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Abstract 23 

Accurate long-term temperature and precipitation estimates at high spatial and temporal resolutions 24 

are vital for a wide variety of climatological studies. We have produced a new, publicly available, 25 

daily, gridded maximum temperature, minimum temperature, and precipitation dataset for China 26 

with a high spatial resolution of 1 km and over a long-term period (1961 to 2019). It has been named 27 

the HRLT and the dataset is publicly available at https://doi.org/10.1594/PANGAEA.941329 (Qin 28 

and Zhang, 2022). In this study, the daily gridded data were interpolated using comprehensive 29 

statistical analyses, which included machine learning methods, the generalized additive model, and 30 

thin plate splines. It was based on the 0.5° × 0.5° gridded dataset from the China Meteorological 31 

Administration, together with covariates for elevation, aspect, slope, topographic wetness index, 32 

latitude, and longitude. The accuracy of the HRLT daily dataset was assessed using observation data 33 

from meteorological stations across China. The maximum and minimum temperature estimates 34 

were more accurate than the precipitation estimates. For maximum temperature, the mean absolute 35 

error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient (Cor), coefficient 36 

of determination after adjustment (R2), and Nash-Sutcliffe modeling efficiency (NSE) were 1.07 ℃, 37 

1.62 ℃, 0.99, 0.98, and 0.98, respectively. For minimum temperature, the MAE, RMSE, Cor, R2, 38 

and NSE were 1.08 ℃, 1.53 ℃, 0.99, 0.99, and 0.99, respectively. For precipitation, the MAE, 39 

RMSE, Cor, R2, and NSE were 1.30 mm, 4.78 mm, 0.84, 0.71, and 0.70, respectively. The accuracy 40 

of the HRLT was compared to those of the other three existing datasets and its accuracy was either 41 

greater than the others, especially for precipitation, or comparable in accuracy, but with higher 42 

spatial resolution or over a longer time period. In summary, the HRLT dataset, which has a high 43 

spatial resolution, covers a longer period of time and has reliable accuracy.  44 
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1 Introduction 45 

Climate change has led to an increase in the frequency and severity of extreme temperature 46 

and precipitation events (Myhre et al., 2019), and these events have affected vegetation growth (Xu 47 

et al., 2019), especially crop growth (Rao et al., 2015; Li et al., 2019b; Lu et al., 2018; Lobell et al., 48 

2011; Lesk et al., 2016). Thus, long-term and accurate daily maximum temperature, minimum 49 

temperature, and precipitation data are important when attempting to reveal the mechanism 50 

underlying the effects of extreme climate on plants, predicting disasters (such as drought, frost, and 51 

floods), and for agricultural and forestry management. Although the meteorological observation 52 

network makes better use of the data from meteorological stations (Merino et al., 2014; Yang et al., 53 

2014), there is a tradeoff between large spatial scale and the high density of stations in the 54 

meteorological observation network. Moreover, the installation and maintenance of meteorological 55 

stations are challenging in harsh areas (Hartl et al., 2020). Daily and gridded meteorological datasets 56 

are also essential inputs for many models related to terrestrial, hydrological, and ecological systems 57 

(Iizumi et al., 2017; Wang et al., 2018; Zhang et al., 2018; Lee et al., 2019). High-resolution, long-58 

term, and accurate gridded datasets can help improve the performance of these models. 59 

Researchers have previously used interpolation methods, such as inverse distance weighting, 60 

kriging, and regression analysis, to produce gridded meteorological data (Brinckmann et al., 2016; 61 

Herrera et al., 2019; Schamm et al., 2014). However, the accuracy of these interpolation results is 62 

limited by the density of the meteorological stations. In recent years, artificial intelligence, machine 63 

learning methods, such as random forest (Chen et al., 2021; Sekulić et al., 2021); artificial neural 64 

networks (Sadeghi et al., 2021), and support vector machines (He et al., 2021) have been gradually 65 
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and widely applied to meteorological data estimation. Therefore, comprehensive statistical analyses 66 

using machine learning and traditional interpolation, such as thin-plate-smoothing splines, are 67 

feasible and reliable methods that can be used to estimate meteorological data. 68 

At present, only a few research institutes in China are developing meteorological datasets for 69 

temperature and precipitation with high spatial and temporal resolutions. Among them, Beijing 70 

Normal University has produced meteorological datasets for 1958–2010 with a resolution of 1 km, 71 

but the latest data is not available (Li et al., 2014). The China Meteorological Administration is also 72 

developing the CMA Land Data Assimilation System product (Shi et al., 2011) and Tsinghua 73 

University has published a driving dataset from 1979 to 2018 with a resolution of 0.1° over China 74 

