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Abstract. Daily mean land surface temperatures (LSTs) acquired from polar-orbiters are crucial for various applications 

such as global and regional climate change analysis. However, thermal sensors from polar-orbiters can only sample the 

surface effectively with very limited times per day under cloud-free conditions. These limitations have produced a 

systematic sampling bias (ΔTsb) on the daily mean LST (Tdm) estimated with the traditional method, which uses the averages 15 

of clear-sky LST observations directly as the Tdm. Several methods have been proposed for the estimation of the Tdm, yet they 

become less capable of generating spatiotemporally seamless Tdm across the globe. Based on MODIS and reanalysis data, 

here we proposed an improved annual and diurnal temperature cycle-based framework (termed the IADTC framework) to 

generate global spatiotemporally seamless Tdm products ranging from 2003 to 2019 (named as the GADTC products). The 

validations show that the IADTC framework reduces the systematic ΔTsb significantly. When validated only with in situ 20 

data, the assessments show that the mean absolute errors (MAEs) of the IADTC framework are 1.4 K and 1.1 K for 

SURFRAD and FLUXNET data, respectively; and the mean biases are both close to zero. Direct comparisons between the 

GADTC products and in situ measurements indicate that the MAEs are 2.2 K and 3.1 K for the SURFRAD and FLUXNET 

datasets, respectively; and the mean biases are −1.6 K and −1.5 K for these two datasets, respectively. By taking the GADTC 

products as references, further analysis reveals that the Tdm estimated with the traditional averaging method yields a positive 25 

systematic ΔTsb of greater than 2.0 K in low- and mid-latitude regions while of a relatively small value in high-latitude 

regions. Although the global mean LST trend (2003 to 2019) calculated with the traditional method and the IADTC 

framework is relatively close (both between 0.025 to 0.029 K/year), regional discrepancies in LST trend does occur – the 

pixel-based MAE in LST trend between these two methods reaches 0.012 K/year. We consider the IADTC framework can 

guide the further optimization of Tdm estimation across the globe; and the generated GADTC products should be valuable in 30 

various applications such as global and regional warming analysis. The GADTC products are freely available at 

https://doi.org/10.5281/zenodo.6287052 (Hong et al., 2022).  

https://doi.org/10.5281/zenodo.6287052
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1 Introduction 

Land surface temperature (LST) is one of the most important variables of land-atmosphere interaction (Jin and Dickinson, 

2010). Currently, satellite thermal remote sensing provides the only way to obtain long-term and regular LST over extensive 35 

areas. The archived long-term satellite-derived LST datasets have been widely used in various fields such as land cover 

change detection (Lambin and Ehrlich, 1997; Muro et al., 2018), radiation flux simulation (Alcântara et al., 2010; Anderson 

et al., 2007), drought monitoring (Karnieli et al., 2010; Mildrexler et al., 2017), vegetation change analysis (Julien and 

Sobrino, 2009; Julien et al., 2006; Still et al., 2019), permafrost thawing monitoring (Westermann et al., 2011), and global 

LST trend investigation (Jin, 2004; Jin and Dickinson, 2002; Yan et al., 2020).  40 

According to the satellite on-board duration and spatiotemporal resolution (Tomlinson et al., 2011), satellite-derived 

LST products used for long-term time-series analysis can be divided into two categories: (1) the LSTs obtained from high-

orbit geostationary satellite sensors with a coarse spatial resolution (3 – 5 km), e.g., the MSG-SEVIRI (the Spinning 

Enhanced Visible and Infrared Imager onboard Meteosat Second Generation) and GOES (Geostationary Operational 

Environmental Satellite), and (2) the LSTs from low-orbit polar-orbiting satellite sensors. The second category of satellite 45 

sensors can be further divided into (1) the narrow-swath polar-orbiting satellite sensors with a relatively high spatial 

resolution (around 100 m), e.g., Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 

and (2) the polar-orbiting satellite sensors with a moderate spatial resolution (around 1 km), e.g., AVHRR (Advanced Very 

High-Resolution Radiometer), SLSTR (Sea and Land Surface Temperature Radiometer), and MODIS (Moderate Resolution 

Imaging Spectroradiometer).  50 

The geostationary satellite thermal sensors are characterized by a very high temporal resolution (1 hour or finer). 

However, they are relatively difficult to provide global consistent LST products due to the limited coverage of a single 

geostationary satellite and the systematic errors among different satellites (Freitas et al., 2013). The Landsat (or similar 

polar-orbiters) has been providing thermal observations since the 1980s, but the relatively long revisiting period (e.g., 16-day 

for Landsat) makes it challenging to capture the daily and hourly continuous LST dynamics (Fu and Weng, 2016). By 55 

contrast, wide-swath polar-orbiting sensors (e.g., MODIS) can sample the earth surface at least twice a day with a relatively 

high spatial resolution (around 1.0 km). The feature makes the MODIS-like sensors overcome the limitations of the Landsat-

like satellites (with a long revisiting period) and geostationary satellite sensors (with a restricted global coverage). Therefore, 

the LSTs obtained from wide-swath polar-orbiting sensors (e.g., MODIS and AVHRR) have been widely used in capturing 

the long-term global LST dynamics (Sobrino et al., 2020a; Mildrexler et al., 2011). Among these, the MODIS LST data have 60 

been used the most (Eleftheriou et al., 2018; Fu, 2019; Heck et al., 2019; Potter and Coppernoll-Houston, 2019; Quan et al., 

2016; Sobrino et al., 2020a; Yan et al., 2020; Zhao et al., 2019; Zhao et al., 2021). This is mainly because, especially when 

compared with the AVHRR data, (1) MODIS LST observations are less affected by the orbit drift effect (Julien and Sobrino, 

2012; Latifovic et al., 2012; Ma et al., 2020; Gutman, 1999); (2) the MODIS LST products can offer more details about the 

diurnal LST dynamics with four observations per day (Crosson et al., 2012; Hong et al., 2018); and (3) the MODIS LST 65 
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retrieval algorithm has been with continuous improvement and the associated LSTs products are comparably more mature 

and have been extensively validated (Duan et al., 2018; Duan et al., 2019; Wan, 2014).  

However, most previous studies employed temporally aggregated results (8-day or monthly mean) of instantaneous 

cloud-free LSTs for long-term LST time series analysis (Mao et al., 2017; Sobrino et al., 2020a; Sobrino et al., 2020b; Xing 

et al., 2021), instead of continuous daily mean LST (termed as Tdm) on a day-to-day basis. Compared with the continuous 70 

daily Tdm, temporally aggregated results of instantaneous cloud-free LSTs lack the information of under-cloud thermal 

observations and insufficiently sample the LST diurnal dynamics (Ermida et al., 2019; Hu et al., 2020; Westermann et al., 

2012). Such a direct temporal aggregation approach can produce a systematic sampling bias (termed as ΔTsb) (Hong et al., 

2021), which affects the accuracy of Tdm directly and the associated trend analysis indirectly (Zhou and Wang, 2016). To 

estimate accurate Tdm, Hong et al. (2021) designed the ADTC-based framework that combines an annual temperature cycle 75 

(ATC) model and a diurnal temperature cycle (DTC) model. Based on the MODIS LST product and some auxiliary data 

such as the reanalysis data, the ADTC-based framework first uses an ATC model to reconstruct the instantaneous under-

cloud LSTs and then simulates the diurnal LST dynamics with a four-parameter DTC model to solve the issue of under-

sampling with only four observations per day. Validations showed that the ADTC-based framework can reduce the ΔTsb 

significantly and produce the spatiotemporally seamless Tdm (Hong et al., 2021).  80 

However, the original ADTC-based framework (termed the OADTC framework) has been tested only over a relatively 

small region. In other words, the performance of the OADTC framework over complicated situations across global land 

surfaces has not been studied. Currently a global spatiotemporally seamless daily mean LST product is still unavailable to 

the satellite thermal remote sensing community; furthermore, the spatial distribution of ΔTsb and its impact on the LST trend 

over global land surfaces also remains unclear. There are two further limitations when applying the OADTC framework to 85 

the actual generation of global seamless Tdm: (1) the selected ATC model in the OADTC framework uses a single sinusoidal 

function to describe the intra-annual variation of solar radiation, which becomes less suitable for equatorial and polar regions 

(Liu et al., 2019b); (2) the used DTC model may fail around sunrise with no-solution or extreme solution, and cause an 

underestimation and even outliers of the daily mean LST (Hong et al., 2021; Hu et al., 2020).  

