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Abstract. Satellite-based daily soil moisture products inevitably exist the drawbacks of low-coverage rate in global land, be-

cause of the satellite orbit covering scopes and the limitations of soil moisture retrieving models. To solve this issue, Zhang et al.

(2021a) generated seamless global daily soil moisture (SGD-SM 1.0) products for the years 2013∼2019. Nevertheless, there are

still several shortages in SGD-SM 1.0 products, especially on temporal range, sudden extreme weather condition, and sequen-

tial time-series information. In this work, we develop an improved seamless global daily soil moisture (SGD-SM 2.0) dataset5

from 2002 to 2022, to overcome above shortages. SGD-SM 2.0 uses three sensors AMSR-E, AMSR2 and WindSat. Global

daily precipitation products are fused into the proposed reconstructing model. We propose an integrated long and short-term

memory convolutional neural network (LSTM-CNN) to fill the gaps and missing regions in daily soil moisture products. In-

situ validation and time-series validation testify the reconstructing accuracy and availability of SGD-SM 2.0 (R: 0.672, RMSE:

0.096, MAE: 0.078). The time-series curves of the improved SGD-SM 2.0 are consistency with the original daily time-series10

soil moisture and precipitation distribution. Compared with SGD-SM 1.0, the improved SGD-SM 2.0 outperforms on recon-

structing accuracy and time-series consistency. SGD-SM 2.0 products are recorded at https://doi.org/10.5281/zenodo.6041561

(Zhang et al., 2022).

1 Introduction

Surface soil moisture acts as a significant part on global hydrology and meteorology, especially for forecasting drought and15

flood disasters (Wigneron et al., 1999; Long et al., 2014; Brocca et al., 2018). In recent years, satellite-based soil moisture

retrieving data has been rapidly progressed on both global and daily monitoring (Shi et al., 2006; Dorigo et al., 2012; Al Bitar

et al., 2017; Dorigo et al., 2021). For example, AMSR-E, AMSR2, WindSat global daily soil moisture products and so on (Fan

et al., 2004). These quantitative products have been widely utilized for global and long-term hydrological analysis and forecast

(Chen et al., 2021; Todd-Brown et al., 2021).20

However, because of the limitations of soil moisture retrieving models and satellite orbital covering scopes, the obtained

daily soil moisture products are fragmentary and incomplete (Shi et al., 2002; Enenkel et al, 2016; Meng et al., 2021). As
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shown in Fig. 1(a) and (b), these soil moisture products exist plenty of gap regions. Actually, the land coverage rate is only

approximately 20% to 80% in daily AMSR-E/2 and WindSat quantitative products (Long et al., 2019).

shown in Fig. 1(a) and (b), these soil moisture products exist plenty of gap regions. Actually, the land coverage rate is only

approximately 20% to 80% in daily AMSR-E/2 and WindSat quantitative products (Long et al., 2019).

(a) Original SM products of AMSR-E in 2009.6.1 (b) Original SM products of WindSat in 2012.1.9

Figure 1. Daily soil moisture products of AMSR-E and WindSat.

To settle this adverse effect for global soil moisture applications, most of works adopted the temporal averaging operation25

such as monthly, quarterly, or yearly averaging (Schaffitel et al., 2020; Guevara et al., 2021; Wang et al., 2021). This strategy

could usually acquire full-coverage soil moisture products via averaging abundant daily products. Nevertheless, temporal aver-

aging operation is also a two-edged sword. Firstly, it directly replaces daily temporal resolution with low-frequency temporal

resolution (Rebel et al., 2012; Long et al., 2020), which greatly lowers the utilization of daily soil moisture products. Secondly,

temporal averaging operation disregards the specific spatial distribution of daily products, and neglects the sequential time-30

series changing characteristic (Zeng et al., 2015a; Wang et al., 2021). In other words, monthly, quarterly, or yearly averaging

strategy degrades the original characteristics for daily soil moisture products.

To address this issue, Zhang et al. (2021a) generated a seamless, global, daily soil moisture (named SGD-SM 1.0) dataset

from 2013 to 2019. The spatial resolution is denoted as 0.25◦ (about 25km). SGD-SM 1.0 relies on the deep spatio-temporal

partial convolutional model to fill the gaps or missing regions in daily soil moisture products. Then three validations are35

performed to verify the reliability of SGD-SM 1.0 products. Relevant quantitative indexes (R, RMSE and MAE) and results

demonstrate that SGD-SM 1.0 products can be extended for global, daily and full-coverage soil moisture measurements (Zhang

et al., 2021a).

SGD-SM 1.0 maintains the original high-frequency daily temporal-resolution, and effectively enhances the utilization of

global daily soil moisture products. However, SGD-SM 1.0 also exists several weaknesses and limitations. Based on SGD-SM40

1.0 and above considerations, we develop an improved seamless global daily soil moisture (SGD-SM 2.0) dataset for the years

2002-2022 in this work. Compared with SGD-SM 1.0, the main improvements and contributions of SGD-SM 2.0 are listed as

follows:
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F SGD-SM 1.0 only uses single sensor (AMSR2), and the temporal range is insufficient with just seven years. While global

soil moisture analysis and applications generally need longer-term and more multi-sensors products. The application45

range of SGD-SM 1.0 is still limited. Compared with SGD-SM 1.0, SGD-SM 2.0 uses three passive microwave sensors

(AMSR-E, WindSat, and AMSR2). Temporal range of SGD-SM 2.0 is extended to twenty years from 2002 to 2022. The

application scope of SGD-SM 2.0 could be enlarged through these long-term soil moisture products.