(He et al., 2020). 75 

We present a new high-resolution daily gridded maximum temperature, minimum temperature, 76 

and precipitation dataset for China (HRLT) with a spatial resolution of 1 × 1 km for the period 1961 77 

to 2019. We created the HRLT dataset using comprehensive statistical analyses, which included 78 

machine learning, the generalized additive model and thin plate splines. It uses the 0.5° × 0.5° 79 

gridded dataset from the China Meteorological Administration (CMA) as input data together with 80 

other covariates, including elevation, aspect, slope, topographic wetness index (TWI), latitude, and 81 

longitude. The dataset was created in three steps: (1) preparation of input data and covariates; (2) 82 

the creation of the gridded dataset using comprehensive statistical analyses; and (3) an evaluation 83 

of the accuracy of the gridded dataset and accuracy comparison with other three exiting products 84 

that use meteorological station data. 85 
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2 Data 86 

2.1 The CMA dataset and meteorological stations data 87 

The CMA dataset, which includes the daily surface temperature 0.5° × 0.5° gridded dataset and 88 

the daily precipitation 0.5° × 0.5° gridded dataset for China (V2.0) (https://data.cma.cn/, last access: 89 

15 September, 2022), was obtained from the China Meteorological Data Service Centre and was 90 

used as the basic input data. The researchers also reported daily precipitation 0.5° × 0.5° gridded 91 

dataset during 1961-2010 from CAM dataset (Zhao and Zhu, 2015). The daily dataset of surface 92 

climatological data for China (V3.0) (https://data.cma.cn/, last access: 15 September, 2022), which 93 

includes 699 meteorological stations, was also obtained from the China Meteorological Data Service 94 

Centre and was used to evaluate the new dataset (Fig. 1). 95 

2.2 Topographic data 96 

The basic topographic data, including elevation, flow direction, and flow accumulation with a 97 

30 second (approximately 1 km) resolution, were obtained from the HydroSHEDS database. More 98 

detailed information can be found at these links: http://www.worldwildlife.org/hydrosheds (last 99 

access: 15 September, 2022) for general information and http://hydrosheds.cr.usgs.gov (last 100 

access: 15 September, 2022) for data download and technical information. The “Aspect” and 101 

“Slope” option of the Spatial Analyst Tools in ArcGIS10.6 were used to calculate aspect and slope. 102 

The specific catchment area (SCA) was calculated based on flow direction and flow accumulation. 103 

The TWI is formulated as follow: 104 

 TWI = 𝑙𝑛(
SCA

tan(Slope)
) (1) 

where TWI and SCA is topographic wetness index and specific catchment area, respectively.  105 

http://www.worldwildlife.org/hydrosheds
http://hydrosheds.cr.usgs.gov/
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2.3 Other datasets 106 

We used observed data from meteorological stations (Fig. 1) to evaluate our dataset and the 107 

existing three daily datasets, then the accuracy of the existing three daily datasets was compared to 108 

that of our dataset, respectively. The China Meteorological Administration Land Data 109 

Assimilation System (CLDAS) version 2 dataset was provided by the China Meteorological Data 110 

Service Centre (https://data.cma.cn/, last access: 15 September, 2022) for 2017 to 2019 with a 111 

0.0625° (approximately 7.5 km) spatial resolution and a 1 day temporal resolution. The China 112 

Meteorological Forcing Dataset (CMFD) (He et al., 2020; Yang and He, 2019) was obtained from 113 

the National Tibetan Plateau Third Pole Environment Data Center (https://data.tpdc.ac.cn/ , last 114 

access: 15 September, 2022) for 1979 to 2018 with a spatial resolution of 0.1° (approximately 12 115 

km) and a temporal resolution of 1 day. The historical dataset relating to the Inter-Sectoral Impact 116 

Model Intercomparison Project (ISIMIP3a) was obtained from the web (https://data.isimip.org/ , 117 

last access: 15 September, 2022) for 1961 to 2016 with a spatial resolution of 0.5° (approximately 118 

60 km) and a temporal resolution of 1 day. The daily maximum temperature, minimum 119 

temperature, and precipitation data in the CLDAS and ISIMIP3a were used for evaluation and 120 

comparison. The daily average temperature and precipitation data from the CMFD was also used 121 

for evaluation and comparison. 122 

3 Methods 123 

3.1 The input data and covariates 124 

In this study, the input data (dependent variable) was the daily 0.5° × 0.5° CMA dataset, which 125 

includes daily maximum temperature, minimum temperature and precipitation. Other covariates 126 

https://data.cma.cn/
https://data.tpdc.ac.cn/
https://data.isimip.org/
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(independent variables) included elevation, aspect, slope, TWI (with a spatial resolution of 1 km), 127 

latitude, and longitude.  128 

3.2 The interpolation scheme 129 

As shown in Figure 2, the different combinations of six algorithms, which are the boosted 130 

regression trees (BRT), random forests (RF), neural networks (NN), multivariate adaptive 131 

regression splines (MAR), support vector machines (SVM) and the generalized additive model 132 

