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Abstract. 

Farms are not homogeneous. Smaller farms generally have different planted crops, yields, agricultural input, and irrigations 20 

compared to larger farms. Mapping farm size could facilitate studies to quantify how water availability and climate change 

affect small and large farms, respectively. Given the lack of gridded farm- size specific data, this study aims to develop a 

global gridded, simultaneously farm- size- and crop-specific dataset of harvested area. We achieved it by downscaling a best-

available dataset, which collected direct measurements on crop and farm size, using crop maps, cropland extent, and dominant 

field size distributions for 2010. Uncertainties in crop maps were explicitly considered by using two crop maps separately 25 

during downscaling. Due to data availability, our downscaled maps cover 56 countries accounting for half of the global 

cropland. Based on the two different crop maps, we have one 5-arcmin gridded, simultaneously farm- size- and crop-specific 

dataset of harvested areaareas, one for 11 farm sizes, 27 crops, and 2 farming systems and the otheranother one for 11 farm 

sizes, 42 crops, and 4 farming systems. The downscaled maps show major planted crops and irrigation change along with farm 

sizes, which support previous findings. Validations show well consistencies with observations on farm- size specific oil palm 30 

from satellite images, farm- size specific irrigation from household surveys, and previous studies that map farm size but are 

not crop-specific. We observed some uncertainties at the grid cell level and found conclusions at the country- level are robust 

to these uncertainties including the uncertainties from the crop maps. Our downscaled maps will help to explicitly include farm 

size into global agriculture modeling. The source data, code, and downscaled maps are open-access and free available at 

https://doi.org/10.5281/zenodo.5747616 (Su et al., 2022). 35 
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1 Introduction 

There are over 608 million farms around the world (Lowder et al., 2016; Lowder et al., 2021). Land and water resources are 

not equally distributed among these farms. More than 80% of these farms are smaller than 2 hectares and they only utilize 

around 20% of farmland area (Lowder et al., 2021; Bosc et al., 2013). The largest one percent of farms utilize 70% of global 40 

farmland area (Lowder et al., 2021). Smaller farms also limitedlyinsufficiently apply irrigation to adapt to water scarcity in 

low- and middle-income countries (Ricciardi et al., 2020). 

In addition to water and land resources, the characteristics of agricultural production are generally differentdiffer across farm 

sizes, which may be country-dependent. For example, in terms of crops, smaller farms plant more fruits, pulses, and roots and 

tubers while larger farms plant more vegetables, nuts, and oilcropsoil crops (Ricciardi et al., 2018b; Herrero et al., 2017). In 45 

terms of the use of agricultural practices used to increase agricultural productivity, famers thatfarmers who operate smaller 

farms tend to increase the use of non-fixed inputs, such as fertilizers and pesticides, while larger farms tend to increase fixed 

inputs, such as machinery (Ren et al., 2019). Smaller farms also have a greater biodiversity on average (Ricciardi et al., 2021; 

Noack et al., 2021). Though whether smaller farms have a higher yield has undergone a long debate,been debated, it appears 

that yield often correlatecorrelates with farm size (see Rudra (1968); Savastano and Scandizzo (2017); Gollin (2019); Ricciardi 50 

et al. (2021)). 

These above-mentioned characteristics stimulate studies to explicitly discern small and large scale farms in agriculture studies 

and map farm sizes (Meyfroidt, 2017; Riesgo et al., 2016). At the global level, mapping farm sizes can be traced back to the 

studies of  Lowder et al. (2016), Samberg et al. (2016), and Fritz et al. (2015). Lowder et al. (2016) estimated the country- 

level distribution of farm size, based on multiple agricultural censuses. Samberg et al. (2016) used the Mean Agricultural Area 55 

(MAA) to assign each subnational administrative unit with a farm size. This may overestimate the area of small farms because 

not all farms are small, even if they are in the administrative unit dominated by small farms (Ricciardi et al., 2018b). Fritz et 

al. (2015) developed a gridded global dominant field size map using manually labeled field size data on the satellite images 

and spatial interpolation. The dominant field size map was updated by Lesiv et al. (2019). When interpreting fields as farms, 

the small farm area will also be overestimated as large farms can inclueinclude small-sized fields. Herrero et al. (2017) used 60 

the country level farm size data from Lowder et al. (2016) and Fritz et al. (2015) to develop a dominant farm size map which 

was later updated by Mehrabi et al. (2020) using the field size map from Lesiv et al. (2019). Given that dominant farm size 

only assigns one farm size to each cell (usually 10 km by 10 km), dominant farm size may over/underestimate some kindkinds 

of farm sizes when it is used to estimate the number ofand area distribution of different farm sizes. 

Previous studies’ efforts on mapping In previous studies, farm size aremapping is not crop-specific. One way to estimate the 65 

planted crops for different farm sizes is to overlap the farm size map with crop maps, e.g., Monfreda et al. (2008) in Samberg 

et al. (2016) and Mehrabi et al. (2020), Ray et al. (2013) in Herrero et al. (2017). Due to differences between farm size and 

MAA, field sizes, and dominant farm sizes and due to possible structural differences in crop choices between farm sizes, 

overlaysOverlays with crop maps may lead to biases in the allocation of crop-specific cropping areas to farm sizes (Ricciardi 
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et al., 2018b).), because of differences between farm size and MAA, field sizes, and dominant farm sizes and also due to 70 

possible structural differences in crop choices between farm sizes. 