F SGD-SM 1.0 ignores the daily extreme weather condition. If one day occurs a sudden precipitation, SGD-SM 1.0 usually

performs poor under this scenario. The main reason is that SGD-SM 1.0 relies on the internal spatio-temporal correlation,50

which not considers the external environmental factors. Compared with SGD-SM 1.0, SGD-SM 2.0 introduces the global

daily precipitation products into the reconstructing framework. Through fusing auxiliary precipitation data, SGD-SM 2.0

could lead in the daily extreme weather information for gap-filling.

F Although SGD-SM 1.0 employs 3-D partial convolutional neural network to exploit both spatial and temporal feature,

it is still insufficient for utilizing sequential time-series information. For daily soil moisture products, how to effectively55

reconstruct gaps missing regions through interrelated temporal information is significant. Compared with SGD-SM 1.0,

SGD-SM 2.0 develops an integrated long and short-term memory convolutional neural network (LSTM-CNN) to fill

the gaps and missing regions in these daily products. The proposed LSTM-CNN model could simultaneously utilize

recurrent time-series information and spatial information.

F Compared with SGD-SM 1.0 products, SGD-SM 2.0 products outperform on R (0.688), RMSE (0.094), and MAE60

(0.077). In addition, the time-series curves of the improved SGD-SM 2.0 products are more consistency with the original

daily time-series soil moisture values. Benefiting from the data fusion of daily precipitation information, the proposed

LSTM module can extract time-series features for filling the gaps and missing regions in daily soil moisture products.

Therefore, SGD-SM 2.0 can be effectively utilized for global hydrology monitoring analyzing at fine (daily) temporal

resolution.65

The outline of this paper is arranged below. Sect. 2 provides a description of products and data used in this work. Sect.

3 gives the methodology of the proposed reconstructing framework for SGD-SM 2.0. Sect. 4 lists the experimental results of

SGD-SM 2.0 products. Sect. 5 discusses the comparisons between SGD-SM 1.0 and SGD-SM 2.0, especially on reconstructing

accuracy and time-series consistency. Finally, the conclusion and outlook are summarized in Sect. 6.

2 Products and data description70

In this work, we simultaneously fuse satellite-based soil moisture products and precipitation products to generate SGD-SM

2.0 dataset. The in-situ soil moisture sites are employed to validate the reconstructing precision of SGD-SM 2.0. These in-situ

data are downloaded from International Soil Moisture Network (ISMN). Detailed descriptions are listed as follows.
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2.1 Satellite-based soil moisture products

AMSR-E/2 and WindSat global daily soil moisture products are utilized from 2002 to 2022. These three sensors are on-75

boarded at Aqua satellite, GCOM-W1 and Coriolis satellite, respectively (Nepal et al., 2021). AMSR-E, AMSR2 and WindSat

are all passive sensors for soil moisture retrieving. The spatial resolution is all 0.25◦ grid (about 25km) in these products, as

depicted in Fig. 1(a)-(c). The retrieving model adopts the land parameter retrieval model (LPRM) for AMSR-E, WindSat, and

AMSR2 products (McColl et al., 2017). We select the descending orbit (night-time), and 6.9 GHz band for all these soil mois-

ture products. These datasets are all recorded at GES DISC website (NASA GES DISC, 2022). These three products provide80

the original information for the using of SGD-SM 2.0. The proposed reconstructing model acquires the gap masks and relies

on the valid spatio-temporal soil moisture information from these three products, to fill the missing and gap regions.

The time-series range of AMSR-E sensor starts from 2002.06.19 and ends to 2011.10.04 (Njoku et al., 2003; Shi et al.,

2008). The time-series range of WindSat sensor starts from 2003.02.01 and ends to 2012.08.02. The time-series range of

AMSR2 sensor starts from 2012.07.03 and continues to current date (Zeng et al., 2020). In consideration of the low-coverage85

rate in WindSat dataset, we just use WindSat global daily products from 2011.10.5 to 2012.07.02, for acquiring sequential

daily products. These recorded AMSR-E, WindSat and AMSR2 global daily products are all employed as the initial input of

the proposed LSTM-CNN model for generating SGD-SM 2.0 products. The daily coverage rate curves of these three global

quantitative products are depicted in Fig. 2(a)-(c), respectively.
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(c) Daily coverage rate curve of 2021

Figure 2. Daily coverage rate curves of AMSR-E, WindSat, and AMSR2 soil moisture products in 2002, 2012, and 2021.

2.2 Precipitation products90

Precipitation usually has a high correlation with soil moisture in the corresponding regions (Pellarin et al., 2009; Brocca

et al., 2014; Sun and Fu, 2021). Therefore, we fuse the precipitation products into the proposed SGD-SM 2.0 dataset to

improve the reconstructing accuracy. The Integrated Multi-satellitE Retrievals for GPM (IMERG) global daily precipitation

V6 products are employed for the years 2002∼2022 (Massari et al., 2020). These precipitation products are derived from

multiple precipitation-relevant satellite passive microwave sensors, as portrayed in Fig. 3(a). The spatial resolution denotes as95

0.1◦ grid (about 10km) in IMERG level 3 global daily final precipitation products. To keep the uniformity with soil moisture
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products, the spatial downsampling operation is carried out for the original IMERG precipitation products from 0.1◦ to 0.25◦.

Then we normalize these precipitation values via linear transformation for the use of reconstructing model. These precipitation

products were all downloaded from GES DISC (Brocca et al., 2019; Berg et al., 2021; Škrk et al., 2021).

2.3 In-situ soil moisture data100

In-situ soil moisture sites are significant for testifying the satellite-based products (Brocca et al., 2014; Gruber et al., 2020).