(GAM), to predict the input data. Firstly, through k-fold cross validation (k = 10), the input data was 133 

randomly divided into 10 sub-training datasets and sub-testing datasets. Each algorithm runs in a 134 

loop through all the sub-training sets and calculates the residuals from the sub-testing sets. The 135 

residuals obtained in each loop are retained. The residual of each algorithm is assigned a weight of 136 

0-1 and summed up, and the ensemble of models that has the lowest residual sum is chosen. After 137 

determining the best ensemble of models, surface results were interpolated using the best ensemble 138 

of models, input data and covariates. The thin-plate-smoothing splines (TPS) is used to correct 139 

residual error from the ensemble of models. Therefore, residuals of the ensemble are calculated from 140 

the input data and these values are interpolated using TPS. Surface results from the ensemble add 141 

residuals from the thin-plate-smoothing splines to get the surface result of final model. Compare R2 142 

of surface result from the ensemble and final model, and retain the surface result with higher R2. 143 

3.3 The interpolation methods 144 

The introduction of individual algorithm (method) and the implementations for model training 145 

(R packages and functions) of that is as follows. After the model training, the function ‘predict’ in 146 

R package ‘raster’ used to implemented spatial interpolation for BRT, RF, NN, MAR, SVM and 147 
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GAM model, and the function ‘interpolate’ in R package ‘raster’ used to spatial interpolation for 148 

TPS. More details on R packages and functions could refer the web 149 

(https://www.rdocumentation.org/ , last access: 15 September, 2022). 150 

3.3.1 The BRT model 151 

As a powerful tool for exploratory regression analysis, BRT is a combination of two techniques: 152 

decision trees and boosting method (Elith et al., 2008). The BRT can automatically detect the best 153 

fit and is robust to missing values and outliers, therefore, BRT now widely used in remote sensing, 154 

species distribution and meteorological interpolation (Pouteau et al., 2011; Appelhans et al., 2015; 155 

Froeschke and Froeschke, 2011). There are two important parameters in BRT, (1) the tree 156 

complexity (TC): this controls the number of splits in each tree. (2) learning rate (LR): this 157 

determines the contribution of each tree to the growth model. The smaller value of LR, the more 158 

trees will be built. These two parameters together determine the number of trees required for the 159 

best prediction in order to find the combination of parameters that leads to the least prediction error. 160 

The function ‘gbm.step’ in R package ‘dismo’ for the BRT implementation. The tree complexity 161 

was set at 5, the learning rate was set at 0.001. In addition, the ‘bag.fraction’, which specifies the 162 

proportion of data to be selected at each step, was set at 0.5 and other parameters are default values 163 

in ‘gbm.step’. 164 

3.3.2 The RF model 165 

Like BRT, the main technology of RF also includes decision trees, however, the way in which 166 

the data to build the trees is selected is different (boosting method for BRT, bagging method for RF). 167 

For regression analysis, the bagging method, which take a random subset of all data for each new 168 

tree that is built, makes the final output based on average of multiple trees (Breiman, 2001). As one 169 

https://www.rdocumentation.org/
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of the most accurate algorithms, RF has been used widely for predicting spatio-temporal variables, 170 

such as temperature and precipitation (He et al., 2016; Mital et al., 2020; Webb et al., 2016). The 171 

function ‘randomForest’ in R package ‘randomForest’ for the RF implementation. The importance 172 

was set TRUE, and other parameters are default values in ‘randomForest’. 173 

3.3.3 The NN model 174 

As a powerful set of tools for solving problems in pattern recognition, data processing, and 175 

non-linear control (Bishop, 1994), the NN consists of a large number of nodes and connections and 176 

it includes input layer, hidden layer and output layer (Lek and Guégan, 1999). Information from 177 

each node in the input layer is fed to the hidden layer. Connections between input layer nodes and 178 

hidden layer nodes can all be given specific weights according to their importance. The connection 179 

between the hidden layer and the output layer is also weighted, so the output is the result of the 180 

weighted sum of the hidden nodes. Information transfer between hidden layer and output layer 181 

through transfer function. Since the 1980s, the NN has been used in a number of fields, such as 182 

prediction for meteorological variables (Snell et al., 2000; Lek and Guégan, 1999; Tang et al., 2020). 183 

The function ‘nnet’ in R package ‘nnet’ for the NN implementation. The number of units in the 184 

hidden layer (size) was set 10, the transfer function is linear for the output layer (linout was set 185 