ToOne way to avoid such biases, one way is to develop a simultaneously farm- size- and crop-specific map. Ricciardi et al. 

(2018b); Ricciardi et al. (2018a) established an empirical global database using agriculture census and household survey that 

directly measuremeasured crop production or areaareas in combination with farm size. This dataset covers half of the global 

cropland, including data for 56 countries1 – with subnational data for 46 countries. Ricciardi’s dataset, however, does not have 75 

gridded maps, so it has limited capacitiescapability to fulfill the needneeds of global climate change and water resources studies, 

where the hydrological model and climate models commonly use grided maps as input. Lacking gridded farm- size- and crop-

specific maps limits the evaluations onof how water scarcity and climate change affect small and large farms, respectively. 

This study aims to develop a global gridded, simultaneously farm- size- and crop-specific dataset of harvested areas with 

additional information on farming systems. Considering the data availability, the baseline year is 2010 with data covering 56 80 

countries. We compiled multiple datasets including cropland extent, field size distribution, andas well as crop distribution and 

farming systems, and used them to downscale the empirical farm- size- and crop-specific datasets developed by Ricciardi et 

al. (2018b); Ricciardi et al. (2018a)), from the level of administrative units into a 5 arcmin grid cell level. We also explicitly 

considered the uncertainties in crop distributions by using two crop maps. The resulting downscaled maps were validated with 

empirical data and compared with previous studies.  85 

2 Methods 

2.1 Overview 

Imagine that we know the crop area of small and large farms within an administrative unit, to downscale it, if we get a high 

spatial resolution map of crop area, we may have some idea on where the small and large farms may locate because some 

crops are planted more by small farms and some cropcrops are planted more by large farms. In addition, if we gethave the field 90 

size distribution within the administrative unit, we havecould know more ideas on whereabout the location of small and large 

farms may locate because large fields only belong to large farms and small farms couldcan only locatebe located in small 

fields. When we combine the information from the crop map and field size distribution, even though we could not precisely 

locate small and large farms, we couldcan estimation their distributions in this administrative unit with some extent of 

uncertainties. This is how we develop the gridded, simultaneously farm- size- and crop-specific dataset of harvested areas. 95 

Theoretically, we could estimate multiple distributions of small and large farms that are consistent with all the administrative 

level and grid cell level data. Practically, however, these distributions may not exist because of the background inconsistencies 

amongin the datasets. To deal with the background inconsistencies, we assume the best estimation of the farm- size- and crop-

 

1 In their paper, they claim to have data for 55 countries. In the dataset they published, it contains the 56th country, the Czech 

Republic. 
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specific distributions are the distributions that could maximize consistencies with datasets. In anythose cases, we triestried to 

find multiple distributions that meet the same level of consistency with datasets and averaged the multiple distributions to get 100 

the final estimation.  

 

Figure 1. Diagram of map development processors. 

The map development involved pre-processing of multiple datasets, establishing optimization for downscaling, and constraints 

relaxation and solving optimization problems (Fig. 1). The pre-processing included two parts: reclassifying crops to 105 

accommodate differences in crop classification used in the underlying datasets and harmonizing Ricciardi’s dataset, and 

converting the dominant field size map into a minimum field area per size and 5-arcmin grid cell (Sect. 2.2). The downscaling 
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was achieved by maximizing consistencies with multiple datasets that provide information on the location of each farm size 

and planted crops. Specifically, we established an optimization for each administrative unit (Sect. 2.3) and solved it via 

constraints relaxations (Sect. 2.4). Priorities in achieving consistency with the various underlying datasets were considered 110 

during these processes (Sect. 2.3 and 2.4). The spatial crop distribution affects both crop location and farm size location during 

downscaling and is usually uncertain. To consider the uncertainties in crop maps, we used two crop maps to develop two 

alternative versions of the final downscaled map separately. 

2.2 Datasets and pre-processing 

All the datasets used in this study can be found in Table 1. Ricciardi’s dataset provides the farm- size- and crop-specific 115 

cropping area for 56 countries at the administrative unit level. ([S1] for the list of 56 countries). The eleven farm sizes in this 

dataset are based on the classification from the World Census of Agriculture (WCA) (Fao, 2020FAO, 2020b; Ricciardi et al., 

2018a): 0–1 ha, 1–2 ha, 2–5 ha, 5–10 ha, 10–20 ha, 20–50 ha, 50–100 ha, 100–200 ha, 200–500 ha, 500–1000 ha, and >1000 

ha. The cropping area in this dataset means either crop area, planted area, harvested area, or cultivated area. Because the data 

quality varies from country to country and this dataset was not harmonized forover time, we chose to downscale its crop-120 

specific farm size structure, i.e.., the crop-specific percentage of area per farm size, instead of the area. The crop-specific 

harvested area is from two separate crop maps separately: GAEZ v4 (Fischer et al., 2021; FAO and IIASA, 2021) and 

SPAM2010 (Yu et al., 2020). TheyThese are the only two crop maps containing harvested area of tens crops for the year 2010 

at 5 arcmin spatial resolution (Kim et al., 2021). GAEZ v4 and SPAM2010 and have their own crop classification systems 

([S1, S2, S3] for details). GAEZ v4 distinguishes two farming systems: irrigated and rainfed. SPAM2010 further distinguishes 125 

rainfed into low- and high-input rainfed and subsistence rainfed. The dominant field size distribution (Lesiv et al., 2019) 

indicates where larger farms may locate. It provides spatial distribution for five field sizes: < 0.64 ha, 0.64–2.56 ha, 2.56–16 

ha, 16–100 ha, and >100 ha. For pre-processing, cropland extent maps were also included. 

