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Abstract.

Farms are not homogeneous. Smaller farms generally have different planted crops, yields, agricultural inputs, and
irrigationsirrigation applications compared to larger farms. MappingHowever, gridded farm--size-couldfacilitate-studies-
specific data—that is moreover crop specific—is currently lacking. This obscures our understanding of differences between
small- and large-scale farms, e.g. with respect to quantify-how-water-availability-and-climate change affeetsmall-andlarge

& adaptation and mitigation strategies, contribution to

local) food security, and water consumption patterns. This study aims-te-develop-a-globalfills a significant part of the current

data gap, by developing high-resolution gridded, simultaneously farm--size- and crop-specific datasets of harvested area—We

ilable-dataset,-which-collected-_for 56 countries (i.e., covering about half the global
cropland). Hereto, we downscaled the most complete global direct measurements en-crop-and-farm-sizeusing-of farm size

and crop type by compiling state-of-the-art datasets, including crop maps, cropland extent maps, and dominant field size

distributions—for-distribution, representative of the year 2010. Uneertainties-in-crop-maps-were-explicitly-considered-by-using

for-half-of the global-eropland.-Based-en-the-Using two different crop maps;—we-havemap sources, we were able to produce

two new S-arcmin gridded; datasets on simultaneously derived farm--size- and crop-specific dataset-ef-harvested areas;: one

for 11 farm sizes, 27 crops, and 2 farming systems, and anether-one for 11 farm sizes, 42 crops, and 4 farming systems. Fhe
downseated-mapsln line with previous findings, our resulting datasets show major differences in planted crops and irrigation
change-along-with-irrigated area (%) between farm sizes;-which-suppeortprevieusfindings—Validations-show-well-consistencies
with-. Consistency between our resulting datasets and i) observations en-farm-size-speeifie-oil-palm-from satellite images; on
farm--size--specific irrigationfromoil palm, ii) household surveys;-and on the farm-size-specific irrigated area (%), and iii)
previous studies that map-farm-size-butare-net-mapped non-crop-specific—We-ebserved farm sizes, support the validity of our
datasets. Although at grid level some uncertainties at-the—grid-celllevel-and—found-conclusionsremain to be overcome
particularly those stemming from uncertainties in crop maps, results at the-country level areseem robust-te-these-uneertainties

code, and dewnsealed-mapsresulting datasets are open-access and freely
available at https://doi.org/10.5281/zenodo.57476+66976249 (Su et al., 2022).

. Source data,
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1 Introduction

There are over 608 million farms around the world-, which highly vary in their characteristics (Lowder et al., 2016; Lowder et

al., 2021). Land-and-waterresources-are-not-equally-distributed-ameng-thesefarms—Mere-For example, more than 80% of
these farms are smaller than 2 hectares and they-enly-utilize only around 20% of global farmland area of 2.5 billion hectares

Bosc et al., 2013; Lowder et al., 2021;Bese—et-al;—2013)—The-). In contrast, the largest ene—pereent]% of the farms
wtitizeoccupy 70% of global farmland area (Lowder et al., 2021). Smaller farms alse-insufficientlytypically apply less irrigation

to-adapt-to-waterseareity-in low- and middle-income countries-, making them more vulnerable to water scarcity than larger
farms (Ricciardi et al., 2020).

5

2 s-of In terms of crops and mindful of national differences, smaller farms tend to plant

more fruits, pulses, and roots and tubers, while larger farms plant more vegetables, nuts, and oil crops (Rieciardi-et-al-2018b;
Herrero et al., 20173- s-ofagric cticesus Hereas i F ctivity—: Ricciardi et al., 2018a, b).

Furthermore, farmers who operate smaller farms tend to increase the use of non-fixed inputs;- to increase their productivity

such as fertilizers and pesticides, whilewhereas larger farms tend-torather increase fixed inputs; such as machinery (Ren et al.,
2019). SmallerWhether smaller farms also have-a-greaterbiodiversity-on-average(Rieeciardi-et-al;-generate202-Neaeket-al;

2021 Though-whether-smallerfarms—have—a higher yields has long been debated, although it appears that yields often
eerrelatescorrelate positively with farm size (see Rudra (1968); Savastano and Scandizzo (2017); Gollin (2019); Ricciardi et

al. (2021)). What seems undisputed, however, is that smaller farms on average display greater biodiversity than their larger
counterparts (Ricciardi et al., 2021; Noack et al., 2021).202H)-

TFhese-abeve-mentionedSince characteristics stimulatevary widely between farms, many studies to-explieithy-set out to map
the differences, particularly along the dimension of their size to discern small- and large--scale farms in-agricutture studies-and
map-farm-sizes(Meyfreidt; 2017:~(Riesgo et al., 2016, Meyfroidt, 2017). At the global level, farm size mapping farm-sizes
ean-be-traced-back to-the-studies-of was pioneered by Lowder et al. (2016), Samberg et al. (2016), and Fritz et al. (2015).

Lowder et al. (2016) estimated the country--level distribution of farm size, based on multiple agricultural censuses. Samberg
et al. (2016) used the Mean Agricultural Area (MAA) to assign each subnationalsub-national administrative unit with a farm
size. ThisA limitation of this approach is that it may overestimate the area of small farms-becausenotall-farmsare smalleven
i they-are, since being located in thean administrative unit dominated by small farms does not necessarily mean that all farms
within that unit are indeed small (Ricciardi et al., 2648b2018a. b). Fritz et al. (2015) develepedmapped a gridded global

dominant field size mapdistribution, using manually labeled field size data on the-satellite images and spatial interpolation.

The dominant field size mapdistribution by Fritz et al. (2015) was updated by Lesiv et al. (2019). WhenA consequence of

interpreting fields as farms, thehowever, is that small farm area-will-alsearcas may be overestimated-as, since large farms can

include small-sized fields- as well.
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Further developments ensued through Herrero et al. (20173), who used the country—level farm size data from Lowder et al.

(2016) and Fritz et al. (2015) to develop a dominant farm size map-whieh-. This map, in turn, was later-updated by Mehrabi et
al. (2020) using the field size mapdistribution from Lesiv et al. (2019). Given-that dominant farm size-onkyHowever, despite

estimpate5 x 5 arcmin), which reduces its usefulness in estimating the number and area distribution of different farm sizes.

Ta-Another important shortcoming in previous studies; is that current farm size mapping-ismaps are not crop- specific. One

wayA potential solution to estimateing the planted crops for different farm sizes is to overlap the farm size map with crop
maps, e.g-Monfreda-et-al(2008)-in-. Samberg et al. (2016)-and Mehrabi-et-al(2020); Ray-et-al.(2013)-in), Herrero et al.
(2017y—Overlays—with—erop—maps), and Mehrabi et al. (2020). Yet still, such overlays may lead to biases in the
allocationassigning of crop-specific eropping-areas to farm sizes-(Riceiardi-et-al5—2018b);, because of differences between

farm size and MAA, field sizes, and dominant farm sizes, and potentially also due to possible structural differences in crop
choices between farm sizes-

One-way-to-aveid-such-biasesis-to-develop-asimultaneousty (Ricciardi et al., 2018a, b). In order to address these limitations
farm--size- and crop-specific map-datasets would need to be developed simultaneously, which is what Ricciardi et al. (2018b):
Rieciardi-et-al—(2018a)-established-an, b) attempted. Arguably the most complete empirical global database-usingdataset to

day, they collated data from agriculture censuses and household surveys that directly measured crop production or areas in

combination with farm size. Theisr dataset covers about half of the global cropland, including data for 56 countries'—, with

subnational data for 46 countries. Ri

of the data. This resolution gap limits the capability to fulfill the needs of glebale.g. climate-change, agricultural and water

resources-studies;-where-the-hydrological medel-and-elimate-models which commonly use-grided-maps-need gridded data as
input—Eacking gridded-farm-size—and-erop-speeifie maps-timitstheevaluations-of how water seareity-and-elima hange

affeet, which, in turn, obscures our understanding of differences between small- and large-scale farms, respeetivelye.g. with
respect to climate change adaptation and mitigation strategies, contribution to local food security, and water consumption

patterns.

