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II. ATTENTIONS 38 

(1) In the following responses, texts contained within the red braces {…} are identical 39 

to those in our revised manuscript.  40 

(2) In the following responses, the line numbers [Line XXX-XXX] refer to the clean 41 

version of the revised manuscript.  42 

(3) Fig. 1, 2, and 3…, and Eq. 1, 2, and 3… refer to the figures and equations 43 

excerpted from our revised manuscript.  44 

(4) In the following responses, all the related references are provided collectively in 45 

Part IV References.  46 

 47 
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III. RESPONSES TO REVIEWER #3 48 

Comment #1 49 

spatiotemporally seamless land surface temperature at daily, monthly, and yearly 50 

scales are important for LST-related researches. This study presents a meaningful 51 

study with the use of MODIS LST product and reanalysis data to generate the mean 52 

LST value at different scales. It was well organized and the results were with good 53 

accuracy. Overall, the manuscript can be accepted with minor revision: 54 

Authors’ reply: 55 

Thanks for your appreciation. The point-to-point responses are given as follows.  56 

 57 

Comment #2 58 

There are many other reanalysis data available and why you choose the MERRA2 59 

dataset? What is advantage of this dataset? 60 

Authors’ reply: 61 

Thanks for your comment. We agree with you that there are many other 62 

reanalysis data, such as ERA-land (Muñoz-Sabater et al., 2021), GLDAS (Rodell et 63 

al., 2004), JRA-55 (Kobayashi et al., 2015), and NCEP (Kalnay et al., 1996) 64 

reanalysis datasets. We chose MERRA2 dataset because it can provide global hourly 65 

air temperature. The MERRA2 air temperature can provide the annual air temperature 66 

variation pattern to simulate LST fluctuations induced by synoptic conditions. This 67 

information is used in the ATC model to reconstruct the under-cloud LSTs at four 68 

overpassing times. Other reanalysis datasets can replace the MERRA2 dataset if they 69 

could provide similar information.  70 

 71 

Comment #3 72 

The key steps are suggested to be clarified in in figure 2. The pre-processing is not 73 

included in this flowchart. 74 

Authors’ reply: 75 

Thanks for your comment. We have added the preprocessing steps which include 76 

unifying the projection system and resampling the datasets to the same spatial 77 

resolution in the flowchart. The revised flowchart is given as follows for your 78 

convenience.  79 
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 80 

 81 

Fig. 1. Flowchart of the IADTC framework. DTRfour refers to diurnal 82 

temperature range (DTR) calculated as the maximum minus the minimum from 83 

the gap-free LSTs at the four overpassing times; DTRDTC refers to the DTR 84 

calculated from the hourly LSTs modelled with the DTC model. ΔDTR refers to 85 

the absolute difference between DTRfour and DTRDTC.  86 

 87 

Comment #4 88 

175: A basic equation of the single-type and multi-type model is better to be provided 89 

here. 90 

Comment #5 91 

Figure 3: multi-type ATC models are identical? Why there is no differences? It will be 92 



  6 / 18  

a little confused on the naming of the ATC models for single or multi-type model and 93 

single or double-sinusoidal ATC model? 94 

Authors’ reply: 95 

Thanks for your comment. Comments #4 and #5 are both related to descriptions 96 

of ATC model, so we combine the response. We agree with you that some of the ATC 97 

model descriptions are redundant and could be misleading.  98 

We summarized the basic equation of ATC model as Eq. R1. For the single-type 99 

ATC model, M equals 1 for the global application, i.e., the single-sinusoidal version 100 

was applied to the global scale. As for the multi-type ATC model, the value of M is 101 

different at different latitude zones. In low-latitude (23.5° N – 23.5° S) and high-102 

latitude regions (66.5° N/S – 90° N/S), M equals 2, i.e., the double-sinusoidal version 103 

was applied to these regions. In mid-latitude regions (23.5° N/S – 66.5° N/S), M 104 

equals 1, i.e., single-sinusoidal version was used.  105 

To address your question about the identical results between the single-type and 106 

multi-type ATC models, the results of single-type and multi-type ATC models are 107 

identical in mid-latitude region because they both use the single-sinusoidal version (M 108 

= 1). Therefore, the results in Fig. 3b are identical. While the results of single-type 109 

and multi-type ATC models are different in low-latitude and high-latitude regions 110 