Facing these issues, this study intends to formulate an improved version of the original ADTC-based framework 90 

(hereafter termed the IADTC framework) by using an advanced multi-type ATC model as well as a DTC model optimized 

for estimating Tdm. With the IADTC framework, we then generate a global spatiotemporally seamless 0.5-degree Tdm product 

(termed the GADTC product, refer to Section 3.1 for the detailed description) for the period from 2003 to 2019. Based on the 

GADTC product, we then analyze the global spatial distribution of ΔTsb as well as LST trends, which are compared with 

those obtained with the traditional method. We consider the IADTC framework and the associated GADTC product should 95 

be useful for various applications such as analysis of global climate change and assessment of reanalysis data.  
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2 Datasets 

The MODIS LST products and MERRA2 (the Modern-Era Retrospective analysis for Research and Applications version 2) 

reanalysis dataset were required as input data for the IADTC framework. We also employed in situ LST measurements from 

the SURFRAD and FLUXNET to validate the IADTC framework and the GADTC product.  100 

2.1 MODIS LST products 

The MODIS LST products, including both the MOD11C1 and MYD11C1 LST products in Collection 6 from 2003 to 2019 

(available at https://ladsweb.nascom.nasa.gov/), were used to help the generation of Tdm. The MODIS LSTs were retrieved 

with a refined generalized split-window algorithm, and their accuracies are mostly within 1.0 K over homogeneous surfaces 

(Zhengming and Zhao-Liang, 1997; Duan et al., 2019; Wan, 2014). The MOD11C1 and MYD11C1 LST products cover the 105 

global land surfaces four times per day with a spatial resolution of 0.05 degree. At low- and middle-latitude regions, 

MOD11C1 LSTs are obtained around 10:30 and 22:30 (local solar time), and MYD11C1 LSTs are around 01:30 and 13:30 

(local solar time) with a time interval of around 1.5 hours. At high-latitude regions, due to the convergence of satellite orbit 

(Fig. A1), the overpassing times possess a significant shift from those at low- and middle-latitude regions (Østby et al., 

2014). More details on the time shift and its impact on the estimation of Tdm with the IADTC framework are provided in 110 

Sections 3.1.3 and 5.2.  

2.2 Reanalysis data 

Surface air temperatures (SATs) are used to drive the ATC model for the reconstruction of under-cloud LSTs (see Section 

3.1). We employed the SATs from MERRA2 reanalysis dataset (the specific collection name is inst1_2d_lfo_Nx, obtained 

from https://disc.gsfc.nasa.gov/datasets/M2I1NXLFO_V5.12.4/summary) from 2003 to 2019 (Gelaro et al., 2017; GMAO 115 

2015). The spatial and temporal resolutions of these reanalysis SAT data are 0.5×0.625 degrees and 1 hour, respectively.  

2.3 In situ data 

The in situ LST measurements from 133 globally distributed stations (Fig. 1) were used to validate the IADTC framework at 

site level (see Section 3.2.1) as well as to evaluate the GADTC product (see Section 3.2.2). They include seven SURFRAD 

(Surface Radiation Budget Network) sites (Augustine et al., 2000) and 126 FLUXNET sites from FLUXNET2015 datasets 120 

(Pastorello et al., 2020). These two datasets have been widely used for validating satellite-derived LSTs due to their 

extensive distribution, rigorous quality control, and long-term availability (Guillevic et al., 2018; Martin et al., 2019; Duan et 

al., 2019).  

https://ladsweb.nascom.nasa.gov/
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Fig. 1. Geo-location of the stations used for validation. The red circles and blue triangles represent the locations of the 125 

FLUXNET and SURFRAD sites, respectively. The numbers ‘0’ to ‘16’ at the bottommost represent the background 

land cover type as defined by the International Geosphere–Biosphere Programme (IGBP) (Friedl et al., 2002).  

2.3.1 SURFRAD data 

We employed observations from the seven SURFRAD sites during the period of 2003 – 2019 (available at 

https://www.esrl.noaa.gov/gmd/grad/surfrad/). The seven SURFRAD sites have relatively heterogeneous surfaces and their 130 

land cover types include grassland, cropland, and bare soil. Broadband hemispherical radiances are measured with 

pyrgeometers (Eppley Precision Infrared Radiometer) with a wavelength range of 4 – 50 µm. Sensors at each site are 

installed at 10-m height with a spatial representativeness of approximately 70 × 70 m2 (Guillevic et al., 2014). More detailed 

information on these sites is given in Table 1 in Section 4.2. In situ LSTs were estimated with the measured upward and 

downward longwave radiances with the following formula:  135 

 {
𝑇 = √

𝐿↑−(1−𝜀𝑏)𝐿
↓

𝜀𝑏𝜎

4

𝜀𝑏 = 0.261 + 0.314𝜀31 + 0.411𝜀32

 (1) 

where L↑ and L↓ are the upward and downward longwave radiation, respectively; εb is the broadband emissivity estimated 

with the MODIS narrowband emissivities ε31 and ε32 in MODIS Channels 31 and 32, respectively (Liang et al., 2013); and σ 

is the Stefan-Boltzmann constant (5.67×10-8 W·m–2·K–4). To reduce the impacts of short-term LST fluctuations on 

validation, we aggregated minutely observations into hourly values.  140 
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2.3.2 FLUXNET data 

We further employed the FLUXNET 2015 datasets (available at https://fluxnet.org/data/fluxnet2015-dataset/) to evaluate the 

GADTC product (Pastorello et al., 2020). The FLUXNET 2015 datasets include more than 200 sites covering multiple 

ecosystem types across the globe and provide hourly upwelling and downwelling longwave radiation observations of two 

pyrgeometers (spectral range 3.5 – 50.0 µm) that can be used to retrieve LST (Guillevic et al., 2018). Removing the sites 145 

without upwelling longwave radiation observations resulted in a total of 126 sites for the period from 2003 – 2015 (Fig. 1). 

The in situ LSTs were calculated and preprocessed using the same method as for the SURFRAD data.  

3 Methodology 

3.1 Generation of global gap-free daily mean LST with the IADTC framework 

The OADTC framework consists of two steps to generate Tdm (Hong et al., 2021): (1) Reconstruction of instantaneous under-150 

cloud LSTs with an ATC model to ensure the availability of four valid LSTs at the four daily overpass times. (2) Simulation 

of diurnal LST dynamics using a four-parameter DTC model and estimation of Tdm. This study improved the OADTC 

framework by using a more advanced ATC model as well as by optimizing the estimation of Tdm with the DTC model. The 

generation of global gap-free Tdm with this improved framework (termed the IADTC framework) includes four steps (Fig. 2): 

data preprocessing (Section 3.1.1), under-cloud LST reconstruction with an advanced ATC model (Section 3.1.2), linear 155 

interpolation of MODIS overpass time (Section 3.1.3), and Tdm estimation with a DTC model (Section 3.1.4).  
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Fig. 2. Flowchart of the IADTC framework. DTRfour refers to diurnal temperature range (DTR) calculated as the 

maximum minus the minimum from the gap-free LSTs at the four overpassing times; DTRDTC refers to the DTR 160 

calculated from the hourly LSTs modelled with the DTC model. ΔDTR refers to the absolute difference between 

DTRfour and DTRDTC.  

 

3.1.1 Data pre-processing 

We generated the global Tdm product with a spatial resolution of 0.5 × 0.5 degrees rather than a higher resolution (e.g., 1 km) 165 

mainly because of the following two aspects. First, our study aims at analyzing the spatial pattern of ΔTsb and the LST trend 
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at the global scale, i.e., to perform a LST climatology analysis for which a spatial resolution of 0.5 degree is adequate. 