This study aims—te—developfills a globalsignificant part of the current data gap, by developing high-resolution gridded,
simultaneously farm--size- and crop-specific datasets of harvested areas-witharea for 56 countries, representative of the year
2010. The datasets, moreover, provide additional information on farming systems. Censidering—the-data—availabilitythe
baseline-year-is2010-with-datacovering S6-countries—We-compiled-multiple-datasets-To obtain the datasets, we developed

and applied a downscaling procedure, in which we used state-of-the-art datasets on field size and crop type, including crop

1 In-theirTheir paper;-they-claim-to-have states data is available for 55 countries—1ta, but the associated dataset they-published;
#actually contains the-56th-eountry;the-56 (Czech Republic: seems to be added).
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maps (Yu et al., 2020; FAO and ITASA, 2021; Fischer et al., 2021), cropland extent; (Latham et al., 2014; Lu et al., 2020), and
110 dominant field size distribution;—as—well-as—erop-distribution—and-farming systems—and-used-them (Lesiv et al., 2019), to
downscale the most complete empirical global farm--size- and crop-specific datasets—developeddataset by Ricciardi et al.
{2018b); Riceiardietal(2018a);, b) from the level ef administrative unitsintounit to a 5 arcmin grid-eel-evel-We-alsogridded
spatial resolution. Two crop maps were used to explicitly eonsidered-the-consider uncertainties in crop distributions-by-using
two-erop-maps—Fhe-. We validated our resulting dewnsealed-maps—were—validated-with-datasets using empirical data and

115  comparedisons with previous studies.

2 Methods

2.1 Overview
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The gridded. simultaneously farm-size- and crop-specific dataset of harvested areas can be achieved by downscaling the

administrative unit level crop-specific farm size structure using gridded crop distribution and gridded dominant field size

distribution (Fig. 1). Since certain crops are more prevalent on small farms and others on larger farms as indicated by crop-

specific farm size structure, the gridded crop distribution primarily indicate where small and large farms are located. Gridded

dominant field size distribution further helps specify the location of small and large farms because, by definition, large fields

only belong to large farms and small farms can only be located in small fields. We assumed the best estimation of the farm-

size- and crop-specific harvested area distribution is the one that maximizes consistencies with the underlying administrative

unit farm-size and grid cell level data.
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The datasetFig +-Diagram-of-map-develop +p:

Fhemap development involved pre-processing of multiple datasets, establishing optimization for downscaling, and constraints
relaxation and solving optimization problems (Fig. 1). The pre-processing included two parts: i) reclassifying crops to
accommodate differences in crop classification used in the underlying datasets and harmonizing Rieciardi’sthe dataset by

Ricciardi et al. (2018a, b) and ii) converting the dominant field size smapdistribution into a minimum field area per field size

and 5-arcmin grid cell (Sect. 2.2). The downscaling was achieved by maximizing consistencies with multiple datasets that
provide information on the location of each farm/ficld size and planted crops. Specifically, we establishedformulated an
optimization for each administrative unit (Sect. 2.3) and solved it via constraints relaxations (Sect. 2.4). Priorities in achieving
consistency with the various underlying datasets were considered during these processes (Sect. 2.3 and 2.4). The spatial crop
distribution affects both crop location and farm size location during downscaling and is usually—uneertain—TFo-consider
theassociated with considerable uncertainties-in. To consider propagation of such uncertainties, we used two different crop

maps, we-ased-two-erop-mapsi.e. GAEZv4 (FAO and IIASA, 2021; Fischer et al., 2021) and SPAM2010 (Yu et al., 2020).

Doing so allowed us to develop two alternative versions of the final downscaled mapdataset separately.
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Figure 1, Diagram of dataset development processors.

2.2 Datasets and pre-processing

+’sThe main dataset by Ricciardi et al. (2018a, b) provides

the farm--size- and crop-specific cropping area for 56 countries at the administrative unit level (f(see [S1] for thea list of the
56 countries_included). The eleven farm sizes in this dataset are based on the classification from the World Census of
Agriculture (WCA) (FAO, 2020b2015; Ricciardi et al., 2018a, b; FAO, 2022): 0—1 ha, 1-2 ha, 2-5 ha, 5-10 ha, 10-20 ha, 20—
50 ha, 50-100 ha, 100-200 ha, 200-500 ha, 500-1000 ha, and >1000 ha. The cropping area in this dataset meansindicates
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either crop area, planted area, harvested area, or cultivated area. Because the-data quality varies from country to country and
because this dataset was not harmonized everin time, we chose to downscale its crop-specific farm size structures- (i.e., the
erop-speeifie-percentage of harvested area per farm size; for each crop) instead of the absolute area. Fhe-erop

Crop-specific harvested area is taken from two separate crop :-map sources: GAEZv4
(FAO and ITASA, 2021; Fischer et al., 2021) and SPAM2010 (Yu et al., 2020). These are the ealy-twemost comprehensive

crop maps_available, containing harvested area of tensdozens of crops for the year 2010 at 5 arcmin spatial resolution (Kim et
al., 2021). GAEZ~+4GAEZv4 and SPAM2010 have their own crop classification systems-f, which are given in [S2, S3}-for
details)—GAEZ—~4]. Furthermore, GAEZv4 distinguishes two farming systems:, namely irrigated and rainfed-, while
SPAM2010 further distinguishesspecifies rainfed into low- and high-input rainfed and subsistence rainfed- (in addition to

irrigated farming systems).
The dominant field size distribution (Lesiv et al., 2019) indicates where larger farms may loeatettprovidesbe located and
contains the spatial distribution for five field sizes: < 0.64 ha, 0.64-2.56 ha, 2.56-16 ha, 16-100 ha, and >100 ha. For pre-

processing the dominant field size distribution, cropland extent maps were also included (detailed steps could be found below).

All datasets used in this study are listed in Table 1.

Table 1. Datasets that were used to develop the gridded, farm--size-specifie;- and crop-specific datasets of harvested area.

ctal(2018a)

and HASA.2021)

a = ”! ) area kFFF) eFBp‘ “’Fﬂ' ;llted’ OW- ,in
hich infed_and

Pominant——ficld  Dominant  Global:—gridded:30-—ar b Varies—from Not—crop Field-si

size—distribution  field-size  km) 200010 2017 specific

thatham—ct—al  extent k) speeilie GAEZ

2044




Hh

_* Here-we-mean the crop-specific percentage of harvested area per farm size within an administrative unit

is meant. ** The 27th crop is Fruits and Nuts which is not listed in the document but available in their dataset.

Dataset Indicator  Spatial coverage and resolution Crop Note

Ricciardi et al. Farm size 56  countries; (sub)national 154 FAO 11 farm sizes

(2018a, b) structure®  administrative unit crops

GAEZv4 (FAO Harvested Global: gridded. 5 arcmin (10 27 2 farming systems

and ITASA, 2021; area (crop km) GAEZv4 (irrigated and rainfed)

Fischer et al., map) crops**

2021)

SPAM2010 (Yu Harvested Global; gridded, 5 arcmin (10 2010 42 4 farming systems

etal., 2020) area (crop km) SPAM2010 (irrigated, low- and
map) crops high-input rainfed, and

subsistence rainfed)

Dominant _ field Dominant Global; gridded, 30 arcsec (1 Not crop 5 field sizes

size distribution field size  km) specific

Lesiv.__et al

2019)

GLC-Share Cropland  Global; gridded, 30 arcsec (1 Not crop The based map of

(Latham et al., extent km) specific GAEZv4

2014)

CAAS-IFPRI Cropland  Global: gridded, 15 arcsec (0.5 2010 Not crop The base map of

cropland _ extent extent km) specific SPAM2010

map (Lu et al.,
2020

To pre-process Ricetardi’sthe dataset; by Ricciardi et al. (2018a, b), we first reclassified their crops (who followed the FAO
erops—in—this—datasetclassification) into 27 GAEZv4 crops and 42 SPAM2010 crops, respectively. Detailed—eriteriaCrop

reclassification details can be found in [S2, S3]. We used the cropping area to getobtain the crop-specific farm size structure.

In this dataset, the cropping area is crop- specific and includes four items: crop area, planted area, harvested area, and cultivated
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area. These variables were identified by Riceiardi’sthe dataset by Ricciardi et al. (2018a, b) from the local agriculture census.
There is no worldwide standard definition for these items (FAO, 2015)—-teeal), meaning local agriculture censuses havecan

apply their own

s-preferred definitions. In generallygeneral, however, planted /{Formatted Font: Italic

area is used for temporary crops; cultivated area for temporary crops and permanent crops; crop area for temporary crops, //{ Formatted: Font: Italic

permanent crops, fallow_ficlds, meadows, and pastures; and jarvested area isfor the cultivated area excluding the area

Formatted: Font: Italic

destroyedrendered unsuitable for cultivation by natural disasters or other reasons (FAO, 26262;-2015, 2020). In terms of data
availability, one or two of these items are available for most countries—Fe-harmonize-data~when- at the least. If more than one

item iswas available, we usedharmonized the data by taking the item with atlarserthe largest overall area (after crop

reclassification) to estimate farm size structure-beeause, since a larger overall area typically means that more farm size classes
have available data-in-mesteases.. If none of the four items werewas available, we used crop production data provided by

Riceiardi’sthe dataset to-getby Ricciardi et al. (2018a, b) as a proxy for the crop-specific farm size structure-—ta-this-case;-we

assumed, assuming constant yields across farm sizes.