These sites provide high-precision surface soil moisture values. Relied on in-situ data, the quantitative indexes could be derived

for the proposed SGD-SM 2.0 dataset. ISMN unites global in-situ surface data, which has been widely applied for hydrology

and soil moisture validation (Dorigo et al., 2011; Wigneron et al., 2013; Dorigo et al., 2013; Dorigo et al., 2021). We select 124

stations from ISMN from 2002 to 2022 and match them with corresponding soil moisture product in SGD-SM 2.0 (Zhang et al.,105

2020). The selected criteria include three points: 1) The in-situ soil moisture sites are downloadable through the given website.

2) The in-situ soil moisture sites are continuous for the long-term observation, at least one year. 3) The spatial distribution of

these in-situ sites covers various continents, land use and soil types. The spatial distribution of these selected in-situ data is

displayed in Fig. 3(b). These in-situ soil moisture data are public and could be downloaded at https://ismn.geo.tuwien.ac.at/en/.

The in-situ validation results of SGD-SM 2.0 and the reconstructing accuracy comparisons with SGD-SM 1.0 are given in110

section 4.2 and section 5.1, respectively.
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Figure 3. IMERG global daily precipitation and selected in-situ data.

3 Methodology

The schematic of the proposed work is depicted in Fig. 4. Different from SGD-SM 1.0, we simultaneously fuse global daily

precipitation products with global daily soil moisture products into SGD-SM 2.0. An integrated long and short-term memory

convolutional neural network (LSTM-CNN) reconstructing model is developed to fill the gap and missing regions in global115
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daily soil moisture products. Finally, we recursively generate the seamless daily soil moisture products in SGD-SM 2.0 dataset.

Detailed descriptions of the proposed LSTM-CNN reconstructing model, training and optimization are stated below.

LSTM

Day: T

Day: T + 1

Day: T + k

Precipitation

Partial CNN

FC
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Partial CNN

LSTMPrecipitation
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Partial CNN

SM
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SGD-SM 2.0

SGD-SM 2.0

SGD-SM 2.0

LSTMPrecipitation
FC
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Partial CNN

…

T

T + 1

T + k

Partial CNN

… …

FC

FC
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Figure 4. Schematic of the proposed framework to generate SGD-SM 2.0 products.

3.1 LSTM-CNN reconstructing model

As shown in Fig. 4, original global daily soil moisture product in date T (AMSR-E, WindSat or AMSR2) and its corre-

sponding global daily precipitation product are utilized as the input data of the proposed framework. Firstly, the precipitation120

data in date T is transformed as the vector value PT through a full-connected (FC in Fig. 4) layer. We employ the partial

convolutional neural network (Partial CNN in Fig. 4) to extract the spatial feature of soil moisture product in date T. Different

from the common CNN (Yuan et al., 2019), partial CNN can effectively acquire the spatial information within valid regions,

and eliminate the invalid information within gap or soil moisture missing regions (Zhang et al., 2018a). We applied partial

CNN for generating SGD-SM 1.0 dataset. Due to its effectiveness on incomplete soil moisture products, the partial CNN is125

also used in this work for generating SGD-SM 2.0 dataset. The formula of partial CNN in this work is determined as follow:

S′(m,n) =

W>(S(m,n)⊗M(m,n))
‖1(m,n)‖1
‖M(m,n)‖1

+ b,
∥∥M(m,n)

∥∥
1
6= 0

0, otherwise
(1)
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where M denotes the mask of its corresponding soil moisture product S. 0 and 1 refer to the invalid and valid point in mask

M. W and b stand for trainable weighted and offset arguments in partial CNN, respectively. ⊗ represents the dot product

operation, to exclude the invalid information in gap or missing regions through mask data. Subsequently, current mask M130

needs to regenerated under the below paradigm: If the partial convolution can generate at least one valid value of the output

result, we need mark this location as valid value in the new masks. The mask regenerated formula is defined as follow (Zhang

et al., 2020):

M′(m,n) =

L(m,n),
∥∥M(m,n)

∥∥
1
6= 0

0, other
(2)

where L(m,n) stand for Earth land in position (m, n). It should be noted that the Earth land mask includes 6 continents and135

neglects all regions of Antarctica and most regions of Greenland. The main reason is that these omitted regions are perennially

covered with snowy or frozen land (Zhao et al., 2021).

After four partial CNN layers in Fig. 4, an FC layer is also acted on the feature maps of soil moisture product, with the result

of vector value ST :

ST = FC(S′4) s.t. PT = FC(PT ) (3)140

Then the two vectors ST and PT of soil moisture and precipitation products are simultaneously imported into the LSTM

module in Fig. 4. The architecture of the LSTM module within the proposed framework is displayed in Fig. 5.

As depicted in Fig. 5, soil moisture information ST , corresponding precipitation informationPT , previous long-term memory

information CT−1, and previous short-term memory information hT−1 are simultaneously imported into the LSTM module.

The output values in LSTM are the regenerated soil moisture information S′T , current long-term memory information CT , and145

current short-term memory information hT . It should be noted that, current long and short-term memory information in date T

is the previous long and short-term memory information in next date T+1, respectively. For memory information h0 and C0,

these vectors are initialized with zero elements. LSTM is composed of three gates: Oblivious gate, input gate and output gate

to control memory information state (Zhang et al., 2021b).

1) Oblivious gate: This gate determines which information needs to be discarded in the short-term memory state. It is carried150

out by the sigmoid unit σ between the soil moisture information ST and previous long-term memory information CT−1.

fT = σ(Wf · [hT−1,ST ] + bf ) (4)

where the sigmoid unit σ is defined below:

σ(a) =
1

1+ e−a
(5)

In the sigmoid unit σ, zero means fail and one means pass for current information. Through checking the soil moisture155

information ST and previous long-term memory information CT−1, it generates a vector between 0 and 1. This variable

determines which information is retained or discarded in the short-term memory state.
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Figure 5. Structure of the LSTM module in the proposed framework.