Second, the Tdm generation is conducted on a daily and pixel-by-pixel basis on the global scale, which requires a huge 

amount of computational resources on a higher spatial resolution. Consequently, the MOD11C1 and MYD11C1 products 

were resampled to a spatial resolution of 0.5 degree; the MERRA2 reanalysis hourly air temperature data were resampled to 170 

daily values with the same resolution.  

 

3.1.2 Under-cloud LST reconstruction with multi-type ATC model 

The general formula of ATC model is displayed in Eq. 2. The single-type ATC model in the OADTC framework uses a 

single sinusoidal function (M = 1 in Eq. 2) to model the intra-annual LST variations driven by solar radiation change and 175 

incorporates surface air temperatures to help simulate the LST fluctuations induced by synoptic conditions (Zou et al., 2018; 

Liu et al., 2019b). The use of a single sinusoidal function is generally acceptable for mid-latitude regions. However, a single 

sinusoidal is no longer suitable for low-latitude because there are two solar radiation peaks within a yearly cycle of low-

latitude regions (Xing et al., 2020; Bechtel, 2015; Cao and Sanchez-Azofeifa, 2017); it is also inadequate for high-latitude 

regions where polar days and nights occur (Østby et al., 2014; Liu et al., 2019; Westermann et al., 2012). Therefore, the use 180 

of the single-type ATC model in the OADTC framework is less suitable to generate Tdm at the global scale (Fig. 3). To 

overcome this limitation, the IADTC framework uses different versions of ATC model (termed the multi-type ATC model) 

to reconstruct under-cloud LSTs over the low-, mid-, and high-latitude regions, respectively. The details are given as 

follows: 

(1) Low-latitude regions (23.5° N – 23.5° S) 185 

The solar radiation possesses two peaks within a yearly cycle over low-latitude regions (Fig. 3a). We therefore employed the 

ATC model with two sinusoidal functions (M = 2 in Eq. 2) to reconstruct the daily LST dynamics within an annual cycle 

(Liu et al., 2019b; Xing et al., 2020).  

(2) Mid-latitude regions (23.5° N/S – 66.5° N/S) 

The solar radiation peaks once in summer during an annual cycle. We therefore employed the ATC model with single-190 

sinusoidal function (M = 1 in Eq. 2) to reconstruct the daily LST dynamics (Fig. 3b).  

(3) High-latitude regions (66.5° N/S – 90° N/S) 

The polar day/night phenomena occur over high-latitude regions and the duration increases with the latitude. Theoretically, 

over these regions, the ATC model with multiple sinusoidal functions should be the best choice. However, the number of 

cloud-free MODIS observations is limited, and additional model complexity can lead to over-fitting and weaken the 195 

generalization ability of the ATC model (Liu et al., 2019b). To balance model accuracy and generalization ability, the ATC 

model with two sinusoidal functions was selected for high-latitude regions (see Fig. 3c).  
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{
 

 𝑇ATCM(𝑑) = 𝑇0 + ∑ 𝐴m 𝑠𝑖𝑛 (
2𝜋𝑚𝑑

𝑁
+ 𝜃m)

𝑀
𝑚=1 + 𝑘 ⋅ 𝛥𝑇air(𝑑)

𝛥𝑇air(𝑑) = 𝑇air(𝑑) − 𝑇ATCO(𝑑)

𝑇ATCO(𝑑) = 𝑇0
′ + ∑ 𝐴m

′ 𝑠𝑖𝑛 (
2𝜋𝑚𝑑

𝑁
+ 𝜃m

′ )𝑀
𝑚=1

 (2) 

where TATCM(d) denotes the daily LST variations simulated with the ATC model; M is the number of used harmonic 

components; d and N are the day of year (DOY) and number of days in a year, respectively; ΔTair(d) is the difference 200 

between the daily SATs (i.e., Tair(d), obtained from MERRA2 reanalysis data) and the modelled air temperatures with the 

original ATC model (TATCO(d)); and T0, Am, θm and k are the parameters that need to be solved with the cloud-free daily 

LSTs and SATs, usually through the least-square method.  
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 205 

Fig. 3. Comparison of reconstructing under-cloud LSTs with multi-type and single-type ATC models at different 

latitudes. (a), (b), and (c) show three examples of ATC modelling at low-latitudes, mid-latitudes, and high-latitudes 

for cloud-free Terra-day LST in 2019. The green circles, blue lines, and red lines denote the cloud-free observations 

and LSTs simulated by the single- and multi-type ATC models, respectively. Note that for (b) the results of the single- 

and multi-type ATC models are identical since they both use the ATC model with single-sinusoidal function. 210 
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3.1.3 Interpolation of overpassing times 

The under-cloud LST reconstruction with the ATC model ensures that there are four valid LSTs within a diurnal cycle. 

However, there are still missing values for the corresponding four overpassing times. We used linear interpolation to 

reconstruct the missing overpassing times based on the valid overpassing times on the two adjacent days with valid values. 

For example, if the overpassing times from Jul 10th to Jul 20th for Aqua day are missing, the linear interpolation was used to 215 

fill the missing values during this period using the valid values on the two adjacent days with valid values (i.e., Jul 9th and Jul 

21st). The uncertainties of linear interpolation are expected to be within the range associated with local overpassing time 

fluctuations. For the low- and mid-latitude regions where the overpassing time fluctuations are relatively small (less than 1.5 

hours), the uncertainties using linear interpolation are relatively minor. However, for the high-latitude regions where the 

overpassing times fluctuate significantly (Fig. A1), linear interpolation holds a larger error and might affect the estimation of 220 

Tdm. More discussions in terms of the uncertainties of the linear interpolation are provided in Section 5.2.  

3.1.4 Estimation of daily mean LST with DTC model 

The under-cloud LST reconstruction (Section 3.1.2) and linear interpolation of overpassing time (Section 3.1.3) ensure that 

there are four valid LSTs and the associated overpassing times per day. These provide the foundation for estimating Tdm with 

a four-parameter DTC model. This study selected the four-parameter GOT09-dT-τ model, which has been shown to have the 225 

highest accuracy among a variety of four-parameter DTC models (Hong et al., 2018). Further details related to the formulae 

and the associated parameters of the GOT09-dT-τ model are provided in Göttsche and Olesen (2009) and Hong et al. (2018).  

For the generation of global products, the GOT09-dT-τ model can face the issues of no-solution or extreme-solution, 

under which the estimated Tdm can be significantly biased due to the reduced capability to model LST around sunrise (Hu et 

al., 2020) (Fig. 4c). The failed simulations can be associated with the following two reasons: (1) there are four daily MODIS 230 

LSTs per daily cycle but no observation around sunrise (Hong et al., 2018); (2) the DTC model is subject to the clear-sky 

hypothesis (Göttsche and Olesen, 2009). Therefore, to avoid outliers caused by failed simulations, under certain conditions, 

Tdm was estimated directly by averaging the four LSTs per daily cycle. We introduced two criteria to determine whether to 

use the DTC model for estimating Tdm or not (Fig. 2, Scenario #1 to #3).  

The first criterion is based on the diurnal temperature range (DTR), which was calculated as the maximum minus the 235 

minimum LSTs within a diurnal cycle. Specifically, the DTR calculated by four LSTs within the diurnal cycle (termed 

DTRfour) was used (Fig. 2). Here these four daily LSTs can consist of both cloud-free observations (Tin_cloud_free, the green 

circles in Fig. 4) and under-cloud LSTs reconstructed by the ATC model (Tin_ATC, the blue triangles in Fig. 4). For relatively 

small DTRfour, e.g., on overcast days with heavy clouds or on days with low incoming solar radiation (e.g., polar nights), Tdm 

can be directly estimated as the mean of the four daily LSTs per daily cycle (Fig. 4a). In this case, the DTC model would be 240 

unnecessary. We empirically set the DTRfour threshold as 5.0 K (see Section 5.1 for detailed discussions). In other words, 
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when the DTRfour is less than 5.0 K, (see Scenario #1 in Fig. 2 and Fig. 4a), Tdm estimated with the IADTC framework 

(termed Tdm_IADTC) was obtained by averaging the four LSTs within a diurnal cycle (termed Tdm_ATC_four).  