We-During pre-processing we also converted the 1 *x 1 km dominant field size distribution map into a minimum field area

per field size and 5-arcmin grid cell duringpre-processing:to align with the spatial resolution of crop maps. We interpreted

dominant field size as a-fieldthat fields of that size accounting for at least 50% of cropland in the grid cell. For each field size,
we calculated the minimum field area for each 1-km cell by using the 50% of cropland extent-thatis-deminated-by-the respeetive
field-size.. We then summed and-seated-the minimum field area te«%ever—al—l—erep%aﬂd&effrom 1-km to 5-arcmin cells-Fo-keep

%efep%aﬂd—aﬁeﬂ&&mpﬂsﬂsed—wh%fﬁh%empﬂﬁpﬂ&%%@}& and scaled the summed area to cover 50% of croplands

in 5-arcmin cells. The minimum field area of ficld size 16100 ha is 120 ha in thea 5-arcmin cell#23 which means, for example,

farms larger than 16 ha should occupy at least 120 ha in the cell#23. To keep cropland extent consistent with the crop maps

during downscaling, GLC-Share was used with the GAEZv4 crop map, while we used CAAS-IFPRI cropland extent map with
the SPAM2010 crop map.

2.3 Optimization for downscaling

For each administrative unit defined in Rieeiardi’sthe dataset; by Ricciardi et al. (2018a, b), we established the following

optimization problem for our downscaling: procedure. Note that the dataset by Ricciardi et al. (2018a, b) identifies eleven farm

sizes and the dominant field size distribution (Lesiv et al., 2019) identifies five field sizes.

Sets:

¢, Crops

f, Farm size, labelled by the lower bound of the eleven farm sizes
e, Field size, labelled by the lower bound of the five field sizes

s, Farming system

a, Administrative unit

\f Formatted: Font: Italic

o




g, Grid cell
Parameters:
ha.R. s, Crop-specific farm size structure, percentage of the harvested area of farm size f that plant crop ¢ in the

220 administrative unit a;- (from Rieetardi’sthe dataset by Ricciardi et al. (2018a, b))

ha.S. 4, Harvested area of crop ¢ under farming system s at grid cell g5 (from crop map., either SPAM2010 or GAEZv4)

ha.L, g, Minimum field area of field size e at grid cell gs—_(from dominant field size mapdistribution by Lesiv et al. (ZOIQL////[ Formatted: Font color: Red

and crop extent map by Latham et al., (2014) and Lu et al.. (2020)

Py, The minimum farm area of farm size f in any girid cell when the farm size f exists:-itis. i.c.. the lower bound of the farm
225 sizeclass f

1, Elastic factor

Variables:

hac s 5,4 Harvested area of crop c, farm size f, farming system s atin grid cell gs- (estimated by this study)

Objective function:
230 Since we aim to downscale Rieeiardi’sthe dataset; by Ricciardi et al. (2018a, b), we wanted-to-maximizemaximized—within

the constraints— consistencies with Rieeiardi’sthe dataset when-constraints-alow:by Ricciardi et al. (2018a, b):

min Zabs ha.R;fq z ha.Ssq — Z hacfsg 1)

of s,g€a s,g€a

Constraints:

The first constraint ensures-consisteneiesis meant to ensure consistency with the respective crop map:maps we used and states

that the total harvested area per crop per farming system per grid cell in our map-equalsdatasets must be equal to the harvested
235  area per crop per farming system per grid cell in the respective crop map.

Z hacfsg = ha.Scs4,vc,s, g @)
I

The second constraint ensuresrequires a minimum eensisteneieslevel of consistency with Rieeiardi’sthe dataset—Fhe by
Ricciardi et al. (2018a, b) and states that the relative difference in farm size structure between our estimation and Rieetardi’sthe
dataset weuldby Ricciardi et al. (2018a, b) cannot be fessmore than 10%. This constraint ensures that-we-do-not-divergefar
fromRieeiardi’s-dataset, even when other constraints are hard to meet-tn-this-ease;, we do not diverge too far from the dataset

240 by Ricciardi et al. (2018a, b). This constraint takes priority over the following constraints, meaning we would relax other

constraints to ensure-these-minimum-consistencies—with-Rieeiardi’s-dataset—The-arbitrary-meet this one. The 10% relative
difference eensidersmark is an educated guess based on timestamp differences in Rieetardi’sthe dataset by Ricciardi et al.

2018a, b) and overall assumed uncertainties underlying each of the datasets.
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90% * ha. R, s z ha.Spey < Z hagfeg < 110% * ha. Rz q Z ha.Seq, Ve, f 3)

s,gea s,gea s,gea
Third,we-alse-appliedThe third constraint sets a minimum allocated area for each farm size atin each grid cell-Fhe if the farm

size exists in the cell. This minimum allocated area is not necessarily required by the definition of farm sizesinee the-farmsize

I, yet we reckoned it is still reasonable to include it-because we-applied—it-at-the-a S-arcmin (~+0—km)-grid cell level

Ceonsidering-theis mostly much larger than a single farm. Given both the presence of uncertainties in these constraints and

inconsistencies among datasets_used, we eensiderincorporated this constraint in a hard form and soft form—We_during the

optimization: we used the hard form by default—We-censiderrelaxing these-constraints-using the-, but transitioned to the more

relaxed soft form when the optimization iswas infeasible (see also Sect. 2.4). FheNote that the soft form does not strictly

require thea minimum allocation area for each farming system.
Hard form:

hacrsg =05 Y0, f,8,9,if hacgsg >0 @)
Soft form:

z hacfsg = UXpp Ve, f,g,if hacssg >0 5)
s

Fourth;-we-appliedThe fourth constraint sets a minimum area eenstraint-for semecertain farm sizes according to the spatial
distribution of dominant field size-distribution—This-constraint-follows-the logie. The rationale is that a field eeuldcan only

belong to ana farm equal or larger than its own size-offarm. We assumed a Hnearuniform distribution of area within each farm

size, like Ricciardi et al. (2018a, b), to accommodate the different classifications of size in farms and fields.

GivenFor example, 40% of the area efin the farm size 10-20 ha was assumed to be in 16-20 ha class in Eq. (7).
For field larger-than1+00-haforarcas and farms larger than 100 ha:

Z hacfsg = ha.Lig g Vg )
c,s,f2100
Given-the-area-ofFor field areas larger than 16 ha;fer and farms larger than 10 ha:
20—-16
Z hacfsq + 20-10 IOZ hac 0,59 = ha.Ligog + ha.Ligg, Vg (7
c,s,f220 [
Given-thearea-ofFor field areas larger than 2.56 ha;-fer and farms larger than 2 ha:
5-2.56
hacfsg + ﬁz hacys,g 2 ha.Ligog + ha.Ligg + ha. Ly se4, Vg (8)
c,s,f25 c,Ss

Given-thearea-ofFor field areas larger than 0.64 ha-fer-al-farms and any farm size:

1-0.64
Z hagfsg + -0 z hacosg = ha.Liggg +ha.Ligg + ha.Lyseg + ha.Logag, Vg ©)
s, f21 s

LastbutSince areas should not feastassume negative values, we havealso include non-negative area constraints:
13
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hacfsg = 0,Y¢,f,s,9 (10)

2.4 Constraints relaxation and solving procedures

When the above optimization (Eq. (1)—(10)) isproved infeasible 5, we first replaced
the hard form of minimum allocated area for-each-farm-size(i.c., the third constraint) (Eq. (4)) for all farm sizes with the soft

form (Eq. (5)) and triedapplied the elastic factor with the following values in order: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 0. If

itoptimization was still infeasible, we relaxed the minimum area constraint required by the dominant field size distribution

(i.e., the fourth constraint) by removing the constraints from large to small farms until the optimization was feasible. Relaxing

the minimum area constraint deesdid not happen often during downscaling.

