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Abstract 9 
 10 

Drought poses a tremendous challenge to India's socioeconomic development, livelihood, 11 

agriculture, and water management. While existing drought monitoring systems have 12 

characterized drought impact at different scales, policymaking and management require 13 

drought assessment at sub-district or taluka (sub-district) levels. Here, we develop high-14 

resolution (250 m) agriculture drought indices for the Indian region to overcome the 15 

shortcomings of the coarse resolution datasets. We used the co-kriging to downscale the Land 16 

Surface Temperature (LST) from 1000m to 250m. The LST and Enhanced Vegetation Index 17 

(EVI) are obtained at 8-day intervals at 250m spatial resolution. The high-resolution datasets 18 

show significant improvement in identifying the severity and coverage of drought. Soil 19 

Moisture Agriculture Drought Index (SMADI), which accounts for water stress and 20 

vegetation lag response, shows high reliability in drought detection. We evaluated drought 21 

extent and severity using the newly developed dataset and found that the high-resolution 22 

dataset can be used to separate the irrigation impact on drought alleviation. The high-23 

resolution drought indices from SMADI and the Normalized Vegetation Supply Water Index 24 

(NVSWI) effectively represent the drought conditions at district and taluka levels that can be 25 

used in drought impacts assessments in India. 26 

1 Introduction 27 
 28 
Drought is one of the complex natural hazards (Lloyd-Hughes, 2014; Van Loon, 2015; 29 

Wilhite et al., 2000), which poses tremendous challenges to water resources management, 30 

agriculture, and Gross Domestic Product (GDP) due to a sustained deficit of water 31 

availability (Godfray et al., 2010; Mooley and Parthasarathy, 1983; Wilhite, 2005). The 32 

vulnerability of the Indian population to drought is relatively high due to economic viability 33 

from the agriculture sector (Mishra and Singh, 2010). The recent increase in temperature and 34 
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erratic summer monsoon have impacted the frequency, intensity, and areal extent of drought 35 

over the Indian region (Mishra et al., 2012; Roxy et al., 2015). Moreover, the frequency of 36 

flash drought has also increased in recent decades (Mahto and Mishra, 2020). For example, 37 

ten major droughts occurred between 1950 and 1989, while five occurred after 2000 (Mishra, 38 

2020). The frequency of flash drought is projected to increase seven-fold by the end of the 39 

21st century, with a considerable economic implications (Mishra et al., 2021). For instance, 40 

the 2014-2015 drought resulted in the loss of billions of dollars affecting more than 3.3 41 

million people in India (Mishra et al., 2018). Therefore, quantifying drought impacts at high 42 

resolution is necessary for water management and food security. 43 

 44 

Meteorological, agricultural, hydrological, and socioeconomic droughts (Wilhite and Glantz, 45 

1985) are propagated and intensified through land-atmospheric interactions, local land 46 

surface characteristics, soil moisture availability, regional climate change, and human 47 

interferences (Barker et al., 2016; Van Loon and Laaha, 2015; Mishra et al., 2021; Shah et 48 

al., 2021). The temporal characteristics, area affected, extent, frequency, severity, intensity, 49 

and duration of drought are characterized by several drought indices (Dai, 2011; Mishra et 50 

al., 2016; Yu et al., 2014). Drought characteristics are monitored using Standardized 51 

Precipitation index [SPI; (McKee et al., 1993)] and Standardized Precipitation 52 

Evapotranspiration Index [SPEI; (Vicente-Serrano et al., 2010)], which incorporate the 53 

influence of precipitation, temperature, and evapotranspiration on drought estimates. 54 

Moreover, the Palmer drought Severity Index (PDSI) takes into account soil water balance to 55 

identify drought by considering the potential loss of moisture due to temperature (Palmer, 56 

1965). Further, Standardized Soil Moisture Index [SSMI; (Hao and AghaKouchak, 2013)] 57 

and Standardized Streamflow Index [SSI; (Bhardwaj et al., 2020)] are widely used for 58 

agricultural and hydrological droughts, respectively. Although these indices may provide 59 

valuable information on drought, high uncertainties exist in drought detection due to sparse 60 

weather stations and spatial interpolation.  61 

 62 

Several drought monitoring, warning, and prediction related measures are relatively less 63 

developed than the other major disasters due to the complexity of the process involved in 64 

identifying and propagating drought (Saha et al., 2021). Drought impact assessment-related 65 

efforts in India are limited due to a lack of fine-scale/higher resolution information that can 66 

resolve sub-district level characteristics (Shah and Mishra, 2015). For instance, the near real-67 
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time drought monitoring in South Asia at 0.05º indicated that the bias-corrected high-68 

resolution datasets effectively capture observed drought variability, similar to information 69 

obtained by satellite remote sensing (Aadhar and Mishra, 2017). The near real-time drought 70 

system for the Indian region considers meteorological information (Shah and Mishra, 2015). 71 