Table 1. Datasets that were used to develop the gridded, farm- size specific, and crop-specific dataset of harvested area. 

Dataset Indicator Spatial coverage and resolution Time Crop Note 

Ricciardi et al. 

(2018b); Ricciardi 

et al. (2018a) 

Farm size 

structure* 

56 countries; (sub)national 

administrative unit 

Varies from 

2001 to 2015 

154 FAO 

crops 

11 farm sizes 

GAEZ v4 (Fischer 

et al., 2021; FAO 

and IIASA, 2021) 

Harvested 

area 

Global; gridded, 5 arcmin (10 

km) 

2010 27 GAEZ 

crops** 

2 farming systems 

(irrigated and rainfed) 

SPAM2010 (Yu et 

al., 2020) 

Harvested 

area 

Global; gridded, 5 arcmin (10 

km) 

2010 42 SPAM 

crops 

4 farming systems 

(irrigated, low- and 
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high-input rainfed and 

subsistence rainfed) 

Dominant field 

size distribution 

(Lesiv et al., 2019) 

Dominant 

field size 

Global; gridded, 30 arcsec (1 

km) 

Varies from 

2000 to 2017 

Not crop-

specific 

5 field sizes 

GLC-Share 

(Latham et al., 

2014) 

Cropland 

extent 

Global; gridded, 30 arcsec (1 

km) 

Around 2010 Not crop-

specific 

The based map of 

GAEZ v4 

CAAS-IFPRI 

cropland extent 

map (Lu et al., 

2020) 

Cropland 

extent 

Global; gridded, 15 arcsec (0.5 

km) 

2010 Not crop-

specific 

The base map of 

SPAM2010 

* Here we mean the crop-specific percentage of harvested area per farm size within an administrative unit 130 

** The 27th crop is Fruits and Nuts which is not listed in the document but available in their dataset 

To pre-process Ricciardi’s dataset, we first reclassified the FAO crops in this dataset into 27 GAEZ crops and 42 SPAM crops, 

respectively. Detailed criteria can be found in [S1, S2, S3]. We used the cropping area to get the crop-specific farm size 

structure. In this dataset, the cropping area includes four items: crop area, planted area, harvested area, and cultivated area. 

Oneis crop-specific and includes four items: crop area, planted area, harvested area, and cultivated area. These variables were 135 

identified by Ricciardi’s dataset from the local agriculture census. There is no worldwide standard definition for these items 

(FAO, 2015). Local agriculture censuses have their own preference to use one of them for specific crops. In generally, planted 

area is used for temporary crops; cultivated area for temporary crops and permanent crops; crop area for temporary crops, 

permanent crops, fallow, meadows, and pastures; harvested area is the cultivated area excluding the area destroyed by natural 

disasters or other reasons (FAO, 2020a, 2015). In terms of data availability, one or two items are available for most countries. 140 

To harmonize data, when more than one item is available, we used the item with a larger overall area (after crop reclassification) 

to estimate farm size structure because larger overall area means more farm size classes have available data in most cases. If 

neithernone of the four items iswere available, we used crop production data provided by Ricciardi’s dataset to get the crop-

specific farm size structure. In this case, we assumed constant yield across farm sizes. 

We also converted the 1 * 1 km dominant field size map into a minimum field area per size and 5-arcmin cell during pre-145 

processing. We interpreted dominant field size as a field of that size accountaccounting for at least 50% of cropland atin the 

cell. For each field size, we calculated the minimum field area by using the 50% of cropland extent that is dominated by the 

respective field size. We then summed and scaled the minimum field area to cover all croplands of 5-arcmin cells. To keep 

cropland extent consistent with crop map during downscaling, GLC-Share is used when the crop map is GAEZ v4; CAAS-

IFPRI cropland extent map is used when the crop map is SPAM2010. The minimum field area of size 16–100 ha is 120 ha in 150 

the cell #23 which means, for example, farms larger than 16 ha should occupy at least 120 ha in the cell #23.  
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2.3 Optimization for downscaling 

For each administrative unit defined in Ricciardi’s dataset, we established the following optimization problem for downscaling: 

Sets: 

𝑐, Crops 155 

𝑓, Farm size, labelled by the lower bound of the eleven farm sizes 

𝑒, Field size, labelled by the lower bound of the five field sizes 

𝑠, Farming system 

𝑎, Administrative unit 

𝑔, Grid cell 160 

Parameters: 

ℎ𝑎. 𝑅𝑐,𝑓,𝑎 , Crop-specific farm size structure, percentage of the harvested area of farm size 𝑓  that plant crop 𝑐  in the 

administrative unit 𝑎, from Ricciardi’s dataset 

ℎ𝑎. 𝑆𝑐,𝑠,𝑔, Harvested area of crop 𝑐 under farming system 𝑠 at grid cell 𝑔, from crop map 

ℎ𝑎. 𝐿𝑒,𝑔, Minimum field area of field size 𝑒 at grid cell 𝑔, from dominant field size map and crop extent map 165 

𝑝𝑓, The minimum farm area of farm size 𝑓 in any gird cell when the farm size 𝑓 existexists; it is the lower bound of the farm 

size class 𝑓 

𝑙, Elastic factor 

Variables: 