WheneverOnce the above optimization beceames feasible, the-optimization-deeswe did not necessarily yieldstrike a unique

global optimum. WeTherefore, we calculated up to 80 (sub)optimal solutions with the same level of consistencies and averaged
these selutions-to getobtain the final en i i i
bias-onthe final averaged solutionbeeausesolution. Since the number and quality of solutions depend on the searching process
of the solving the-toolbox, this procedure may still leave some bias in the final averaged solution.

Each optimization prebles-was solved by Gurobi v9.1
¥9-1-is, a fast commercial optimization solver-, using the dual simplex method (Gurobi Optimization, 2021). Mest-ef-the
optimization-problems—in-this-stady-eouldOptimization was taken as infeasible by the solver's initial evaluation or if it is
computationally unsolvable (cannot be solved within 66150 seconds—with). Most of the optimal solutions—Ferthe- were

obtained within 60 seconds when feasible. For those administrative units eentainingthat contained more than 300 5-arcmin

grid cells, the optimization preblem-becomes extremely-large posinga-great-highly complex. This posed a challenge for the
solver—Fhe, with the number of decision variables weuld-be-mere-than-increasing to over half- a million. fnthiseaseAs a

workaround, we applied a two-tiered optimization—We, where we first randomby-divided all grid cells randomly into several
groups. Each group ineludes-around-included ~100 grid cells (except for Russia, it-was206-where groups were set to contain

~200 grid cells to keep the total number of groups below 300). We-firstNext, we solved the optimization preblem-at the-group
level—Fhen;—we-solved, followed by solving it at the cell level eptimizationforwithin each group. ©£3421Out of 3,421
administrative units, 244 units need-to-be-dealt-withinthisway—they-eeverunderwent this workaround procedure, collectively

covering 89.4% of grid cells in this study. The whele-computationentire optimization was performed on a desktop computer
(Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, RAM 16 GB) taking 9 days.

Finally, we masked the crop-specific farm size ef-ereps-as unknown if theseir crops are not covered by Ricetardi’sthe dataset-
by Ricciardi et al. (2018a, b). For these crops, the optimization eeutdwould still estimate their farm size eempenents;-but-the

uneertatnties-structures only based on the distribution of crops and dominant field size. Since the overall farm size structure is

absent and dominant field size is not sufficient to estimate all farm sizes, uncertainties of these crops are significantly larger

than those eevered-byRieeiardi’s-associated with the dataset- by Ricciardi et al. (2018a, b).
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2.5 Validation ef dewnsealed-maps-and comparison with previous studies-mapping farm sizes
Theidealwayto-validateldeally, we would have validated our dewnsealed simultaneoushy-farm--size- and crop-specific dataset

is-to-compare-itdatasets with observations. However, srest-ofthe-there are limited empirical datasets available-datasets-are-not

aat-, and if there are—gw}ebal—fee&sed;, most are not farm--size specific-with-additional-informationon

. Given these

to assess th

ith-cmpiricalb datascts.w mpared-our-downsealed-map-with-. The first is by Descals et al. (2020)
on-oil-palm-map-Desecals-etal(2020)), who developed a global gridded farm--size--specific oil palm map using deep learning
and satellite images for the year 2019. We validated our datasets for five countries that are covered by both our datasets and
the dataset by Descals et al. (2020) (Fig. Al).
farms-based-onlandscape features—tn-orderteTo interpret theisr size classification, we adopted the definition of small oil palm
farms by Indonesia (the world's largest palm oil producer and exporter) and-used-25-ha-as-the-threshold for the-two-seales

{mentioned by Descals et al-- 42020)%Hahéaﬂeﬂ%ﬁ—mﬁ¥%emﬁﬁw&beewseeﬂbh$eﬁ¥mwﬁ%ﬁ%w%eéb¥be%h

separately:), who apply a 25 ha threshold to distinguish small from large farms, i.e., between the two scales as included in

Descals et al. (2020). We calculated the Pearson correlation coefficient between-our downsealedmap-and Desealset-al(2020)
at grid cell level en-three-(i.c, 5 arcmin) and two additional spatial scales-usingspatial-meving-average, S-aremin;, i.c., 15

arcmin; and 25 arcmin, using a spatial moving average. We validated our GAEZv4 and SPAM2010 crop map based datasets.

separately.
EortheThe second validation-with-empirical datasets;-dataset to which we compared our dewnseated-maps-withdatasets is that
of farm--size-specific irrigation-percentage of irrigated area at the country level usingfrom the FAO RuLIS (Rural Livelihoods

Information System) database (FAO, 2021). Eleven—of-56-eceuntriesRuLIS includes micro-level household survey data

areundrepresentative of the year 2010. Eleven out of 56 countries included in our study are availablefS4}-also listed in RuLIS

(see an overview in [S4]). Based on these household surveys, we calculated the percentage of the-total irrigated area (irrigated

area divided by cultivated area) for each farm size (classified by crop area) where at least 5five survey samples are available.

WeOnce more, we calculated the correlations between our estimationes and those derived from the household surveys. Fhis

Although this validation considers farm--size--specific farming systems, withe data is aggregated over crops.

- led-map-with 10w tudt I d +

W Hap-wih-previot ZOWGET

the-pereentage-of harvested-area-operated-by-eachfarm-size-at the-To further validate our datasets, we compared our datasets
to two other studies. The first is by the FAO and has just been published (FAO, 2022). This dataset contains structural data

15



obtained through agricultural censuses, including total crop areas per farm size, at country level-Mehrabi’s-datasetkeeps, for

330 the years 1990, 2000, and 2010. We compared our datasets with the structural data of 2010 (the year our datasets are most

representative of), and complementary with data of the year 2000 as well. The reason to include data on 2000 too is that data

does not rely so heavily on interpolation as does 2010 (FAQ, 2022), making the comparison more robust although temporal

representativeness is less appropriate. Another advantage of including FAOSTAT structural data of 2000 is that it allows for

the comparison with the widely used dataset by Lowder et al. (2016) at the same time since the dataset by Lowder et al. (2016)
335 s largely the same as FAOSTAT structural data of 2000 [S5].

The second study to which we compared our datasets is by Mehrabi et al. (2020), who mapped geographic distributions of

farm sizes. The dataset by Mehrabi et al. (2020) uses the same farm size distribution as Lewder’sthe dataset by Lowder et al.

2016) at the country level, but previdesadds the dominant farm size perat 5-arcmin grid cell—We level. For our comparison
we calculated—at grid cell level—the dominant farm size from our dewnsealed-mapdatasets with the farm size that operates
grid cell, for GAEZ based-dewnsealed-mapour GAEZv4 and SPAM based-downsealed-map;

p o-Pp DYy-co RE-Re-RUMBero Rathav mHar1a A m

340 the largest total harvested area per

map-are-the-same-or-next-to-the-farm size-in-Mehrabi’s-dataset:SPAM2010 crop map based datasets, separately.

345 3 Results-and-analysis
3.1 Fhe-erop-typeDataset statistics

3.1.1 Crop types and farm sizes “[ Formatted: Heading 3

With-the-erop-map-from GAEZvA-(SPAM2010)~we-We identified the-5-aremin-gridded harvested area for 56 countries, 11
farm sizes, 27 crops (42-eropsfor SPAM-based-map)-and 2 farming systems (based on the GAEZv4 crop map, and for 42
350 crops and 4 farming systems for-SPAM-based on the SPAM2010 crop map)—One-example-can-be-found-in, both at 5-arcmin
spatial resolution. Fig. 2;-where-we-illustrate illustrates the harvested area of rainfed maize belonging to two farm sizes (2—5
ha and 500—1000 ha)—Owverall;) according to our resultsfarm-size- and crop-specific harvested area dataset based on the
GAEZv4 crop map. Statistics of crop type and farm size show the preference—forprevalence of certain crop groups for
elevencertain farm sizes (f(see [S2] for the crop groupings of the 27 GAEZv4 crops). Fig. As3(a) shows that, as farm size

355  increases, oil crops and fodder crops become more peputar:prevalent, while fruits and nuts, pulses, and roots and tubers become

eotton{(Fig3(b))—The SPAM based on the SPAM2010 crop map shows comparable results
GAEZv4 (see Fig. A2 for crop groupings as per [S3]). These resultsstatistics are consistent with eurdatasetsearlier findings

g

(Fig—A2-andto that based on

pt Std
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360 by Ricciardi et al. (2648b2018a, b) and-previeus-studies Herrero et al. (2017)which-indicate-that the-optimization resultedin
d 4 M teney
modests i H6y=).
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Figure 2. The girdGrid cells with a harvested area of rainfed maize belonging to-theon farm size 2—5 ha (a) and farm size 500-1000

ha (b),
365 according to the- GAEZour farm-size- and crop-specific dataset based dow ledon the GAEZv4 crop map.
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Figure 3. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to
GAEZ based—dewnsealed—mapour farm-size- and crop-specific harvested area dataset based on the GAEZv4 crop map. The
alternative version based on SPAM2010 crop map is given in Fig. A2.

