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Abstract. 

Farms are not homogeneous. Smaller farms generally have different planted crops, yields, agricultural inputs, and 20 

irrigationsirrigation applications compared to larger farms. MappingHowever, gridded farm -size could facilitate studies-

specific data—that is moreover crop specific—is currently lacking. This obscures our understanding of differences between 

small- and large-scale farms, e.g. with respect to quantify how water availability and climate change affect small and large 

farms, respectively. Given the lack of gridded farm size specific data, thisadaptation and mitigation strategies, contribution to 

(local) food security, and water consumption patterns. This study aims to develop a globalfills a significant part of the current 25 

data gap, by developing high-resolution gridded, simultaneously farm -size- and crop-specific datasets of harvested area. We 

achieved it by downscaling a best-available dataset, which collected  for 56 countries (i.e., covering about half the global 

cropland). Hereto, we downscaled the most complete global direct measurements on crop and farm size, using of farm size 

and crop type by compiling state-of-the-art datasets, including crop maps, cropland extent maps, and dominant field size 

distributions for distribution, representative of the year 2010. Uncertainties in crop maps were explicitly considered by using 30 

two crop maps separately during downscaling. Due to data availability, our downscaled maps cover 56 countries accounting 

for half of the global cropland. Based on the Using two different crop maps, we havemap sources, we were able to produce 

two new 5-arcmin gridded, datasets on simultaneously derived farm -size- and crop-specific dataset of harvested areas,: one 

for 11 farm sizes, 27 crops, and 2 farming systems, and another one for 11 farm sizes, 42 crops, and 4 farming systems. The 

downscaled mapsIn line with previous findings, our resulting datasets show major differences in planted crops and irrigation 35 

change along with irrigated area (%) between farm sizes, which support previous findings. Validations show well consistencies 

with . Consistency between our resulting datasets and i) observations on farm size specific oil palm from satellite images, on 

farm -size -specific irrigation fromoil palm, ii) household surveys, and on the farm-size-specific irrigated area (%), and iii) 

previous studies that map farm size but are not mapped non-crop-specific. We observed farm sizes, support the validity of our 

datasets. Although at grid level some uncertainties at the grid cell level and found conclusionsremain to be overcome, 40 

particularly those stemming from uncertainties in crop maps, results at the country level areseem robust to these uncertainties 

including the uncertainties from the crop maps. Our downscaled maps will help to explicitly include farm size into global 

agriculture modeling. The source. Source data, code, and downscaled mapsresulting datasets are open-access and freely 

available at https://doi.org/10.5281/zenodo.57476166976249 (Su et al., 2022). 

  45 
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1 Introduction 

There are over 608 million farms around the world , which highly vary in their characteristics (Lowder et al., 2016; Lowder et 

al., 2021). Land and water resources are not equally distributed among these farms. More For example, more than 80% of 

these farms are smaller than 2 hectares and they only utilize only around 20% of global farmland area (of 2.5 billion hectares 

(Bosc et al., 2013; Lowder et al., 2021; Bosc et al., 2013). The ). In contrast, the largest one percent1% of the farms 50 

utilizeoccupy 70% of global farmland area (Lowder et al., 2021). Smaller farms also insufficientlytypically apply less irrigation 

to adapt to water scarcity in low- and middle-income countries , making them more vulnerable to water scarcity than larger 

farms (Ricciardi et al., 2020). 

In addition to water and land resources, the characteristics of agricultural production differ across farm sizes, which may be 

country-dependent. For example, in terms of  In terms of crops and mindful of national differences, smaller farms tend to plant 55 

more fruits, pulses, and roots and tubers, while larger farms plant more vegetables, nuts, and oil crops (Ricciardi et al., 2018b; 

Herrero et al., 2017). In terms of agricultural practices used to increase agricultural productivity, ; Ricciardi et al., 2018a, b). 

Furthermore, farmers who operate smaller farms tend to increase the use of non-fixed inputs,  to increase their productivity, 

such as fertilizers and pesticides, whilewhereas larger farms tend torather increase fixed inputs, such as machinery (Ren et al., 

2019). SmallerWhether smaller farms also have a greater biodiversity on average (Ricciardi et al., generate2021; Noack et al., 60 

2021). Though whether smaller farms have a higher yields has long been debated, although it appears that yields often 

correlatescorrelate positively with farm size (see Rudra (1968); Savastano and Scandizzo (2017); Gollin (2019); Ricciardi et 

al. (2021)). What seems undisputed, however, is that smaller farms on average display greater biodiversity than their larger 

counterparts (Ricciardi et al., 2021; Noack et al., 2021).(2021)). 

These above-mentionedSince characteristics stimulatevary widely between farms, many studies to explicitly set out to map 65 

the differences, particularly along the dimension of their size to discern small- and large -scale farms in agriculture studies and 

map farm sizes (Meyfroidt, 2017; (Riesgo et al., 2016; Meyfroidt, 2017). At the global level, farm size mapping farm sizes 

can be traced back to the studies of was pioneered by Lowder et al. (2016), Samberg et al. (2016), and Fritz et al. (2015). 

Lowder et al. (2016) estimated the country -level distribution of farm size, based on multiple agricultural censuses. Samberg 

et al. (2016) used the Mean Agricultural Area (MAA) to assign each subnationalsub-national administrative unit with a farm 70 

size. ThisA limitation of this approach is that it may overestimate the area of small farms because not all farms are small, even 

if they are, since being located in thean administrative unit dominated by small farms does not necessarily mean that all farms 

within that unit are indeed small (Ricciardi et al., 2018b2018a, b). Fritz et al. (2015) developedmapped a gridded global 

dominant field size mapdistribution, using manually labeled field size data on the satellite images and spatial interpolation. 

The dominant field size mapdistribution by Fritz et al. (2015) was updated by Lesiv et al. (2019). WhenA consequence of 75 

interpreting fields as farms, thehowever, is that small farm area will alsoareas may be overestimated as, since large farms can 

include small-sized fields. as well.  
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Further developments ensued through Herrero et al. (2017)), who used the country -level farm size data from Lowder et al. 

(2016) and Fritz et al. (2015) to develop a dominant farm size map which . This map, in turn, was later updated by Mehrabi et 

al. (2020) using the field size mapdistribution from Lesiv et al. (2019). Given that dominant farm size only However, despite 80 

its improvements, the method employed by Mehrabi et al. (2020) still assigns only one (i.e., a dominant) farm size to each grid 

cell (usually 10 km by 10 km), dominant farm size may over/underestimate some kinds of farm sizes when it is used to 

estimate5 × 5 arcmin), which reduces its usefulness in estimating the number and area distribution of different farm sizes. 

In Another important shortcoming in previous studies, is that current farm size mapping ismaps are not crop- specific. One 

wayA potential solution to estimateing the planted crops for different farm sizes is to overlap the farm size map with crop 85 

maps, e.g., Monfreda et al. (2008) in . Samberg et al. (2016) and Mehrabi et al. (2020), Ray et al. (2013) in), Herrero et al. 

(2017). Overlays with crop maps), and Mehrabi et al. (2020). Yet still, such overlays may lead to biases in the 

allocationassigning of crop-specific cropping areas to farm sizes (Ricciardi et al., 2018b),, because of differences between 

farm size and MAA, field sizes, and dominant farm sizes, and potentially also due to possible structural differences in crop 

choices between farm sizes. 90 

One way to avoid such biases is to develop a simultaneously (Ricciardi et al., 2018a, b). In order to address these limitations, 

farm -size- and crop-specific map.datasets would need to be developed simultaneously, which is what Ricciardi et al. (2018b); 

Ricciardi et al. (2018a) established an, b) attempted. Arguably the most complete empirical global database usingdataset to 

day, they collated data from agriculture censuses and household surveys that directly measured crop production or areas in 

combination with farm size. Theisr dataset covers about half of the global cropland, including data for 56 countries1 –, with 95 

subnational data for 46 countries. Ricciardi’s dataset, however, does not have gridded maps, so it has limited Still, being 

defined at administrative unit level, the dataset by Ricciardi et al. (2018a, b) lacks a high-resolution grid-level representation 

of the data. This resolution gap limits the capability to fulfill the needs of globale.g. climate change, agricultural and water 

resources studies, where the hydrological model and climate models which commonly use grided maps need gridded data as 

input. Lacking gridded farm size- and crop-specific maps limits the evaluations of how water scarcity and climate change 100 

affect, which, in turn, obscures our understanding of differences between small- and large-scale farms, respectivelye.g. with 

respect to climate change adaptation and mitigation strategies, contribution to local food security, and water consumption 

patterns. 

This study aims to developfills a globalsignificant part of the current data gap, by developing high-resolution gridded, 

simultaneously farm -size- and crop-specific datasets of harvested areas witharea for 56 countries, representative of the year 105 

2010. The datasets, moreover, provide additional information on farming systems. Considering the data availability, the 

baseline year is 2010 with data covering 56 countries. We compiled multiple datasets To obtain the datasets, we developed 

and applied a downscaling procedure, in which we used state-of-the-art datasets on field size and crop type, including crop 

 
1 In theirTheir paper, they claim to have states data is available for 55 countries. In, but the associated dataset they published, 

itactually contains the 56th country, the 56 (Czech Republic. seems to be added). 
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maps (Yu et al., 2020; FAO and IIASA, 2021; Fischer et al., 2021), cropland extent, (Latham et al., 2014; Lu et al., 2020), and 

dominant field size distribution, as well as crop distribution and farming systems and used them (Lesiv et al., 2019), to 110 

downscale the most complete empirical global farm -size- and crop-specific datasets developeddataset by Ricciardi et al. 