2) Input gate: This gate determines what new information is added to the long-term memory state. Firstly, we use hT−1 and

ST to determine which information needs to be updated through the sigmoid operation in Eq. (6):

iT = σ(Wi · [hT−1,ST ] + bi) (6)160

Then the new candidate long-term memory information C̃T is generated through the tanh unit in Eq. (7):

C̃T = tanh(WC · [hT−1,ST ] + bC) (7)

where the tanh unit is defined as:

tanh(a) =
ea− e−a
ea + e−a

(8)

3) Output gate: In this gate, we need to output current long-term memory informationCT from previousCT−1 and candidate165

long-term memory information C̃T :

CT = fT ⊗CT−1 + iT ⊗ C̃T (9)

After updating current long-term memory information CT , the regenerated soil moisture information S′T is output through

previous short-term memory hT−1, soil moisture information ST , and corresponding precipitation information PT :

S′T = σ(WS′ [hT−1,ST ] + bS′)⊗ tanh(PT ) (10)170
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Besides, we need to output current short-term memory information hT for the next date T+1 as follow:

hT = tanh(oT ⊗CT ) (11)

Later, the regenerated soil moisture information S′T is transformed by a FC layer in the right of Fig. 4. Then four partial

CNN layers are performed, to generate the final SGD-SM 2.0 product in date T. Through the consecutive time-series strategy,

we recursively reconstruct the daily soil moisture products in SGD-SM 2.0.175

3.2 Training and optimization

To generate reliable and high-precision SGD-SM 2.0 dataset, how to train and optimize the proposed LSTM-CNN model is

extremely crucial in this work. The training stage needs huge numbers of sample labels, to optimize the trainable parameters

in the proposed partial CNN and LSTM in Fig. 4 and Fig. 5, respectively. The sample labels adopt patch selecting strategy.

We select sequential time-series daily soil moisture patches with k = 7 in the reconstructing framework. The spatial size of180

these seven-day soil moisture patches is all set as 40×40. These time-series seven-day soil moisture patches are all complete,

without gap or data missing regions from the original soil moisture products. Then, we randomly select 30000 mask patches

with the spatial size of 40×40. Each soil moisture patch is simulated with missing regions via these mask patches. Through this

way, we acquire 30000 training samples from the original 2002-2022 soil moisture products. Each training sample includes

four variables: the simulated seven-day soil moisture patches, the complete seven-day soil moisture patches, the corresponding185

mask patches, and the corresponding precipitation patches. These variables are simultaneously imported into the LSTM-CNN

reconstructing model, as shown in Fig. 4.

For the partial CNN in the proposed framework, we set the convolutional filter size as 3×3 in all the partial CNN layers

(Xiao et al., 2022a). The last partial CNN layer outputs just one feature map and the other partial CNN layers output 64 feature

maps (Xiao et al., 2022b). ReLU is utilized after each partial CNN layer. For the LSTM module in the proposed framework,190

we set the dimension of long and short-term memory vectors CT and hT as 2048.

For the network optimization, we adopt the same strategy with the global-local function (Zhang et al., 2021a) in SGD-

SM 1.0. The global soil moisture uniformity and local soil moisture heterogeneity are both taken into consideration in the

proposed LSTM-CNN reconstructing model. Different from SGD-SM 1.0, we simultaneously fill the gap and missing regions

in time-series seven-day soil moisture patches. Detailed definitions of the global-local function are determined as follows:195

ξ(W, b,Wf,i,C,S′ , b
f,i,C,S′ ) =

k∑
T=1

(
∥∥(1−MT )⊗ (Srec

T −Sori
T )
∥∥2
2
+
∥∥(ML⊗ (Srec

T −Sori
T )
∥∥2
2
) (12)

where ML represents the global land mask (including 6 continents and neglecting all regions of Antarctica and most regions of

Greenland). α stands for the balancing parameter to equilibrate the local loss and global loss (Zhang et al., 2020). Empirically,

this ratio is fixed as 0.1 in the training and optimization stage.

In terms of the hyper-parameters and operations of the proposed framework, related explanations are listed below. The200

batch size of the LSTM-CNN reconstructing model is set as 128 (Zhang et al., 2018a). The whole epoch number is confirmed
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determined as 500 (One epoch represents that all the samples in the training set have been utilized for the neural network

optimization at one time). The inceptive learning rate is started as 0.005 (Zhang et al., 2018b). It gradually decreases through

multiplying a damping factor (equal to 0.5) every 100 epochs (Zhang et al., 2019). On software configuration, LSTM-CNN

model is carried out on PyTorch 1.8.1 framework. We use Python 3.7 language, PyCharm platform, and Windows 10 envi-205

ronment to generate seamless global daily soil moisture products. On hardware configuration, we employ a NVIDIA Titan X

(Pascal) GPU, Inter E5-2609v3 CPU, and 16 GB DDR4 RAM to execute the proposed LSTM-CNN model.

4 Experiments and validations

The released SGD-SM 2.0 products are recorded at https://doi.org/10.5281/zenodo.6041561 (Zhang et al., 2022). SGD-

SM 2.0 starts from 2002.06.23, and ends at 2022.02.05. The initial and reconstructing global daily soil moisture products have210

been stored with individual NetCDF4 (*.nc) document. Because part of daily soil moisture products is missing at GES DISC,

these products are also neglected in the proposed SGD-SM 2.0 dataset (7115 files). In this section, the experimental results of

SGD-SM 2.0 dataset are given in section 4.1. Later, we carry out the in-situ validation and time-series validation of SGD-SM

2.0 in section 4.2 and section 4.3, respectively.