When DTRfour is greater than 5.0 K, the DTC model would be used to simulate the diurnal LST dynamics. However, for 

the global generation of Tdm, the simulation can still fail for cases with complicated diurnal LST dynamics (Fig. 4c). To 245 

avoid this issue, we introduced the second criterion to determine whether to use the DTC model or not. This was done by 

comparing the DTRfour and the DTR calculated by the DTC model (termed DTRDTC). This comparison can be used to identify 

the failed simulations of the DTC model because the DTRDTC would be abnormal once the LSTs modelled by the DTC 

model are significantly underestimated around sunrise. Therefore, we employed the absolute difference between DTRDTC and 

DTRfour (termed as ΔDTR) as the second threshold to further determine whether to use the DTC model or not. This study 250 

empirically set the ΔDTR threshold as 20.0 K. More discussions on this are provided in Section 5.1.  

In the practical generation of Tdm, when DTRfour ≥ 5.0 K and ΔDTR < 20.0 K (Scenario #2 in Fig. 2), the DTC modelling 

results (Tin_ATC_DTC, see the blue line in Fig. 4b) are satisfactory and were then used to estimate Tdm. The Tdm_IADTC was then 

calculated as the average of instantaneous hourly LSTs (Tin_ATC_DTC). When DTRfour ≥ 5.0 K and ΔDTR ≥ 20.0 K (Scenario 

#3 in Fig. 2), the DTC model may fail (Fig. 4c) as the Tdm estimate based on the DTC modelling (i.e., Tdm_ATC_DTC) is 255 

considerably lower than the true Tdm. In this case, the error of Tdm_ATC_DTC can be even larger than that of Tdm estimated as the 

average of the four LSTs within the day (i.e., Tdm_ATC_four; refer to Fig. 11 in Section 5.1). Therefore, in this case Tdm_IADTC 

was directly calculated as Tdm_ATC_four. In summary, for Scenarios #1 and #3, Tdm_IADTC was calculated as Tdm_ATC_four, while it 

was calculated as Tdm_ATC_DTC for Scenario #2.  

 260 
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Fig. 4. Estimation of Tdm under different conditions. (a) displays an example of estimating Tdm by averaging 

Tin_cloud_free and Tin_ATC when DTRfour is less than 5.0 K (i.e., Scenario #1); (b) displays an example of estimating Tdm 

based on the DTC modelling results (i.e., Scenario #2); (c) displays an example of estimating Tdm by averaging 

Tin_cloud_free and Tin_ATC when ΔDTR is equal or greater than 20.0 K (i.e., Scenario #3). The green circles, red 265 

rectangles, and blue triangles denote the instantaneous cloud-free LST observations, under-cloud LST observations, 

and under-cloud LSTs reconstructed by the ATC model, respectively. The black lines denote the in situ LST 

observations while the blue lines show the DTC-modelled values based on the cloud-free LST observations and ATC-

modelled under-cloud LSTs. Noting that hours larger than 24 along the x-axis correspond to the next day.  

3.2 Validations 270 

The GADTC products were validated from the following two aspects: (1) validating the IADTC framework indirectly with 

single-source in situ measurements at the site level; and (2) validating the GADTC products directly by comparing with in 

situ measurements. These two aspects complement each other and allow to assess the applicability of IADTC framework and 

the accuracy of the generated GADTC products. The direct comparison of the GADTC product with in situ measurements 

(SURFRAD and FLUXNET measurements for this study) provide information on the accuracy of the IADTC framework 275 

especially over homogeneous areas (Guillevic et al., 2018). However, such direct validations can be affected by uncertainties 
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beyond the IADTC framework, e.g., a mismatch of spatial scale between satellite and in situ measurements, different 

observation angles, and uncertainties from the LST retrieval algorithm (Ermida et al., 2014; Guillevic et al., 2014; Li et al., 

2014). Therefore, direct comparisons may not fully reflect the true accuracy of the IADTC framework. To address this issue 

and assess the applicability of IADTC framework, we validated the IADTC framework indirectly by driving it with in situ 280 

measurement and then using hourly measurements for validation. This strategy avoids the mismatch issue of multi-source 

data and can, therefore, better reflect the accuracy of the IADTC framework (Hong et al., 2021).  

3.2.1 Validation of the IADTC framework with in situ measurements 

The IADTC framework was validated with in situ hourly measurements obtained exclusively from SURFRAD and 

FLUXNET data. During this validation process, the MERRA2 air temperature at the corresponding station location, instead 285 

of the air temperature from in situ measurements, were used to drive ATC model, which is identical to the actual generation 

of the GADTC products.  

The approach used the cloud-free in situ measurements at each MODIS overpassing time and MERRA2 air 

temperatures to drive the ATC model, and the corresponding under-cloud in situ measurements (Tin_under_cloud, red rectangles 

in Fig. 4) to evaluate the accuracy of the under-cloud LSTs reconstructed by the ATC model (Tin_ATC). The accuracy of the 290 

Tdm estimated with the IADTC framework (Tdm_IADTC) was evaluated against ‘true’ Tdm (termed Tdm_true), i.e., the average of 

the hourly in situ measurements (Tin_obs, gray line in Fig. 4). We also provided the sampling bias (ΔTsb) of the traditional 

method based on cloud-free observations (i.e., the average of Tin_cloud_free), which here is termed Tdm_cloud_free. Therefore, the 

accuracy improvements of Tdm_IADTC compared to Tdm_cloud_free are reflected in the corresponding reduction of ΔTsb. We 

further provide Tdm estimated with the OADTC framework (termed Tdm_OADTC) to illustrate the improvement achieved by the 295 

IADTC framework. 

3.2.2 Validation of the GADTC product directly with in situ measurements 

After matching the geolocation and observation time, we directly compared the GADTC product with in situ Tdm 

measurements from SURFRAD and FLUXNET. Note that outliers in the in situ measurements were removed before 

performing the accuracy evaluation; here outliers are defined as the Tdm differences between in situ measurements and 300 

GADTC products deviating by more than 3σ (three standard deviations) from the mean (Göttsche et al. 2016; Zhang et al., 

2020).  

3.3 Analysis of the GADTC product 

We analyzed the difference in LST values and trends between Tdm_cloud_free (the daily mean LST estimated by the traditional 

method) and the GADTC products. For the difference in LST values, we present the global spatial distribution of ΔTsb by 305 

using the GADTC product as the reference (see Section 4.3). For the difference in LST trends, the seasonal Mann–Kendall 

test and Theil-sen slope were used to diagnose the warming/cooling trend of LST and describe its slope, respectively (see 
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Section 4.4). The seasonal Mann–Kendall test is a non-parametric test suitable to detect LST warming/cooling trends and to 

quantify the associated significance level in LST time series (Hirsch et al., 1982; Hussain and Mahmud, 2019), while the 

Theil-sen slope reduces the impact of outliers on LST trend analysis (Sen, 1968; Theil, 1950). We conducted a seasonal 310 

Mann–Kendall test for both the Tdm_cloud_free and the GADTC product and compared their Theil-sen slopes in describing 

global LST trends.  