(2018b); Ricciardi et al. (2018a),, b) from the level of administrative units intounit to a 5 arcmin grid cell level. We alsogridded 

spatial resolution. Two crop maps were used to explicitly considered the consider uncertainties in crop distributions by using 

two crop maps. The . We validated our resulting downscaled maps were validated with datasets using empirical data and 

comparedisons with previous studies.  115 

2 Methods 

2.1 Overview 

Imagine that we know the crop area of small and large farms within an administrative unit, to downscale it, if we get a high 

spatial resolution map of crop area, we may have some idea on where the small and large farms may locate because some 

crops are planted more by small farms and some crops are planted more by large farms. In addition, if we have the field size 120 

distribution within the administrative unit, we could know more about the location of small and large farms because large 

fields only belong to large farms and small farms can only be located in small fields. When we combine the information from 

the crop map and field size distribution, even though we could not precisely locate small and large farms, we can estimation 

their distributions in this administrative unit with some extent of uncertainties. This is how we develop the gridded, 

simultaneously farm size- and crop-specific dataset of harvested areas. Theoretically, we could estimate multiple distributions 125 

of small and large farms that are consistent with all the administrative level and grid cell level data. Practically, however, these 

distributions may not exist because of the background inconsistencies in the datasets. To deal with the background 

inconsistencies, we assume the best estimation of the farm size- and crop-specific distributions are the distributions that could 

maximize consistencies with datasets. In those cases, we tried to find multiple distributions that meet the same level of 

consistency with datasets and averaged the multiple distributions to get the final estimation.  130 
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The gridded, simultaneously farm-size- and crop-specific dataset of harvested areas can be achieved by downscaling the 

administrative unit level crop-specific farm size structure using gridded crop distribution and gridded dominant field size 

distribution (Fig. 1). Since certain crops are more prevalent on small farms and others on larger farms as indicated by crop-

specific farm size structure, the gridded crop distribution primarily indicate where small and large farms are located. Gridded 135 

dominant field size distribution further helps specify the location of small and large farms because, by definition, large fields 

only belong to large farms and small farms can only be located in small fields. We assumed the best estimation of the farm-

size- and crop-specific harvested area distribution is the one that maximizes consistencies with the underlying administrative 

unit farm-size and grid cell level data.  
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The datasetFigure 1. Diagram of map development processors. 140 

The map development involved pre-processing of multiple datasets, establishing optimization for downscaling, and constraints 

relaxation and solving optimization problems (Fig. 1). The pre-processing included two parts: i) reclassifying crops to 

accommodate differences in crop classification used in the underlying datasets and harmonizing Ricciardi’sthe dataset by 

Ricciardi et al. (2018a, b) and ii) converting the dominant field size mapdistribution into a minimum field area per field size 

and 5-arcmin grid cell (Sect. 2.2). The downscaling was achieved by maximizing consistencies with multiple datasets that 145 

provide information on the location of each farm/field size and planted crops. Specifically, we establishedformulated an 

optimization for each administrative unit (Sect. 2.3) and solved it via constraints relaxations (Sect. 2.4). Priorities in achieving 

consistency with the various underlying datasets were considered during these processes (Sect. 2.3 and 2.4). The spatial crop 

distribution affects both crop location and farm size location during downscaling and is usually uncertain. To consider 

theassociated with considerable uncertainties in. To consider propagation of such uncertainties, we used two different crop 150 

maps, we used two crop mapsi.e. GAEZv4 (FAO and IIASA, 2021; Fischer et al., 2021) and SPAM2010 (Yu et al., 2020). 

Doing so allowed us to develop two alternative versions of the final downscaled mapdataset separately.  
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Figure 1. Diagram of dataset development processors. 155 

2.2 Datasets and pre-processing 

All the datasets used in this study can be found in Table 1. Ricciardi’sThe main dataset by Ricciardi et al. (2018a, b) provides 

the farm -size- and crop-specific cropping area for 56 countries at the administrative unit level ([(see [S1] for thea list of the 

56 countries included). The eleven farm sizes in this dataset are based on the classification from the World Census of 

Agriculture (WCA) (FAO, 2020b2015; Ricciardi et al., 2018a, b; FAO, 2022): 0–1 ha, 1–2 ha, 2–5 ha, 5–10 ha, 10–20 ha, 20–160 

50 ha, 50–100 ha, 100–200 ha, 200–500 ha, 500–1000 ha, and >1000 ha. The cropping area in this dataset meansindicates 
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either crop area, planted area, harvested area, or cultivated area. Because the data quality varies from country to country and 

because this dataset was not harmonized overin time, we chose to downscale its crop-specific farm size structure,  (i.e., the 

crop-specific percentage of harvested area per farm size, for each crop) instead of the absolute area. The crop 

Crop-specific harvested area is taken from two separate crop maps: GAEZ v4 (Fischer et al., 2021; map sources: GAEZv4 165 

(FAO and IIASA, 2021; Fischer et al., 2021) and SPAM2010 (Yu et al., 2020). These are the only twomost comprehensive 

crop maps available, containing harvested area of tensdozens of crops for the year 2010 at 5 arcmin spatial resolution (Kim et 

al., 2021). GAEZ v4GAEZv4 and SPAM2010 have their own crop classification systems ([, which are given in [S2, S3] for 

details). GAEZ v4]. Furthermore, GAEZv4 distinguishes two farming systems:, namely irrigated and rainfed., while 

SPAM2010 further distinguishesspecifies rainfed into low- and high-input rainfed and subsistence rainfed.  (in addition to 170 

irrigated farming systems).  

The dominant field size distribution (Lesiv et al., 2019) indicates where larger farms may locate. It providesbe located and 

contains the spatial distribution for five field sizes: < 0.64 ha, 0.64–2.56 ha, 2.56–16 ha, 16–100 ha, and >100 ha. For pre-

processing the dominant field size distribution, cropland extent maps were also included (detailed steps could be found below). 

All datasets used in this study are listed in Table 1. 175 

Table 1. Datasets that were used to develop the gridded, farm -size specific,- and crop-specific datasets of harvested area. 

Dataset Indicator Spatial coverage and resolution Time Crop Note 

Ricciardi et al. 

(2018b); Ricciardi 

et al. (2018a) 

Farm size 

structure* 

56 countries; (sub)national 

administrative unit 

Varies from 

2001 to 2015 

154 FAO 

crops 

11 farm sizes 

GAEZ v4 (Fischer 

et al., 2021; FAO 

and IIASA, 2021) 

Harvested 

area 

Global; gridded, 5 arcmin (10 

km) 

2010 27 GAEZ 

crops** 

2 farming systems 

(irrigated and rainfed) 

SPAM2010 (Yu et 

al., 2020) 

Harvested 

area 

Global; gridded, 5 arcmin (10 

km) 

2010 42 SPAM 

crops 

4 farming systems 

(irrigated, low- and 

high-input rainfed and 

subsistence rainfed) 

Dominant field 

size distribution 

(Lesiv et al., 2019) 

Dominant 

field size 

Global; gridded, 30 arcsec (1 

km) 

Varies from 

2000 to 2017 

Not crop-

specific 

5 field sizes 

GLC-Share 

(Latham et al., 

2014) 

Cropland 

extent 

Global; gridded, 30 arcsec (1 

km) 

Around 2010 Not crop-

specific 

The based map of 

GAEZ v4 



10 
 

CAAS-IFPRI 

cropland extent 

map (Lu et al., 

2020) 

Cropland 

extent 

Global; gridded, 15 arcsec (0.5 

km) 

2010 Not crop-

specific 

The base map of 

SPAM2010 

 * Here we mean the crop-specific percentage of harvested area per farm size within an administrative unit 
 is meant. ** The 27th crop is Fruits and Nuts which is not listed in the document but available in their dataset. 

Dataset Indicator Spatial coverage and resolution Time Crop Note 

Ricciardi et al. 

(2018a, b) 

Farm size 

structure* 

56 countries; (sub)national 

administrative unit 

Varies from 

2001 to 2015 

154 FAO 

crops 

11 farm sizes 

GAEZv4 (FAO 

and IIASA, 2021; 

Fischer et al., 

2021) 

Harvested 

area (crop 

map) 

Global; gridded, 5 arcmin (10 

km) 

2010 27 

GAEZv4 

crops** 

2 farming systems 

(irrigated and rainfed) 

SPAM2010 (Yu 

et al., 2020) 

Harvested 

area (crop 

map) 

Global; gridded, 5 arcmin (10 

km) 

2010 42 

SPAM2010 

crops 

4 farming systems 

(irrigated, low- and 

high-input rainfed, and 

subsistence rainfed) 

Dominant field 

size distribution 

(Lesiv et al., 

2019) 

Dominant 

field size 

Global; gridded, 30 arcsec (1 

km) 

Varies from 

2000 to 2017 

Not crop 

specific 

5 field sizes 

GLC-Share 

(Latham et al., 

2014) 

Cropland 

extent 

Global; gridded, 30 arcsec (1 

km) 

Around 2010 Not crop 

specific 

The based map of 

GAEZv4 

CAAS-IFPRI 

cropland extent 

map (Lu et al., 

2020) 

Cropland 

extent 

Global; gridded, 15 arcsec (0.5 

km) 

2010 Not crop 

specific 

The base map of 

SPAM2010 

 

To pre-process Ricciardi’sthe dataset, by Ricciardi et al. (2018a, b), we first reclassified their crops (who followed the FAO 180 

crops in this datasetclassification) into 27 GAEZv4 crops and 42 SPAM2010 crops, respectively. Detailed criteriaCrop 

reclassification details can be found in [S2, S3]. We used the cropping area to getobtain the crop-specific farm size structure. 

In this dataset, the cropping area is crop- specific and includes four items: crop area, planted area, harvested area, and cultivated 

Formatted: Caption
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area. These variables were identified by Ricciardi’sthe dataset by Ricciardi et al. (2018a, b) from the local agriculture census. 