TRUE), the maximum number of iterations (maxit) was set 10000, and other parameters are default 186 

values in ‘nnet’. 187 

3.3.4 The MAR model 188 

The MAR is an extension of linear model, which can build multiple linear regression models 189 

within the range of predictive variable values by partitioning data (Friedman, 1991; Friedman and 190 

Roosen, 1995). The MAR consists of two steps: firstly, it creates a set of so-called basis functions. 191 
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In this process, the range of predictive variable values is divided into several groups. For each group, 192 

separate linear regression was modeled. Secondly, MAR estimates a least square model with its 193 

basis function as the independent variable. Overfitting is avoided by iterating to remove the basis 194 

functions that contribute least to the model fitting. The MAR works well with a large number of 195 

predictor variables, automatically detects interactions between variables and is robust to outliers, 196 

therefore, studies has done on downscaling or predicting meteorological data using MAR (Panda et 197 

al., 2022; Li et al., 2019a; Zawadzka et al., 2020). The function ‘earth’ in R package ‘earth’ for the 198 

MAR implementation. Use linear model to estimate standard deviation as a function of the predicted 199 

response (varmod.method = ‘lm’). The nfold was set 10, the ncross was set 30, and other parameters 200 

are default values in ‘earth’. 201 

3.3.5 The SVM model 202 

The SVM is also one of the machine learning supervised algorithms and mainly deals with the 203 

ideas of classification and regression (Vapnik, 1999; Vapnik, 1991; Brereton and Lloyd, 2010). The 204 

SVM is well supported by mathematical theory and can use kernel tricks to efficiently process non-205 

linear data. With the development of SVM, it also has been widely used in the regression and 206 

prediction of meteorological variables (Belaid and Mellit, 2016; Chen et al., 2010; Tripathi et al., 207 

2006). In this study, the function ‘ksvm’ in R package ‘kernlab’ for the SVM implementation and 208 

all parameters are default values in ‘ksvm’.  209 

3.3.6 The GAM model 210 

The GAM is an extension of the generalized linear model (GLM). Like GLM, GAM consists 211 

of three important components: the probability distribution of the dependent variable, the linear 212 

predictor and the link function, however, in GAM, the coefficient of the independent variable in the 213 
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linear is replaced by a sum of smooth functions (Hastie and Tibshirani, 2017; Liu, 2008). Because 214 

the GAM can deal with nonlinear and non-monotone relationships between dependent and 215 

independent variables, it has been used to predict and interpolate meteorological data (Hjort et al., 216 

2016; Burnett and Anderson, 2019; Aalto et al., 2013). The function ‘gam’ in R package ‘mgcv’ for 217 

the GAM implementation and all parameters are default values in ‘gam’.  218 

3.3.7 The TPS method 219 

As a traditional interpolation method, the TPS has been widely used to spatially interpolate 220 

surface climate data (Gong et al., 2022; Hancock and Hutchinson, 2006; Risk and James, 2022). In 221 

this study, it used to correct residual error from the ensemble of models. The function ‘Tps’ in R 222 

package ‘fields’ for the TPS implementation. The matrix of independent variables consists latitude 223 

and longitude, the vector of dependent variables is residual error in the combinations of above 224 

algorithms, and other parameters are default values in ‘Tps’. 225 

3.4 The interpolation implementation 226 

A complete operation was constructed per day per variable, so there were 64647 operations 227 

(21549 days × 3 variables) from January 1, 1961 to December 31, 2019 for maximum temperature, 228 

minimum temperature and precipitation. A complete operation for a day per variable requires a 229 

Central Processing Unit core, 18 G of operating memory, and 2 hours of time. In order to shorten 230 

the running time, we carried out parallel computing on a supercomputer platform. Spatial 231 

interpolation work was executed by R version 4.0.2 (R Core Team, 2018) and the R package 232 

"machisplin" (Brown, 2019) was referenced to achieve it. 233 
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3.5 Evaluation metrics  234 

The mean absolute error (MAE), root mean square error (RMSE), Pearson’s correlation 235 

coefficient (Cor), coefficient of determination after adjustment (R2), and Nash-Sutcliffe modeling 236 

efficiency (NSE) were used to evaluate the interpolation results. Pearson’s correlation coefficient 237 

was used to evaluate the correlation between the simulated and observed values and the other 238 

metrics are defined separately as follows: 239 

 
𝑀𝐴𝐸 =

1

𝑛
∑ | 𝑆𝑖 − 𝑂𝑖|
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2𝑛
𝑖=1

∑ ( 𝑂𝑖 − �̅� )2𝑛
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 (5) 

where 𝑆𝑖  and 𝑂𝑖  are the model predicted and the experimentally observed values, respectively; 240 