(Fig. 3a & Fig. 3c) because the single-type ATC model still uses the single-sinusoidal 111 

version (M =1) while the multi-type ATC model use the double-sinusoidal version (M 112 

= 2).  113 

{
 

 𝑇ATCM(𝑑) = 𝑇0 +∑ 𝐴m 𝑠𝑖𝑛 (
2𝜋𝑚𝑑

𝑁
+ 𝜃m)

𝑀
𝑚=1 + 𝑘 ⋅ 𝛥𝑇air(𝑑)

𝛥𝑇air(𝑑) = 𝑇air(𝑑) − 𝑇ATCO(𝑑)

𝑇ATCO(𝑑) = 𝑇0
′ + ∑ 𝐴m

′ 𝑠𝑖𝑛 (
2𝜋𝑚𝑑

𝑁
+ 𝜃m

′ )𝑛
𝑚=1

 Eq. R1 114 

where TATCM(d) denotes the daily LST variations simulated with the ATC model; M is 115 

the number of used harmonic components; d and N are the day of year (DOY) and 116 

number of days in a year, respectively; ΔTair(d) is the difference between the daily 117 

SATs (i.e., Tair(d), obtained from MERRA2 reanalysis data) and the modelled air 118 

temperatures with the original ATC model (TATCO(d)); and T0, Am, θm, and k are the 119 

parameters that need to be solved with the cloud-free daily LSTs and SATs, usually 120 

through the least-square method.  121 

To reduce the redundancy and clarify the description, we have revised Section 122 

3.1.2. The revised version is given as follows for your convenience.  123 



  7 / 18  

 124 

3.1.2 Under-cloud LST reconstruction with multi-type ATC model 125 

The general formula of ATC model is displayed in Eq. 2. The single-type ATC model 126 

in the OADTC framework uses a single sinusoidal function (M = 1 in Eq. 2) to model 127 

the intra-annual LST variations driven by solar radiation change and incorporates 128 

surface air temperatures to help simulate the LST fluctuations induced by synoptic 129 

conditions (Zou et al., 2018; Liu et al., 2019b). The use of a single sinusoidal function 130 

is generally acceptable for mid-latitude regions. However, a single sinusoidal is no 131 

longer suitable for low-latitude because there are two solar radiation peaks within a 132 

yearly cycle over low-latitude regions (Xing et al., 2020; Bechtel, 2015; Cao and 133 

Sanchez-Azofeifa, 2017); it is also inadequate for high-latitude regions where polar 134 

days and nights occur (Østby et al., 2014; Liu et al., 2019; Westermann et al., 2012). 135 

Therefore, the use of the single-type ATC model in the OADTC framework is less 136 

suitable to generate Tdm at the global scale (Fig. 2). To overcome this limitation, the 137 

IADTC framework uses different versions of ATC model (termed the multi-type ATC 138 

model) to reconstruct under-cloud LSTs over the low-, mid-, and high-latitude 139 

regions, respectively. The details are given as follows: 140 

(1) Low-latitude regions (23.5° N – 23.5° S) 141 

The solar radiation possesses two peaks within a yearly cycle over low-latitude 142 

regions (Fig. 2a). We therefore employed the ATC model with two sinusoidal 143 

functions (M = 2 in Eq. 2) to reconstruct the daily LST dynamics within an annual 144 

cycle (Liu et al., 2019b; Xing et al., 2020).  145 

(2) Mid-latitude regions (23.5° N/S – 66.5° N/S) 146 

The solar radiation peaks once in summer during an annual cycle. We therefore 147 

employed the ATC model with single-sinusoidal function (M = 1 in Eq. 2) to 148 

reconstruct the daily LST dynamics (Fig. 2b).  149 

(3) High-latitude regions (66.5° N/S – 90° N/S) 150 

The polar day/night phenomena occur over high-latitude regions and the duration 151 

increases with the latitude. Theoretically, over these regions, the ATC model with 152 

multiple sinusoidal functions should be the best choice. However, the number of 153 

cloud-free MODIS observations is limited, and additional model complexity can lead 154 

to over-fitting and weaken the generalization ability of the ATC model (Liu et al., 155 

2019b). To balance model accuracy and generalization ability, the ATC model with 156 

two sinusoidal functions was selected for high-latitude regions (see Fig. 2c).  157 
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{
 