There is no worldwide standard definition for these items (FAO, 2015). Local), meaning local agriculture censuses havecan 185 

apply their own preference to use one of them for specific crops.preferred definitions. In generallygeneral, however, planted 

area is used for temporary crops; cultivated area for temporary crops and permanent crops; crop area for temporary crops, 

permanent crops, fallow fields, meadows, and pastures; and harvested area isfor the cultivated area excluding the area 

destroyedrendered unsuitable for cultivation by natural disasters or other reasons (FAO, 2020a, 2015, 2020). In terms of data 

availability, one or two of these items are available for most countries. To harmonize data, when  at the least. If more than one 190 

item iswas available, we usedharmonized the data by taking the item with a largerthe largest overall area (after crop 

reclassification) to estimate farm size structure because, since a larger overall area typically means that more farm size classes 

have available data in most cases.. If none of the four items werewas available, we used crop production data provided by 

Ricciardi’sthe dataset to getby Ricciardi et al. (2018a, b) as a proxy for the crop-specific farm size structure. In this case, we 

assumed, assuming constant yields across farm sizes. 195 

We During pre-processing we also converted the 1 *× 1 km dominant field size distribution map into a minimum field area 

per field size and 5-arcmin grid cell during pre-processing.to align with the spatial resolution of crop maps. We interpreted 

dominant field size as a fieldthat fields of that size accounting for at least 50% of cropland in the grid cell. For each field size, 

we calculated the minimum field area for each 1-km cell by using the 50% of cropland extent that is dominated by the respective 

field size.. We then summed and scaled the minimum field area to cover all croplands offrom 1-km to 5-arcmin cells. To keep 200 

cropland extent consistent with crop map during downscaling, GLC-Share is used when the crop map is GAEZ v4; CAAS-

IFPRI cropland extent map is used when the crop map is SPAM2010. and scaled the summed area to cover 50% of croplands 

in 5-arcmin cells. The minimum field area of field size 16–100 ha is 120 ha in thea 5-arcmin cell #23 which means, for example, 

farms larger than 16 ha should occupy at least 120 ha in the cell #23. To keep cropland extent consistent with the crop maps 

during downscaling, GLC-Share was used with the GAEZv4 crop map, while we used CAAS-IFPRI cropland extent map with 205 

the SPAM2010 crop map.  

2.3 Optimization for downscaling 

For each administrative unit defined in Ricciardi’sthe dataset, by Ricciardi et al. (2018a, b), we established the following 

optimization problem for our downscaling: procedure. Note that the dataset by Ricciardi et al. (2018a, b) identifies eleven farm 

sizes and the dominant field size distribution (Lesiv et al., 2019) identifies five field sizes. 210 

Sets: 

𝑐𝑐, Crops 

𝑓𝑓, Farm size, labelled by the lower bound of the eleven farm sizes 

𝑒𝑒, Field size, labelled by the lower bound of the five field sizes 

𝑠𝑠, Farming system 215 

𝑎𝑎, Administrative unit 

Formatted: Font: Italic
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𝑔𝑔, Grid cell 

Parameters: 

ℎ𝑎𝑎.𝑅𝑅𝑐𝑐,𝑓𝑓,𝑎𝑎 , Crop-specific farm size structure, percentage of the harvested area of farm size 𝑓𝑓  that plant crop 𝑐𝑐  in the 

administrative unit 𝑎𝑎,  (from Ricciardi’sthe dataset by Ricciardi et al. (2018a, b)) 220 

ℎ𝑎𝑎. 𝑆𝑆𝑐𝑐,𝑠𝑠,𝑔𝑔, Harvested area of crop 𝑐𝑐 under farming system 𝑠𝑠 at grid cell 𝑔𝑔,  (from crop map, either SPAM2010 or GAEZv4) 

ℎ𝑎𝑎. 𝐿𝐿𝑒𝑒,𝑔𝑔, Minimum field area of field size 𝑒𝑒 at grid cell 𝑔𝑔,  (from dominant field size mapdistribution by Lesiv et al. (2019) 

and crop extent map by Latham et al., (2014) and Lu et al., (2020) 

𝑝𝑝𝑓𝑓, The minimum farm area of farm size 𝑓𝑓 in any girid cell when the farm size 𝑓𝑓 exists; it is, i.e., the lower bound of the farm 

size class 𝑓𝑓 225 

𝑙𝑙, Elastic factor 

Variables: 

ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔 Harvested area of crop 𝑐𝑐, farm size 𝑓𝑓, farming system 𝑠𝑠 atin grid cell 𝑔𝑔,  (estimated by this study) 

Objective function: 

Since we aim to downscale Ricciardi’sthe dataset, by Ricciardi et al. (2018a, b), we wanted to maximizemaximized—within 230 

the constraints— consistencies with Ricciardi’sthe dataset when constraints allow:by Ricciardi et al. (2018a, b): 

 
𝑚𝑚𝑚𝑚𝑚𝑚 �𝑎𝑎𝑎𝑎𝑠𝑠�ℎ𝑎𝑎.𝑅𝑅𝑐𝑐,𝑓𝑓,𝑎𝑎 � ℎ𝑎𝑎. 𝑆𝑆𝑐𝑐,𝑠𝑠,𝑔𝑔

𝑠𝑠,𝑔𝑔∈𝑎𝑎

− � ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔
𝑠𝑠,𝑔𝑔∈𝑎𝑎

�
𝑐𝑐,𝑓𝑓

 (1) 

Constraints: 

The first constraint ensures consistenciesis meant to ensure consistency with the respective crop map:maps we used and states 

that the total harvested area per crop per farming system per grid cell in our map equalsdatasets must be equal to the harvested 

area per crop per farming system per grid cell in the respective crop map. 235 

 �ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔
𝑓𝑓

= ℎ𝑎𝑎. 𝑆𝑆𝑐𝑐,𝑠𝑠,𝑔𝑔,∀𝑐𝑐, 𝑠𝑠,𝑔𝑔 (2) 

The second constraint ensuresrequires a minimum consistencieslevel of consistency with Ricciardi’sthe dataset. The by 

Ricciardi et al. (2018a, b) and states that the relative difference in farm size structure between our estimation and Ricciardi’sthe 

dataset wouldby Ricciardi et al. (2018a, b) cannot be lessmore than 10%. This constraint ensures that we do not diverge far 

from Ricciardi’s dataset, even when other constraints are hard to meet. In this case,, we do not diverge too far from the dataset 

by Ricciardi et al. (2018a, b). This constraint takes priority over the following constraints, meaning we would relax other 240 

constraints to ensure these minimum consistencies with Ricciardi’s dataset. The arbitrary meet this one. The 10% relative 

difference considersmark is an educated guess based on timestamp differences in Ricciardi’sthe dataset by Ricciardi et al. 

(2018a, b) and overall assumed uncertainties underlying each of the datasets. 
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 90% ∗ ℎ𝑎𝑎.𝑅𝑅𝑐𝑐,𝑓𝑓,𝑎𝑎 � ℎ𝑎𝑎. 𝑆𝑆𝑐𝑐,𝑠𝑠,𝑔𝑔
𝑠𝑠,𝑔𝑔∈𝑎𝑎

≤ � ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔
𝑠𝑠,𝑔𝑔∈𝑎𝑎

≤ 110% ∗ ℎ𝑎𝑎.𝑅𝑅𝑐𝑐,𝑓𝑓,𝑎𝑎 � ℎ𝑎𝑎. 𝑆𝑆𝑐𝑐,𝑠𝑠,𝑔𝑔
𝑠𝑠,𝑔𝑔∈𝑎𝑎

,∀𝑐𝑐, 𝑓𝑓 (3) 

Third, we also appliedThe third constraint sets a minimum allocated area for each farm size atin each grid cell. The if the farm 

size exists in the cell. This minimum allocated area is not necessarily required by the definition of farm size since the farm size 245 

is defined based on the total operated or cultivated area that does not need to be a single crop area and single farming system. 

It , yet we reckoned it is still reasonable to include it because we applied it at the a 5-arcmin (~10 km) grid cell level. 

Considering theis mostly much larger than a single farm. Given both the presence of uncertainties in these constraints and 

inconsistencies among datasets used, we considerincorporated this constraint in a hard form and soft form. We during the 

optimization: we used the hard form by default. We consider relaxing these constraints using the , but transitioned to the more 250 

relaxed soft form when the optimization iswas infeasible (see also Sect. 2.4). TheNote that the soft form does not strictly 

require thea minimum allocation area for each farming system.  

Hard form: 

 ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔 ≥ 𝑝𝑝𝑓𝑓 ,∀𝑐𝑐, 𝑓𝑓, 𝑠𝑠,𝑔𝑔, 𝑚𝑚𝑓𝑓 ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔 > 0 (4) 

Soft form: 

 �ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔
𝑠𝑠

≥ 𝑙𝑙 × 𝑝𝑝𝑓𝑓 ,∀𝑐𝑐,𝑓𝑓,𝑔𝑔, 𝑚𝑚𝑓𝑓 ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔 > 0 (5) 

Fourth, we appliedThe fourth constraint sets a minimum area constraint for somecertain farm sizes according to the spatial 255 

distribution of dominant field size distribution. This constraint follows the logic. The rationale is that a field couldcan only 

belong to ana farm equal or larger than its own size of farm. We assumed a linearuniform distribution of area within each farm 

size, like Ricciardi et al. (2018a, b), to accommodate the different classifications of size in farms and fields.  

GivenFor example, 40% of the area ofin the farm size 10–20 ha was assumed to be in 16–20 ha class in Eq. (7). 