ℎ𝑎𝑐,𝑓,𝑠,𝑔 Harvested area of crop 𝑐, farm size 𝑓, farming system 𝑠 at grid cell 𝑔, estimated by this study 170 

Objective function: 

Since we aim to downscale Ricciardi’s dataset, we wanted to maximize consistencies with Ricciardi’s dataset when constraints 

allow: 

 

𝑚𝑖𝑛 ∑ 𝑎𝑏𝑠 (ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

− ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

)

𝑐,𝑓

 (1) 

Constraints: 

The first constraint ensures consistencies with crop map: the total harvested area per crop per farming system per grid cell in 175 

our map equals the harvested area per crop per farming system per grid cell in the crop map. 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑓

= ℎ𝑎. 𝑆𝑐,𝑠,𝑔, ∀𝑐, 𝑠, 𝑔 (2) 

The second constraint ensures minimum consistencies with Ricciardi’s dataset. The relative difference in farm size structure 

between our estimation and Ricciardi’s dataset would be less than 10%. This ensures that we do not diverge far from Ricciardi’s 

dataset when other constraints are hard to meet. In this case, we would relax other constraints to ensure these minimum 
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consistencies with Ricciardi’s dataset. The arbitrary 10% relative difference considers timestamp differences in Ricciardi’s 180 

dataset and overall uncertainties underlying each of the datasets. 

 90% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ 110% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

, ∀𝑐, 𝑓 (3) 

ThirdlyThird, we also applied a minimum allocated area for each farm size at each grid cell. SinceThe minimum allocated area 

is not necessarily required by the definition of farm size since the farm size is defined based on the total operated or cultivated 

area that does not need to be a single crop area and single farming system, this constraint is not necessarily required by the 

definition of farm size.. It is still reasonable to include it because we applied it at the 5-arcmin (~10 km) grid cell level. 185 

Considering the uncertainties in these constraints and inconsistencies among datasets, we consider this constraint in a hard 

form and soft form. We used hard form by default. We consider relaxing these constraints using the soft form when the 

optimization is infeasible (see Sect. 2.4). The soft form does not require the minimum allocation area for each farming system.  

Hard form 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 𝑝𝑓 , ∀𝑐, 𝑓, 𝑠, 𝑔, 𝑖𝑓 ℎ𝑎𝑐,𝑓,𝑠,𝑔 > 0 (4) 

Soft form 190 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠

≥ 𝑙 × 𝑝𝑓 , ∀𝑐, 𝑓, 𝑔, 𝑖𝑓 ℎ𝑎𝑐,𝑓,𝑠,𝑔 > 0 (5) 

FourthlyFourth, we applied a minimum area constraint for some farm sizes according to the dominant field size distribution. 

This constraint follows the logic that a field could only belong to an equal or larger size of farm. We assumed a linear 

distribution of area within each farm size to accommodate the different classifications of size in farms and fields.  

Given the area of field larger than 100 ha, for farms larger than 100 ha: 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥100

≥ ℎ𝑎. 𝐿100,𝑔, ∀𝑔 (6) 

Given the area of field larger than 16 ha, for farms larger than 10 ha: 195 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥20

+
20 − 16

20 − 10
∑ ℎ𝑎𝑐,10,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔, ∀𝑔 (7) 

Given the area of field larger than 2.56 ha, for farms larger than 2 ha: 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥5

+
5 − 2.56

5 − 2
∑ ℎ𝑎𝑐,2,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔, ∀𝑔 (8) 

Given the area of field larger than 0.64 ha, for all farms: 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥1

+
1 − 0.64

1 − 0
∑ ℎ𝑎𝑐,0,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔 + ℎ𝑎. 𝐿0.64,𝑔, ∀𝑔 (9) 

Last but not least, we have non-negative area constraints: 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 0, ∀𝑐, 𝑓, 𝑠, 𝑔 (10) 
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2.4 Constraints relaxation and solving procedures  

When the above optimization (Eq. (1)–(10)) is infeasible due to the inconsistencies among datasets, we first replaced the hard 200 

form of minimum allocated area for each farm size (Eq. (4)) with soft form (Eq. (5)) and tried the elastic factor with the 

following values byin order: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 0. If it iswas still infeasible, we relaxed the minimum area 

constraint required by the dominant field size distribution by removing the constraints from large to small farms until the 

optimization iswas feasible. Relaxing the minimum area constraint does not happen often during downscaling. 

Whenever the above optimization becomes feasible, the optimization does not necessarily yield a unique global optimum. We 205 

calculated up to 80 (sub)optimal solutions with the same level of consistencies and averaged these solutions to get the final 

one. This helps us to avoid potential bias of single optimal solutions. There may be still bias on the final averaged solution 

because the number and quality of solutions depend on the searching process of solving the toolbox. 

Each optimization problem was solved by Gurobi v9.1 using the dual simplex method with a time limit of 150 seconds. Gurobi 

v9.1 is a fast commercial optimization solver (Gurobi Optimization, 2021). Most of the optimization problems in this study 210 

could be solved within 60 seconds with the optimal solutions. For the administrative units containing more than 300 5-arcmin 

grid cells, the optimization problem becomes extremely large posing a great challenge for the solver. The number of decision 

variables would be more than half-million. In this case, we applied a two-tiered optimization. We first randomly divided all 

grid cells into several groups. Each group includes around 100 grid cells (for Russia, it was 200 to keep the number of groups 

below 300). We first solved the optimization problem at the group level. Then, we solved the cell- level optimization for each 215 

group. Of 3421 administrative units, 244 units need to be dealt with in  this way – they cover 89.4% of grid cells in this study. 