 

 
 𝑇ATCM(𝑑) = 𝑇0+ ∑ 𝐴m 𝑠𝑖𝑛 (

2𝜋𝑚𝑑

𝑁
+𝜃m)

𝑀
𝑚=1 +𝑘 ⋅ 𝛥𝑇air(𝑑)

𝛥𝑇air(𝑑) = 𝑇air(𝑑)−𝑇ATCO(𝑑)

𝑇ATCO(𝑑) = 𝑇0
′ + ∑ 𝐴m

′ 𝑠𝑖𝑛 (2𝜋𝑚𝑑
𝑁
+𝜃m

′
)𝑀

𝑚=1

 (2) 158 

where TATCM(d) denotes the daily LST variations simulated with the ATC model; M is 159 

the number of used harmonic components; d and N are the day of year (DOY) and 160 

number of days in a year, respectively; ΔTair(d) is the difference between the daily 161 

SATs (i.e., Tair(d), obtained from MERRA2 reanalysis data) and the modelled air 162 

temperatures with the original ATC model (TATCO(d)); and T0, Am, θm, and k are the 163 

parameters that need to be solved with the cloud-free daily LSTs and SATs, usually 164 

through the least-square method. 165 

 166 

 167 

Fig. 2. Comparison of reconstructing under-cloud LSTs with multi-type and 168 
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single-type ATC models at different latitudes. (a), (b), and (c) show three 169 

examples of ATC modelling at low-, mid-, and high-latitudes for cloud-free 170 

Terra-day LST in 2019. The green circles, blue lines, and red lines denote the 171 

cloud-free observations and LSTs simulated by the single- and multi-type ATC 172 

models, respectively. Note that for (b) the results of the single- and multi-type 173 

ATC models are identical since they both use the ATC model with single-174 

sinusoidal function. 175 

 176 

Comment #6 177 

Section 3.1.3: I think it should be the interpolation of the missing LSTs but not 178 

overpassing times. 179 

Authors’ reply: 180 

Thanks for your comment. Section 3.1.2 is the under-cloud LST reconstruction 181 

and Section 3.1.3 is the interpolation of overpassing time. The interpolation of 182 

overpassing time is required because, in the original MODIS LST products 183 

(MOD11C1 and MYD11C1), not only the cloud contaminated LSTs are missing, but 184 

also the overpassing time of the cloud contaminated pixel. Because the overpassing 185 

time is synchronically masked with the cloud contaminated LST. The overpassing 186 

time is the required input variable in the DTC model, and the missing overpassing 187 

time cannot drive the DTC model. Therefore, we used linear interpolation to 188 

reconstruct the missing overpassing time, which is the content of Section 3.1.3.  189 

 190 

Comment #7 191 

Actually, the DTC model should be not applied to get the DTCdm when there are 192 

cloud-cover observations. 193 

Authors’ reply: 194 

Thanks for your comment. Although the current DTC model is designed for the 195 

clear-sky condition, it can be applied to estimate daily mean LST (Tdm) with 196 

acceptable accuracy. This has been validated by our previous study (Hong et al., 197 

2021). We acknowledge that under cloudy conditions, the DTC-modelled diurnal LST 198 

dynamics (blue and red lines in Fig. R1) could have significant deviations compared 199 

with the actual diurnal LST dynamics (black line in Fig. R1). However, the 200 

aggregated Tdm can still achieve satisfactory accuracy (Hong et al., 2021) because: (1) 201 
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the positive and negative biases of the modelled diurnal LST dynamic were partly 202 

offset when calculating the daily mean LST; (2) under cloudy condition, the diurnal 203 

LST variation is relatively mild, which can also reduce the daily mean LST estimation 204 

error to some degree.  205 

In this paper, we also validated the accuracy of Tdm estimated with the DTC 206 

model. For the SURFRAD datasets, the MAEs of estimated Tdm at the daily and 207 

monthly scales are 1.4 K and 0.6 K, respectively (Fig. 6). For the FLUXNET datasets, 208 

the MAEs of Tdm are 1.1 K and 0.5 K at the daily and monthly scales, respectively 209 