4.1 Experimental results215

As shown in Fig. 6 and Fig. 7, the SM and SGD-SM 2.0 results are given in 10, 20, and 30 September 2002 and in 10, 20,

and 30 June 2020, respectively.

For comparison purpose, the left lines are the original global daily products and the right lines are the reconstructed SGD-SM

2.0 products in Fig. 6 and Fig. 7. It should be noted that we neglect all regions in Antarctica and most regions in Greenland,

because of the perpetual frozen soil. Clearly, gaps and missing regions are filled through the proposed framework in Sect. 3.220

From the spatial perspective, the proposed SGD-SM 2.0 dataset performs both global soil moisture uniformity and local soil

moisture heterogeneity in Fig. 6 and Fig. 7. It ensures the spatial consistency especially for the gap regions with the adjoin soil

moisture regions. Beyond that, the reconstructed regions in SGD-SM 2.0 don’t reflect distinct patch or border effect. This also

testifies the powerful ability of partial CNN in the proposed framework, which can effectively exclude the invalid information

in gap or missing soil moisture regions.225

From the temporal perspective, the proposed SGD-SM 2.0 dataset utilizes the complementary and sequential time-series

soil moisture information. Through fusing global daily precipitation products, SGD-SM 2.0 can consider the sporadic extreme

weather condition for single day. In addition, by means of LSTM module, the consistent temporal information can be recovered

and preserved in Fig. 6 and Fig. 7.

4.2 In-situ validation230

In-situ validation is the most reliable method to measure the accuracy and availability of the proposed SGD-SM 2.0 dataset

(Walker et al., 2004; Draper et al., 2009; Zeng et al., 2015b). In this work, we choose 124 in-situ surface (0∼5cm depth) soil
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(a) Original SM in 2002.09.10 (b) SGD-SM 2.0 in 2002.09.10

(c) Original SM in 2002.09.20 (d) SGD-SM 2.0 in 2002.09.20

(e) Original SM in 2002.09.30 (f) SGD-SM 2.0 in 2002.09.30

Figure 6. Original SM and proposed SGD-SM 2.0 results in 10, 20, and 30 September 2002.

moisture sites from ISMN, as shown in Fig. 3(b). The selected in-site values are limited from 2002 to 2022. We match the

hourly in-site values with the descending products. In consideration of validation reliability, we choose the two neighboring

in-site values correspond with the observation time of soil moisture products. Then we average them as the ground-truth data.235
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(a) Original SM in 2020.06.10 (b) SGD-SM 2.0 in 2020.06.10

(c) Original SM in 2020.06.20 (d) SGD-SM 2.0 in 2020.06.20

(e) Original SM in 2020.06.30 (f) SGD-SM 2.0 in 2020.06.30

Figure 7. Original SM and proposed SGD-SM 2.0 results in 10, 20, and 30 June 2020.

As portrayed in Fig. 8, the scatters of six in-situ soil moisture sites (marked as blue circles in Fig. 3b: 42.537◦N, 72.171◦W;

0.282◦N, 36.866◦E; 48.141◦N, 15.171◦E; 14.159◦S, 131.388◦E; 21.617◦S, 47.632◦W; 31.369◦N, 91.899◦E) are displayed to

demonstrate the reconstructing accuracy of SGD-SM 2.0. The horizontal coordinate refers to in-situ data. Accordingly, the
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(c) 48.141◦N, 15.171◦E

In-situ SM value (percent)

0 20 40 60 80 100

S
G

D
-S

M
 2

.0
 v

a
lu

e
 (

p
e
rc

e
n
t)

0

20

40

60

80

100
R=0.769
RMSE=0.023
MAE=0.021

(d) 14.159◦S, 131.388◦E
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(e) 21.617◦S, 47.632◦W
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Figure 8. Scatters of six in-situ sites (Horizontal coordinate refers to the in-situ data; Vertical coordinate denotes the reconstructing data).

vertical coordinate denotes reconstructing data in gaps or missing soil moisture regions. The time range is limited from 2002 to

2022. The R indicators of these sites are varied from 0.658 to 0.769 in Fig. 8(a)-(f). The RMSE indicators and MAE indicators240

of these sites are varied from 0.023 to 0.144 and from 0.021 to 0.128 in Fig. 8(a)-(f), respectively.

Table 1. Comparisons between the original and SGD-SM 2.0 products (from 2002 to 2022) through 124 selected in-situ sites.

Soil moisture products (2002∼2022)
Average evaluation indicators

R RMSE ubRMSE MAE

Original 0.679 0.094 0.058 0.075

SGD-SM 2.0 0.672 0.096 0.061 0.078

Through all the 124 selected in-situ sites, Table 1 compares the original products with SGD-SM 2.0. The average evaluation

indicators (R, RMSE, and MAE) of original soil moisture and SGD-SM 2.0 products are 0.679 (0.672), 0.094 (0.096), and

0.075 (0.078), respectively. Generally, the precision of SGD-SM 2.0 products performs similar with incipient products. The

diversities of those indicators are little between the original and reconstructed SGD-SM 2.0 products in Table 1. To a certain245

13

Figure 8. Scatters of six in-situ sites (Horizontal coordinate refers to the in-situ data; Vertical coordinate denotes the reconstructing data).

vertical coordinate denotes reconstructing data in gaps or missing soil moisture regions. The time range is limited from 2002 to

2022. The R indicators of these sites are varied from 0.658 to 0.769 in Fig. 8(a)-(f). The RMSE indicators and MAE indicators240

of these sites are varied from 0.023 to 0.144 and from 0.021 to 0.128 in Fig. 8(a)-(f), respectively.

Table 1. Comparisons between the original and SGD-SM 2.0 products (from 2002 to 2022) through 124 selected in-situ sites.