The whole computation was performed on a desktop computer (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, RAM 16 GB) 

taking 9 days. 

Finally, we masked the farm size of crops as unknown if these crops are not covered by Ricciardi’s dataset. For these crops, 

the optimization could estimate their farm size components, but the uncertainties are significantly larger than those covered by 220 

Ricciardi’s dataset. 

2.5 Validation of downscaled maps and comparison with previous studies mapping farm sizes 

The ideal way to validate our downscaled simultaneously farm- size- and crop-specific dataset is to compare it with 

observations. However, most of the available datasets are not farm- size specific. This putscreates challenges tofor validating 

our downscaled maps for all crops and farming systems. We searched for validation datasets that are global focused, farm- 225 

size specific with additional information on crop or farming systems. Limited by data availability, we were able to validate 

our downscaled maps with two empirical datasets and we compared them with previous studies to accessassess the reliability 

of our downscaled maps. More validations are expected when more validation datasets arebecome available. 

For the first validation with empirical datasets, we compared our downscaled map with Descals et al. (2020) on oil palm 

productionmap. Descals et al. (2020) developed a global gridded farm- size specific oil palm map using deep learning and 230 
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satellite images for 2019 (Fig. A1). With satellite images, they classified oil palm areas into small-scale farms and large-scale 

farms based on landscape features. In order to interpret this size classification, we adopted the definition of small-scale oil 

palm farms by Indonesia (the world's largest palm oil producer and exporter) and used 25 ha as the threshold for the two scales 

(Descals et al., 2020). Due to the coverage of our datasets, theThe validation was in five countries because only the five 

countries are covered by both our dataset and validation dataset(Fig. A1). The crop Oil palm in GAEZ v4 and SPAM2010 235 

based map was used for validation separately. We calculated the Pearson correlation coefficient between our downscaled map 

and Descals et al. (2020) at grid cell level on three spatial scales using spatial moving average, 5 arcmin, 15 arcmin, and 25 

arcmin. 

For the second validation with empirical datasets, we compared our downscaled maps with farm- size specific irrigation at the 

country level using the FAO RuLIS (Rural Livelihoods Information System) database (FaoFAO, 2021). Eleven of 56 countries’ 240 

micro-level household survey data around 2010 are available [S3S4]. Based on the household surveys, we calculated the 

percentage of the total irrigated area (irrigated area divided by cultivated area) for each farm size (classified by crop area) 

where at least 5 survey samples are available. We calculated the correlations between our estimations and household surveys. 

This validation considers farm- size specific farming systems, with data aggregated over crops.  

We also compared our downscaled map with previous studies, Lowder et al. (2016) and Mehrabi et al. (2020), which mapped 245 

the geographic distribution of farm sizes but were not crop-specific and not farm-system specific. Lowder et al. (2016) provides 

the percentage of harvested area operated by each farm size at the country level. Mehrabi’s dataset keeps the same farm size 

distribution as Lowder’s dataset at the country level but provides the dominant farm size per 5-arcmin grid cell. We 

gotcalculated the dominant farm size from our downscaled map with the farm size that operates the largest total harvested area 

per grid cell for GAEZ based downscaled map and SPAM based downscaled map, respectively. The comparison was pixel-250 

to-pixel by counting the number of cells that have similar, larger, and smaller dominant farm size in our maps compared with 

Mehrabi’s dataset. Similar dominant farm size means the farm size in our downscaled map are the same or next to the farm 

size in Mehrabi’s dataset. 

3 Results and analysis 

3.1 The crop type and farm size 255 

With the crop map from GAEZ v4 (SPAM2010), we gotidentified the 5-arcmin gridded harvested area for 56 countries, 11 

farm sizes, 27 crops (42 crops for SPAM based map), and 2 farming systems (4 farming systems for SPAM based map). One 

example can be found in Fig. 2, where we illustrate the harvested area of rainfed maize belonging to two farm sizes (2-5 ha 

and 500-1000 ha). Overall, our results show the preference for crop groups for eleven farm sizes ([S1S2] for the crop group of 

27 GAEZ crops). As farm size increases, oil crops and fodder crops become more popular; fruits and nuts, pulses, and roots 260 

and tubers become less popular (Fig. 23(a)). Larger farms (>20 ha) dominate the planting of fodder crops, sugar crops and 

oilcropsoil crops; smaller farms (< 20 ha) dominate the planting of vegetables, stimulates, roots and tubers, pulses, fruits and, 
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nuts, and cotton (Fig. 23(b)). The SPAM based map shows similarcomparable results (Fig. A2 and [S2S3]). These results are 

consistent with our datasets Ricciardi et al. (2018b) and previous studies Herrero et al. (2017), which indicate that the 

optimization resulted in modest remaining inconsistency. 265 

Figure 2.  
Figure 2. The gird cells with a harvested area of rainfed maize belonging to the farm size 2–5 ha (a) and farm size 500–1000 ha (b), 

according to the GAEZ based downscaled map. 
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Figure 3. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 270 
GAEZ based downscaled map. 