�̅� is the mean of the observed values; 𝑛 is the number of observations; and 𝑘 is the value of the 241 

independent variable. High Cor, R2, and NSE values, and small RMSE and MAE values indicate 242 

the strength of agreement between the predicted and observed values. 243 

4 Results and discussion 244 

4.1 Validation of temperature and precipitation 245 

The spatial interpolation results, including daily maximum temperature, minimum temperature, 246 

and precipitation, were validated using meteorological station data. The results of the validation 247 
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showed that the daily maximum and minimum temperatures were highly accurate (Fig. 3 and Table 248 

1). The fitting slopes between the simulated and observed values were both close to 1 and the 249 

coefficients of determination after adjustment were 0.98 and 0.99, respectively, for daily maximum 250 

and minimum temperature (Figs. 3a, b). As shown in Table 1, the MAE was 1.07 ℃ and 1.08 ℃, 251 

and the RMSE was 1.62 ℃ and 1.53 ℃ for daily maximum and minimum temperatures, respectively. 252 

In addition, the Cor and NSE values were close to 1 for both the daily maximum and minimum 253 

temperatures. Daily precipitation was less accurate than temperature with an 𝑅2 of 0.71 (Fig. 3c), 254 

which was mainly caused by underestimating high daily precipitation. However, most of the points 255 

were concentrated in the low daily precipitation section. Furthermore, the MAE and RMSE for daily 256 

precipitation were 1.30 mm and 4.78 mm, respectively; the Cor between the simulated and observed 257 

daily precipitation was 0.84, and the NSE was 0.70 (Table 1). 258 

The interpolation accuracy shows spatial differences (Fig. 4). The 𝑅2  values of the daily 259 

maximum and minimum temperatures in southwest China were less than 0.94 and lower than those 260 

for other regions (Figs. 4a, c). The mean absolute errors for the daily maximum and minimum 261 

temperature ranges at most meteorological stations were less than 1 ℃. However, there were some 262 

meteorological stations with mean absolute errors of more than 2 ℃ and these were evenly 263 

distributed across China (Figs. 4b, d). The R2 value for daily precipitation at most meteorological 264 

stations was greater than 0.7 and the MAE decreased from south to north across China (Figs. 4e, f). 265 

For precipitation where the R2  map (Fig. 4e) shows a west-east gradient in the scores that is 266 

different from the north-south gradient in the MAE map (Fig. 4f). There are fewer meteorological 267 

observation stations in the western region than in the eastern region, which may lead to the subtle 268 
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east-west gradient of the R2 value for daily precipitation. The obvious north-south gradient for 269 

MAE of daily precipitation could be caused by the rainfall frequency (Fig. 4f, Fig. 5), the MAE of 270 

monthly precipitation in China from other study showed a similar pattern (Peng et al., 2019). 271 

Rainfall frequency above light rainfall, which is defined as a daily rainfall from 0 to 4 mm (Alpert et 272 

al., 2002), is strongly correlated with the MAE of daily precipitation (illustration in Fig. 5), so that 273 

the MAE of daily precipitation in the southern region with higher rainfall frequency is larger than 274 

that in the northern region with lower rainfall frequency. 275 

The meteorological stations were divided into the middle and lower reaches of the Yangtze 276 

River (MLYR), North China (NC), Northeast China (NEC), Northwest China (NWC), South China 277 

(SC), and Southwest China (SWC) (Fig. 1) according to their diverse geographic and climatic 278 

conditions and administrative areas (Qin, et al., 2022). The cumulative distribution functions curve 279 

trend of difference between the simulated and observed values was always similar for daily 280 

maximum temperature, minimum temperature, and precipitation in the six regions, as well as in 281 

whole China. The daily maximum and minimum temperatures were all underestimated in the MLYR, 282 

NEC, NWC, SC, and SWC (Fig. 6a). The daily minimum temperatures were all underestimated in 283 

the MLYR, NC, NWC, SC, and SWC (Fig. 6b). For both daily maximum and minimum 284 

temperatures, the lowest average difference between the simulated and observed values occurred in 285 

NC and NEC, while the greatest difference occurred in SWC (Figs. 6a,b). Except in the NWC region, 286 

the average difference between simulated and observed values for daily precipitation was less than 287 

0 mm in the other regions (Fig. 6c). The largest averages difference between simulated and observed 288 

for daily precipitation occurred in the SC region, with a value of 0.49 mm (Fig. 6c). Across whole 289 
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China, the average difference between simulated and observed values for daily maximum 290 

temperature, minimum temperature, and precipitation was 0.36 ℃, 0.30 ℃ and 0.12 mm, 291 

respectively. 292 

4.2 Temporal and spatial distributions of temperature and precipitation 293 

The results showed that detailed spatial changes in temperature and precipitation over time 294 

could be obtained (Fig. 7). For example, the increase in annual average values (both maximum 295 

temperature and minimum temperature) were obvious over the Tibetan Plateau from 1965 to 2010 296 