Soil moisture products (2002∼2022)
Average evaluation indicators

R RMSE ubRMSE MAE

Original 0.679 0.094 0.058 0.075

SGD-SM 2.0 0.672 0.096 0.061 0.078

Through all the 124 selected in-situ sites, Table 1 compares the original products with SGD-SM 2.0. The average evaluation

indicators (R, RMSE, and MAE) of original soil moisture and SGD-SM 2.0 products are 0.679 (0.672), 0.094 (0.096), and

0.075 (0.078), respectively. Generally, the precision of SGD-SM 2.0 products performs similar with incipient products. The

diversities of those indicators are little between the original and reconstructed SGD-SM 2.0 products in Table 1. To a certain245

13



extent, in-situ validation testifies the reconstructed accuracy and validity of the SGD-SM 2.0 products. These 124 selected soil

moisture stations from ISMN from 2002 to 2022 are shown in Table 2, for validating SGD-SM 2.0. Besides, basic information

on the representative in-situ soil moisture sites (Taking partial sites as example, including COSMOS, SD-DEM, SMOS-CBR,

SCAN, PBO, USCRN and OZNET networks) is listed in Table 3. As the example, it includes the name of the station, country,

longitude/latitude, main land use, lattice water, and soil organic carbon.250

Table 2. 124 selected soil moisture stations from ISMN from 2002 to 2022 for validating SGD-SM 2.0.

COSMOS-001 COSMOS-004 COSMOS-006 COSMOS-007 COSMOS-010 COSMOS-011

COSMOS-012 COSMOS-013 COSMOS-014 COSMOS-015 COSMOS-016 COSMOS-017

COSMOS-018 COSMOS-020 COSMOS-021 COSMOS-023 COSMOS-024 COSMOS-025

COSMOS-026 COSMOS-027 COSMOS-028 COSMOS-029 COSMOS-030 COSMOS-031

COSMOS-032 COSMOS-033 COSMOS-034 COSMOS-035 COSMOS-038 COSMOS-039

COSMOS-040 COSMOS-041 COSMOS-042 COSMOS-043 COSMOS-044 COSMOS-045

COSMOS-046 COSMOS-047 COSMOS-048 COSMOS-049 COSMOS-050 COSMOS-051

COSMOS-052 COSMOS-053 COSMOS-054 COSMOS-055 COSMOS-056 COSMOS-057

COSMOS-058 COSMOS-060 COSMOS-061 COSMOS-062 COSMOS-063 COSMOS-064

COSMOS-066 COSMOS-067 COSMOS-068 COSMOS-069 COSMOS-070 COSMOS-071

COSMOS-072 COSMOS-073 COSMOS-074 COSMOS-076 COSMOS-078 COSMOS-081

COSMOS-082 COSMOS-084 COSMOS-087 COSMOS-089 COSMOS-090 COSMOS-091

COSMOS-092 COSMOS-093 COSMOS-094 COSMOS-095 COSMOS-096 COSMOS-098

COSMOS-099 COSMOS-100 COSMOS-101 COSMOS-102 COSMOS-103 COSMOS-105

COSMOS-107 COSMOS-108 COSMOS-109 COSMOS-110 COSMOS-111 COSMOS-123

RSMN-15136 RSMN-15199 RSMN-15412 RSMN-15470 RSMN-15479 SD-DEM

SMOS-CBR SMOS-LHS SMOS-MTM SMOS-SFL SMOS-SVN SMOS-PZN

SCAN-2014 SCAN-2046 SCAN-2055 SCAN-2087 SCAN-2179 SCAN-2181

PBO-076 PBO-094 PBO-250 PBO-472 PBO-474 PBO-482

PBO-498 PBO-508 PBO-525 PBO-569 PBO-742 PBO-811

USCRN-011 USCRN-020 OZNET-K1 OZNET-K2
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Table 3. Basic information on the in-situ soil moisture sites (Taking partial sites as examples).

Station Lon/Lat Elevation (m) main land use lattice water soil organic carbon

COSMOS-016 42.537, -72.171 316 Crop 4.50% 1.59%

COSMOS-055 0.282, 36.866 1824 Bush 6.10% 1.11%

COSMOS-082 48.141, 15.171 73 Grass 2.10% 1.93%

COSMOS-096 -14.159, 131.388 169 Silty Sand 2.30% 1.24%

COSMOS-101 -21.617, -47.632 563 Grass 1.70% 1.87%

COSMOS-123 31.369, 91.899 1201 Forest 4.40% 2.36%

SD-DEM 13.287, 30.479 864 Coarse Sand 1.30% 0.98%

SMOS-CBR 42.563, 13.798 52 Grass 3.40% 2.25%

SCAN-2014 38.173, -65.171 274 Crop 2.20% 1.97%

PBO-076 24.189, -81.343 156 Silty Sand 1.90% 1.14%

USCRN-011 20.507, -97.662 583 Grass 3.70% 1.98%

OZNET-K1 -21.683, 139.841 659 Scrub 3.60% 2.34%

4.3 Time-series validation

Long-term daily soil moisture products usually reflect typical time-series continuity (Wang et al., 2022; Seneviratne et al.,

2010). Therefore, we can utilize this characteristic to validate the reliability of SGD-SM 2.0 products. As listed in Fig. 9

and Fig. 10, two time-series daily original/SGD-SM 2.0 results of 2003 to 2018, and 2005 to 2020, are given in the location

(10.125◦S, 42.625◦W) and the location (38.375◦N, 117.125◦E), respectively. The blue point refers to existing valid value in255

Fig. 9 and Fig. 10. The red point stands for the SGD-SM 2.0 value in Fig. 9 and Fig. 10, which also represent the invalid gaps

or missing soil moisture regions. The vertical coordinate denotes the percent of soil moisture product in original and SGD-SM

2.0 products. The horizontal coordinate denotes the annual date number between 2003 and 2020.