3.2 IrrigationFarming systems and farm size 

OverallComparing between irrigated and rainfed harvested area, overall, our results show that smallersmall farms irrigate a 

larger share of their area than largerlarge farms (Fig. 34(a)), which supportsupports the findingsobservations of Ricciardi et al. 

(2020). For Plausible thresholds to differentiate small and large farms can be country specific and range from 1–42 ha for most 275 

countries (Khalil et al., 2017; FAO, 2017, 2019b). With any threshold within this range, our dataset supports previous 



 

14 

 

observations. The same observation can also be found in the SPAM based downscaled map (Fig. A3). The overall observations 

may not hold for some countries, it is may not be true (Sect. 3.4 for further details). The overall higher irrigation of smallersmall 

farms is due tomay be because most of small farms are in the severe water scarce regions (Fig. 34(b)). Here, to get water 

scarcity information, we overlapped our downscaled map with the annual average blue water scarcity map where water scarcity 280 

is classified as four levels: low, moderate, significant, and severe water scarcity (Mekonnen and Hoekstra, 2016; Hoekstra et 

al., 2012). It remains unknown whether smallersmall farms adapt to water scarcity via irrigation or irrigation of smallersmall 

farms increase water scarcity (Grafton et al., 2018). 

With  Another explanation for the overall higher irrigation of small farms is the country coverage. In our dataset, a large 

number of small farms are from Asia. Previous studies show, on average, an independent of regional water scarcity, we 285 

observed higher irrigation of larger farmswith the percentage of irrigated area in Asian small farms being high: over 50% when 

water resources become scarce, which still supports the findings of Ricciardi et al. (2020). The irrigation increases when the 

level of water scarcity increases. Larger farms irrigate more under moderate, significant, and severe water scarcity (Fig. 3(a)). 

The same trend can also be found in the SPAM based downscaled map (Fig. A4). is scarce and over 20% when water is not 

scarce (Ricciardi et al., 2020). This percentage is much higher than that in Europe, Central Asia, Latin America, and Sub-290 

Saharan Africa (Ricciardi et al., 2020). Thus, the overall portion of irrigated areas in small farms is high. 

 

With water scarcity (moderate, significant, and severe), we observed that large farms irrigate to a larger extent than small farms 

when water is scarce, which still supports the observations of Ricciardi et al. (2020) with most thresholds to differentiate small 

and large farms within 1–42 ha. This observation does not depend on the relatively low irrigation extent of >1000 ha farm size 295 

since the farm size  >1000 ha only contributes to less than 4.5% of water scarce area of large farms. The same observation can 

also be found in the SPAM based downscaled map (Fig. A3). The reason is that the water scarce area of the >1000 ha farm 

size is mainly contributed by limited crops from a few regions in our dataset. In this case, the characteristics of these crops and 

regions have more impact on the overall relationship between water scarcity and irrigation. For example, sugarcane in São 

Paulo, Brazil, is one of the main contributors to the significant and severe water scarce area of >1000 ha farm size. However, 300 

water scarcity is not present all year round. The level of water scarcity is low from January to June, which is the tillering phase 

for sugarcane. During the dry season, sugarcane is usually harvested, during which moisture in sugarcane is relatively low and 

the sugar is highly concentrated (Kavats et al., 2020). This may help to explain why the large farms in this area are rainfed 

even though under a certain level of water scarcity. Note, the main aim of Fig. 4 and Fig. A3 is to compare our dataset with 

previous observations instead of drawing conclusions on irrigation levels for specific farm sizes, which may need further 305 

investigation on influencing factors and uncertainties. 
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Figure 34. The percentage of the irrigated area by farm size under each water scarcity level (a) and levels of water scarcity within 

each farm size (b) according to GAEZ based downscaled map. 

SPAM2010 further divided the rainfed farming system into low- and high-input rainfed and subsistence rainfed. With SPAM 310 

based downscaled map, our dataset indicates the subsistence and low-input rainfed farming system is mainly operated at 

smaller farms, but the smaller farms do not exclusively consist of subsistence and low-input rainfed farming system: they also 

operate a sizable portion of the irrigated and high-input rainfed area (Fig. 5). Similarly, the main type of farming system of 

larger farms is high-input rainfed, but the high-input rainfed is far from being limited to larger farms (Fig. 5). 

 315 
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Figure 5. The distribution of irrigated, low- and high-input rainfed, and subsistence rainfed farming systems within each farm size 

according to the SPAM based downscaled map 

3.3 Validated with farm- size specific oil palm from satellite images 

Validations with farm- size specific oil palm data show a significant positive correlation between our downscaled maps and 

the validation dataset on oil palm from satellite images in most countries for both small-scale and large-scale farms (Table 2). 320 

At larger spatial scales, the correlation becomes stronger. This means the spatial distributions of oil palm productionharvested 

area in our downscaled maps and Descals et al. (2020) are similar. Besides the threshold of 25 ha for small and large farms, 

we also tried 10 ha and 50 ha as thresholds and conducted the same comparison. We found the above conclusions on oil palm 

comparison are not sensitive to the choice of threshold. 

Still, there are some differences especially in the case of Costa Rica and the United Republic of Tanzania.  325 

Part of the above differences results from the inconsistencies between the crop maps we used and validation dataset. We 

compared all farms area between crop maps and validation dataset, i.e.., the total area of small-scale and large-scale farms 

(Table 2). We noticed that if the cropland location in crop maps differs from the validation map (not significant positive 

correlation), the farm- size specific validation will be poor. This means that our estimations are limited by the accuracies of 

farm location in crop maps. The differences between validations results for the GAEZ based map and the SPAM based map 330 

can also be attributed to the same reason, the differences in farm location between GAEZ v4 and SPAM2010. 