4. Results 

4.1 Validation of the IADTC framework with in situ measurements 

The validations using the SURFRAD measurements show that the MAE and bias of the ATC model for the day are 4.7 K 315 

and 4.0 K, respectively, while those for the night are 3.6 K and −1.6 K, respectively (Fig. 5a & Fig. 5c). Although the results 

for the ATC model are less satisfactory, the Tdm accuracies estimated with the IADTC framework is generally acceptable: the 

MAEs of Tdm_IADTC at the daily and monthly scales are 1.4 K and 0.6 K, respectively and the corresponding biases are both 

−0.2 K (Fig. 6). By contrast, the MAEs of the Tdm_cloud_free are 4.1 K and 2.5 K at the daily and monthly scales, respectively, 

i.e., they indicate a significantly lower accuracy compared to that of Tdm_IADTC.  320 

The proportion of three scenarios were 0.2%, 95.0%, and 4.8%, respectively. In Scenarios #1 and #3 under which the 

accuracies were improved compared with the OADTC framework, the IADTC framework improves the MAE of estimated 

Tdm by around 0.45 K (from 2.80 K to 2.35 K, see Fig. B1a). The accuracy improvement results mainly from two aspects: (1) 

the IADTC framework reduces the systematic negative bias caused by cases for which the DTC-modelled LSTs are 

significantly underestimated around sunrise; and (2) the outliers due to failed DTC simulations are avoided. The overall 325 

accuracies for all three scenarios show that the IADTC framework improves the bias from −0.38 K to −0.18 K, while the 

MAE improvement is relatively small. The relatively slight increase in the overall accuracy is attributed to the relatively 

small proportion of Scenarios #1 and #3 (around 5%).  
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Fig. 5. Validations of reconstructed under-cloud LSTs at Aqua and Terra day and night overpass times based 330 

exclusively on in situ data. The under-cloud LSTs were reconstructed with the ATC model. (a) and (b) show monthly 

mean errors obtained for daytime overpasses (including Aqua-day and Terra-day) for SURFRAD and FLUXNET 

data, respectively; (c) and (d) show the same for the nighttime overpasses (including Aqua-night and Terra-night). 
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Fig. 6. Validations of daily mean LST (Tdm) estimation with SURFRAD data. Boxplots show the errors for the 335 

traditional Tdm estimation method (Tdm_cloud_free), the IADTC framework (Tdm_ATC_DTC), and the OADTC framework 

(Tdm_OADTC). (a) and (b) display the MAE and bias at the daily scale, respectively; (c) and (d) display the MAE and 

bias at the monthly scale, respectively.  

The validations using the FLUXNET data are similar to those with the SURFRAD data: (1) the IADTC framework 

significantly reduces the ΔTsb of Tdm_cloud_free; (2) the MAEs of Tdm_IADTC are 1.1 K and 0.5 K at the daily and monthly scales, 340 

respectively; and (3) the biases are both close to zero (Fig. 7). The validations again indicate that the under-cloud LSTs 

reconstructed by the ATC model are systematically positive during the day (the MAE and bias are 3.5 K and 2.8 K, 

respectively) and systematically negative during the night (the MAE and bias are 2.2 K and −0.9 K, respectively) (Fig. 5b & 

Fig. 5d).  

The proportion of each scenario is 10.2%, 82.5%, and 7.3%, respectively. Compared with the OADTC framework, in 345 

Scenarios #1 and #3 (the proportion is 17.4%) under which the accuracies are considerably improved, IADTC framework 

improved the MAE of the estimated Tdm by around 0.78 K (from 1.95 K to 1.17 K, refer to Fig. B1b). However, for all the 
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three scenarios, the overall MAE and bias improvements of the IADTC framework are around 0.15 K and 0.30 K, 

respectively (Fig. 7).  

 350 

Fig. 7. The same as Fig. 6, but for the FLUXNET data.  

4.2 Evaluation of the GADTC product with in situ measurements 

The comparison between the GADTC products and in situ measurements (SURFRAD and FLUXNET datasets) shows that 

the MAEs of the GADTC products are 3.0 K and 2.6 K at the daily and monthly scales, respectively, and the mean bias on 

both scale is −1.5 K (Fig. 8). The MAE and bias are larger than those of the IADTC framework at site level (Fig. 6). This is 355 

thought to be due to inconsistencies between MODIS cloud-free observations and in situ measurements, i.e., errors of 

MODIS cloud-free observations propagating into the GADTC products. The mismatch in spatial resolution between the 

GADTC products and in situ measurements can also lead to lower accuracies.  

The validation with the SURFRAD measurements show that the MAE of the GADTC products is 2.2 K and 1.6 K at the 

daily and monthly scales, respectively and the bias is around −1.6 K at both scales (Fig. 8a & Fig. 8d). These accuracies of 360 
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daily mean LST are generally on par with those of instantaneous LSTs in studies comparing instantaneous MODIS cloud-

free observations and SURFRAD measurements (Duan et al., 2019; Martin et al., 2019). Across the different SURFRAD 

sites, the MAEs of the GADTC products are relatively similar (around 2.2 K; see Table 1).  

 

 365 

Fig. 8. GADTC products versus in situ observations. (a), (b), and (c) compare the daily mean LST over the 

SURFRAD, FLUXNET and combined sites, respectively; and (d), (e), and (f) show the corresponding results for 

monthly mean LST. The biases were calculated by the GADTC products minus the in situ measurements. The red 

ellipse in (b) highlights the cases with notably large errors.  

Table 1. Validation results obtained over the seven SURFRAD sites. 370 

Site ID Lat./Long. IGBP N* Bias (K) MAE (K) RMSE (K) STD (K) 

BON 40.05°/−88.37° CRO 6153 −1.20 1.97 2.44 2.12 

TBL 40.13°/−105.24° GRA 6124 −1.37 2.30 2.89 2.54 

DRA 36.62°/−116.02° BSV 6102 −2.04 2.26 2.69 1.74 

FPK 48.31°/−105.10° GRA 6157 −1.78 2.54 3.18 2.63 

GWN 34.25°/−89.87° WSA 6144 −1.83 2.25 2.70 1.98 
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PSU 40.72°/−77.93° CRO 6134 −1.30 1.85 2.24 1.82  

SXF 43.73°/−96.62° CRO 5786 −1.39 2.06 2.54 2.13 

*: N denotes the number of days used for validation.  

The direct comparison between the GADTC products and FLUXNET measurements shows that the MAEs are 3.1 K 

and 2.8 K at the daily and monthly scales, respectively; and the bias at these two time scales is −1.5 K (Fig. 8b & Fig. 8e). 

Compared with the validations over the SURFRAD sites, the accuracies over the FLUXNET sites decrease slightly and the 

standard deviations increases. The relatively larger errors at several FLUXNET sites (e.g., AU-Wac, SJ-Adv, and CH-Fru 375 

sites, with MAEs larger than 8.0 K; refer to the red ellipse in Fig. 8e) partly account for the lower accuracy. The relatively 

large errors at these sites might be related to the erroneous in situ measurements as well as the high spatial heterogeneity 

around these sites. However, the accuracies at most FLUXNET sites are acceptable.  

The validations over the FLUXNET sites show that the MAEs vary from 2.6 to 4.8 K and depend on land cover type. 

Relatively lower accuracies of the GADTC products (MAE larger than 3.5 K) are observed over IGBP land cover types OSH 380 

(Open Shrublands) and SNO (Snow and Ice) (Table 2). This may be related to unusually large measurement errors and the 

relatively high spatial heterogeneity at some sites as well as the limited number of sites representing a particular land cover 

type. For example, the accuracy assessment over the SNO land cover type is performed with a single site and there are only 

three sites of the OSH land cover type (e.g., the RU-Cok with MAE as large as 4.6 K).  

Table 2. Validation results for the GADTC products stratified by IGBP land cover type of the FLUXNET sites.  385 

IGBP Site number N* Bias (K) MAE (K) RMSE (K) STD (K) 

MF 5 7564 −1.95  2.62  3.25  2.61  

EBF 11 29588 −1.71  2.75  3.34  2.87  

WET 15 14556 −0.66  2.76  4.22  4.17  

DBF 19 32594 −1.78  2.89  3.56  3.08  

SAV 5 10355 −2.65  3.16  3.84  2.79  

CRO 14 14387 −1.59  3.26  4.10  3.78  

GRA 23 45257 −1.62  3.32  4.22  3.90  

ENF 25 58616 −0.81  3.38  4.18  4.10  

WSA 5 7810 −2.33  3.44  4.06  3.32  

OSH 3 5090 −3.34  3.62  4.33  2.75  

SNO 1 403 −3.39  4.80  5.91  4.84  

*: N denotes the number of days used for validation.  
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4.3 Analysis of the GADTC product  

The validations based exclusively on in situ LST measurements (Fig. 6) show that the IADTC framework can reduce the 

sampling bias (ΔTsb, i.e., Tdm_cloud_free − Tdm_true) significantly, especially at the monthly scale. ΔTsb directly affects the value 

of Tdm and may further influence the LST trend. Therefore, based on the GADTC products, we analyzed the global 390 

distribution of ΔTsb (calculated by Tdm_cloud_free − Tdm_IADTC) at the monthly scale (Section 4.3.1) and compared the LST trend 

differences between monthly averaged Tdm_cloud_free and Tdm_IADTC to study the impact of ΔTsb on LST trends (Section 4.3.2).  