(Figs. 7a–h, the d1 and h1 subregions). In addition, compared with other years, the annual average 297 

daily minimum temperature clearly increased in some areas of NWC (Figs. 7e–h, the h2 and h3 298 

subregions) and MLYR (Figs. 7e–h, the h4 subregion) in 2010. The most significant annual 299 

precipitation changes occurred in NEC (Figs. 7i–l, the l1 subregion) between 1965 and 2010.  300 

The distributions of annual average daily maximum and minimum temperatures and annual 301 

precipitation across the six regions of China in 1965, 1980, 1995, and 2010 were analyzed (Fig. 8). 302 

Compared with other years, the areas with smaller values for annual average daily maximum 303 

temperature (less than 0) and annual average daily minimum temperature (less than −10) in SWC 304 

and NWC decreased in 2010 (Figs. 8a1, 8a2, 8b1, 8b2). These areas are mainly distributed on the 305 

Qinghai-Tibet Plateau, which has seen a large increase in temperature over the past few decades. 306 

The density distribution peak for the annual average daily maximum and minimum temperatures in 307 

NEC moved to the right from 1965 to 1995, but moved to the left in 2010 (Figs. 8a3, 8b3). The 308 

mean annual average daily minimum temperature in 2010 was higher in the MLYR, NC, and SC 309 

than in the other three years (Figs. 8b4–6). There was an increase in mean annual precipitation in 310 
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the northern part of China over the period 1965–2010 (Figs. 8c2–4). It increased from 335 mm to 311 

415 mm across NWC (Fig. 8c2), from 487 mm to 593 mm across NEC (Fig. 8c3), and from 531 312 

mm to 654 mm across NC (Fig. 8c4). In the MLYR, there were more areas with annual precipitation 313 

of less than 1000 mm, and areas with an annual precipitation of more than 2000 mm increased in 314 

1995 and 2010 compared 1965 and 1980 (Fig. 8c5). Similarly, compared with other years, there 315 

were more areas with annual precipitation of less than 1000 mm and more than 2000 mm in SC in 316 

2010 (Fig. 8c6). 317 

4.3 Accuracy comparison with other products 318 

 The performances of the CMFD, CLDAS and ISIMIP3a generated daily temperatures and 319 

precipitations were evaluated against observations from all the meteorological stations and 320 

compared their performance with that of our dataset (Figs. 9–11; Tables 2–4). The fitting slopes 321 

between the simulated and observed daily temperature values were always close to 1 for all datasets 322 

(Figs. 9a–c; Figs. 10a–d; Figs. 11a–d). The R2  for the CMFD daily average temperature was 323 

slightly smaller than that for daily minimum temperature in our dataset (Figs. 9b, c), but was equal 324 

to our data set for daily maximum temperature (Figs. 9a, c). The Cor and NSE for the CMFD daily 325 

average temperature were also similar to our estimated daily maximum and minimum temperatures 326 

(Table 2). By contrast, the MAE and RMSE for the CMFD daily average temperature were 1.12 ℃ 327 

and 1.64 ℃, respectively, which were greater than for our estimated daily maximum and minimum 328 

temperatures (Table 2). The MAEs of daily maximum and minimum temperature for our dataset 329 

were 1.07 ℃ and 1.08 ℃ respectively; and the RMSEs of daily maximum and minimum 330 

temperature for our dataset were 1.63 ℃ and 1.54 ℃, respectively, between 1979 and 2018 (Table 331 
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2). The R2, Cor, NSE, MAE, and RMSE for the CLDAS daily maximum temperatures were 0.91, 332 

0.95, 0.90, 2.54 ℃, and 3.63 ℃, respectively. Accuracy clearly improved for our daily maximum 333 

temperature, and the corresponding metrics were 0.98, 0.99, 0.98, 1.10 ℃, and 1.73 ℃ (Figs. 10a, 334 

b; Table 3). The MAE and RMSE for the CLDAS daily minimum temperature were clearly higher 335 

than our estimates for daily minimum temperature, and the R2, Cor, and NSE for daily minimum 336 

temperature in our dataset were higher than those for the CLDAS daily minimum temperature (Figs. 337 

10c, d; Table 3), thus indicating that the accuracy of our daily minimum temperature estimates was 338 

superior to that of the CLDAS daily minimum temperature product. Compared with the ISIMIP3a, 339 

the R2, Cor, and NSE of daily maximum and minimum temperature in our dataset are always higher 340 

and the MAE and RMSE of these are always smaller (Figs. 11 a–d; Table 4). 341 

The R2 value for our estimated daily precipitation clearly improved compared to the other 342 

three datasets, especially the ISIMIP3a and CLDAS dataset (Figs. 9d, e; Figs. 10e, f; Figs. 11e, f). 343 