Table 2. Pearson correlation coefficient of the harvested area between oil palms from satellite images Descals et al. (2020) and GAEZ 

based downscaled map and SPAM based downscaled map respectively for small-scale farms, large-scale farms and all farms. Since 

all farms results do not distinguish farm size, they indicate the differences in oil palm spatial distribution between Descals et al. 

(2020) and crop map datasets (GAEZ v4 and SPAM2010). 335 

  Small-scale farms Large-scale farms All farms 

  
5 arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

Colombia GAEZ 

based 
0.177* 0.313** 0.397** 0.112** 0.238** 0.334** 0.232** 0.374** 0.465** 

SPAM 

based 
 0.218**  0.547** 0.684**  0.385** 0.620**  0.701**  0.409** 0.652** 0.729** 

Costa 

Rica 

GAEZ 

based 
0.086 0.183** 0.215** -0.012 -0.074 

-

0.144** 
0.032 0.001 -0.043 

SPAM 

based 
 0.836** 0.944**   0.971**  0.771**  0.891** 0.925**  0.877**  0.925**  0.929**  

Brazil 

 

GAEZ 

based 
0.245** 0.396** 0.483** 0.177** 0.258** 0.271** 0.326** 0.398** 0.423** 
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SPAM 

based 
0.133**  0.190**  0.248**  0.087** 0.091**  0.084**  0.148**  0.154**  0.156**  

United 

republic 

of 

Tanzania 

 

GAEZ 

based 
0.01 -0.109* 

-

0.202** 
-0.011 -0.039 -0.063 0.022 -0.115* 

-

0.218** 

SPAM 

based 
0.024   0.025  0.069    0.022  0.014  0.065  

Peru 

 

GAEZ 

based 
0.172** 0.350** 0.438** 0.024 0.139** 0.237** 0.111** 0.263** 0.363** 

SPAM 

based 
 0.367** 0.389**  0.429**  0.141**  0.216**  0.240**  0.302**  0.395**  0.436**  

* p<0.005 

** p<0.001 

3.4 Validated with farm- size specific irrigation from household surveys 

Our results also have positive correlations with household surveys in farm- size specific irrigation for the GAEZ based map 

(Fig. 46(a)) and the SPAM based map (Fig. 46(b)) respectively. This means that our downscaled maps are consistent with 340 

validation data in terms of country- level farm- size specific irrigation. Detailed results show that the maps could capture the 

higher percentage of irrigated areas in small or large farms in most countries along the indications of household surveys [S4S5].  

From the validations, we noticed that our downscaled maps systematically underestimate the extent of the irrigated area 

compared to household survey, both for the GAEZ based map and the SPAM based map. If we compare the percentages of 

irrigated area for all farms from the datasets, we find these underestimations are still there (Fig. 46(c), (d)). This means the 345 

underestimation may come from the different measurements of irrigated area and cultivated area in the validation dataset and 

datasets of the crop map. 
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Figure 46. Correlations on the farm- size specific irrigated area (% of total harvested area per farm size) between household survey 

and GAEZ based downscaled map (a) and SPAM based downscaled map (b) for eleven countries. The correlations on the irrigated 350 
area of all farms (% of the total harvested area) between household survey and GAEZ v4 (c) and SPAM2010 (d) are also provided.  

3.5 Compared with previous studies mapping farm sizes 

Compared with Lowder’s dataset (Lowder et al., 2016),) on the percentage of harvested area operated by each farm size, we 

observed positive correlations for GAEZ based map (Fig. 57(a)) and SPAM based map (Fig. 57(b)). This means at the country 

level, the amountnumber of farms for each farm size is similar to Lowder’s dataset ([S5S6] for details). There are still 355 

differences between our downscaled map and Lowder’s dataset. For example, Lowder’s dataset estimate 78.5% of harvested 

area is under the farm size 50–100 ha in Bulgaria while our downscaled maps give around 5%. However, our downscaled maps 
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estimate around 80% of harvested are in the under the farm size 100–200 ha there,  while Lowder’s dataset gives zero. In this 

case, our downscaled maps are still similar to Lowder’s dataset since both indicate large farms are the major farm size in the 

country even though it was not reflected in the correlations. These differences may be attributed to that Lowder’s dataset 360 

wasbeing developed for the year 2000, which is ten years earlier than what we focused.our focus. Farm sizes may change 

during the ten years in some countries. Besides reporting time, these differences may also be attributed to how different datasets 

harmonize farm size. The farm size classes collected from the local agriculture census usually need to be harmonized into a 

classification system. Different datasets may have their own choice during this process. This may lead to some differences 

shown in the comparison, especially when the major farm sizes are similar but not the same. 365 

 

Figure 57. Correlations on the percentage of harvested area operated by each farm size between Lowder’s dataset (Lowder et al., 

2016) and GAEZ based downscaled map (a) and SPAM based downscaled map (b) for 37 countries and 11 farm sizes. 