4.3.1 Global distribution of the sampling bias ΔTsb 

The global distribution of the averaged ΔTsb from 2003 to 2019 shows that the global mean ΔTsb is 1.8 K (Fig. 9). At low- 

and mid-latitude regions, ΔTsb is generally around 2.0 K, yet it can exceed 4.0 K in some regions, e.g., deserts. At high-395 

latitude regions, ΔTsb is close to or slightly less than zero. ΔTsb also varies with month or season (Fig. C1). For example, the 

average ΔTsb for September-October-November (2.0 K) is larger than that for December-January-February (1.5 K). We 

further observe that ΔTsb is sensitive to land cover type and that DTR can partially explain ΔTsb. For instance, regions with a 

large DTR (e.g., deserts or bare soils) usually have a greater ΔTsb (Sharifnezhadazizi et al., 2019; Hong et al., 2021; Jin and 

Dickinson, 2010).  400 

Apart from the DTR, in high-latitude regions, ΔTsb can also be affected by the drift of MODIS overpassing time. The 

DTR is relatively small in high-latitude regions where the angle of the incident solar radiation is low and the LST 

observations across a diurnal cycle are often already close to the true Tdm, leading to a relatively small ΔTsb. The time drift at 

high-latitude regions can also contribute to the relatively small ΔTsb. At low- and mid-latitude regions, MODIS samples the 

surface near 10:30, 13:30, 22:30, and 01:30 (local solar time) (Fig. A1): the systematic positive ΔTsb is then mostly due to 405 

the under-sampling of the nighttime cooling until the sunrise of the next day (Hong et al., 2021). At high-latitude regions, the 

time drift effect allows MODIS observations at other than these four times and alleviates the under-sampling of nighttime 

cooling, thereby reducing ΔTsb.  
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Fig. 9. Average sampling bias ΔTsb from 2003 to 2019. (a) global spatial distribution of ΔTsb; and (b) average results 410 

for 5-degree intervals along the longitude.  

4.3.2 Analysis of global LST trends from 2003 to 2019 

The LST trends determined for Tdm_cloud_free and Tdm_IADTC shows similar global patterns, i.e., both can show comparable 

warming/cooling trends (Fig. 10a & Fig. 10b). For example, they both display overall increasing LST trend over the globe as 

well as an accelerated surface warming trend over the Arctic and Europe (Fig. 10), which is consistent with most previous 415 

studies (Mao et al., 2017; Sobrino et al., 2020a; Sobrino et al., 2020b).  

However, the slopes of the LST trends are significantly different between Tdm_cloud_free and Tdm_IADTC with a MAE of 

0.012 K/year (Fig. 10e). The slope difference is related to the variation of ΔTsb, which can be affected by the cloud 

percentage and cloud duration among different months. When taking the slope of Tdm_IADTC as reference, the slope of 

Tdm_cloud_free underestimates the global LST warming rate by 0.004 K/year. With the original MODIS LST observations (i.e., 420 

Tdm_cloud_free) as reference, the warming LST trends would be underestimated over South America, Africa, Asia, and Oceania. 

They would be overestimated over Europe and relatively similar to the trends obtained with Tdm_IADTC over North America 

and Antarctica.  
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Fig. 10. Global LST trends from 2003 to 2019. (a) and (b) display the global LST trends based on Tdm_cloud_free and 425 

their averaged results for 5-degree intervals along the longitude, respectively; and (c) and (d) shows the 
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corresponding results for Tdm_IADTC; and (e) and (f) show the global LST trend differences between Tdm_cloud_free and 

Tdm_IADTC and their averages for 5-degree intervals along the longitude, respectively.  

5. Discussion 

5.1 Empirical determination of the threshold for optimizing the Tdm estimation with DTC model 430 

To determine the threshold for the first criterion (i.e., the threshold for the DTRfour, see Fig. 2), we analyzed the variations in 

the error of Tdm_ATC_four depending on DTRfour using SURFRAD and FLUXNET data (Fig. 11). The assessments show that 

the errors of Tdm_ATC_four generally increase with DTRfour. The linear fitting lines show that the error of Tdm_ATC_four is 

relatively low when DTRfour is small. In other words, the direct average of the four LSTs per daily cycle (Tdm_ATC_four) is a 

good estimate of Tdm when the DTRfour is small. Based on the linear fits in Fig. 11a, Fig. 11b & Fig. 11c, we therefore chose 435 

the DTRfour threshold of the first criterion to be 5.0 K.  

 

 

Fig. 11. Threshold determination for the two criteria in Fig. 2. (a), (b), and (c) display the errors of Tdm_ATC_four 

(Tdm_ATC_four minus Tdm_true) depending on DTRfour for SURFRAD, FLUXNET, and combined data, respectively; and 440 

(d), (e) and (f) display the MAE differences between Tdm_ATC_four and Tdm_ATC_DTC (i.e., the MAE of Tdm_ATC_four minus 
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the MAE of Tdm_ATC_DTC) depending on the ΔDTR for SURFRAD, FLUXNET, and combined data, respectively. The 

black lines in (d), (e) and (f) denote the averaged MAE difference within every unit along the x-axis.  

 

The second criterion uses the ΔDTR to filter cases for which Tdm is significantly underestimated. To determine the 445 

optimal threshold for ΔDTR, we analyzed the MAE differences between Tdm_ATC_four and Tdm_ATC_DTC (i.e., the MAE of 

Tdm_ATC_four minus the MAE of Tdm_ATC_DTC) and their dependence on ΔDTR for SURFRAD and FLUXNET data (Fig. 11d & 

Fig. 11e). The assessments show that ΔDTR is generally less than 10 K; and the accuracy of Tdm_ATC_DTC is better than that of 

Tdm_ATC_four. However, with the increase of ΔDTR, the overall accuracy of Tdm_ATC_four can be superior to Tdm_ATC_DTC. For 

SURFRAD data, the overall accuracy of Tdm_ATC_four is better than that of Tdm_ATC_DTC once ΔDTR exceeds 22.0 K (i.e., the 450 

ΔDTR threshold is 22.0 K), while this threshold is 13.0 K for FLUXNET data. With the further increase of ΔDTR, the 

accuracy of Tdm_ATC_DTC can be even lower than that of Tdm_ATC_four, e.g., by up to 2.0 K in Fig. 11d and Fig. 11e. In other 

words, Tdm can be estimated more accurately with Tdm_ATC_four than Tdm_ATC_DTC once ΔDTR is relatively large (i.e., Scenario 

#3).  

Note that the optimal threshold of ΔDTR for the SURFRAD data (22.0 K) differs from that for the FLUXNET data (13.0 455 

K). Here, we set the ΔDTR threshold as 20.0 K, which is close to that determined for the SURFRAD data, mostly because of 

the following factors: (1) the SURFRAD sites have been managed uniformly by NOAA (National Oceanic and Atmospheric 

Administration) for over 15 years, and the associated radiance measurements have been consistently quality-controlled 

(Augustine et al., 2000); and (2) the land cover types of the SURFRAD sites are not limited to vegetation. We acknowledge 

that using a single threshold of 20.0 K may not be optimal for all climate zones and land cover types across the globe, but 460 

using of a single threshold effectively avoids outliers due to failed simulations while keeping the simplicity in the global 

generation of Tdm products.  