India Meteorological Department (IMD) provides monthly scale drought information at 72 

relatively coarser resolution (www.imdpune.gov.in), which is helpful for the decision making 73 

at the administrative level (district). Furthermore, satellite-based near real-time drought 74 

monitoring and early warning systems provide a drought warning at the state level (Takeuchi 75 

et al., 2015). Bias corrected high-resolution near real-time drought monitoring at 0.05º 76 

provides the severity of drought over South Asia (Aadhar and Mishra, 2017). While the 77 

existing drought monitoring system in the Indian region offers important information on 78 

drought, decision-making at the local level is hindered due to their coarse spatial resolution. 79 

Therefore, remote sensing-based high-resolution drought monitoring can be used as a 80 

supplement to garner the spatial variability of drought impact.  81 

Vegetation indices are commonly used satellite-based drought monitoring at high resolution 82 

(Bannari et al., 1995). Moreover, vegetation stress indices incorporating ecosystem 83 

components are more prominent for drought detection (Jiao et al., 2021). Although the 84 

vegetation stress alone can indicate drought onset and termination (Agutu et al., 2017), 85 

combining land surface temperature improves the drought prediction due to the changes in 86 

local biophysical (soil, slope) and climate conditions (García-León et al., 2019). Moreover, 87 

the additive impact of surface temperature and vegetation stress is highly correlated with the 88 

crop yield in various agro-meteorological zones (Kogan et al., 2012; Prasad et al., 2006; 89 

Rahman et al., 2009). Since agricultural drought is modulated by the land surface condition, 90 

separating irrigation impact on the cropping area is crucial for identifying the drought extent 91 

(Mishra et al., 2016) as irrigation modulates the vegetation health and surface temperature 92 

during the summer (Ambika and Mishra, 2019). In addition, various vegetation-related 93 

remote sensing drought indices that combine surface temperature with vegetation conditions 94 

can be a viable indicator in monitoring agricultural drought (Bento et al., 2018; Gomes et al., 95 

2017; Rojas et al., 2011). High-resolution drought monitoring at a regional scale can also be 96 

valuable for decision making at sub-district (Taluka) levels.  97 

Land surface temperature (LST) is one of the critical parameters for an integrated high-98 

resolution drought monitoring system since it indirectly measures surface energy balance 99 
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(Tomlinson et al., 2011). Thermal stress is a good indicator for early drought detection, 100 

derived from LST (Anderson et al., 2008; Seyednasrollah et al., 2019). The combination of 101 

LST and EVI indices can be an excellent indicator for multi-sensor drought detection and 102 

monitoring strategies (Orhan et al., 2014). The relation between thermal stress and vegetation 103 

condition has been successfully applied for drought monitoring (Seyednasrollah et al., 2019). 104 

Further, while combining with other metrics like soil moisture, the LST-EVI relationship has 105 

shown potential for improved drought monitoring (Hao et al., 2015; Jiao et al., 2019). 106 

We develop a high-resolution drought index using LST and EVI at 250 m resolution. We 107 

developed Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Temperature 108 

Condition Index (TCI), Normalized vegetation Supply Water Index (NVSWI), and Soil 109 

Moisture Agriculture Drought Index (SMADI) at 250 m. Moderate Resolution Imaging 110 

Spectroradiometer (MODIS) datasets were used to develop eight-day continuous LST and 111 

enhanced vegetation index (EVI). The high-resolution agriculture drought dataset at 250 m 112 

resolution at the national scale can be used for impact assessment.  113 

2 Methods 114 
2.1 Enhanced Vegetation Index (EVI) at 8-day interval 115 

The Enhanced Vegetation Index (EVI) can identify the variation in leaf area index (LAI), 116 

canopy cover, and photosynthetically active radiation (Gao et al., 2000). Therefore, EVI is 117 

useful in monitoring seasonal, inter-annual, and inter-annual long-term variation in vegetation 118 

stress (Huete et al., 2002). Moreover, the blue wavelength corrections for distortion make 119 