For field larger than 100 ha, forareas and farms larger than 100 ha: 260 

 � ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔
𝑐𝑐,𝑠𝑠,𝑓𝑓≥100

≥ ℎ𝑎𝑎. 𝐿𝐿100,𝑔𝑔,∀𝑔𝑔 (6) 

Given the area ofFor field areas larger than 16 ha, for and farms larger than 10 ha: 

 
� ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔

𝑐𝑐,𝑠𝑠,𝑓𝑓≥20

+
20 − 16
20 − 10�

ℎ𝑎𝑎𝑐𝑐,10,𝑠𝑠,𝑔𝑔
𝑐𝑐,𝑠𝑠

≥ ℎ𝑎𝑎. 𝐿𝐿100,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿16,𝑔𝑔,∀𝑔𝑔 (7) 

Given the area ofFor field areas larger than 2.56 ha, for and farms larger than 2 ha: 

 
� ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔

𝑐𝑐,𝑠𝑠,𝑓𝑓≥5

+
5 − 2.56

5 − 2 �ℎ𝑎𝑎𝑐𝑐,2,𝑠𝑠,𝑔𝑔
𝑐𝑐,𝑠𝑠

≥ ℎ𝑎𝑎. 𝐿𝐿100,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿16,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿2.56,𝑔𝑔,∀𝑔𝑔 (8) 

Given the area ofFor field areas larger than 0.64 ha, for all farms and any farm size: 

 
� ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔

𝑐𝑐,𝑠𝑠,𝑓𝑓≥1

+
1 − 0.64

1 − 0 �ℎ𝑎𝑎𝑐𝑐,0,𝑠𝑠,𝑔𝑔
𝑐𝑐 ,𝑠𝑠

≥ ℎ𝑎𝑎. 𝐿𝐿100,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿16,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿2.56,𝑔𝑔 + ℎ𝑎𝑎. 𝐿𝐿0.64,𝑔𝑔,∀𝑔𝑔 (9) 

Last butSince areas should not leastassume negative values, we havealso include non-negative area constraints: 
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 ℎ𝑎𝑎𝑐𝑐,𝑓𝑓,𝑠𝑠,𝑔𝑔 ≥ 0,∀𝑐𝑐, 𝑓𝑓, 𝑠𝑠,𝑔𝑔 (10) 

2.4 Constraints relaxation and solving procedures  265 

When the above optimization (Eq. (1)–(10)) isproved infeasible due to the inconsistencies among datasets, we first replaced 

the hard form of minimum allocated area for each farm size(i.e., the third constraint) (Eq. (4)) for all farm sizes with the soft 

form (Eq. (5)) and triedapplied the elastic factor with the following values in order: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 0. If 

itoptimization was still infeasible, we relaxed the minimum area constraint required by the dominant field size distribution 

(i.e., the fourth constraint) by removing the constraints from large to small farms until the optimization was feasible. Relaxing 270 

the minimum area constraint doesdid not happen often during downscaling. 

WheneverOnce the above optimization becoames feasible, the optimization doeswe did not necessarily yieldstrike a unique 

global optimum. WeTherefore, we calculated up to 80 (sub)optimal solutions with the same level of consistencies and averaged 

these solutions to getobtain the final one. This helps us to avoid potential bias of single optimal solutions. There may be still 

bias on the final averaged solution becausesolution. Since the number and quality of solutions depend on the searching process 275 

of the solving the toolbox, this procedure may still leave some bias in the final averaged solution. 

Each optimization problem was solved by Gurobi v9.1 using the dual simplex method with a time limit of 150 seconds. Gurobi 

v9.1 is, a fast commercial optimization solver , using the dual simplex method (Gurobi Optimization, 2021). Most of the 

optimization problems in this study couldOptimization was taken as infeasible by the solver's initial evaluation or if it is 

computationally unsolvable (cannot be solved within 60150 seconds with).  Most of the optimal solutions. For the  were 280 

obtained within 60 seconds when feasible. For those administrative units containingthat contained more than 300 5-arcmin 

grid cells, the optimization problem becomes extremely large posing a great highly complex. This posed a challenge for the 

solver. The, with the number of decision variables would be more than increasing to over half- a million. In this caseAs a 

workaround, we applied a two-tiered optimization. We, where we first randomly divided all grid cells randomly into several 

groups. Each group includes around included ~100 grid cells (except for Russia, it was 200 where groups were set to contain 285 

~200 grid cells to keep the total number of groups below 300). We firstNext, we solved the optimization problem at the group 

level. Then, we solved, followed by solving it at the cell level optimization forwithin each group. Of 3421Out of 3,421 

administrative units, 244 units need to be dealt with in this way – they coverunderwent this workaround procedure, collectively 

covering 89.4% of grid cells in this study. The whole computationentire optimization was performed on a desktop computer 

(Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, RAM 16 GB) taking 9 days. 290 

Finally, we masked the crop-specific farm size of crops as unknown if theseir crops are not covered by Ricciardi’sthe dataset. 

by Ricciardi et al. (2018a, b). For these crops, the optimization couldwould still estimate their farm size components, but the 

uncertainties structures only based on the distribution of crops and dominant field size. Since the overall farm size structure is 

absent and dominant field size is not sufficient to estimate all farm sizes, uncertainties of these crops are significantly larger 

than those covered by Ricciardi’s associated with the dataset. by Ricciardi et al. (2018a, b). 295 
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2.5 Validation of downscaled maps and comparison with previous studies mapping farm sizes 

The ideal way to validateIdeally, we would have validated our downscaled simultaneously farm -size- and crop-specific dataset 

is to compare itdatasets with observations. However, most of the there are limited empirical datasets available datasets are not 

farm size specific. This creates challenges for validating our downscaled maps for all crops and farming systems. We searched 

for validation datasets that , and if there are global focused,, most are not farm -size specific with additional information on 300 

crop or farming systems. Limited by data availability, we were able to validate our downscaled maps with . Given these 

limitations, we validated our datasets using two empirical datasets and we compared them with previous studies to assess the 

reliability of our downscaled maps. More validations are expected when more validation datasets become available. 

For the first validation with empirical datasets, we compared our downscaled map with . The first is by Descals et al. (2020) 

on oil palm map. Descals et al. (2020) ), who developed a global gridded farm -size -specific oil palm map using deep learning 305 

and satellite images for the year 2019. We validated our datasets for five countries that are covered by both our datasets and 

the dataset by Descals et al. (2020) (Fig. A1). With satellite images, they classified oil palm areas into small farms and large 

farms based on landscape features. In order toTo interpret theisr size classification, we adopted the definition of small oil palm 

farms by Indonesia (the world's largest palm oil producer and exporter) and used 25 ha as the threshold for the two scales 

(mentioned by Descals et al., . (2020). The validation was in five countries because only the five countries are covered by both 310 

our dataset and validation dataset(Fig. A1). The crop Oil palm in GAEZ v4 and SPAM2010 based map was used for validation 

separately.), who apply a 25 ha threshold to distinguish small from large farms, i.e., between the two scales as included in 

Descals et al. (2020). We calculated the Pearson correlation coefficient between our downscaled map and Descals et al. (2020) 

at grid cell level on three (i.e, 5 arcmin) and two additional spatial scales using spatial moving average, 5 arcmin,, i.e., 15 

arcmin, and 25 arcmin, using a spatial moving average. We validated our GAEZv4 and SPAM2010 crop map based datasets, 315 

separately. 

For theThe second validation with empirical datasets, dataset to which we compared our downscaled maps withdatasets is that 

of farm -size -specific irrigation percentage of irrigated area at the country level usingfrom the FAO RuLIS (Rural Livelihoods 

Information System) database (FAO, 2021). Eleven of 56 countries’ RuLIS includes micro-level household survey data 

aroundrepresentative of the year 2010. Eleven out of 56 countries included in our study are available [S4].also listed in RuLIS 320 

(see an overview in [S4]). Based on these household surveys, we calculated the percentage of the total irrigated area (irrigated 

area divided by cultivated area) for each farm size (classified by crop area) where at least 5five survey samples are available. 

WeOnce more, we calculated the correlations between our estimationes and those derived from the household surveys. This 

Although this validation considers farm -size -specific farming systems, withe data is aggregated over crops.  

We also compared our downscaled map with previous studies, Lowder et al. (2016) and Mehrabi et al. (2020), which mapped 325 

the geographic distribution of farm sizes but were not crop-specific and not farm-system specific. Lowder et al. (2016) provides 

the percentage of harvested area operated by each farm size at the To further validate our datasets, we compared our datasets 

to two other studies. The first is by the FAO and has just been published (FAO, 2022). This dataset contains structural data 
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obtained through agricultural censuses, including total crop areas per farm size, at country level. Mehrabi’s dataset keeps, for 

the years 1990, 2000, and 2010. We compared our datasets with the structural data of 2010 (the year our datasets are most 330 

representative of), and complementary with data of the year 2000 as well. The reason to include data on 2000 too is that data 

does not rely so heavily on interpolation as does 2010 (FAO, 2022), making the comparison more robust although temporal 

representativeness is less appropriate. Another advantage of including FAOSTAT structural data of 2000 is that it allows for 

the comparison with the widely used dataset by Lowder et al. (2016) at the same time since the dataset by Lowder et al. (2016) 

is largely the same as FAOSTAT structural data of 2000 [S5].  335 

The second study to which we compared our datasets is by Mehrabi et al. (2020), who mapped geographic distributions of 

farm sizes.  The dataset by Mehrabi et al. (2020) uses the same farm size distribution as Lowder’sthe dataset by Lowder et al. 

(2016) at the country level, but providesadds the dominant farm size perat 5-arcmin grid cell. We level. For our comparison, 

we calculated —at grid cell level—the dominant farm size from our downscaled mapdatasets with the farm size that operates 

the largest total harvested area per grid cell, for GAEZ based downscaled mapour GAEZv4 and SPAM based downscaled map, 340 

respectively. The comparison was pixel-to-pixel by counting the number of cells that have similar, larger, and smaller dominant 

farm size in our maps compared with Mehrabi’s dataset. Similar dominant farm size means the farm size in our downscaled 

map are the same or next to the farm size in Mehrabi’s dataset.SPAM2010 crop map based datasets, separately.  