3.1.2 Farming systems and farm size “[ Formatted: Heading 3

Comparing between-irrigatedBesides providing farm-size- and rainfed-harvested-area,overall,-ourresults-show-crop-specific

harvested areas, we added information on farming systems inherited from crop maps. Statistics of farming system and farm

size derived from our dataset reveal that small farms irrigate a larger relative share of their harvested area than large farms

18
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(Fig. 4(a));, Fig. 5). which supports—the-observations-of-aligns well with earlier ones by Ricciardi et al. (2020). Plausible
thresholds-to-differentiateHere, the finding is not sensitive to the threshold used to set apart small andfrom large farms, whose
possible values can be-eountryspeeifiec-andrange from 1—ha to 42 ha formesteountries{as suggested by Khalil et al--. (20173)
and FAO;- 12017 %%thwmfesheldwzm% Note, however, that this Fang%eur—éatasekmppeﬁsf#eweus

may-notalignment does not hold for some countries (see Sect. 3.42.2 for further details).

Our dataset based on the SPAM2010 crop map further divides rainfed farming systems into low-input, high-input, and

subsistence rainfed systems (Fig. 4(b)). Associated statistics show a clear correlation between low-input and subsistence

rainfed farming systems and smaller farm sizes. At the same time, smaller farms do not consist exclusively of low-input and

subsistence rainfed farming systems, since these smaller farms also operate a sizable portion of the irrigated and high-input
rainfed area (see Fig. 4(b)). Similarly, the predominant farming system type of larger farms is high-input rainfed. but high-

input rainfed systems are not solely employed at larger farms.
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z g
S 800 S 800 I
g 600 = 60.0 II
L
© 400 5 400 I
Tézo.o III I I 2 200 ... . |
£ 00 E 0.0
DAL DS S N 6 S 0. QP
Q/ \ r» Q( Q/"J N f,)Q QQ \QQ N Q( Q/ NIENEN Q\QQ
. TS Q/ s“/ & @/ &
Farm size (ha) Farm size (ha)
mRainfed ®Irrigated Subsistence rainfed = Low-input rainfed
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() (b)
The-overall-higherThe distribution of irrigated and rainfed farming systems per farm size according to our farm-size- and
crop-specific harvested area datasets based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b). Note, SPAM2010 further
divides rainfed farming system into low-put, high-input, and subsistence rainfed farming systems.

To further explore irrigation e
practicesdbp—Hereto-get-water seareity-information, we overlapped our dewnsealed-mapdatasets with the annual average
blue water scarcity map where-by Mekonnen and Hoekstra (2016), who classified water scarcity is-elassified-asin four levels:
categories, i.e., low, moderate, significant, and severe water scarmty—éMekeﬁﬁea—aﬁdJ%eeks&a—EMé—Heeks@Fa—e&—al—E@H—)—

ms. This analysis also
confirms an earlier finding by Ricciardi et al. (2020) that even though small farms irrigate a larger relative share of their area

than =
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country coverage. In our datasct, a large number of small farms M&ﬁmm#mmwgﬁ/{ Formatted: Font: Italic

h-the-percen e-ofir ed-areain-A ST ms-beinshish:

than small farms when water is scarce (Fig. 5). Fig.
thresholds-to-differentiatesmatl-and-5 shows a relatively low irrigation share for farms >1000 ha which would undermine this

even-though-undera-certain-level-of water-seareity-Note;- located in water scarce areas. Note, that the main aim of Fig. 4-and

Fig—A35 is to compare statistics of our datasets with previous ebservationsstudies instead of drawing conclusions on irrigation

y ated avats &

levels for specific farm sizes, which may need further investigation on influencing factors and uncertainties.
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Figure4-The percentage of the-irrigated area by farm size according to our farm-size- and crop-specific harvested area datasets
ased on the GAEZv4 crop map ga) and the SPAM2010 crop map (b) under eachfour blue water scarcity level-(a)andlevels of water

ithin-each-farm-size(b H 0{"/\]?7}\0 d-d- led-ma
b) P
SPAMR2010-further-divided-the rainfed-farming sy into-low—and-high-inputrainfed(WSL) by Mekonnen and D
With-SPAM based-d ted-maps datasetHoekstra (2016). Low blue WSL indicates th bsi blue water consumption

does not exceed blue water availability; moderate WSL indicates blue water consumption is 100-150% of blue water availability;

sngmf‘cant WSL indicates blue water consumption is 150-200% of blue water avallablllty i and bﬁapu&mnfed—iarmgsys&ms

' i + »l t i} farm l\ ut th mall farm J net nd-1 Y
Y +—they—al perate—a—sizableporti {—theirrigated—and—high-input fed—area—(severe WSL indicates blue water mdlcates blue watcr
consumption is Fig=5)-Similarly;-the-main-type-of farming system-of larger farmmhigh—mpu%mm-fed—bu&thehgh—mpu&mmfed

is-farfrom-beingli d-to-largerfarms—(than 200% of blue water availability.Jig=5)
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435 3.2 Validation

3-Validated.2.1 Validation with empirical data on farm-—-size-specific oil palm frem-sateHite-imagesharvested area <‘[ Formatted: Heading 3

ValidationsTable 2 shows that validation with farm--size--specific oil palm data shewyleld s a significant positive correlation

in most countries, for both small

and large farms—(Fable—2).. At larger spatial scales, the correlation becomes stronger—TFhis—means, indicating that the
440  spubnational distributions of oil palm harvested area in our dewnsealedmaps-anddatasets are similar to those of Descals et al.
(2020y-are-similar:). Besides the threshold of 25 ha ferto set apart small andfrom large farms, we alse—triedr: epeated the

awhich

comparison with 10 ha and 50 ha as-thresholds an
resulted in similar correlations (see [S6, S7] for detailed results of these comparisons). This indicates that, at least for oil palm
eemparison, found relations are not sensitive to the choice of threshold.

445  Stillthere-are-Despite strong overall correlations, we observed some differences espeeially-in-the-ease-effor certain regions,
particularly Costa Rica and the United Republic of Tanzania. PartSome of the-abovethese differences resultsfrom-the-can be

attributed to inconsistencies between harvested area according to the crop maps we used and the validation dataset. We
compared total oil palm area according to the crop maps we used and the validation dataset—We-compared-all-farmsarea
between, and found that if the oil palm locations in the crop maps and-validation-dataset, i-ethe-total-area-of small-and-large

450 farms{(Table 2y Weneticed-that if thecropland locationinerop-maps-differsdiffered from the validation map (not significant
positive correlation), the-farm--size-specific validation wilt-bewas poor: as well (Table 2). This meansimplies that the accuracy
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of our estimatiens-areestimates of farm-size- and crop-specific harvested area is limited by the accuracy of oil palm locations

in crop maps. The (minor) differences between validation results for the GAEZv4 based dataset and the SPAM2010 based

dataset can also largely be attributed to the same reason.

455 Table 2. aceuracies-offarm-locationPearson correlation coefficient between the harvested area of oil palm estimated b satellitH Formatted: Caption, Keep with next

images from Descals et al. (2020) and i) GAEZv4 crop map based farm-size- and crop-specific dataset (Gb) and ii) SPAM2010 cro

map based farm-size- and crop-specific dataset (Sb), respectively, for small farms (<25 ha), large farms (>25 ha), and all farms at
various spatial resolutions. All farms compared the oil palm area in GAEZv4 and SPAM2010 crop map, whose results imply the
accuracy of our estimates of farm-size- and crop-specific harvested area is limited by the accuracy of oil palm locations in crop maps.
460 :Ilhe_d_“:f\' S Bhet lidati S ltA £ th I‘Al"7l\n> .—Im\r nd-th CDAT\/IL«-» ,Im\y B I» b trib. d-to-th Sam

0* p<0.005. ** p<0.001.