EVI not saturate quickly, as is the case of the Normalized Difference Vegetation Index 120 

(NDVI) [Gao et al., 2000]. Further, EVI is sensitive to the green biomass response in varying 121 

weather conditions. EVI from MODIS provides global coverage at a sixteen-day interval with 122 

a better spectral, spatial, geometric, and radiometric quality (Didan et al., 2015). Moreover, 8-123 

day EVI can detect vegetation response to changes in atmospheric vapour pressure deficit, 124 

clouds, and sun view angles (Gurung et al., 2009). We developed the 8-day MODIS EVI 125 

temporal composite at 250 m for the 2000-2017 period. We used daily MOD09Q1 [Red (620-126 

720 nm) and Near Infrared (841-876 nm)] at 250 m and MOD09A1 (Blue 459-479 nm) at 127 

500 m surface reflectance. The MOD09A1 Band-3 is resampled using the nearest neighbour 128 

to keep the spatial consistency of the raw dataset. The eight-day composite is derived from 129 

the datasets corrected for atmospheric conditions like aerosol, Rayleigh scattering, and 130 

gasses. EVI at 250 resolution is obtained using the same algorithm provided for the EVI 131 
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(Didan et al., 2015). The abbreviation and the summary of datasets used in the study are 132 

given in Tables 1 and 2. 133 

 134 
2.2 Downscaling Land Surface Temperature (LST) data at 250 m 135 

There have been numerous satellite LST observations in recent decades with limited spatial 136 

and temporal resolution (Gutman, 1999; Li et al., 2014), restricting their use to broader 137 

hydrological applications. For example, the National Oceanic and Atmospheric 138 

Administration (NOAA) Star Center for Satellite Application and Research (NSTAR) 139 

provide weekly LST at 4 km spatial resolution from 1982 to 2018 (Tomlinson et al., 2011). 140 

However, ASTER satellite data at 90 m spatial resolution revisit the same area every 16 days. 141 

Therefore, a high-resolution (spatial and temporal) LST dataset adds value to drought 142 

monitoring. 143 

We downscaled MODIS (MOD11A2) LST 1000 m to 250 m using the co-kriging method 144 

(Pardo-Igúzquiza et al., 2006). The downscaled LST was then combined with EVI to evaluate 145 

various drought indices over India. The 8-day MODIS data product MOD11A2 land surface 146 

temperature (LST) corresponds to an average value for the period. The improvement in 147 

version 6 of the MODIS LST uses a split-window algorithm with comprehensive regression 148 

analysis, reducing LST uncertainties' sensitivity (Wan, 2006). All the MODIS granules over 149 

the Indian region were mosaicked and reprojected to the geographic coordinates system using 150 

the NASA reprojection tool (mrtweb.cr.usgs.gov).  151 

Downscaling combines two or more data sets of different spatial resolutions to derive an 152 

enhanced resolution dataset (Pardo-Iguzquiza et al., 2011). Previous studies have used 153 

empirical relations between visible, near-infrared, and shortwave infrared (SWIR) bands and 154 

Vegetation Index (NDVI or EVI) for high resolution (Agam et al., 2007; Gowda et al., 2007; 155 

Jeganathan et al., 2011; Nichol and Wong, 2005). However, downscaling provides promising 156 

results since it preserves the variation of ground features and maintains image geometry 157 

coherence (Rodriguez-Galiano et al., 2012). The correlation between LST and spectral bands 158 

is low (Rodriguez-Galiano et al., 2012). However, a joint variability pattern can be observed 159 

between the LST and the spectral bands (Drury, 1987). Further, LST can be downscaled 160 

using the joint variability of the cross-covariance (Liu et al., 2006). We used co-kriging as an 161 

approximation method with the high-resolution data to downscale the LST (Stathopoulou and 162 

Cartalis, 2009). Previous studies using experimental cross-covariances and direct covariances 163 
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showed promising results in downscaling Landsat LST (Agam et al., 2007). The Cokriging 164 

considers the pixel size and the sensor’s point-spread function to calculate the weights for 165 

downscaling, which is an added advantage compared to other methods (Kustas et al., 2003). 166 

Hence, the downscaled image preserves the spatial and radiometric variability (Rodriguez-167 