With the thresholds given as above, we provide the percentage of each scenario within each 10-degree latitude zone 

(Fig. 12). In low- and mid-latitude regions, the percentage of Scenario #2 (i.e., DTRfour ≥ 5.0 K & ΔDTR < 20.0 K) reaches 

over 80%, indicating that the IADTC framework mainly uses the DTC-modelled results to estimate Tdm in those regions. 465 

With the increase of latitude, the percentage of Scenario #1 (i.e., DTRfour < 5.0 K) gradually increases, mostly due to a 

decrease in DTR with the weakened incoming solar radiation over higher-latitude regions. The percentage of Scenario #1 

reaches around 60% in the Arctic and Antarctic, which echoes well with the small ΔTsb in high-latitude regions (Fig. 9). The 

percentage of Scenario #3 (i.e., DTRfour ≥ 5.0 K & ΔDTR ≥ 20.0 K) remains relatively stable at around 10% over most 

regions across the globe, but it can increase to 20% in the equatorial zone (10 °N ~ 10 °S) and Antarctic, which indicates the 470 

relatively poor performance of the DTC model over these regions. The lower performance of the DTC model in the 

equatorial zone may be related to the high cloud percentage, while over the Antarctic, it reflects the expected difficulties over 

polar regions (see Section 5.2 for more discussions).  
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 475 

Fig. 12. Percentage of each scenario (see Fig. 2) within 10-degree latitude intervals. For example, the number ‘-50’ 

denotes the averaged percentage of each scenario within 50° S to 60° S.  

5.2 Possible uncertainty sources of GADTC product 

GADTC products uncertainties arise from four main sources: (1) MODIS data quality or LST retrieval error; (2) cloud cover 

and contamination; (3) overpass time drift and linear interpolation; and (4) uncertainties associated with the IADTC 480 

framework. These four uncertainty sources can affect the under-cloud LST reconstruction with the ATC model as well as the 

diurnal LST dynamics modelling with the DTC model, and consequently, affect the accuracy of the GADTC products. In 

addition, these uncertainties can influence each other via error propagation. In the following, we discuss the four error 

sources and their effect in more detail.  

The ATC and DTC models use cloud-free LST observations to estimate Tdm. Therefore, retrieval errors of MODIS LSTs 485 

affect the results of ATC and DTC models and the accuracies of the estimated Tdm. Fig. A2a shows that the quality of 

MODIS LSTs in the equatorial regions is lower than that in the other regions. This suggests that GADTC products should 

have larger uncertainties in equatorial regions where consequently, the IADTC framework may need further improvements.  

Cloud percentage can also impact the accuracies of the GADTC products. In regions with a higher cloud percentage, 

e.g., the equatorial regions (Fig. A2b), more under-cloud LSTs need to be reconstructed with the ATC model. However, 490 

errors of reconstructed under-cloud LSTs are larger than those of cloud-free LSTs. Therefore, regions with a higher cloud 

percentage are also associated with larger errors from ATC modelling and consequently, DTC modelling and the estimated 

Tdm. In polar regions, the cloud detection algorithm has larger uncertainties due to the spectral similarities between clouds 

and snow (Østby et al., 2014; Westermann et al., 2012), which introduces additional uncertainties to the GADTC products.  

The impact of the overpassing time drift mainly occurs over high-latitude regions where the time drift is larger. On the 495 

one hand, the cloud-free observations used for solving the free parameters of the ATC model come from significantly 
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different times within a daily cycle (Fig. A1), which affects the under-cloud LST reconstruction. On the other hand, 

approximately 30% of the Tdm over high-latitude regions were estimated with the DTC modelling results (i.e., Scenario #2; 

refer to Fig. 12) and the time drift can affect the shape of the DTC curve and, therefore, the estimated Tdm. Temporal 

normalization methods can adjust the LST observations at fluctuated overpassing time to the fixed time, which can eliminate 500 

the uncertainties in the under-cloud LST reconstruction and diurnal LST dynamics modeling (Ma et al., 2022; Liu et al., 

2019; Duan et al., 2014).  

The uncertainties of the GADTC products derived with the IADTC framework mainly include three parts: the 

reconstruction error of the ATC model, the fitting error of the DTC model, and the choice of the two thresholds. First, the 

currently used ATC model reconstructs under-cloud LSTs during the day (night) with small positive (negative) biases (Fig. 505 

5), even though information on under-cloud air temperature has been incorporated (Liu et al., 2019b). Additionally, the 

errors in the ATC model can affect the determination of scenarios and consequently, the way to calculate the Tdm. Second, 

the DTC model assumes clear-sky conditions and is less capable of simulating under-cloud LST dynamics accurately, which 

introduces additional uncertainties especially under some complex situations (Hong et al., 2021). Third, the two fixed 

thresholds for DTRfour and ΔDTR were determined empirically (Fig. 11): the threshold for DTRfour may introduce additional 510 

uncertainty over high-latitude regions with small DTRs, while threshold for ΔDTR may still miss some cases with unrealistic 

modelling results.  

It is difficult to distinguish and quantify the individual contributions of these four uncertainty sources to the estimated 

Tdm, as they can affect the ATC and DTC modelling individually and interactively. We are therefore unable to provide a 

quality control flag for each pixel of the GADTC products. The validations have shown that the accuracies of the GADTC 515 

products are generally acceptable over most areas across the globe. However, there are relatively larger uncertainties over 

equatorial and polar regions, where further validations of the GADTC products and an optimization of the IADTC 

framework is required.  

5.3 Future perspectives 

Further improvements of the GADTC product can focus on the following three aspects:  520 

(1) More extensive validation and inter-comparison of the GADTC products: The GADTC products have been evaluated 

with FLUXNET and SURFRAD datasets, which include in situ measurements from most climate zones. However, the 

number of sites is very limited in regions where the uncertainties of the GADTC products are largest (e.g., equatorial and 

polar regions; refer to Fig. 1). It is therefore hard to validate the IADTC framework as well as its improvements over these 

regions, e.g., the use of a multi-type ATC model instead of a single-type ATC model. The current in situ data are also 525 

insufficient to verify the accuracies of the GADTC products over these regions. It is therefore necessary to obtain more in 

situ measurements over these regions to validate the accuracy of IADTC framework as well as the GADTC product more 

completely. Furthermore, reanalysis data, which provide long-term spatiotemporally seamless LSTs and have been widely 

used in relevant studies (Simmons et al., 2017), can be used to assess the GADTC products (Trigo et al., 2015).  
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(2) Rapid generation of high-resolution spatiotemporally seamless Tdm product: Considering the limited computing 530 

resource as well as the aim of this study to obtain the spatial distribution of ΔTsb and LST trends on a global scale, the 

spatiotemporally seamless daily Tdm were generated at a spatial resolution of 0.5 degree. However, current IADTC 

framework is equally suitable to generate spatiotemporally seamless daily 1-km Tdm. For local-scale studies, the IADTC 

framework can probably be applied directly. While for large-scale (continent-scale or even global-scale) studies or 

applications, the generation of 1-km spatiotemporally seamless daily Tdm could be computationally unaffordable. Under this 535 

circumstance, apart from using as many computation resources as possible, we can resort to three strategies to substantially 

reduce computational complexity.  

First, the similarity of the ATC and DTC model parameters among neighboring pixels can be utilized to accelerate the 

calculation speed considerably (Hong et al., 2021; Hu et al., 2020; Zhan et al., 2016). Second, the physically-based IADTC 

framework can also be integrated with some statistical or empirical estimation strategies (both on Tdm or on ΔTsb) to help 540 

improving the computational efficiency (Xing et al., 2021). This is reasonable as ΔTsb (and Tdm) is generally related to local 

surface properties (Fig. 9 and Fig. 11). For example, for large-scale or global high-resolution generation of spatiotemporally 

seamless daily 1-km Tdm, the IADTC framework can be run in some chosen sample regions to obtain adequate training 

samples of Tdm (or ΔTsb). Based on these samples, statistical relationships between Tdm (ΔTsb) and the related variables such 

as the four daily LSTs, latitude, land cover type, elevation, and cloud percentage can be obtained to help estimate the Tdm 545 

(ΔTsb) across the globe efficiently. Furthermore, the training samples of Tdm (ΔTsb) can also be from geostationary satellite 

data, which can help reduce the computational complexity of the DTC modelling. Third, other high-efficient under-cloud 

LST reconstruction methods, such as statistical interpolation, spatiotemporal fusion, and passive microwave-based method 

(Wu et al., 2021; Hong et al., 2021), or the generated under-cloud LST products (Zhang et al., 2022; Zhao et al., 2020), can 

replace the ATC model in the Tdm generation framework. Similarly, more efficient diurnal LST dynamics modelling methods 550 

can also replace the DTC model (Jia et al., 2022).  