As depicted in Fig. 9(a)-(d) and Fig. 10(a)-(d), a majority of the reconstructed SGD-SM 2.0 values (in invalid gap or

missing soil moisture regions) can distinctly embody the time-series continuity. In the two locations of different years, original260

soil moisture values and corresponding adjacent SGD-SM 2.0 values perform fore-and-aft consistency. If current valid soil

moisture values behave high or low, their neighborhood SGD-SM 2.0 values also accord with them in Fig. 9 and Fig. 10. This

time-series validation manifests the reliability of proposed framework and validity of our improved SGD-SM 2.0 products.

Generally, the proposed SGD-SM 2.0 products are able to ensure the time-series continuity in daily temporal resolution. This

point is greatly important for reconstructing long-term products. Benefiting from the utilizing of temporal information, the265

proposed LSTM module can extract and transmit time-series features for filling the gap and missing data regions in daily

soil moisture products. Therefore, SGD-SM 2.0 can be effectively applied for global hydrology monitoring analyzing at fine
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temporal scale, rather than the traditional monthly or yearly averaging operation. The former one preserves the original daily

temporal resolution, while the latter one sacrifices this daily temporal resolution. This validation exactly demonstrates above

significance of the proposed SGD-SM 2.0 dataset.270
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temporal resolution, while the latter one sacrifices this daily temporal resolution. This validation exactly demonstrates above

significance of the proposed SGD-SM 2.0 dataset.270
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(a) Time-series daily original/SGD-SM 2.0 results in 2003
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(b) Time-series daily original/SGD-SM 2.0 results in 2008
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(c) Time-series daily original/SGD-SM 2.0 results in 2013
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(d) Time-series daily original/SGD-SM 2.0 results in 2018

Figure 9. Time-series daily original/SGD-SM 2.0 results of the location (10.125◦S, 42.625◦W) in 2003, 2008, 2013, and 2018.
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Figure 9. Time-series daily original/SGD-SM 2.0 results of the location (10.125◦S, 42.625◦W) in 2003, 2008, 2013, and 2018.

5 Comparisons with SGD-SM 1.0

In this section, we compare the proposed SGD-SM 2.0 dataset with previous SGD-SM 1.0 dataset, from the perspectives

of reconstructing accuracy and time-series consistency. In contrast with SGD-SM 1.0, we fuse the global daily precipitation
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(a) Time-series daily original/SGD-SM 2.0 results in 2005
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(b) Time-series daily original/SGD-SM 2.0 results in 2010
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(c) Time-series daily original/SGD-SM 2.0 results in 2015
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(d) Time-series daily original/SGD-SM 2.0 results in 2020

Figure 10. Time-series daily original/SGD-SM 2.0 results of the location (38.375◦N, 117.125◦E) in 2005, 2010, 2015, and 2020.

5 Comparisons with SGD-SM 1.0

In this section, we compare the proposed SGD-SM 2.0 dataset with previous SGD-SM 1.0 dataset, from the perspectives

of reconstructing accuracy and time-series consistency. In contrast with SGD-SM 1.0, we fuse the global daily precipitation

products into the reconstructing framework. In addition, the LSTM-CNN model is developed to fill the gap and missing

regions in SGD-SM 2.0 global daily soil moisture products. Detailed comparisons between the SGD-SM 1.0 and SGD-SM 2.0275

are displayed as follows.
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Figure 10. Time-series daily original/SGD-SM 2.0 results of the location (38.375◦N, 117.125◦E) in 2005, 2010, 2015, and 2020.

products into the reconstructing framework. In addition, the LSTM-CNN model is developed to fill the gap and missing

regions in SGD-SM 2.0 global daily soil moisture products. Detailed comparisons between the SGD-SM 1.0 and SGD-SM 2.0275

are displayed as follows.

5.1 Reconstructing accuracy

For ensuring the same time scope with SGD-SM 1.0, we choose the part of SGD-SM 2.0 from 2013 to 2019. The average

evaluation indicators (R, RMSE, and MAE) of monthly-averaging, SGD-SM 1.0 and SGD-SM 2.0 dataset by selective 124

in-situ sites are contrasted in Table 4.280
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Compared with monthly-averaging and SGD-SM 1.0 products, SGD-SM 2.0 products outperform on R (0.688), RMSE

(0.094), and MAE (0.077). The main reason is that SGD-SM 1.0 ignores the sudden extreme weather condition for one day.

If it occurs a sudden precipitation in one day, while there are no abnormalities before and after this day, SGD-SM 1.0 usually

behaves with poor performance under this condition. Accordingly, SGD-SM 2.0 introduces the global daily precipitation

products into the reconstructing framework. Through fusing auxiliary precipitation information, SGD-SM 2.0 products can285

consider the sudden extreme weather condition for single day in global daily soil moisture products. The comparisons validate

the effectiveness of this point in Table 4.

Table 4. Comparisons between the SGD-SM 1.0 and SGD-SM 2.0 products (from 2013 to 2019) through selected 124 in-situ sites.

Dataset version
Average evaluation indicators

R RMSE ubRMSE MAE

Monthly-Averaging 0.612 0.147 0.089 0.115

SGD-SM 1.0 0.659 0.107 0.066 0.083

SGD-SM 2.0 0.688 0.094 0.058 0.077

5.2 Time-series consistency

Except the reconstructing accuracy, time-series consistency is also significant for seamless products (Wang et al., 2021).