Galiano et al., 2012). Further, the cokriging ensures identical spatial variability of the raw 168 

datasets even when the point-scale function degrades the spatial coherence (Liu et al., 2006; 169 

Rodriguez-Galiano et al., 2012; Stathopoulou and Cartalis, 2009). 170 

Downscaling of LST is processed with EVI and Shuttle Radar Topography Mission (SRTM) 171 

elevation datasets as covariates. The SRTM elevation is resampled with cubic convolution at 172 

250 m to maintain spatial consistency. Since the elevation is one of the prominent factors in 173 

changing the land surface temperature, we used SRTM elevation as another covariate. 174 

Further, the Indian subcontinent is divided into 1200 tiles, with each tile covering an area 175 

coverage of approximately 0.34 million hectares (mha). The majority of tiles are confined to 176 

an individual agro-ecological zone. The downscaling weights were calculated from both 177 

covariates to downscale LST at 250 m. 178 

The downscaled LST was evaluated against 1km LST using structural similarity index 179 

[SSIM; (Wang et al., 2004)]. SSIM evaluates image quality based on luminescence, contrast, 180 

and structural differences between the degraded (high resolution) image and the original 181 

image (low resolution). SSIM ranges between -1 and 1, with values closer to 1 showing better 182 

similarity (Rodriguez-Galiano et al., 2012). The image quality index (IQI) was also used 183 

(Wang and Bovik, 2002) to account for luminance distortion, loss of correlation, and contrast 184 

distortion [Table S2]. The quality of the downscaled data was evaluated for different regions 185 

in India using districts and talukas boundaries.  186 

 187 

2.3 High-Resolution vegetation Indices 188 

We calculated various agriculture drought indices from the downscaled LST and EVI at 250 189 

m. First, we obtained the Vegetation Condition Index (VCI), which indicates the vegetation 190 

stress and is the most commonly used agriculture drought index (Kogan, 1995a). VCI can 191 

isolate the weather-related vegetation stress and detect the drought onset, intensity, and 192 

impact on vegetation (Kogan, 1995a). Unlike VCI, Temperature Condition Index (TCI) 193 

determines the vegetation stress caused by temperature and excessive wetness. We calculated 194 
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both indices for the 2000-2017 period (Kogan, 1995a). Even though the VCI and TCI are 195 

effective indicators for drought detection, combining both indices could be more effective in 196 

determining the drought intensity (Kogan, 1995a; Rojas et al., 2011). For example, the 197 

Vegetation Health Index (VHI) is an additive combination of VCI and TCI for drought 198 

detection. Moreover, Kogan (1995) proposed VHI to remove cloud effects from the 199 

Advanced Very High-Resolution Radiometer (AVHRR) thermal band (Kogan, 1995a, 200 

1995b). Therefore, VHI indicates drought for seasons having high temperatures and 201 

favourable conditions for low temperatures.  202 

Soil moisture plays a crucial role in drought detection and identification (Seneviratne et al., 203 

2010). Integrating soil moisture in drought indices enhances our understanding of land-204 

atmospheric interaction in modulating the drought event (Seneviratne et al., 2010). We 205 

calculated the Soil Moisture Agricultural Drought Index (SMADI) by combining surface 206 

temperature conditions, lagged response of vegetation, and soil moisture to detect the short-207 

term drought (Sánchez et al., 2016). The SMADI can provide early warming of yield 208 

reduction due to its sensitivity to water stress (Souza et al., 2021). Surface soil moisture for 209 

the SMADI index is obtained from the Global Land Evaporation Amsterdam Model 210 

(GLEAM; 0.25°) at a 10 cm depth and resampled at a resolution of 250 m. We used the 211 

nearest neighbour resampling method to keep the spatial consistency with the original 212 

dataset. The GLEAM v3.2a soil moisture uses extensive validation against the in-situ data 213 

points having higher accuracy than other data GLEAM v3.2b (Martens et al., 2017). To 214 

compensate for the SMADI response towards drought, we calculated the Normalized 215 

vegetation Supply Water Index [NVWSI; (Abbas et al., 2014)]. The NVSWI assumes that 216 

land surface temperature will be low when sufficient soil water supply exists (Abbas et al., 217 

2014). However, during the dry condition, the leaf stomata are partly closed to sustain water 218 

stress, resulting in a reduction in evapotranspiration and increased surface temperature (Zhou 219 

et al., 2019). Hence, the NVSWI depends on vegetation health and indirectly indicates the 220 

soil moisture-induced drought changes.  221 

 222 

We used the Standardized Evaporation Deficit Index [SEDI - 0.25º; (Vicente-Serrano et al., 223 