The Cor and NSE for the CMFD daily precipitation were obviously smaller than those for our 344 

dataset, and the RMSE for CMFD daily precipitation were greater than those for our dataset (Table 345 

2). During 2017–2019, the Cor, NSE, MAE, and RMSE for our estimated daily precipitation were 346 

0.84, 0.70, 1.42 mm, and 4.93 mm, respectively, and the corresponding values for the CLDAS daily 347 

precipitation changed to 0.58, 0.28, 2.36 mm, and 7.67 mm, respectively (Table 3). During 1961–348 

2016, the Cor, NSE, MAE, and RMSE for our estimated daily precipitation were 0.84, 0.70, 1.30 349 

mm, and 4.78 mm, respectively, and the corresponding values for the ISIMIP3a daily precipitation 350 

changed to 0.48, 0.14, 2.75 mm, and 8.10 mm, respectively (Table 4). Thus, the daily precipitation 351 

accuracy of our dataset was generally higher than that of CMFD, CLDAS and ISIMIP3a. 352 
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5 Data availability 353 

The HRLT dataset includes daily maximum temperature, minimum temperature, and 354 

precipitation at a 1 km spatial resolution across China from January 1961 to December 2019. The 355 

datasets are publicly available in NetCDF format at https://doi.org/10.1594/PANGAEA.941329 356 

(Qin and Zhang, 2022). 357 

6 Conclusions  358 

The result of this study is a high-resolution (1 km) daily gridded maximum temperature, 359 

minimum temperature and precipitation dataset across China for the long-term (1961–2019) 360 

(HRLT). The HRLT dataset shows an overall high correlation with the observations from 361 

meteorological stations for daily maximum and minimum temperatures (R2 was 0.98 and 0.99, 362 

respectively; Cor were both 0.99; NSE was 0.98 and 0.99, respectively) and the errors were smaller 363 

(MAE was 1.07 ℃ and 1.08 ℃, respectively; RMSE was 1.62 ℃ and 1.53 ℃, respectively). 364 

Although the HRLT dataset showed that the daily precipitation accuracy was lower than the daily 365 

temperature accuracy (R2, Cor, NSE, MAE, and RMSE were 0.71, 0.84, 0.70, 1.30 mm, and 4.78 366 

mm, respectively), the daily precipitation data in the HRLT dataset were more accurate and had a 367 

finer spatial resolution compared to the other three existing datasets (CMFD, CLDAS and 368 

ISIMIP3a). Furthermore, the accuracies for daily maximum and minimum temperatures and 369 

precipitation were lower in the southwestern part of China, probably because of the complex 370 

topography in that area compared to other areas. Calculation and interpolation by subregions may 371 

solve this problem in future studies. The use of satellite data as an input covariate in future studies 372 

will further improve the accuracy of the HRLT dataset, especially for precipitation. The HRLT 373 
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dataset will help identify future extreme climatic events and can be also used to improve process-374 

based models for prediction, adaptation, and mitigation strategies. 375 
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Table 1 Summary of the accuracies for the HRLT datasets using data from the meteorological 

stations  

Variable MAE RMSE Cor NSE N Period 

Maximum temperature (℃) 1.07  1.62  0.99  0.98  14731830  1961–2019 

Minimum temperature (℃) 1.08  1.53  0.99  0.99  14730410  1961–2019 

Precipitation (mm)  1.30  4.78  0.84  0.70  14730380  1961–2019 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.   
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Table 2 Comparison of accuracies for the HRLT and CMFD datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 
HRLT 1.07  1.63  0.99  0.98  9969602  1979–2018 

Minimum 

temperature (℃) 
HRLT 1.08  1.54  0.99  0.99  9969602  1979–2018 

Average 

temperature (℃) 
CMFD 1.12  1.64  0.99  0.98  9969602  1979–2018 

Precipitation (mm) 
HRLT 1.30  4.73  0.84  0.71  9968784  1979–2018 

CMFD 1.30  5.85  0.75  0.55  9968784  1979–2018 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.  
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Table 3 Comparison of accuracies for the HRLT and the CLDAS datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 

HRLT 1.10  1.73  0.99  0.98  686653  2017–2019 

CLDAS 2.54  3.63  0.95  0.90  686653  2017–2019 
        

Minimum 

temperature (℃) 

HRLT 1.14  1.65  0.99  0.98  686653  2017–2019 

CLDAS 1.58  2.63  0.98  0.95  686653  2017–2019 
        

Precipitation 

(mm) 