(Fig. 7). The validation results show that the DTC model can be applied to estimate 210 

daily mean LST under cloudy conditions.  211 

 212 



  11 / 18  

 213 

Fig. R1. Screenshot of Fig. 12 in Hong et al. (2021).  214 

 215 

Comment #8 216 

Besides the direct validation of the estimated mean values at different temporal scales, 217 

there is a lack of the evaluation of the reliability of the trend detection based on the 218 

generated dataset. How about the performance of the dataset on identifying the area 219 

with significant trends. 220 

Authors’ reply: 221 

Thanks for your comment. To evaluate the reliability of the LST trend based on 222 
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the generated daily mean LST, ground truth is required. The LST trend calculated 223 

based on the in situ measurement is sensitive to the local climate variation, and there 224 

is a scale mismatch between the site-level LST trend and pixel-level LST trend. 225 

Therefore, the LST trend based on the in situ measurement might not be 226 

representative to evaluate the LST trend based on the generated daily mean LST 227 

dataset.  228 

Acquiring the ground truth to validate the generated daily mean LST product 229 

could be costly and complicated. Consequently, to evaluate the reliability of the LST 230 

trend detection based on the generated GADTC dataset, we compare the LST trend 231 

based on generated GADTC products with other studies. We found that the LST trend 232 

detected based on the generated GADTC products (Fig. 10) is similar to the previous 233 

studies conducted by Sobrino et al. (2020) (Fig. R2) and Mao et al. (2017) (Fig. R3). 234 

Additionally, we provided the LST anomalies from 2003 to 2019 of each continent 235 

and global scale (Fig. R4). Fig. 10 and Fig. R4 both confirm the significant trends in 236 

certain areas, such as the warming and Europe and Arctic.  237 

 238 

 239 

Fig. R2. Screenshot of Figure 4 in Sobrino et al. (2020) describing the global LST 240 

trend.  241 
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 242 

 243 

Fig. R3. Screenshot of Figure 5 in Mao et al. (2017) describing the global LST trend.  244 

 245 

 246 
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Fig. R4 LST anomalies as well as the associated linear regressions for Tdm_cloud_free and 247 

Tdm_IADTC from 2003 to 2019. (a) displays the global LST anomalies; and (b) to (h) 248 

display the LST anomalies for each continent.  249 

 250 

Comment #9 251 

The threshold determination for the two criteria in Fig. 2 is a little objective. I think 252 

the determination can be automatically determined according to the differences 253 

between the average value from four observations and the fitted values. 254 

Authors’ reply: 255 

Thanks for your comment. Actually, we tried automatically determining the 256 

threshold according to the average value from four observations (i.e., Tdm_ATC_four) and 257 

the DTC-fitted values (i.e., Tdm_ATC_DTC) when constructing the IADTC framework. 258 

We found it hard to design a concise rule to automatically differentiate different 259 

scenarios based on the difference between Tdm_ATC_four and Tdm_ATC_DTC. Therefore, we 260 

remain choosing to use the fixed threshold.  261 

We agree with you that there are other strategies to determine the thresholds. 262 

Those strategies might achieve better accuracies. However, our current validation 263 

results show that simply using the fixed threshold can already achieve satisfactory 264 

accuracy.  265 

 266 

Comment #10 267 

The LSTs of cloud cover pixels are generated with the reanalysis data at coarse-268 

resolution. Currently, there are some other reconstruction methods without the use of 269 

the reanalysis data. How about the applicability of these methods in this study. 270 

Authors’ reply: 271 

Thanks for your comment. The role of ATC model is to reconstruct the under-272 

cloud LST with the assistance of reanalysis data. There are some other reconstruction 273 

methods without using the reanalysis data, such as statistical interpolation, 274 

spatiotemporal fusion, and passive microwave-based method (Wu et al., 2021; Hong 275 

et al., 2021). Additionally, previous studies have produced seamless LST datasets 276 

(Zhang et al., 2022; Zhao et al., 2020). These methods or products can replace the 277 

ATC model in our Tdm generation framework. We have clarified this point in Line 278 

547-551, which was given as follows for your convenience.  279 
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Line 547-551: 280 

{Third, other high-efficient under-cloud LST reconstruction methods, such as 281 

statistical interpolation, spatiotemporal fusion, and passive microwave-based method 282 

(Wu et al., 2021; Hong et al., 2021), or the generated under-cloud LST products 283 