 

3 Results and analysis 345 

3.1 The crop typeDataset statistics 

3.1.1 Crop types and farm sizes 

With the crop map from GAEZ v4 (SPAM2010), we We identified the 5-arcmin gridded harvested area for 56 countries, 11 

farm sizes, 27 crops (42 crops for SPAM based map), and 2 farming systems (based on the GAEZv4 crop map, and for 42 

crops and 4 farming systems for SPAM based on the SPAM2010 crop map). One example can be found in, both at 5-arcmin 350 

spatial resolution. Fig. 2, where we illustrate illustrates the harvested area of rainfed maize belonging to two farm sizes (2-–5 

ha and 500-–1000 ha). Overall,) according to our resultsfarm-size- and crop-specific harvested area dataset based on the 

GAEZv4 crop map. Statistics of crop type and farm size show the preference forprevalence of certain crop groups for 

elevencertain farm sizes ([(see [S2] for the crop groupings of the 27 GAEZv4 crops). Fig. As3(a) shows that, as farm size 

increases, oil crops and fodder crops become more popular;prevalent, while fruits and nuts, pulses, and roots and tubers become 355 

less popular (widespread. Our datasetFig. 3(a)). Larger farms (>20 ha) dominate the planting of fodder crops, sugar crops and 

oil crops; smaller farms (< 20 ha) dominate the planting of vegetables, stimulates, roots and tubers, pulses, fruits, nuts, and 

cotton (Fig. 3(b)). The SPAM based on the SPAM2010 crop map shows comparable results (Fig. A2 andto that based on 

GAEZv4 (see Fig. A2 for crop groupings as per [S3]). These resultsstatistics are consistent with our datasetsearlier findings 
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by Ricciardi et al. (2018b2018a, b) and previous studies Herrero et al. (2017), which indicate that the optimization resulted in 360 

modest remaining inconsistency.).  

 
Figure 2. The girdGrid cells with a harvested area of rainfed maize belonging to theon farm size 2–5 ha (a) and farm size 500–1000 
ha (b),  
according to the GAEZour farm-size- and crop-specific dataset based downscaledon the GAEZv4 crop map. 365 
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Figure 3. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 
GAEZ based downscaled mapour farm-size- and crop-specific harvested area dataset based on the GAEZv4 crop map. The 
alternative version based on SPAM2010 crop map is given in Fig. A2. 

3.1.2 Farming systems and farm size 370 

Comparing between irrigatedBesides providing farm-size- and rainfed harvested area, overall, our results show crop-specific 

harvested areas, we added information on farming systems inherited from crop maps. Statistics of farming system and farm 

size derived from our dataset reveal that small farms irrigate a larger relative share of their harvested area than large farms 
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(Fig. 4(a)),, Fig. 5), which supports the observations of aligns well with earlier ones by Ricciardi et al. (2020). Plausible 

thresholds to differentiateHere, the finding is not sensitive to the threshold used to set apart small andfrom large farms, whose 375 

possible values can be country specific and range from 1– ha to 42 ha for most countries (as suggested by Khalil et al., . (2017;) 

and FAO,  (2017, 2019b). With any threshold within 2019). Note, however, that this range, our dataset supports previous 

observations. The same observation can also be found in the SPAM based downscaled map (Fig. A3). The overall observations 

may not alignment does not hold for some countries (see Sect. 3.42.2 for further details).  

Our dataset based on the SPAM2010 crop map further divides rainfed farming systems into low-input, high-input, and 380 

subsistence rainfed systems (Fig. 4(b)). Associated statistics show a clear correlation between low-input and subsistence 

rainfed farming systems and smaller farm sizes. At the same time, smaller farms do not consist exclusively of low-input and 

subsistence rainfed farming systems, since these smaller farms also operate a sizable portion of the irrigated and high-input 

rainfed area (see Fig. 4(b)). Similarly, the predominant farming system type of larger farms is high-input rainfed, but high-

input rainfed systems are not solely employed at larger farms. 385 

 
Figure 4. The overall higherThe distribution of irrigated and rainfed farming systems per farm size according to our farm-size- and 
crop-specific harvested area datasets based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b). Note, SPAM2010 further 
divides rainfed farming system into low-put, high-input, and subsistence rainfed farming systems. 

To further explore irrigation of small farms may be because most of small farms are in the severe water scarce regions (Fig. 390 

practices4(b)). Here, to get water scarcity information, we overlapped our downscaled mapdatasets with the annual average 

blue water scarcity map where by Mekonnen and Hoekstra (2016), who classified water scarcity is classified asin four levels: 

categories, i.e., low, moderate, significant, and severe water scarcity (Mekonnen and Hoekstra, 2016; Hoekstra et al., 2012). 

It remains unknown whether small farms adapt to water scarcity via irrigation or irrigation of small farms. This analysis also 

confirms an earlier finding by Ricciardi et al. (2020) that even though small farms irrigate a larger relative share of their area 395 

than  increase water scarcity (Grafton et al., 2018). Another explanation for the overall higher irrigation of small farms is the 
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country coverage. In our dataset, a large number of small farms are from Asia. Previous studies show, on on average, an 

independent of regional water scarcity, with the percentage of irrigated area in Asian small farms being high: over 50% when 

water is scarce and over 20% when water is not scarce (Ricciardi et al., 2020). This percentage is much higher than that in 

Europe, Central Asia, Latin America, and Sub-Saharan Africa (Ricciardi et al., 2020). Thus, the overall portion of irrigated 400 

areas in small farms is high. 

With water scarcity (moderate, significant, and severe), we observed that large farms irrigate to a larger extentrelative share 

than small farms when water is scarce (Fig. 5). Fig. , which still supports the observations of Ricciardi et al. (2020) with most 

thresholds to differentiate small and 5 shows a relatively low irrigation share for farms >1000 ha which would undermine this 

finding. However, the total relative irrigation share of large farms within 1–42 ha. This observation does not depend on the 405 

relatively low irrigation extent of >1000 ha farm size since the farm size  >1000 ha only contributes tois still larger than that 

of small farms, because this farm size makes up less than 4.5% of water scarce area of large farms. The same observation can 

also be found in the SPAM based downscaled map (Fig. A3). The reason is that the water scarce area of the >1000 ha farm 

size is mainly contributed by limited crops from a few regions in our dataset. In this case, the characteristics of these crops and 

regions have more impact on the overall relationship between water scarcity and irrigation. For example, sugarcane in São 410 

Paulo, Brazil, is one of the main contributors to the significant and severe water scarce area of >1000 ha farm size. However, 

water scarcity is not present all year round. The level of water scarcity is low from January to June, which is the tillering phase 

for sugarcane. During the dry season, sugarcane is usually harvested, during which moisture in sugarcane is relatively low and 

the sugar is highly concentrated (Kavats et al., 2020). This may help to explain why the large farms in this area are rainfed 

even though under a certain level of water scarcity. Note,  located in water scarce areas. Note, that the main aim of Fig. 4 and 415 

Fig. A35 is to compare statistics of our datasets with previous observationsstudies instead of drawing conclusions on irrigation 

levels for specific farm sizes, which may need further investigation on influencing factors and uncertainties. 
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Figure 5. 

 420 
Figure 4. The percentage of the irrigated area by farm size according to our farm-size- and crop-specific harvested area datasets 
based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b) under eachfour blue water scarcity level (a) and levels of water 
scarcity within each farm size (b) according to GAEZ based downscaled map. 

SPAM2010 further divided the rainfed farming system into low- and high-input rainfed(WSL) by Mekonnen and subsistence rainfed. 
With SPAM based downscaled map, our datasetHoekstra (2016). Low blue WSL indicates the subsistenceblue water consumption 425 
does not exceed blue water availability; moderate WSL indicates blue water consumption is 100–150% of blue water availability; 
significant WSL indicates blue water consumption is 150–200% of blue water availability; and low-input rainfed farming system is 
mainly operated at smaller farms, but the smaller farms do not exclusively consist of subsistence and low-input rainfed farming 
system: they also operate a sizable portion of the irrigated and high-input rainfed area (severe WSL indicates blue water 
consumption is Fig. 5). Similarly, the main type of farming system of larger farms is high-input rainfed, but the high-input rainfed 430 
is far from being limited to larger farms (than 200% of blue water availability.Fig. 5). 
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Figure 5. The distribution of irrigated, low- and high-input rainfed, and subsistence rainfed farming systems within each farm size 
according to the SPAM based downscaled map 

3.2 Validation 435 

3 Validated.2.1 Validation with empirical data on farm -size -specific oil palm from satellite imagesharvested area 

ValidationsTable 2 shows that validation with farm -size -specific oil palm data showyields a significant positive correlation 

between our downscaled maps and the validation dataset on oil palm from satellite images in most countries, for both small 

and large farms (Table 2).. At larger spatial scales, the correlation becomes stronger. This means, indicating that the 

spubnational distributions of oil palm harvested area in our downscaled maps anddatasets are similar to those of Descals et al. 440 

(2020) are similar.). Besides the threshold of 25 ha forto set apart small andfrom large farms, we also triedrepeated the 

comparison with 10 ha and 50 ha as thresholds and conducted the same comparison. We found the above conclusions onwhich 

resulted in similar correlations (see [S6, S7] for detailed results of these comparisons). This indicates that, at least for oil palm 

comparison, found relations are not sensitive to the choice of threshold.  

Still, there are Despite strong overall correlations, we observed some differences especially in the case offor certain regions, 445 

particularly Costa Rica and the United Republic of Tanzania. PartSome of the abovethese differences results from the can be 

attributed to inconsistencies between harvested area according to the crop maps we used and the validation dataset. We 

compared total oil palm area according to the crop maps we used and the validation dataset. We compared all farms area 

between, and found that if the oil palm locations in the crop maps and validation dataset, i.e., the total area of small and large 

farms (Table 2). We noticed that if the cropland location in crop maps differsdiffered from the validation map (not significant 450 

positive correlation), the farm -size -specific validation will bewas poor. as well (Table 2). This meansimplies that the accuracy 
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of our estimations areestimates of farm-size- and crop-specific harvested area is limited by the accuracy of oil palm locations 

in crop maps. The (minor) differences between validation results for the GAEZv4 based dataset and the SPAM2010 based 

dataset can also largely be attributed to the same reason. 
Table 2. accuracies of farm locationPearson correlation coefficient between the harvested area of oil palm estimated by satellite 455 
images from Descals et al. (2020) and i) GAEZv4 crop map based farm-size- and crop-specific dataset (Gb) and ii) SPAM2010 crop 
map based farm-size- and crop-specific dataset (Sb), respectively, for small farms (<25 ha), large farms (≥25 ha), and all farms at 
various spatial resolutions. All farms compared the oil palm area in GAEZv4 and SPAM2010 crop map, whose results imply the 
accuracy of our estimates of farm-size- and crop-specific harvested area is limited by the accuracy of oil palm locations in crop maps. 
The differences between validations results for the GAEZ based map and the SPAM based map can also be attributed to the same 460 
reason, the differences in farm location between GAEZ v4 and SPAM2010* p<0.005. ** p<0.001. 