2018) ]and Drought Severity Index [DSI – 0.05º & 0.25º; (Mu et al., 2013)] to evaluate the 224 

drought estimates from NVSWI and VHI for the Indian Region. The derived drought indices 225 

were aggregated to 0.05º using the majority resampling techniques to compare drought 226 

extent. We used ranges of indicators to categorize drought as incipient drought (between -0.5 227 
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and -0.59), mild drought (between -0.6 and -0.89), moderate drought (between -0.9 and -228 

1.19), severe drought (between -1.2 and -1.49), and extreme drought (between -1.5 and less).  229 

 230 

3 Result and Discussion 231 
 232 
3.1 Land Surface temperature at 250 m resolution 233 
 234 
First, we evaluated the quality of the downscaled LST at 250m during February 2000 (Fig. 1). 235 

We observed that the high-resolution and coarse-resolution LST display similar SSIM and 236 

IQM over the selected region of central India (Fig. 1b,c). However, as expected, LST at 250 237 

m displays greater spatial details, useful for drought assessment (Fig. S2 & S3). The 238 

downscaled LST indicates geographic variability, considering using the SRTM elevation data 239 

(Fig. S3). To evaluate the spatial variability of drought, areas from diverse climatic settings 240 

were selected. Initially, the LST was downscaled using EVI as a covariate, indicating lesser 241 

SSIM (Fig. S2). Furthermore, downscaling LST by EVI and elevation dataset as a covariate 242 

improved the spatial dispersion coherently (Fig S2). The structural variability of LST 243 

enhanced significantly from single to multi covariate downscaling (Fig. S2 ). Moreover, by 244 

including multiple covariates, the co-kriging improved the coherence of the spatial continuity 245 

in downscaled LST (Rodriguez-Galiano et al., 2012). Further, we considered an area 246 

characterized by various natural land covers, with vegetation mixtures, build-up, cropping 247 

area, bare soils, and urban land area to evaluate the spatial variance in LST downscaling. All 248 

the downscaled images were identical to the original 1000m, indicating less bias in tone, 249 

contrast, and saturation [Fig. S4 & S5; Table. S1 & S2]. However, the downscaled image 250 

showed a consistent mean value of LST with variation in standard deviation. Our results 251 

show a good agreement between 250 m and 1000 m LST with a mean SSIM value of 0.52 for 252 

district and taluka boundary areas (Table S1). Further, the IQI shows less luminance and 253 

contrast distortion with a high correlation. Both district and taluka levels have a higher degree 254 

of confidence between 250 m and 1000 m LST with a mean value of 0.86 (Table S2). The 255 

downscaled LST signifies variation in continuity as it is expected that high-resolution 256 

datasets represent higher spatial variability than low-resolution with lesser pixel numbers 257 

(Pardo-Iguzquiza et al., 2011; Pardo-Igúzquiza et al., 2006). In general, the downscaled LST 258 

can be used with EVI of the same resolution for monitoring the agriculture drought at 250 259 

m.   260 

 261 
3.2 Drought assessment at different resolutions  262 
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Next, we estimated the area under drought for DSI and SEDI from 2000 to 2011. We 263 

observed that drought impacts around 10% of the Indian region each year. Moderate-264 

resolution (0.05º) DSI and low-resolution SEDI (0.25º) were analyzed to understand the 265 

variability in drought severity (Fig. 2a,b). As expected, DSI at 0.05° shows a reasonable 266 

improvement in capturing the spatial and temporal variability of drought-affected areas 267 

during 2000–2011. DSI integrates remotely sensed NDVI, potential evapotranspiration, and 268 

evapotranspiration (Mu et al., 2013). Moreover, DSI incorporates vegetation response to the 269 

dry condition and terrestrial water availability associated with dryness or wetness (Mu et al., 270 

2013). Further, we selected different drought-affected areas to evaluate the spatial extent of 271 

drought severity change at different resolutions. The eight-day dataset of DSI identified the 272 

mesoscale geographical variability of the severe drought period compared to the SEDI, which 273 

is available at a monthly scale (Fig. 2 c-f & g-j). We note DSI and SEDI follow a similar 274 

pattern of the area under drought (Fig. 2a, b). Since SEDI exhibits a higher correlation with 275 

the vegetation anomalies, SEDI identifies water stress sensitivity to leaf activity (Vicente-276 