(3) Generation of Tdm with a longer time-span: The GADTC products can only date back to 2003 because the IADTC 

framework requires four observations per day to estimate Tdm while MODIS started to provide four daily observations in 

2003. However, daily mean LSTs with a longer time-span are strongly required for relevant studies such as climate change 

analysis (Jin and Dickinson, 2010; Simmons et al., 2017). AVHRR data provide global LST observations before 2000 and 555 

recent studies have achieved tremendous progress in the correction of orbit drift in order to generate more accurate AVHRR 

LST datasets (Julien and Sobrino, 2012; Latifovic et al., 2012; Ma et al., 2020; Liu et al., 2019a). However, the current 

IADTC framework is not applicable to AVHRR since it only samples the surface twice per day. It is therefore imperative to 

develop a framework for Tdm estimation that also suits AVHRR-like LSTs. Apart from polar orbiters, geostationary satellites 

and reanalysis data deliver LST over similar time-spans. Although reanalysis data are still limited by their coarse spatial 560 

resolution and geostationary satellite data have a limited spatial coverage, especially over polar regions, the fusion of these 

datasets has great potential to help generating Tdm with a longer time-span (Long et al., 2020; Quan et al., 2018).  
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6. Conclusions 

MODIS LST products have been widely used for long-term time series analyses. However, due to the missing LSTs caused 

by clouds and under-sampling of the diurnal LST dynamics, currently there is still no global dataset of spatiotemporally 565 

seamless daily mean LST (Tdm) with an acceptable systematic sampling bias (ΔTsb), which is caused by averaging only 

instantaneous cloud-free observations. To resolve this issue, we proposed the IADTC framework by using a more advanced 

ATC model as well as by optimizing the estimation of Tdm with the DTC model, and generated global spatiotemporally 

seamless Tdm products (i.e., the GADTC products) from 2003 to 2019. Based on SURFRAD and FLUXNET in situ 

measurements, the IADTC framework was validated with in situ measurements at the site level and the GADTC products 570 

were directly compared with in situ Tdm observations. The validations with the SURFRAD and FLUXNET measurements 

reveal that the IADTC framework is able to reduce the systematic positive sampling bias (ΔTsb) of Tdm_cloud_free, avoid the 

outliers caused by failed simulation, and provide relatively accurate estimates of spatiotemporally seamless Tdm. Based on 

the GADTC products, we analyzed the global distribution of ΔTsb and examined the similarities and differences between the 

GADTC products and Tdm_cloud_free (daily mean LST based on cloud-free observations).  575 

Our major conclusions are: (1) the validations of the IADTC framework based exclusively on in situ measurements at 

the site level show MAEs of 1.4 K and 1.1 K for the SURFRAD and FLUXNET measurements, respectively; the biases for 

these two datasets are both close to zero. (2) The comparisons between the GADTC satellite products and in situ Tdm 

observations show that the MAEs for the SURFRAD and FLUXNET measurements are 2.2 K and 3.1 K, respectively; the 

associated biases for these two datasets are −1.6 K and −1.5 K, respectively. (3) The global mean sampling bias ΔTsb is 1.8 580 

K, it is usually larger than 2.0 K over low- and mid-latitude regions and close to zero over high-latitude regions. (4) Global 

mean LST trends derived with the GADTC product and the traditional direct-averaging method are similar (both between 

0.025 to 0.029 K/year from 2003 to 2019), while the pixel-based MAE in LST trend derived with these two methods is 0.012 

K/year. Despite its limitations, the proposed IADTC framework allows the practical generation of global spatiotemporally 

seamless Tdm and provides insights for generating global long-term high-resolution (e.g., 1km) Tdm products. The generated 585 

GADTC product should be helpful for relevant applications such as climate change analysis and thermal environment 

investigations.  

Appendix A. Statistics on the original MODIS MXDC1 V6 products  
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 590 

Fig. A1. Statistics on each MODIS overpassing time within a 10-degree interval from 2003 to 2019. Each subplot 

displays the 99th percentile, median, 1st percentile and the associated variation (the 99th percentile minus 1st 

percentile).  
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 595 

Fig. A2. Uncertainties of the downloaded MODIS MXD11C1 V6 LSTs. (a) shows the percentage of LSTs with a 

retrieval error less than 1.0 K; and (b) displays the percentage of invalid data (≈ clouds).  

Appendix B. Mean absolute errors of Tdm_IADTC and Tdm_OADTC in Scenarios #1 and #3 at the site level 
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 600 

Fig. B1. Boxplots for the MAEs of the IADTC framework (Tdm_ATC_DTC) and the OADTC framework (Tdm_OADTC) 

under Scenarios #1 and #3. (a) and (b) are for the SURFRAD and FLUXNET measurements, respectively.  
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Appendix C. Distribution of average sampling bias per season 

 605 
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Fig. C1. Average sampling bias ΔTsb for indicated three-month interval between 2003 and 2019. (a) displays the ΔTsb 

for December-January-February (DJF) and (b) displays the corresponding results averaged over 5-degree intervals 

longitude. Similarly, (c) and (d), (e) and (f), and (g) and (h) display the corresponding results for March-April-May 

(MAM), June-July-August (JJA), and September-October-November (SON), respectively.  

Appendix D. Nomenclature 610 

Acronyms 

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 

ATC annual temperature cycle 

AVHRR Advanced Very High-Resolution Radiometer 

BSV Barren Sparse Vegetation 615 

CRO  Croplands 

DBF Deciduous Broadleaf Forests 

DOY day of year 

DTC diurnal temperature cycle 

DTR daily temperature range 620 

EBF Evergreen Broadleaf Forests 

ENF Evergreen Needleleaf Forests 

GADTC product Global daily mean LST product generated with the improved ADTC-based framework 

GOES  Geostationary Operational Environmental Satellite 

GRA Grasslands 625 

IADTC framework improved ADTC-based framework 

IGBP International Geosphere–Biosphere Programme 

LST land surface temperature 

MAE mean absolute error 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications version 2 630 

MF Mixed Forests 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSG-SEVIRI the Spinning Enhanced Visible and Infrared Imager onboard Meteosat Second Generation 

OADTC framework original ADTC-based framework 

OSH Open Shrublands 635 

SAV Savannas 

SAT surface air temperature 
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SNO Snow and Ice 

SURFRAD Surface Radiation Budget Network 

WET Permanent Wetlands 640 

WSA Woody Savannas 

Symbol representation 

DTRfour diurnal temperature range calculated by the four LSTs which include the cloud-free LSTs and ATC-

reconstructed LSTs 

DTRDTC diurnal temperature range calculated by the DTC model 645 

ΔDTR the difference between DTRDTC and DTRfour 

Tdm daily mean LST 

Tdm_ATC_DTC daily mean LST calculated by frequently sampling diurnal LST dynamics modelled by DTC model with 

cloud-free LST observations and under-cloud LSTs reconstructed by ATC model 

Tdm_ATC_four daily mean LST calculated by averaging cloud-free LST observations and under-cloud LSTs reconstructed 650 

by ATC model 

Tdm_cloud_free daily mean LST calculated by averaging cloud-free LST observations 

Tdm_IADTC daily mean LST estimated with the IADTC framework 

Tdm_OADTC daily mean LST estimated with the OADTC framework 

Tdm_true true daily mean LST for validation 655 

Tin_ATC instantaneous under-cloud LSTs reconstructed by ATC model 

Tin_ATC_DTC diurnal LST dynamics modelled by DTC model with cloud-free LST observations and under-cloud LSTs 

reconstructed by ATC model 

Tin_cloud_free instantaneous cloud-free LST observations 

Tin_obs hourly LST observations 660 

Tin_under_cloud instantaneous under-cloud LST observations 

ΔTsb sampling bias 

 

Data availability 

The generated GADTC products are organized yearly and freely available at https://doi.org/10.5281/zenodo.6287052 (Hong 665 

et al., 2022). Each file contains the global day-to-day spatiotemporal seamless daily mean land surface temperature, which 

can be acquired by scaling 0.01 in Kelvin unit. 

https://doi.org/10.5281/zenodo.6287052
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