Table 2. Pearson correlation coefficient of the harvested area between oil palms from satellite images Descals et al. (2020) and GAEZ 
based downscaled map and SPAM based downscaled map respectively for small farms, large farms and all farms. Since all farms 
results do not distinguish farm size, they indicate the differences in oil palm spatial distribution between Descals et al. (2020) and 
crop map datasets (GAEZ v4 and SPAM2010). 465 

  Small farms Large farms All farms 

  5  

arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

Colombia GbGA

EZ 

based 

0.177* 0.313** 0.397** 0.112** 0.238** 0.334** 0.232** 0.374** 0.465** 

SbSP

AM 

based 

 0.218**  0.547** 0.684**  0.385** 0.620**  0.701**  0.409** 0.652** 0.729** 

Costa 

Rica 

GbGA

EZ 

based 

0.086 0.183** 0.215** -0.012 -0.074 
-

0.144** 
0.032 0.001 -0.043 

SbSP

AM 

based 

 0.836** 0.944**   0.971**  0.771**  0.891** 0.925**  0.877**  0.925**  0.929**  

Brazil 
 

GbGA

EZ 

based 

0.245** 0.396** 0.483** 0.177** 0.258** 0.271** 0.326** 0.398** 0.423** 

SbSP

AM 

based 

0.133**  0.190**  0.248**  0.087** 0.091**  0.084**  0.148**  0.154**  0.156**  
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United 
republic 
of 
Tanzania 
 

GbGA

EZ 

based 

0.01 -0.109* 
-

0.202** 
-0.011 -0.039 -0.063 0.022 -0.115* 

-

0.218** 

SbSP

AM 

based 

0.024   0.025  0.069    0.022  0.014  0.065  

Peru 
 

GbGA

EZ 

based 

0.172** 0.350** 0.438** 0.024 0.139** 0.237** 0.111** 0.263** 0.363** 

SbSP

AM 

based 

 0.367** 0.389**  0.429**  0.141**  0.216**  0.240**  0.302**  0.395**  0.436**  

* p<0.005 

** p<0.001 

3.4 Validated2.2 Validation with empirical data on farm -size -specific irrigation from household surveysestimates 

Our results also have positive correlations with household surveys in farm size specific irrigation for the GAEZ based map 

(Fig. 6(a)) and the SPAM based map ( showsFig. 6(b)) respectively. This means that our downscaled mapsdatasets are quite 470 

consistent with validation data empirical data on farm-size-specific irrigation estimates in terms of country -level farm -size -

specific irrigation. Detailed results show that the maps could percentage of irrigated area. More detailed results in [S8] further 

illustrate how our datasets capture the higher percentage of irrigated areas in as indicated by the household surveys in both 

small orand large farms in most countries along the indications of household surveys [S5].  

From the validations. However, we noticedalso found that our downscaled mapsdatasets systematically underestimate the 475 

extentpercentage of the irrigated area comparedwith respect to these same household surveys, both for the GAEZ based mapin 

our GAEZv4 and the SPAMSPAM2010 based datasets of harvested areas. Fig. map. If6(c) and 6(d) show that these 

underestimations are still present if we compare the percentages of irrigated area for all farms from the datasets, we find these 

underestimations are still there (Fig. 6(c), (d)). This means thecrop maps. This systematic underestimation may come from 

thetherefore be explained by different measurements of irrigated area and cultivated area in the validation dataset and datasets 480 

ofcompared to the crop maps. 
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Figure 6. Correlations on the farm -size -specific irrigated area (% of total harvested area per farm size) between household survey 
and GAEZ based downscaled map data from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and our 485 
GAEZv4 based (a) and SPAM based downscaled map (b) for eleven countries. TheSPAM2010 based, farm-size- and crop-specific 
datasets of harvested area (b), and correlations on the irrigated area of all farms (% of the total harvested area) between household 
survey data from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and GAEZ v4GAEZv4 (c) and 
SPAM2010 (d) are also provided. ), all for eleven countries. 

3.2.3 Validation through comparison with other studies  490 

Finally, we compared our high-resolution farm-size- and crop-type specific harvested area datasets with FAOSTAT, 
whose structured data contains farm size structures of 44 overlapping countries for the years 2000 and 2010 (FAO, 
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2022). Results show that (non-crop-specific) farm size structures of our datasets are similar to FAOSTAT structure 
data for most countries. Fig. 3.5 Compared with previous studies mapping farm sizes 

Compared with Lowder’s dataset (Lowder et al., 2016) on the percentage of harvested area operated by each farm size, we 495 

observed positive correlations for GAEZ based map (Fig. 7(a)) and SPAM based map (Fig. 7(b)). This means at the country 

level, the number of farms for each farm size is similar to Lowder’s dataset ([S6] for details). There are still differences between 

our downscaled map and Lowder’s dataset. For example, Lowder’s dataset estimate 78.5% of harvested area is under the farm 

size 50–100 ha in Bulgaria while our downscaled maps give around 5%. However, our downscaled maps estimate around 80% 

of harvested are in the under farm size 100–200 ha,  while Lowder’s dataset gives zero. In this case, our downscaled maps are 500 

still similar to Lowder’s dataset since both indicate large farms are the major farm size in the country even though it was not 

reflected in the correlations. These differences may be attributed to Lowder’s dataset being developed for the year 2000, which 

is ten years earlier than our focus. Farm sizes may change during ten years in some countries. Besides reporting time, these 

differences may also be attributed to how different datasets harmonize farm size. The farm size classes collected from the local 

agriculture census usually need to be harmonized into a classification system. Different datasets may have their own choice 505 

during this process. This may lead to some differences shown in the comparison, especially when the major farm sizes are 

similar but not the same. 

 
7 and Fig. A3 show the large similarities of farm size structures of 28 countries for 2010, while of the remaining 16 countries, 

farm size structures of Brazil, Czechia, Ethiopia, Germany, Greece, Poland, and Portugal show good correspondence for 2000. 510 

The latter also implies these estimates are similar to the dataset by Lowder et al. (2016).  

Not all countries’ farm size structure corresponds well between the datasets. Farm size structure according to our datasets for 

Albania, for example, lies in between the FAOSTAT data for 2000 and 2010, and our datasets farm size structures of Costa 

Rica, Lithuania, and Mexico also deviate slightly from the FAOSTAT structure data. One explanation for such differences 
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could come from how different datasets harmonize collected data into a farm size classification system. For example, if only 515 

farm sizes >100 ha are reported, areas could be classified into farm sizes 100–200 ha or be redistributed to farm sizes 100–200 

ha, 200–500 ha, and so on. However, the farm size structure of our datasets is inherited from the dataset by Ricciardi et al. 

(2018a, b), which in turn was based on highly similar local agricultural census and household surveys which FAOSTAT 

likewise drew from.  

While decent overall correspondence between our datasets and either FAOSTAT 2000 or 2010 data might be sufficient grounds 520 

to validate our estimates on farm size structure, and particularly correspondence to 2010 being the reference year for our 

datasets, it should be noted that farm size structures of several countries changed significantly between 2000 and 2010, e.g. 

Bulgaria and Germany, a period of just 10 years. The FAO themselves also indicate that the robustness of their 2010 estimates 

is fragile, in part due to significant usage of interpolation (FAO, 2022). Moreover, for 5 of the 44 analyzed countries (i.e., 

Burkina Faso, Colombia, Peru, and Russian Federation), it remains unclear what causes these differences.  525 
Comparing our datasetsFigure 7. Correlations on the percentage of harvested area operated by each farm size between Lowder’s 
dataset (Lowder et al., 2016) and GAEZ based downscaled map (a) and SPAM based downscaled map (b) for 37 countries and 11 
farm sizes. 

Compared with the dataset by Mehrabi et al. (2020), Fig. 8 shows that the same patternpatterns of the spatial distributions of 

dominant farm size could be observed insizes are similar across both datasets. For the Mehrabi’sfarm-size- and crop-specific 530 

dataset (Fig. 8(a)), the GAEZ downscaled map (Fig. 8(b)), and SPAM based downscaled map (Fig. 8(c)). Overall, for GAEZ 

based downscaledon the GAEZv4 crop map, 54.2% of grid cells’ dominant farm sizes are similarcorrespond to thatthose in 

Mehrabi’sthe dataset, 27.5 by Mehrabi et al. (2020), while 28% are larger, and 18.3% are smaller; for SPAM based downscaled 

map, 52.8%. For the SPAM2010 based counterpart, 53% of grid cells’ dominant farm sizes are similar, 26.0 to the dataset by 

Mehrabi et al. (2020), while 26% are larger, and 21.2% are smaller ([S7] for details). These differences may be partly explained 535 

by the above . Here, similar means the farm size in our datasets is the same or next to the farm size in the dataset by Mehrabi 

et al. (2020). [S9] provides a more detailed analysis of this comparison with Lowder’s dataset since Mehrabi’s dataset has. As 

shown in Fig. 7, there are still differences between our datasets and the dataset by Lowder et al. (2016) (FAOSTAT structure 

data of 2000). These differences can also be seen in the comparison with the dataset by Mehrabi et al. (2020) since the dataset 

by Mehrabi et al. (2020) keeps the same country level farm size distribution as Lowder’s dataset. Some differences could also 540 

be attributed to the comparison of dominant farm size: the dominant farm size in Mehrabi’s dataset may be the second-

dominant farm size in our downscaled map. The the dataset by Lowder et al. (2016). Note, that the comparison of dominant 

farm size may magnify the differences in farm size structure between our datasets and the dataset by Mehrabi et al. (2020) 

since the dominant farm size in the dataset by Mehrabi et al. (2020) may be the second-dominant farm size in our datasets. 
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(To be continued) 
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(Continued) 

 550 
Figure 7. difference in estimating the overall farm sizes. Since Mehrabi’sComparison of the percentage of total crop area operated 
by each farm size (non-crop-specific farm size structure) between FAOSTAT structural data for the year 2000 and 2010 (FAO, 2022) 
and our farm-size- and crop-specific dataset based on the GAEZv4 crop map. Bold font country titles indicate that farm size 
structures in FAOSTAT are similar to our dataset only include dominant farm size, it . Note that for the year 2000, farm size 
structure from FAOSTAT structural data is not clear that how the difference would be estimating the overall farm sizesthe same 555 
with Lowder et al. (2016) except for one country [S5]. Only the countries covered by our dataset and FAOSTAT are shown. The 
alternative version based on SPAM2010 crop map is given in Fig. A3. * FAOSTAT provides (part of) the structural data by 
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interpolating other reported data, not directly from countries’ official reports. ** FAOSTAT provides no farm size structural data 
of the year 2000 or 2010 for comparison. 