Serrano et al., 2018). Moreover, SEDI is formulated based on the evaporative deficit, which 277 

signifies a similar spatial extent of drought as DSI. The spatial severity of drought in DSI 278 

indicates that high-resolution datasets can improve the understanding of drought impacts. For 279 

example, the NDVI and LST at 250m can separate the drought impact in irrigated and rainfed 280 

areas (Ambika and Mishra, 2019). The drought severity analysis by combining model output 281 

with observation highlights the uncertainty in percentage area under drought (Aadhar and 282 

Mishra, 2017). Hence, the noticeable difference in extreme drought-impacted areas in DSI 283 

and SEDI emphasizes accounting for the spatial variability of drought.  284 

We selected four areas highlighted during the significant drought period to quantify the 285 

spatial variability of drought extent at high-resolution (Fig. 2 c-f). We compared 0.25º and 286 

0.05º DSI with 250 m NVSWI and VHI (Fig. 3). The difference in the spatial variability of 287 

drought shows the bias in drought extent at a coarser resolution (Fig. 3q). For instance, the 288 

NVSWI and VHI show relatively low values for the drought extent during 2002 and 2005 289 

compared to 2000 and 2009. Further, during 2009 the DSI underestimated drought extent by 290 

45%. Based on the 12-month SPI and SPEI at 0.05º, drought analysis identifies 40-50% of 291 

Bulandshahr district under severe drought during 2015 (Aadhar and Mishra, 2017). On the 292 

other hand, the same analysis at 0.05° eliminates the drought condition in other districts 293 

[Faisalabad and Ratnapura; (Aadhar and Mishra, 2017)], which further indicates the utility of 294 

high-resolution drought monitoring to identify the macroscale variability. 295 
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 296 
3.3 Temporal variability in agriculture drought  297 

Most of the Indian region underwent different drought events during the past decades. One of 298 

the deadliest meteorological droughts lasted from 2000 to 2003 (Mishra, 2020). During 2002 299 

the drought was caused by a precipitation deficit of 21.5% during the summer monsoon 300 

season. Further, in July, a precipitation deficit of 56% had a devastating impact on the 301 

socioeconomic environment (Mishra, 2020). Considering these, we used the 2002 summer as 302 

a case study to evaluate the spatial pattern detected in the newly developed high-resolution 303 

drought indices.  304 

We identified drought during 2002 March and compared the spatial extent of all the indices. 305 

DSI and SEDI show a similar drought extent and are more prominent over the Indo-Gangetic 306 

plain and Deccan plateau (Fig. S6). Further, irrigation-induced alleviation of agriculture 307 

stress is not observed in the DSI and SEDI. For instance, Ambika et al. (2019) identified that 308 

the vegetation stress on peak growing period is significantly reduced by irrigation. NVSWI 309 

and VHI show similar vegetation stress changes along the Indo-Gangetic plain (Fig S6). the 310 

Multi-index drought at 250m shows consistency in drought severity extent (Fig. 4). However, 311 

the soil moisture-induced SMADI shows a more prominent impact of drought (Fig. 4e-h). 312 

The existence of soil moisture and lagged response of agriculture stress in SMADI can 313 

characterize the drought condition, particularly in areas where crop yield is more sensitive to 314 

water stress (Souza et al., 2021). We identified a similar extent of drought severity in NVSWI 315 

and SMADI along the Indian region, indicating that soil moisture has lagged response to 316 

vegetation stress [Fig. 5; (Gurung et al., 2009)]. Moreover, all the drought indices at 250 m 317 

show a similar pattern of spatial extent during September 2002. The comparisons of multi-318 

index drought at 250m show that the areal extent and severity of drought at high-resolution 319 

are necessary for management at the taluka (sub-district) level.  320 

Finally, we developed district and taluka level maps of drought severity and the extent to 321 

understand the applicability in assisting decision-making (Fig. 6). We considered the 2015 322 

drought to evaluate the vegetation drought response. The meteorological drought in 2015 was 323 

the longest in the entire record of a century and peaked in June 2016 (Mishra, 2020). The 324 

2016 drought affected more than 16% of the country but was less severe than the other 325 

meteorological drought (Mishra, 2020). The 8-day high-resolution drought obtained from the 326 