As portrayed in Fig. 11(a) and (b), we simultaneously depict time-series daily original soil moisture, SGD-SM 1.0/2.0, and290

precipitation results of the location (48.875◦N, 140.375◦E) in 2013, respectively. The blue point refers to existing valid values

in Fig. 11. Red point stands for the SGD-SM 1.0/2.0 value in Fig. 11, which also represent the invalid gap or missing soil

moisture regions. The left vertical coordinate denotes the percent of soil moisture product in original and SGD-SM 1.0/2.0

products. The right vertical coordinate refers to the daily precipitation value (unit: mm) by the IMERG precipitation products.

Compared with SGD-SM 1.0, SGD-SM 2.0 outperforms on time-series consistency in Fig. 11(a) and (b). The reconstructed295

SGD-SM 2.0 points behave more consecutive around their adjacent original soil moistures points than SGD-SM 1.0. While

SGD-SM 1.0 exists discrete problem in Fig. 11(a), to some degree. Benefiting from the data fusion of daily precipitation

information, the proposed LSTM module can extract time-series features for filling the gaps and missing regions in daily soil

moisture products. Therefore, SGD-SM 2.0 can be effectively utilized for global hydrology monitoring analyzing at fine (daily)

temporal resolution.300

5.3 Uncertainty analysis

The uncertainty of SGD-SM 2.0 and proposed model could be classified as three types: 1) The errors of original AMSR-

E/WindSat/AMSR2 products; 2) The meteorological factors; 3) The generalization of proposed reconstructing model.
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(a) Time-series daily original soil moisture, SGD-SM 1.0, and precipitation results in 2013
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(b) Time-series daily original soil moisture, SGD-SM 2.0, and precipitation results in 2013

Figure 11. Time-series daily original soil moisture, SGD-SM 1.0/2.0, and precipitation results at location (48.875◦N, 140.375◦E) in 2013.

5.3 Uncertainty analysis

The uncertainty of SGD-SM 2.0 and proposed model could be classified as three types: 1) The errors of original AMSR-

E/WindSat/AMSR2 products; 2) The meteorological factors; 3) The generalization of proposed reconstructing model.

1) The errors of original AMSR-E/WindSat/AMSR2 products: The proposed SGD-SM product is generated based on original

AMSR-E/WindSat/AMSR2 products. While these passive soil moisture products also exist errors (i.e. above 0.8 m3·m−3) , due305

to the satellite sensor imaging and soil moisture retrieval algorithm. As shown in Table 1, the R, RMSE, and MAE evaluation

indexes of the original products are 0.679, 0.094, and 0.075, respectively. These errors are also inevitably transmitted into the

generated SGD-SM 2.0 products. In other words, SGD-SM 2.0 absolutely trusts the initial satellite-based SM values without

any hesitation.

2) The meteorological factors: The proposed method relies on the temporal continuity and spatial consistency for daily soil310

moisture gap-filling. Nevertheless, if the unusual meteorologic occurs in single day such as precipitation and snowfall, it may

disturb above assumption and influence the reconstructing effects. This uncertainty can be noticed in time-series validation,

especially for the rainy season. Although we fuse the daily precipitation products into the proposed model in SGD-SM 2.0, it

still cannot adequately reflect the emergency meteorological factors such as brief precipitation.
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Figure 11. Time-series daily original soil moisture, SGD-SM 1.0/2.0, and precipitation results at location (48.875◦N, 140.375◦E) in 2013.
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indexes of the original products are 0.679, 0.094, and 0.075, respectively. These errors are also inevitably transmitted into the

generated SGD-SM 2.0 products. In other words, SGD-SM 2.0 absolutely trusts the initial satellite-based SM values without

any hesitation.

2) The meteorological factors: The proposed method relies on the temporal continuity and spatial consistency for daily soil310

moisture gap-filling. Nevertheless, if the unusual meteorologic occurs in single day such as precipitation and snowfall, it may

disturb above assumption and influence the reconstructing effects. This uncertainty can be noticed in time-series validation,

especially for the rainy season. Although we fuse the daily precipitation products into the proposed model in SGD-SM 2.0, it

still cannot adequately reflect the emergency meteorological factors such as brief precipitation.

3) The generalization of proposed reconstructing model: In this work, we train the proposed LSTM-CNN model through315

selecting complete soil moisture patches all over the world. In addition, the simulated masks are also chosen from the daily

soil moisture products. However, it still exists the differences between the training data and testing data, such as land covering
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type and mask size. This uncertainty may disturb the generalization of proposed LSTM-CNN model for SGD-SM 2.0, to some

degree.

6 Conclusions320

In this paper, we generate an improved seamless global daily soil moisture (SGD-SM 2.0) dataset from 2002 to 2022.

Compared with previous SGD-SM 1.0, the temporal range of SGD-SM 2.0 is extended to twenty years from 2002 to 2022.

SGD-SM 2.0 fuses the global daily precipitation products with global daily soil moisture products. In addition, SGD-SM 2.0

develops an integrated LSTM-CNN model to fill the gaps and missing regions. In-situ validation and time-series validation

testify the soil moisture time-series of SGD-SM 2.0 products (R: 0.672, RMSE: 0.096, MAE: 0.078). In contrast with SGD-325

SM 1.0, the time-series curves of the improved SGD-SM 2.0 products are consistency with the original daily time-series soil

moisture values.

In our future work (SGD-SM 3.0), we will fuse multi-source data such as global land cover products and land surface tem-

perature into the reconstructed framework. More spatio-temporal model will be exploited to generate the prospective products.

In addition, we will introduce the outlier filtering strategy, to exclude these initial SM exception information (above 80 Vol.%).330

Identifying outliers by comparing the SM data product with the porosity information from the global soil database SoilGrid

will also be utilized in SGD-SM 3.0.

Data availability. The proposed SGD-SM 2.0 dataset could be acquired at https://doi.org/10.5281/zenodo.6041561 (Zhang et al., 2022).
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