 560 
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Figure 8. Dominant farm size according to Mehrabi’s dataset (Mehrabi et al., 2020) (a), GAEZ based downscaled map (b) and SPAM 
based downscaled map (c). We only show the cells from Mehrabi’sthe dataset where our downscaled maps have estimationsby 
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Mehrabi et al. (2020) (a), our farm-size- and crop-specific dataset based on the GAEZv4 crop map (b) and SPAM2010 crop map (c), 
respectively. Only cells included in both the dataset by Mehrabi et al. (2020) and our datasets are shown. 565 

4 Discussion 

4.1 Potential explanations for irrigation and farm size 

Our datasets confirm findings by previous studies that smaller farms have a higher relative irrigation share compared to larger 

farms. This seems to be the case because relatively many of the small farms are located in severe water scarce regions, which 

would require them to irrigate more and more often to grow their crops (Fig. 9). However, it remains unclear whether small 570 

farms adapt to water scarcity via irrigation or that irrigation practices of small farms increase water scarcity (Grafton et al., 

2018). Another explanation relates to the farm size structures between countries. Asian countries are home to the majority of 

small farms, and previous studies have shown that, on average, the relative share of irrigated area on Asian small farms is 

indeed much higher than in other countries, regardless regional water scarcity levels (Ricciardi et al., 2020).  

 575 

Figure 9. Blue water scarcity levels (WSL) within each farm size according to our farm-size- and crop-specific harvested area dataset 
based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b) under four blue water scarcity levels (WSL) by Mekonnen 
and Hoekstra (2016). Low blue WSL indicates blue water consumption does not exceed blue water availability; moderate WSL 
indicates blue water consumption is 100–150% of blue water availability; significant WSL indicates blue water consumption is 150–
200% of blue water availability; and severe WSL indicates blue water consumption is larger than 200% of blue water availability.  580 

The irrigation of >1000 ha farm size shown by our datasets is relatively low, which could be explained by the regional climate 

and crop characteristics. Sugarcane in São Paulo, Brazil, is one of the main contributors to the significant and severe water 

scarce area of >1000 ha farm size. In these regions, water scarcity is not present all year round. The level of water scarcity is 

low from January to June, which is the tillering phase for sugarcane. Sugarcane is usually harvested during the dry season, 
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desirably, during which moisture in sugarcane is relatively low and the sugar is highly concentrated (Kavats et al., 2020). This 585 

may help to explain why the large farms in this area are rainfed even though under a certain level of water scarcity. 

4.2 Uncertainties  

We explicitly consider the hypothesized that uncertainties in crop maps by developing might propagate to and influence 

uncertainties in our gridded datasets. Therefore, we developed two separately downscaledgridded datasets based on two 

different crop maps based on two crop maps, GAEZ v4, i.e., GAEZv4 and SPAM2010. From the results and validations, we 590 

observed some differences in the crop distribution between the two crop maps, , especially at the grid cell level. This reflects 

the These differences reflect uncertainties in farmland location. It affects and affected the spatial validations on both farm -

size -specific oil palm and the dominant farm size distribution. However, distributions. At the same time, these uncertainties 

at the grid cell level have a limited impact on country level resultsstatistics and validations whichvalidation, as can be seen 

fromin Fig. 3, Fig. 45, Fig. A26, and Fig. A3A2.  595 

Uncertainty inDifferences—and therefore uncertainties—related to farming systems are more pronounced between the two 

crop maps is more pronounced for farming systems. From, also at country level. Fig. 6 and [S5] we could see the SPAMS8] 

show that our SPAM2010 based downscaled map has adataset yields lower irrigation ratios than GAEZthat based downscaled 

map.on GAEZv4. This is becauselikely the consequence of SPAM2010 definesing irrigation according toas the actually 

irrigated area and GAEZ v4, whereas GAEZv4 defines irrigation by the area that is equipped with fully irrigation facilities. 600 

The lower irrigation ratio in SPAM2010 does not affect the conclusions and validations drawnDespite these differences, 

however, findings of the overall relative irrigation share being higher of smaller farms and higher absolute irrigation of larger 

farms under elevated levels of water scarcity are supported by our datasets based on both crop maps. 

The uncertainties in the crop maps also affect how we downscaled the dataset by Ricciardi et al. (2018a, b), the core source of 

our datasets. It occurred that crops could be found in the dataset by Ricciardi et al. (2018a, b) for a given administrative unit 605 

but not in the crop maps, or vice versa. The consequence of these inconsistencies was that 23.3% and 21.6% of the crop area 

in the dataset by Ricciardi et al. (2018a, b) could not be downscaled, respectively because the GAEZv4 or the SPAM2010 crop 

map indicated no crops were grown in those locations. Vice versa, 17.8% and 12.4% of the harvested area in the GAEZv4 and 

SPAM2010 crop maps, respectively, could not directly be assigned a farm size due to absent records in the dataset by Ricciardi 

et al. (2018a, b). Although these are substantial percentages of crop areas, our validation did not detect any peculiarities in 610 

outcomes attributable to these inconsistencies. Developing more accurate crop maps should reduce a substantial bit of the 

abovementioned uncertainties in the future.  

Beside uncertainties propagated from the GAEZ based map; for example, the finding of overall higher irrigation of smaller 

farms is robust under this uncertainty, and so is the observation on higher irrigation of larger farms under the elevated level of 

water scarcity. 615 

Someinput data, new uncertainties are introduced bythrough our pre-processing and constraints relaxation during the solving 

processes. Whenprocedures. In estimating crop-specific farm size structures using Ricciardi’s datasets, around 12% of themthe 
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dataset by Ricciardi et al. (2018a, b), ~12% of our final estimates were based on crop production instead of crop area. 

According to Ricciardi et al. (2018a, b), the introduced uncertainties are limited when using crop production. In terms of 

uncertaintiesIn addition, the year of the source data of Ricciardi et al. (2018a, b) ranges from 2001 to 2015 with median year 620 

of 2013, the transient nature of farm sizes, particularly in developing countries, may not be captured when it is used for the 

year of 2010. 

The way we defined and apply constraints during the optimization process also introduced by constraints relaxation,new 

uncertainties. Solving for GAEZ (SPAM)the GAEZv4 and the SPAM2010 based mapdatasets, we solvedperformed 7381 (and 

6017) optimizations. GAEZ v4 and SPAM2010 based downscaling solved different , respectively. Differences in total number 625 

of optimizations because of the differentcan be explained by differences in cropland extent which affect theunderlying both 

crop maps. Of their total number of grid cells to be allocated. Among all the optimizations, 4378 (and 3671) needed to be 

relaxed using an elastic factor of 0.125 or smaller (Eq. (5));(5)), for the respective crop maps, while 239 (and 203) needed to 

be further relaxed by removing some of the minimum area constraints (Eq. (6) – (9)). Only theThe latter relaxation of minimum 

area constraint will introduce additionalconstraints introduced inconsistencies with the datasets used. This means the 630 

constraints relaxation introduce additionalsource dominant field size distribution, which further adds uncertainties among to 

our datasets. This affected ~3% of theour total calculations.  

In addition, we might allocate the optimization process, it further occurred that crop area needed to be allocated to a farm size 

that iswas not included in Ricciardi’sthe dataset. by Ricciardi et al. (2018a, b). This only happened when in cases where both 

the crop and part of the eleven farm sizes awere included in Ricciardi’sthe dataset butby Ricciardi et al. (2018a, b), yet meeting 635 

the minimum area constraints requiresrequired introducing an additional farm size for the crop at hand. In this case,such cases, 

we still ensured the 10% maximum relative difference with Ricciardi’sthe dataset is still ensured for the availableby Ricciardi 

et al. (2018a, b) to ensure the overall farm size. Only  structures. This uncertainty was introduced for ~0.1% (and 5.0%)% of 

allocatedharvested area is in this case for GAEZ (SPAM)the GAEZv4 and SPAM2010 based downscaled mapfarm-size- and 

crop-specific datasets, respectively. 640 

More uncertainties in the downscaled maps may come from used datasets. Since Ricciardi’s dataset was not developed for 

2010, farm size may change a lot in some developing countries. This put some uncertainties in our results since we relied on 

it to estimate farm size structure. The uncertainties in the crop map affect how we downscaled Ricciardi’s dataset. Some crops 

can be found in Ricciardi’s dataset for an administrative unit but not in crop map, or vice versa. This means that, on the one 

hand, 23.3% (21.6%) of the crop area in Ricciardi’s dataset was not downscaled because the GAEZ v4 (SPAM2010) crop map 645 

indicates no crop. On the other hand,  17.8% (12.4%) of the harvested area in the GAEZ v4 (SPAM2010) crop map was not 

allocated a farm size because Ricciardi’s dataset has no relevant records. These uncertainties may have affected the allocated 

area in the downscaled maps, but according to validations, they are not high enough to make the downscaled maps lose the 

utilities. Highly accurate crop maps will reduce this part of uncertainties in the future. 

