1 accuracies for the global random forest LCZ models. Coloured boxes and grey whiskers span the

25-75 and 5-95 percentiles respectively. The means and medians are indicated by the white dots and black lines respectively.
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Appendix H: Classification probabilities stratified per urban ecoregion
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Figure H1. Classification probabilities of the mapped LCZ classes, aggregated over all urban centres from GHS-UCDB. The grey boxplots

depict the classification probability distribution for all global urban centres, per ER, with boxes and whiskers spanning the 25-75 and 5-95

percentiles respectively, and means and medians indicated by the white dots and black lines respectively. The vertical lines in the colours of

the LCZ classes indicate the 25 to 75th percentile range averaged over the urban centres, with LCZ-colored dots indicating the mean.
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Appendix I: Thematic benchmark results per urban ecoregion
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Figure I1. Balanced accuracy (left panel) and Cohen’s Kappa (right panel) for the 150 global LCZ FUA regions in terms of built-up land,

stratified by urban ecoregion (colours as in Fig. 3). Boxes and grey whiskers span the 25-75 and 5-95 percentiles respectively. The means

and medians are indicated by the white dots and black lines respectively.
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Figure I2. Coefficients of determination (R2) and slopes resulting from the regression between the reference dataset for λB and the corre-

sponding universal LCZ-based values from Stewart and Oke (2012), using minimum, mean and maximum values (colours), for all FUAs

stratified per ecoregion. Coloured boxes and grey whiskers span the 25–75 and 5–95 percentiles respectively. The means and medians are

indicated by the black dots and lines respectively.
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Figure I3. As Fig. I2 but for building height H .
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Figure I4. As Fig. I2 but for the anthropogenic heat flux AHF .
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