NVSWI and SMADI shows that a large area of central India experienced severe and extreme 327 
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drought (Fig. 6a, b). Further, the highlighted maps of district and taluka level under drought 328 

severity show the consistent extent in SMADI and NVSWI, which can be used for decision 329 

and policymaking (Fig. 6c-f).   330 

 331 

4 Data availability  332 
The high-resolution LST and NVSWI are publicly available from the Zenodo versions link: 333 

https://doi.org/10.5281/zenodo.6798442. The dataset covers the Indian region at 8-day 334 

temporal resolution at 250 m spatial resolution for the 2000 – 2017 period. The dataset is 335 

provided in WGS 1984 projection and tiff format.  336 

 337 

5 Conclusions  338 

The current study presents a newly developed high-resolution land surface temperature and 339 

enhanced vegetation index dataset at an 8-day interval with 250 m resolution over the Indian 340 

region. Further, we developed different agriculture drought indices (VCI, TCI, VHI, NVSWI, 341 

and SMADI) at 250 m. The data is derived from satellite-based MODIS and GLEAM surface 342 

soil moisture covering the entire Indian region from 2000 to 2017. The eight-day dataset is 343 

provided to facilitate characterization of drought severity and extent at high resolution. 344 

Moreover, the increased frequency of drought monitoring helps to characterize agricultural 345 

drought at high temporal resolution for the Indian region. The high-resolution drought indices 346 

show significant improvement in detecting drought extent and severity. The multi-index 347 

drought can characterize the drought impact at district and taluka (sub-district) boundaries. 348 

The inclusion of soil moisture in SMADI accounts for the water stress, and lag response 349 

highlights drought severity. SMADI and NVSWI show high reliability in investigating 350 

drought detection capability at the district and taluka levels. The high-resolution multi-index 351 

drought can act as an early warning to drought detection and mitigation compared to the other 352 

hydrological, meteorological and socioeconomic drought indices. The high-resolution dataset 353 

exhibits the potential to separate the land management impact on the drought alleviation—for 354 

instance, the extensive irrigation in the Indo-Gangetic plain. These results highlight the 355 

validity and advantage of high-resolution drought monitoring, and its unprecedently high 356 

resolution offers critical benefits to monitoring and assessment for policy and decision-357 

makers.    358 
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 Table 1: List of acronyms used in the study 581 

Variable Name Acronyms 
Land Surface Temperature LST 
Enhanced Vegetation Index EVI 
Soil Moisture Agriculture Drought Index SMADI 
Normalized Vegetation Supply Water Index NVSWI 
Vegetation Health Index VHI 
Vegetation Condition Index VCI 
Temperature Condition Index TCI 
Moderate Resolution Imaging Spectroradiometer MODIS 
Normalized Difference Vegetation Index NDVI 
Surface Spectral Reflectance of MODIS Red and Near infrared Bands MOD09Q1 
Surface Spectral Reflectance of MODIS Blue Band MOD09A1 
National Oceanic and Atmospheric Administration NOAA 
(NOAA) Star Center for Satellite Application and Research NSTAR 
Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER 
MODIS Land Surface Temperature and Emissivity MOD11A2 
Shuttle Radar Topography Mission SRTM 
Structural Similarity Index SSIM 
Image Quality Index IQI 
Advanced Very High-Resolution Radiometer AVHRR 
Global Land Evaporation Amsterdam Model GLEAM 
Standardized Evaporation Deficit Index SEDI 
Drought Severity Index DSI 

 582 
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Table 2: Summary of dataset used along with their sources 587 