Table2 P. Jati fficientof the hary d-area bety il palms-from-satellite i b Is-et-al(2020)-and GAEZ

465 emp—m—a-p—d-at—aseh—(GA—E—Z—w%md—SllArM-EO}O)-
Small farms Large farms All farms ‘—( Formatted Table
5 15 25 5 15 25 5 15 25

arcmin arcmin arcmin arcmin arcmin arcmin arcmin arcmin arcmin <‘[ Formatted: Centered

Colombia GbGA
el 0.177* 0.313%*  0.397**  0.112%*  0.238%*  0.334%*  (0.232%* (0.374%* 0.465%*
based

bSP

2

0.218**  0.547** 0.684**  0.385** 0.620** 0.701**  0.409**  0.652** 0.729**

Costa GbGA

Rica EZ 0.086 0.183**  0.215%* -0.012 -0.074 0.032 0.001 -0.043
0.144%*

AM 0.836**  0.944**  0.971** 0.771** 0.891** 0.925%*  0.877**  0.925%*  0.929**

Brazil GbGA
EZ 0.245%%  0.396**  0.483**  0.177**  0.258** 0.271**  0.326%* 0.398%*  (.423%*

AM 0.133**  0.190%*  0.248**  0.087**  0.091**  0.084**  0.148**  0.154**  0.156%*
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United GbGA

;‘}p“b“‘: EZ 001 20.109% 20011 0039  -0.063 0022  -0.115%
o 0.202%* 0.218%*
Shsp
AM 0024 0025  0.069 0022 0014  0.065
based
Peru GbGA
EZ  0.172%% 03500 0438 0024  0.139%* 0237%% 0.111** 0263** 0363**
based
SbSp
AM  0367%F  0389%%  0.420%%  0.141%%  0216%* 0.240%% 0302%% 0.395%% 0.436%*
based
= p<0.005
4 520,001

3.4-Validated2.2 Validation with empirical data on farm--size--specific irrigation from household surveysestimates  +— —[ Formatted: Heading 3

470 (Fig. 6(a))-and-the SPAM based-map-( showsEig=6(b))-respectively—This-means that our downsealed-mapsdatasets are quite

consistent with validatien-data-empirical data on farm-size-specific irrigation estimates in terms of country-—-level farm--size—-

percentage of irrigated area. More detailed results in [S8] further

specific i

illustrate how our datasets capture the higher percentage of irrigated areas in-as indicated by the household surveys in both

small erand large farms in most countries-along-the-indications-of household-surveys S5}
475  From-the—validations. However, we netieedalso found that our dewnsealed-mapsdatasets systematically underestimate the

extentpercentage of the irrigated area eomparedwith respect to these same household surveys, both ferthe GAEZ based-mapin
our GAEZv4 and the-SPAMSPAM2010 based datasets of harvested areas. Fig. map—H6(c) and 6(d) show that these

underestimations are still present if we compare the percentage@ of irrigated area for all farms from the datasets;-we-find-these
crop maps. This systematic underestimation may eowmefrom

480  thetherefore be explained by different measurements of irrigated area and cultivated area in the validation dataset and-datasets

efcompared to the crop maps.
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Figure 6. Correlations on the farm-—size--specific irrigated area (% of total harvested area per farm size) between household survey
data from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and our

s el el

GAEZv4 based (a) and SPAM-based-downscaled-map-(b)-for-eleven-countries—TheSPAM2010 based, farm-size- and crop-specific
datasets of harvested area (b), and correlations on the irrigated area of all farms (% of the total harvested area) between household

survey data from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and GAEZ~+v4GAEZv4 (c¢) and

SPAM2010 (d)-are-alse-previded-), all for eleven countries.

3.2.3 Validation through comparison with other studies

Finally, we compared our high-resolution farm-size- and crop-type specific harvested area datasets with FAOSTAT,
whose structured data contains farm size structures of 44 overlapping countries for the years 2000 and 2010 (FAO
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2022). Results show that (non-crop-specific) farm size structures of our datasets are similar to FAOSTAT structure

data for most countries. Fig. 3.5-Compared-with-previousstudies-mappingfarm-sizes
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7 and Fig. A3 show the large similarities of farm size structures of 28 countries for 2010, while of the remaining 16 countries

510 farm size structures of Brazil, Czechia, Ethiopia, Germany, Greece, Poland, and Portugal show good correspondence for 2000.

The latter also implies these estimates are similar to the dataset by Lowder et al. (2016).

Not all countries’ farm size structure corresponds well between the datasets. Farm size structure according to our datasets for

Albania, for example, lies in between the FAOSTAT data for 2000 and 2010, and our datasets farm size structures of Costa

Rica, Lithuania, and Mexico also deviate slightly from the FAOSTAT structure data. One explanation for such differences
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could come from how different datasets harmonize collected data into a farm size classification system. For example, if only

farm sizes >100 ha are reported, areas could be classified into farm sizes 100-200 ha or be redistributed to farm sizes 100-200

ha, 200-500 ha, and so on. However, the farm size structure of our datasets is inherited from the dataset by Ricciardi et al.

(2018a, b), which in turn was based on highly similar local agricultural census and household surveys which FAOSTAT

likewise drew from.

While decent overall correspondence between our datasets and either FAOSTAT 2000 or 2010 data might be sufficient grounds

to validate our estimates on farm size structure, and particularly correspondence to 2010 being the reference year for our

datasets, it should be noted that farm size structures of several countries changed significantly between 2000 and 2010, e.g.

Bulgaria and Germany, a period of just 10 years. The FAO themselves also indicate that the robustness of their 2010 estimates

is fragile, in part due to significant usage of interpolation (FAO, 2022). Moreover, for 5 of the 44 analyzed countries (i.e.

Burkina Faso, Colombia, Peru, and Russian Federation), it remains unclear what causes these differences.

Comparing our datasetsFig 7€ fati n-thep tage of harvested-area-operated-by-cach-farm-size hetw Lowder>
dat t(Lowder-et-al.-2016)and- GAEZ based-d led-map<{a)-and-SPAM based-d led-man-B)-for37 tri and-11
AS *y 7 1 A4 L A

farm sizes.

Compared with the dataset by Mehrabi et al. (2020), Fig. 8 shows that the same-patternpatterns of-the spatial distributions of
dominant farm size-eould-be-observed-insizes are similar across both datasets. For the Mehrabi’sfarm-size- and crop-specific

dataset (Fie. 8(a)). the GALZ downscaled map (Fig. 8(b)), and SPAM based downscaled map (Fig. 8(¢)). Overall. for GALZ
based-downsealedon the GAEZv4 crop map, 54:2% of grid cells’ dominant farm sizes are-similarcorrespond to thatthose in

Mehrabi’sthe dataset;27-5 by Mehrabi et al. (2020), while 28% are larger, and 18:3% are smaller:-for SPAM based-downsealed
map;52-8%. For the SPAM2010 based counterpart, 53% of grid cells’ dominant farm sizes are similar;-26:0 to the dataset by
Mehrabi et al. (2020), while 26% are larger, and 21-2% are smaller{([S7}fordetails)-These-differences-maybe-parthy-explained
by-the-abeve-. Here, similar means the farm size in our datasets is the same or next to the farm size in the dataset by Mehrabi
et al. (2020). [S9] provides a more detailed analysis of this comparison-with-Lewder’s-dataset since- Mehrabi’s-dataset-has. As
shown in Fig. 7, there are still differences between our datasets and the dataset by Lowder et al. (2016) (FAOSTAT structure

data 0f 2000). These differences can also be seen in the comparison with the dataset by Mehrabi et al. (2020) since the dataset
by Mehrabi et al. (2020) keeps the same country level farm size distribution as Lewder’s-dataset—Seme-differencescould-also

)

dominant-farm-size-in-our-downsealed-map—The-the dataset by Lowder et al. (2016). Note, that the comparison of dominant

farm size may magnify the differences in farm size structure between our datasets and the dataset by Mehrabi et al. (2020)

since the dominant farm size in the dataset by Mehrabi et al. (2020) may be the second-dominant farm size in our datasets.
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Figure 7. difference-in-estimating-the-overall-farm-sizes—Sinece-Mehrabi’sComparison of the percentage of total crop area uperatedkff{ Formatted: Caption
by each farm size (non-crop-specific farm size structure) between FAOSTAT structural data for the year 2000 and 2010 (FAQO, 2022)
and our farm-size- and crop-specific dataset based on the GAEZv4 crop map. Bold font country titles indicate that farm size
structures in FAOSTAT are similar to our dataset-enly-include-dominantfarm-size—it-. Note that for the year 2000, farm size
555  structure from FAOSTAT structural data is net-clear-that-how-the-difference-would-be-estimating-the-overall-farm-sizesthe same

with Lowder et al. (2016) except for one country [S5]. Only the countries covered by our dataset and FAOSTAT are shown. The
alternative version based on SPAM2010 crop map is given in Fig. A3. * FAOSTAT provides (part of) the structural data by
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interpolating other reported data, not directly from countries’ official reports. ** FAOSTAT provides no farm size structural data
of the year 2000 or 2010 for comparison.
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Figure 8. Dominant farm size according to Mehrabi
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Mehrabi et al. (2020) (a), our farm-size- and crop-specific dataset based on the GAEZv4 crop map (b) and SPAM2010 crop map (c),
respectively. Only cells included in both the dataset by Mehrabi et al. (2020) and our datasets are shown.