HRLT 1.42  4.93  0.84  0.70  685936  2017–2019 

CLDAS 2.36  7.67  0.58  0.28  685936  2017–2019 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data.  
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Table 4 Comparison of accuracies for the HRLT and the ISIMP3a datasets using data from the 

meteorological stations  

Variable Dataset MAE RMSE Cor NSE N Period 

Maximum 

temperature (℃) 

HRLT 1.06  1.61  0.99  0.98  13973110  1961–2016 

ISIMP3a 2.47  3.47  0.96  0.91  13973110  1961–2016 
        

Minimum 

temperature (℃) 

HRLT 1.07  1.52  0.99  0.99  13971690  1961–2016 

ISIMP3a 2.63  3.60  0.96  0.92  13971690  1961–2016 
        

Precipitation 

(mm) 

HRLT 1.30  4.78  0.84  0.70  13971680  1961–2016 

ISIMP3a 2.75  8.10  0.48  0.14  13971680  1961–2016 

MAE, RMSE, Cor, and NSE are the mean absolute error, root mean square error, Pearson’s 

correlation coefficient, and Nash-Sutcliffe modeling efficiency, respectively. N is the number 

of observations and Period is the beginning to end years of the data. 
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Figure 1. Regions and spatial distribution of the meteorological stations in China. 

MLYR, NC, NEC, NWC, SC, and SWC are the Middle and Lower reaches of the 

Yangtze River, North China, Northeast China, Northwest China, South China, and 

Southwest China, respectively. Note: meteorological stations data were missing for 

Taiwan Province. 
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Figure 2. The process of spatial interpolation. The r1 to r6 are the residual error from 

each algorithm, respectively. The w1 to w6 are the weights of each algorithm, 

respectively. BRT, RF, NN, MAR, SVR, GAM and TPS are the boosted regression 

trees, random forests, neural networks, multivariate adaptive regression splines, 

support vector machines, the generalized additive model and thin-plate-smoothing 

splines, respectively. R2 is the coefficient of determination between the estimated and 

observed values. The TWI is topographic wetness index. 
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Figure 3. Scatter density plots of daily maximum and minimum temperatures and 

precipitation between estimated and observed values at meteorological stations were 

used to test the HRLT dataset. Dashed line is a line with slope 1 and the red line is a 

fitting between estimated and observed values. R2 is the coefficient of determination 

between the estimated and observed values. *** asterisks indicate that the 

significance of the regression equation between the estimated and observed values 

was p < 0.001.  
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Figure 4. Spatial distribution of R2 and MAE for daily maximum temperature, 

minimum temperature, and precipitation between 1961 and 2019. The value before 

the ± is the R2 or MAE mean value and the value after the ± is the R2 or MAE 

standard deviation for all meteorological stations.  
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Figure 5. The relationship between latitude and MAE of daily precipitation. 

Illustration indicates the relationship between rainfall frequency above light rainfall 

and MAE of daily precipitation. MAE is the mean absolute error, Cor is Pearson’s 

correlation coefficient, Rain frequency is rainfall frequency above light rainfall, which 

is defined as a daily rainfall from 0 to 4 mm (Alpert et al., 2002) 
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Figure 6. Cumulative distribution functions (CDF) of difference between the estimated and observed values for three variables in all 

meteorological stations from 1961 to 2020. µ is the mean and σ is the standard deviation. MLYR, NC, NEC, NWC, SC, and SWC are the Middle 

and Lower reaches of the Yangtze River, North China, Northeast China, Northwest China, South China, and Southwest China, respectively. 
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Figure 7. Spatial distributions of annual average values for daily maximum and 

minimum temperatures, and the spatial distribution of annual precipitation in 1965, 

1980, 1990, and 2010. The ellipse regions are where the change is most visible.  
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Figure 8. Density distributions of annual average values for daily maximum and 

minimum temperatures, and annual precipitation across the different regions in 1965, 

1980, 1990, and 2010. The value in the illustrations is the mean value.   
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Figure 9. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values at all meteorological stations (both training sets and 

testing sets) for the HRLT dataset and the CMFD dataset between 1979 and 2018. The 

dashed line is a line with slope 1 and the red line is a fitting between the estimated and 

observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001.   
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Figure 10. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values from all meteorological stations (both training sets and 

testing sets) for our HRLT dataset and the CLDAS dataset between 2017 and 2019. 

Dashed line is a line with slope 1 and the red line is the fitting between the estimated 

and observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001.
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Figure 11. Scatter density plots of daily temperature and precipitation between the 

estimated and observed values from all meteorological stations (both training sets and 

testing sets) for our HRLT dataset and the ISIMIP3a dataset between 1961 and 2016. 

Dashed line is a line with slope 1 and the red line is the fitting between the estimated 

and observed values. R2 is the coefficient of determination between the estimated and 

observed values. *** asterisks indicate that the significance of the regression equation 

between the estimated and observed values was p < 0.001. 
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