Sl .no Data set Derived 
Variables 

Resolution 
and Duration 

Satellite/Data 
Provider 

DOI Data Link 

1 MOD09
Q1 

Surface 
reflectance red 

and near 
infrared bands  

250 m & 
2000-2017 

Moderate 
Resolution 
Imaging 

Spectroradiometer 

https://doi.org/1
0.5067/MODIS/
MOD09Q1.006 

https://e4ftl01.cr.usgs.g
ov/MOLT/MOD09Q1.0

06/  

2 MOD09
A1 

Surface 
reflectance blue 

band 

250 m & 
2000-2017  

Moderate 
Resolution 
Imaging 

Spectroradiometer 

https://doi.org/1
0.5067/MODIS/
MOD09A1.006 

https://e4ftl01.cr.usgs.g
ov/MOLT/MOD09A1.0

06/  

3 MOD11
A2 

Land Surface 
Temperature 

1000 m & 
2000-2017 

Moderate 
Resolution 
Imaging 

Spectroradiometer 

https://doi.org/1
0.5067/MODIS/
MOD11A2.006 

https://e4ftl01.cr.usgs.g
ov/MOLT/MOD11A2.0

06/  

4 SRTM Digital 
elevation model  

90 m & 
2000 

Shuttle Radar 
Topography 

Mission 

https://doi.org/1
0.5066/F7K072

R7 

https://earthexplorer.usg
s.gov/  

5 GLEAM Soil Moisture  0.25° &  
2000-2017 

The Global Land 
Evaporation 

Amsterdam Model 

https://doi.org/1
0.5194/gmd-10-

1903-2017 

https://www.gleam.eu/  

6 SEDI Drought Index 0.25° &  
2000-2016  

DIGITAL.CSIC, 
the institutional 
repository of the 
Spanish National 
Research Council 

https://digital.cs
ic.es/handle/102

61/160091 

https://digital.csic.es/ha
ndle/10261/160091  

7 DSI Drought Index 0.05º &  
2000-2011 

Numerical 
Terradynamic 

Simulation Group 
(NTSG) 

University of 
Montana 

https://doi.org/1
0.1175/BAMS-
D-11-00213.1 

http://files.ntsg.umt.edu
/data/NTSG_Products/

DSI/  

 588 

 589 

 590 

 591 
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Figure 1. (a) Downscaled Land Surface Temperature (LST) at 250 m for February 2000 over 592 
the Indian region, and (b,c) highlights the LST at 1000 m from the MOD11A2 and 593 
downscaled LST at 250 m for central India. The black box in (a) is considered to compare the 594 
spatial coherence and luminance of the low (1000 m) and high (250 m) resolution datasets.  595 

 596 

Figure 2. (a, b) Percentage area in severe drought condition over the Indian region for the 597 
2000-2011 period, (c-f) Drought Severity Index (DSI) at 0.05º along the Indian region for the 598 
same period as (a), and (g-j) same as (c-f) but for Standardized Evaporation Deficit Index 599 
(SEDI) at 0.25º.  The highlighted black box is chosen based on LULC and agro-ecological 600 
region for the different severe drought events. 601 
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 602 

Figure 3. (a-d), (e-h), (i-l) and (m-p) show drought condition estimated using DSI (0.05), DSI 603 
(0.25), NVSWI (250 m) & VHI (250 m) and (q) is calculated area extent of drought severity 604 
for different periods (2000, 2002, 2005, and 2009). Each column represents different data sets 605 
in the order DSI, SEDI, NVSWI and VHI and each row indicates drought period for different 606 
years. Here, drought location is identified from the Figure 2 (c-j) highlighted black box.  607 
 608 

 609 
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 610 

  611 

Figure 4. (a-d), (e-h), (i-l), (m-p), and (q-t) show drought conditions estimated using NVSWI 612 
(250 m), SMADI (250 m), VHI (250 m), TCI (250 m), and VCI (250 m) and calculated area 613 
extent of drought severity for the different period (2002, 2005,2009 and 2015). Each row 614 
represents different data sets in the order NVSWI, SMADI, VHI, TCI, and VCI. Here, the 615 
drought severity classifications are identified as incipient drought (between -0.5 and -0.59), 616 
mild drought (between -0.6 and -0.89), moderate drought (between -0.9 and -1.19), severe 617 
drought (between -1.2 and -1.49), and extreme drought (between -1.5 and less).  618 
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 619 

 620 

Figure 5: (a-h) Temporal change of drought severity between NVSWI and SMADI at 250 m 621 
along the Indian region for the 2002 summer period. Here, the drought severity classifications 622 
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are identified as incipient drought (between -0.5 and -0.59), mild drought (between -0.6 and -623 
0.89), moderate drought (between -0.9 and -1.19), severe drought (between -1.2 and -1.49), 624 
and extreme drought (between -1.5 and less). 625 

 626 

 627 

Figure 6: District and Taluka level drought monitoring using the NVSWI and SMADI over 628 
the Indian Region. (a,b) NVSWI and SMADI calculated for April 2016, (c,d) district (%) area 629 
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and (e,f) same as (c,d) but for taluka. Here drought values range between moderate and 630 
Severe. 631 

 632 

 633 

 634 
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