4 Discussion

4.1 Potential explanations for irrigation and farm size

Our datasets confirm findings by previous studies that smaller farms have a higher relative irrigation share compared to larger

farms. This seems to be the case because relatively many of the small farms are located in severe water scarce regions, which

would require them to irrigate more and more often to grow their crops (Fig. 9). However, it remains unclear whether small

farms adapt to water scarcity via irrigation or that irrigation practices of small farms increase water scarcity (Grafton et al.,

2018). Another explanation relates to the farm size structures between countries. Asian countries are home to the majority of

small farms, and previous studies have shown that, on average, the relative share of irrigated area on Asian small farms is

indeed much higher than in other countries, regardless regional water scarcity levels (Ricciardi et al., 2020).
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Figure 9. Blue water scarcity levels (WSL -specific harvested area dataset
based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b) under four blue water scarcity levels (WSL) by Mekonnen
and Hoekstra (2016). Low blue WSL indicates blue water consumption does not exceed blue water availability; moderate WSL
indicates blue water consumption is 100-150% of blue water availability; significant WSL indicates blue water consumption is 150—
200% of blue water availability; and severe WSL indicates blue water consumption is larger than 200% of blue water availability.

The irrigation of >1000 ha farm size shown by our datasets is relatively low, which could be explained by the regional climate

and crop characteristics. Sugarcane in Sdo Paulo, Brazil, is one of the main contributors to the significant and severe water

scarce area of >1000 ha farm size. In these regions, water scarcity is not present all year round. The level of water scarcity is
low from January to June, which is the tillering phase for sugarcane. Sugarcane is usually harvested during the dry season
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desirably, during which moisture in sugarcane is relatively low and the sugar is highly concentrated (Kavats et al., 2020). This

may help to explain why the large farms in this area are rainfed even though under a certain level of water scarcity.

.2 Uncertainties

We explieithy—ecensider—the-hypothesized that uncertainties in crop maps by—developing-might propagate to and influence
uncertainties in our gridded datasets. Therefore, we developed two separately—dewnsealedgridded datasets based on two

different crop maps-based-on-two-erop-maps;- GAEZv4, i.e., GAEZv4 and SPAM2010. From the results and validations, we
observed some differences in the-crop distribution-between-the-two-erop-maps;-, especially at the grid cell level. Fhisrefleets

the-These differences reflect uncertainties in farmland location—}-affeets and affected the spatial validations on both farm--

size--specific oil palm and the-dominant farm size distribution—Heweverdistributions. At the same time, these uncertainties

at the-grid cell level have a limited impact on country level resultsstatistics and validations-whichvalidation, as can be seen
fromin Fig. 3, Fig. 45, Fig. A26, and Fig. A3A2.

Yneertainty-inDifferences—and therefore uncertainties—related to farming systems are more pronounced between the two
crop maps-is-mere-pronounced-for-farming systems—From, also at country level. Fig. 6 and [S5}-we-could-see-the-SPAMSS]
show that our SPAM2010 based dewnsealed-map-has-adataset yields lower irrigation ratios than GAEZthat based downsealed
map-on GAEZv4. This is beeauselikely the consequence of SPAM2010 definesing irrigation aecerding—toas the actually
irrigated area-and-GAEZ-~4, whereas GAEZv4 defines irrigation by the area that is equipped with fully irrigation facilities.

hetower—irricationratio—in-SPAM2010-doesnotaltlfccttheconclusions—and~alidations—deawnDespite these diflferences

however, findings of the overall relative irrigation share being higher of smaller farms and higher absolute irrigation of larger

farms under elevated levels of water scarcity are supported by our datasets based on both crop maps.

The uncertainties in the crop maps also affect how we downscaled the dataset by Ricciardi et al. (2018a, b), the core source of

our datasets. It occurred that crops could be found in the dataset by Ricciardi et al. (2018a, b) for a given administrative unit

but not in the crop maps, or vice versa. The consequence of these inconsistencies was that 23.3% and 21.6% of the crop area

in the dataset by Ricciardi et al. (2018a, b) could not be downscaled, respectively because the GAEZv4 or the SPAM2010 crop

map indicated no crops were grown in those locations. Vice versa, 17.8% and 12.4% of the harvested area in the GAEZv4 and

SPAM2010 crop maps, respectively, could not directly be assigned a farm size due to absent records in the dataset by Ricciardi

et al. (2018a, b). Although these are substantial percentages of crop areas, our validation did not detect any peculiarities in

outcomes attributable to these inconsistencies. Developing more accurate crop maps should reduce a substantial bit of the

abovementioned uncertainties in the future.

Beside uncertainties propagated from th

Semeinput data, new uncertainties are introduced bythrough our pre-processing and-constraints-relaxation-during-the-solving
processes—Whenprocedures. In estimating crop-specific farm size structures using Riceiardi’s-datasets; around 12% of themthe
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dataset by Ricciardi et al. (2018a, b), ~12% of our final estimates were based on crop production instead of crop area.

According to Ricciardi et al. (2018a, b), the introduced uncertainties are limited when using crop production. f-terms—of
uneertaintiesIn addition, the year of the source data of Ricciardi et al. (2018a, b) ranges from 2001 to 2015 with median year

of 2013, the transient nature of farm sizes, particularly in developing countries, may not be captured when it is used for the

year of 2010.
The way we defined and apply constraints during the optimization process also introduced by—censtraints—relaxation;new

uncertainties. Solving for GAEZA(SPAM)the GAEZv4 and the SPAM2010 based mapdatasets, we setvedperformed 7381 ¢and
6017) optimizations-GAEZ~v4-and SPAM2010-based-downsealing solved-different, respectively. Differences in total number
of optimizations beeause-of the-differentcan be explained by differences in cropland extent which-affeet-theunderlying both
crop maps. Of their total number of grid-eels-to-be-allocated—Amongall-the-optimizations, 4378 ¢and 3671) needed to be

relaxed using an elastic factor of 0.125 or smaller (Eq. (5)):(5)). for the respective crop maps, while 239 ¢and 203} needed to

be further relaxed by removing some of the minimum area constraints (Eq. (6) — (9)). OnlytheThe latter relaxation of minimum
area constraint—will-introduce—additionalconstraints introduced inconsistencies with the datasets—used—This—means—the
constraintsrelaxation-introduce-additionalsource dominant field size distribution, which further adds uncertainties among-to

our datasets. This affected ~3% of theour total calculations.

In addition;-we-might-alloeate-the optimization process, it further occurred that crop area needed to be allocated to a farm size
that iswas not included in Rieeiardi’sthe dataset: by Ricciardi et al. (2018a, b). This enly-happened when-in cases where both
the crop and part of the eleven farm sizes awere included in Rieeiardi’sthe dataset butby Ricciardi et al. (2018a, b), yet meeting

the minimum area constraints regquiresrequired introducing an additional farm size for the crop at hand. In this-ease;such cases

we still ensured the 10% maximum relative difference with Rieeiardi’sthe dataset is-still-ensured-for-the-availableby Ricciardi
et al. (2018a, b) to ensure the overall farm size-Only- structures. This uncertainty was introduced for ~0.1% ¢and 5.0%)% of
alloeatedharvested area is-in-this-ease-for GAEZ(SPAMjthe GAEZv4 and SPAM2010 based downsealed-mapfarm-size- and

crop-specific datasets, respectively.

Hocated-a—farm-st b 9 Ri

Despite-Finally, despite the uncertainties at the grid cell level, the used datasets and the-downsealed-mapsour datasets were

found to be more reliable at the country level. For example, the two crop maps were developed by downscaling the agriculture
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census at the (sub)national level. Collected agriculture census and social-ecological factors considered during downscaling
may lead to some differences at the grid cell level in the two crop maps, while they were all adjusted to the country level data
from FAOSTAT-EAO;2619a}.. The dominant field size distribution is also uncertain at the grid cell level which was estimated

by spatial interpolating of training samples. The uncertainty will decrease when the focus is on the regional level (Lesiv et al.,

2019). Validations also show well consistencies with country level observations. Fherefore;-future-uses-of-our-downsealed

map-are-moreconfident at the countrylevel than-grid-eel-level-Using GAEZv4 based map-and SPAM2010 based mapdatasets

at the same time helps to reduce uncertainties at the grid cell level.