(Zhang et al., 2022; Zhao et al., 2020), can replace the ATC model in the Tdm 284 

generation framework. Similarly, more efficient diurnal LST dynamics modelling 285 

methods can also replace the DTC model (Jia et al., 2022).} 286 

 287 

Comment #11 288 

The dataset produced in this study has the resolution of 0.5 degree. However, to some 289 

extent, the LST product at 1-km and higher resolution will be useful. What is the key 290 

issue should be addressed at this high-resolution level. 291 

Authors’ reply: 292 

Thanks for your comment. We agree with you that 1-km or higher resolution 293 

LST products are useful and valuable. Our IADTC framework can be directly applied 294 

to the 1-km MODIS LST to generate Tdm in a small region. Our previous study 295 

provides the example of generating 1-km Tdm in Shanghai using the OADTC 296 

framework. It can also be generated using the IADTC framework. You can refer to 297 

Fig. S1 in (Hong et al., 2021) for more details.  298 

While for generating long-term and large-scale 1-km resolution LST product, 299 

calculation efficiency and computation complexity is the key issue. The tons of DTC 300 

model fitting using the least-square fitting cover the majority of running time. In the 301 

future perspective section, we mentioned three possible ways to reduce the 302 

computation complexity and improve the calculation efficiency. The first is to use the 303 

similarity of the ATC and DTC model parameters among neighboring pixels to reduce 304 

the computation complexity. The second is to combine statistical or empirical 305 

estimation strategies to reduce the times of least-square fitting and improve 306 

computational efficiency. The third is to use other high-efficient methods to replace 307 

the ATC or DTC model in the Tdm generation framework. We have provided 308 

elaborated descriptions about this point in Line 530-551, which were given as follows 309 

for your convenience.  310 

{(2) Rapid generation of high-resolution spatiotemporally seamless Tdm product: 311 

Considering the limited computing resource as well as the aim of this study to obtain 312 
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the spatial distribution of ΔTsb and LST trends on a global scale, the spatiotemporally 313 

seamless daily Tdm were generated at a spatial resolution of 0.5 degree. However, 314 

current IADTC framework is equally suitable to generate spatiotemporally seamless 315 

daily 1-km Tdm. For local-scale studies, the IADTC framework can probably be 316 

applied directly. While for large-scale (continent-scale or even global-scale) studies or 317 

applications, the generation of 1-km spatiotemporally seamless daily Tdm could be 318 

computationally unaffordable. Under this circumstance, apart from using as many 319 

computation resources as possible, we can resort to three strategies to substantially 320 

reduce computational complexity.  321 

First, the similarity of the ATC and DTC model parameters among neighboring 322 

pixels can be utilized to accelerate the calculation speed considerably (Hong et al., 323 

2021; Hu et al., 2020; Zhan et al., 2016). Second, the physically-based IADTC 324 

framework can also be integrated with some statistical or empirical estimation 325 

strategies (both on Tdm and on ΔTsb) to help improving the computational efficiency 326 

(Xing et al., 2021). This is reasonable as ΔTsb (and Tdm) is generally related to local 327 

surface properties (Error! Reference source not found. and Error! Reference 328 

source not found.). For example, for large-scale or global high-resolution generation 329 

of spatiotemporally seamless daily 1-km Tdm, the IADTC framework can be run in 330 

some chosen sample regions to obtain adequate training samples of Tdm (or ΔTsb). 331 

Based on these samples, statistical relationships between Tdm (ΔTsb) and the related 332 

variables such as the four daily LSTs, latitude, land cover type, elevation, and cloud 333 

percentage can be obtained to help estimate the Tdm (ΔTsb) across the globe efficiently. 334 

Furthermore, the training samples of Tdm (ΔTsb) can also be from geostationary 335 

satellite data, which can help reduce the computational complexity of the DTC 336 

modelling. Third, other high-efficient under-cloud LST reconstruction methods, such 337 

as statistical interpolation, spatiotemporal fusion, and passive microwave-based 338 

method (Wu et al., 2021; Hong et al., 2021), or the generated under-cloud LST 339 

products (Zhang et al., 2022; Zhao et al., 2020), can replace the ATC model in the Tdm 340 

generation framework. Similarly, more efficient diurnal LST dynamics modelling 341 

methods can also replace the DTC model (Jia et al., 2022).} 342 

 343 

  344 
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