Despite Finally, despite the uncertainties at the grid cell level, the used datasets and the downscaled mapsour datasets were 650 

found to be more reliable at the country level. For example, the two crop maps were developed by downscaling the agriculture 
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census at the (sub)national level. Collected agriculture census and social-ecological factors considered during downscaling 

may lead to some differences at the grid cell level in the two crop maps, while they were all adjusted to the country level data 

from FAOSTAT (FAO, 2019a).. The dominant field size distribution is also uncertain at the grid cell level which was estimated 

by spatial interpolating of training samples. The uncertainty will decrease when the focus is on the regional level (Lesiv et al., 655 

2019). Validations also show well consistencies with country level observations. Therefore, future uses of our downscaled 

map are more confident at the country level than grid cell level. Using GAEZv4 based map and SPAM2010 based mapdatasets 

at the same time helps to reduce uncertainties at the grid cell level. 

4.23 Limitations 

With the ambition to map global simultaneously farm -size- and crop-specific harvested area, we were only able to cover 56 660 

countries due to data availability, though this reflectedbased on state-of-the-art recent datasets (e.g. Ricciardi et al. (2018a, b), 

Lesiv et al. (2019), and Kim et al. (2021)). Although these countries reflect about half of the global cropland. Farm , the 

remaining countries could not be included due to lacking data availability. Particularly farm-size -specific data is scarce andor 

not publicly available in some countries. The datasets we used, like Ricciardi et al. (2018b) and Lesiv et al. (2019), are the 

currently best-available datasets on farm or field sizes (Kim et al., 2021). Data for most of the excluded countries, but across-665 

the-board data availability is the main obstacle toin creating a dataset with global map. The development ofcoverage. 

Approaches based on deep learning and remote sensing, similar to what Descals et al. (2020) did to obtain their oil palm dataset 

with which we validated some of our findings, may help to mapprove promising alternatives to mapping the global farm -size- 

and crop-specific harvested are in another way, like the farm size specific oil palm in Descals et al. (2020). The . However, the 

lack of farm size training samples and the enormous computational requirements are the mainstill challenges for deep learning 670 

and remote sensing.such approaches (Descals et al., 2020). 

Our estimations are based on planted crop and harvested area, which that is static for representative of the year 2010. Farmers’ 

choice of crop will change along with climate, market demands, and so on. Current downscaled maps could only many other 

factors. While our gridded datasets provide a robust baseline for the distributions of small and large farms. It remains 

challenging, it would be insightful to describe thedevelopments over time. However, capturing dynamics of harvested area 675 

under changing environment. 

The conditions and environments, particularly dynamic in developing countries (Giller et al., 2021), requires even more 

additional data. Still, our datasets may be updated in the future updatesfor additional years, since many of our downscaled 

maps rely on the updates of our usedunderlying datasets. Fortunately,, including GAEZ v4, SPAM2010, SPAM, and the 

cropland extent map have regular update plans according to their document.by Latham et al. (2014) and Lu et al. (2020) are 680 

planned to be regularly updated. The dominant field size distribution was alsoby Lesiv et al. (2019) has already been updated 

since theits first publication and may haveannounced more updates in the future. Ricciardi’s dataset mayRicciardi et al. (2018a, 

b) did not have updatedshare plans to update their dataset (yet), but it could be updateddone using theparticularly data from 

the World Programme for the Census of Agriculture (FAO, 2020b2015) and EUROSTAT ( EUROSTAT, 2021). AnyWe 
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developed our model and code such that any updates and extensions of Ricciardi’s dataset from other data sources in the future 685 

are compliable with current model and coderelatively easily incorporated. 

4.34 Suggestions on developing farm -size- and crop-specific production dataset 

Crop production of small farms is one of the main concerns of the Target 2.3 (double the agricultural productivity and the 

incomes of small-scale food producers) of SDG 2 (Zero hunger). Developing) (UNSD, 2022). It would therefore be a major 

achievement if we could develop farm -size -specific maps onagricultural production may be one of the applications of our 690 

dataset that directly benefits from the additional dimensionality achieved.dataset in support of this Target. However, compared 

to harvested areas, an empirical farm-size -specific dataset on production or yield is even more scarce. The data on production 

or yield of farm sizes is available for a limited number of countries, but those countries are not always the most vulnerable in 

terms of food insecurity. Thus, such datasets would require estimating theThus, developing a farm-size- and crop-specific 

production dataset requires additional modeling and our datasets could readily be used as input for such development. 695 

Developing a farm-size- and crop-specific production or yield based on additional models. 

Currentdataset requires unpacking the various factors that impact yield and are known or expected to correlate with farm size 

as recent studies show that the relationship between farm size and crop production or yield is indirect and complex (, cf. 

Muyanga and Jayne (2019) and Iizumi et al. (2021)). Many factors contribute to this relationship, including but not limited to 

crop types, fertilizer input,). Some factors could be unpacked directly for farm sizes with our datasets. For example, one could 700 

overlap our datasets with the soil and climate, and  datasets to estimate soil and climate production conditions. The farm size 

itself does not directly affect yield, but for each farm size often correlates with factors that affect yield. So, estimating crop 

yield for different farm sizes requires first unpacking the factors that directly impact yield and correlate with farm sizes. For 

environmental. Other factors like soil conditions and climate, this could be achieved by overlapping our dataset with the soil 

and climate database. Agriculturalcould be unpacked indirectly via agricultural production system, e.g. agricultural 705 

management and input factors, like fertilizer input, could be inferred from the agricultural production system data. Specifying 

agricultural management and input factors according to farming systems could help to first evaluate crop yield for different 

farming systems, and then allocate the yield back to farm sizes according to their proportion in each farming system. Such an 

approach would rely on the assumption that agricultural management practices of different farming systems do not depend on 

farm size. Reliable estimations of yield for different farming systems could be either derived from SPAM2010 and GAEZ v4 710 

or based on crop modelingfarm size structure in each farming system. With unpacked factors, one could estimate the farm-

size- and crop-specific production with our harvested area as input using crop models as well as GAEZv4 and SPAM2010. 

5 Code and data availability 

The code, source data, and the simultaneouslyresulting farm -size- and crop-specific harvested area, including the GAEZ based 

downscaled map and SPAM based downscaled map, datasets are open-access, free, andfreely available via a Creative 715 
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Commons Attribution 4.0 International license at https://doi.org/10.5281/zenodo.57476166976249 (Su et al., 2022). The 

downscaled mapsresulting datasets are available in *.csv filesand *.nc (netCDF) for each crop and farming system. Each *.csv 

file provides the grid cell index, administrative unit index,For each crop name, , farming system, and farm size, we provide 

gridded harvested area, and x and y coordinates in the projectioncoordinate Systems of WGS84EPSG:4326 - WGS 84. Gridded 

summaries over crops and farming systems are also available.  720 

6 Conclusions 

This study presents a 5-arcmin gridded simultaneously farm -size- and crop-specific datasets of harvested area for 56 countries. 

We downscaled the best-available datasets, Ricciardi et al. (2018b) which collected direct reports of farm size and crop area, 

by using the latest The datasets onare based on various state-of-the-art and recent datasets on farm-size- and/or crop-specific 

land use, cropland extent, and dominant field size distribution. We explicitly addressed the uncertainty in crop maps by using 725 

two crop maps separately during downscaling. The downscaled maps are well-consistent with observations on farm size 

specific oil palm cultivation from satellite images and farm size specific irrigation from household surveys. Our downscaled 

mapsThe resulting datasets show the planted cropsstrong consistency along multiple variables validated against multiple 

empirical and irrigation differ among farm sizes which support previous findings. We observed uncertainties in the maps 

produced at the grid cell level but found country level conclusions to be robust to grid cell level uncertainties, including the 730 

uncertainties from crop maps.  

 

Intended future updates will increase the spatial published sources. While our high-resolution dataset fills a part of the data 

gap, lacking data availability is still hampering the development of dynamic datasets with full global coverage. Our 

simultaneously farm sizeNevertheless, we are confident that our current datasets will prove to be a useful tool for improving 735 

our understanding of differences between small- and crop-specific dataset will facilitate studies to explicitly incorporate farm 

size into global agriculture, water resources, and large-scale farms, e.g. in terms of climate change studiesadaptation and 

mitigation strategies, water consumption patterns, and contribution to (local) food security and SDG 2. 

https://doi.org/10.5281/zenodo.5747616
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Appendices 

 740 

Figure A1. The global distribution of oil palms according to Descals et al. (2020) and the). The five countries to validatefor which we 
validated our downscaled mapsdatasets are circled in red. 



40 
 

 
Figure A2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 
SPAM based downscaled mapour farm-size- and crop-specific harvested area dataset based on the SPAM2010 crop map. The 745 
alternative version based on GAEZv4 crop map is given in Fig. 3. 
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Figure A3. The percentage of the irrigated area by farm size under each water scarcity level (a) and levels of water scarcity within 
each farm size (b) according to SPAM based downscaled map. 

  750 
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(To be continued) 
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(Continued) 755 

 
Figure A3. Comparison of the percentage of total crop area operated by each farm size (non-crop-specific farm size structure) 
between FAOSTAT structural data for the year 2000 and 2010 (FAO, 2022) and our farm-size- and crop-specific dataset based on 
the SPAM2010 crop map. Bold font country titles indicate that farm size structures in FAOSTAT are similar to our dataset. Note 
that for the year 2000, farm size structure from FAOSTAT structural data is the same with Lowder et al. (2016) except for one 760 
country [S5]. Only the countries covered by our dataset and FAOSTAT are shown. The alternative version based on GAEZv4 crop 
map is given in Fig. 7. * FAOSTAT provides (part of) the structural data by interpolating other reported data, not directly from 
countries’ official reports. ** FAOSTAT provides no farm size structural data of the year 2000 or 2010 for comparison. 
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