4.23 Limitations

With the ambition to map glebal-simultaneously farm--size- and crop-specific harvested area, we were enly-able to cover 56

countries due-to-data-availabilitythough-thisrefleetedbased on state-of-the-art recent datasets (e.g. Ricciardi et al. (2018a, b)
Lesiv et al. (2019), and Kim et al. (2021)). Although these countries reflect about half of the global cropland—Fass-, the

remaining countries could not be included due to lacking data availability. Particularly farm-size--specific data is scarce andor

not publicly available in-seme—e

t S+ atasets—we-useds

i for most of the excluded countries, but across-

5 g

the-board data availability is the main obstacle tein creating a dataset with global map—TFhe-development-ofcoverage.

Approaches based on deep learning and remote sensing, similar to what Descals et al. (2020) did to obtain their oil palm dataset

with which we validated some of our findings, may help-to-mapprove promising alternatives to mapping the global farm--size-
and crop-specific harvested-are-in-anetherway;tike the farm size speeific-oil pahm-in-Desealsetal(2020)-The-. However, the
lack of farm size training samples and the enormous computational requirements are the-matinstill challenges for deeplearning
and-remete-sensing-such approaches (Descals et al., 2020).

Our estimations are based on planted crop and harvested area;-which that is statie-for-representative of the year 2010. Farmers’
choice of crop will change along with climate, market demands, and se-en—Current-downsealed-maps-ecould-only-many other
factors. While our gridded datasets provide a robust baseline—for—the-distributions—of-small-andlarge—farms—Jt—remains

challenging, it would be insightful to describe thedevelopments over time. However, capturing dynamics of harvested area

under changing environment:

The-conditions and environments, particularly dynamic in developing countries (Giller et al., 2021), requires even more

additional data. Still, our datasets may be updated in the future updatesfor additional years, since many of eurdewnsealed
maps—rely-on-the updates—of-our—usedunderlying datasets—Fertunately;, including GAEZ-+v4;-SPAM2010, SPAM, and the
cropland extent map haveregular-update-plans-aceordingto-their-docwment:by Latham et al. (2014) and Lu et al. (2020) are
planned to be regularly updated. The dominant field size distribution was-alseby Lesiv et al. (2019) has already been updated
since theits first publication and may-haveannounced more updates in the future. Rieeiardi’s-datasetmayRicciardi et al. (2018a
b) did not have-updatedshare plans to update their dataset (yet), but it could be updateddone using theparticularly data from
the World Programme for the Census of Agriculture (FAO, 2620b2015) and EUROSTAT (_ EUROSTAT, 2021). AnyWe

36



685

690

695

700

705

710

715

developed our model and code such that any updates and extensions of Riceiardi’s-dataset-from-other data-sources-in the future
are eomphiable-with-eurrent-model-and-eoderelatively easily incorporated.

4.34 Suggestions on developing farm--size- and crop-specific production dataset

Crop production of small farms is one of the main concerns of the Target 2.3 (double the agricultural productivity and the

incomes of small-scale food producers) of SDG 2 (Zero hunger)—Beveloping) (UNSD, 2022). It would therefore be a major
achievement if we could develop farm--size--specific maps-enagricultural production may-be-one-of the-applications-of our

-dataset in support of this Target. However, compared

to harvested areas, an empirical farm-size-specific dataset on production or yield is even more scarce. Fhe-data-onproduction

terms—of food-insecurity—Thus;—such-datasets-would-require-estimating-theThus, developing a farm-size- and crop-specific
production dataset requires additional modeling and our datasets could readily be used as input for such development.

Developing a farm-size- and crop-specific production eryield-based-on-additional-medels:

Currentdataset requires unpacking the various factors that impact yield and are known or expected to correlate with farm size

as recent studies show that the relationship between farm size and crop production er—yield-is_indirect and complex—, cf.
Muyanga and Jayne (2019) and lizumi et al. (2021
erop-types;fertilizerinput;). Some factors could be unpacked directly for farm sizes with our datasets. For example, one could

overlap our datasets with the soil and climate;and- datasets to estimate soil and climate production conditions—Fhe-farm-size
itself does-not-directly-affectyieldbut for cach farm size-eften-—correlates-with-factors-that-affectyield—Seoestimating erep

environmmental. Other factors

and—elimate—database—Agrieulturalcould be unpacked indirectly via agricultural production system, e.g. agricultural

management and input factors; tikefe er-input;could-beinferred from-the-agricultural production system-data. Specifying

agricultural management and input factors according to farming systems could help to first evaluate crop yield for different

farming systems, and then allocate the yield back to farm sizes according to their proportion-in-each-farming system—Such-an

or-based-on-erop-medelingfarm size structure in each farming system. With unpacked factors, one could estimate the farm-

size- and crop-specific production with our harvested area as input using crop models as well as GAEZv4 and SPAM2010.

5 Code and data availability

The code, source data, and the simultaneoustyresulting farm--size- and crop-specific harvested areaineluding the GAEZ based
downsealed—map—and-SPAM based-downsealed—map;_datasets are open-aceess,free,—andfrecly available via a Creative
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Commons Attribution 4.0 International license at https://doi.org/10.5281/zenodo.57476+66976249 (Su et al., 2022). The
downsealed-mapsresulting datasets are available in *.csv filesand *.nc (netCDF) for each crop and farming system. Each-*.esv
file-provides-the-grid-cell-index—administrative-unitindex;For each crop-name;-, farming system, and farm size, we provide
gridded harvested area;and x-and-y-coordinates in the prejeetioncoordinate Systems of WGS84EPSG:4326 - WGS 84. Gridded
summaries over crops and farming systems are also available.

6 Conclusions

This study presents a-5-arcmin gridded simultaneously farm-size- and crop-specific datasets of harvested area for 56 countries.

by-using-the Jatest The datasets enare based on various state-of-the-art and recent datasets on farm-size- and/or crop-specitic

land use, cropland extent, and dominant field size distribution. We-explicitly-addressed-the-unecertainty-in-erop-maps by-using
L .

with

ng. The d led maps arc well-consistent with observation:

q
3
EJ
5
E:
4
i
g
g
«

mapsThe resulting datasets show the-planted-eropsstrong consistency along multiple variables validated against multiple

empirical and #rigation-differamonsfarm sizes-which-suppert-previeusfindings—We-ebserved-uneertaintiesin-the-map

produced-at-th rid Hlevel b

P at-the-gria

Intendedfuture-updates-will-inerease-the-spatial-published sources. While our high-resolution dataset fills a part of the data
gap, lacking data availability is still hampering the development of dynamic datasets with full global coverage. Our

simultaneously-farm-sizeNevertheless, we are confident that our current datasets will prove to be a useful tool for improving

our understanding of differences between small- and
size—into-globalagriculture—water resourees—and-large-scale farms, e.g. in terms of climate change studiesadaptation and

mitigation strategies, water consumption patterns, and contribution to (local) food security and SDG 2.
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Appendices

I Area with oil palm

740

Figure Al. The global distribution of oil palms according to Descals et al. (2020)-and-the). The five countries to-validatefor which we
validated our dewnsealed-mapsdatasets are circled in red.
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Figure A2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to

745 SPAM-based-¢ led-mapour farm-size- and crop-specific harvested area dataset based on the SPAM2010 crop map. The
alternative version based on GAEZv4 crop map is given in Fig. 3.
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Figure A3. Comparison of the percentage of total crop area operated by each farm size (non-crop-specific farm size structure)

between FAOSTAT structural data for the year 2000 and 2010 (FAQO, 2022) and our farm-size- and crop-specific dataset based on

the SPAM2010 crop map. Bold font country titles indicate that farm size structures in FAOSTAT are similar to our dataset. Note

that for the vear 2000, farm size structure from FAOSTAT structural data is the same with Lowder et al. (2016) except for one
7 [S5]. Only the countries covered by our dataset and FAOSTAT are shown. The alternative version based on GAEZv4 cro)

760

map is given in Fig. 7. * FAOSTAT provides (part of) the structural data by interpolating other reported data, not directly from
countries’ official reports. ** FAOSTAT provides no farm size structural data of the year 2000 or 2010 for comparison.
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