Compared with Mehrabi et al. (2020), the same pattern of the spatial distributions of dominant farm size could be observed in 

the Mehrabi’s dataset (Fig. 68(a)), the GAEZ downscaled map (Fig. 68(b)), and SPAM based downscaled map (Fig. 68(c)). 370 

Overall, for GAEZ based downscaled map, 54.2% of grid cells’ dominant farm sizes are similar to that in Mehrabi’s dataset, 

27.5% are larger, and 18.3% are smaller; for SPAM based downscaled map, 52.8% are similar, 26.0% are larger, and 21.2% 

are smaller ([S6S7] for details). These differences may be partly explained by the above comparison with Lowder’s dataset 

since Mehrabi’s dataset has the same country- level farm size distribution as Lowder’s dataset. Some differences could also 

be attributed to the comparison of dominant farm size: the dominant farm size in Mehrabi’s dataset may be the second-375 

dominant farm size in our downscaled map. The comparison of dominant farm size may magnify the difference in estimating 

the overall farm sizes. Since Mehrabi’s dataset only include dominant farm size, it is not clear that how the difference would 

be estimating the overall farm sizes. 
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Figure 68. Dominant farm size according to Mehrabi’s dataset (Mehrabi et al., 2020) (a), GAEZ based downscaled map (b) and 380 
SPAM based downscaled map (c). We only show the cells from Mehrabi’s dataset where our downscaled maps have estimations. 
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4 Discussion 

4.1 Uncertainties  

We explicitly consider the uncertainties in crop maps by developing two separateseparately downscaled maps based on two 

crop maps, GAEZ v4 and SPAM2010. From the results and validations, we observed some differences in the crop distribution 385 

between the two crop maps, especially at the grid cell level. This reflects the uncertainties in farmland location. It affects the 

spatial validations on farm- size specific oil palm and the dominant farm size distribution. However, these uncertainties at the 

grid cell level have a limited impact on country level results and validations which can be seen from Fig. 2–3, Fig. 54, Fig. A2, 

and Fig. A3.  

Uncertainty in the two crop maps is more pronounced for irrigation.farming systems. From Fig. 46 and [S4S5] we could see 390 

the SPAM based downscaled map has a lower irrigation ratio than GAEZ based downscaled map. This is because SPAM2010 

defines irrigation according to the actually irrigated area and GAEZ v4 defines irrigation by the area that is equipped with fully 

irrigation facilities. The lower irrigation ratio in SPAM2010 does not affect the conclusions and validations drawn from the 

GAEZ based map; for example, the finding of overall higher irrigation of smaller farms is robust under this uncertainty, and 

so is the observation on higher irrigation of larger farms under the highelevated level of water scarcity. 395 

Some uncertainties are introduced by pre-processing and constraints relaxation during the solving processes. When estimating 

crop-specific farm size structures using Ricciardi’s datasets, around 12% of them were based on crop production instead of 

crop area. According to Ricciardi et al. (2018a), the introduced uncertainties are limited when using crop production. In terms 

of uncertainties introduced by constraints relaxation, for GAEZ (SPAM) based map, we solved 7381 (6017) optimizations. 

GAEZ v4 and SPAM2010 based downscaling solved different number of optimizations because of the different cropland 400 

extent which affect the number of grid cells to be allocated. Among all the optimizations, 4378 (3671) need to be relaxed using 

elastic factor 0.125 or smaller (Eq. (5)); 239 (203) need to be further relaxed by removing some of the minimum area constraints 

(Eq. (6) – (9)). Only the relaxation of minimum area constraint will introduce additional inconsistencies with the datasets used. 

This means the constraints relaxation introduce additional uncertainties among 3% of the total calculations. In addition, we 

might allocate crop area to a farm size that is not included in Ricciardi’s dataset. This only happened when the crop and part 405 

of the eleven farm sizes are included in Ricciardi’s dataset but meeting the minimum area constraints requires an additional 

farm size for the crop. In this case, the 10% relative difference with Ricciardi’s dataset is still ensured for the available farm 

size. Only 0.1% (5.0%) of allocated area is in this case for GAEZ (SPAM) based downscaled map. 

More uncertainties in the downscaled maps may come from used datasets. Since Ricciardi’s dataset was not developed for 

2010, farm size may change a lot in some developing countries. This put some uncertainties in our results since we relied on 410 

it to estimate farm size structure. The uncertainties in the crop map affect how we downscaled Ricciardi’s dataset. Some crops 

can be found in Ricciardi’s dataset for an administrative unit but not in crop map, or vice versa. This leads tomeans that, on 

the one hand, 23.3% (21.6%) of the crop area in Ricciardi’s dataset was not downscaled because the GAEZ v4 (SPAM2010) 

crop map indicates no crop. On the other hand,  17.8% (12.4%) of the harvested area in the GAEZ v4 (SPAM2010) crop map 
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was not allocated a farm size because Ricciardi’s dataset has no relevant records. These uncertainties may have affected the 415 

allocated area in the downscaled maps, but according to validations, they are not high enough to make the downscaled maps 

lose the utilities. HighHighly accurate crop mapmaps will reduce this part of uncertainties in the future. 

Despite the uncertainties at the grid cell level, the used datasets and the downscaled maps were found to be more reliable at 

the country level. For example, the two crop maps were developed by downscaling the agriculture census at the (sub)national 

level. The differences in the two crop maps result from the collectedCollected agriculture census and social-ecological factors 420 

considered during downscaling. They may lead to some differences at the grid cell level in the two crop maps, while they were 

all adjusted to the country- level data from FAOSTAT (Fao, 2019FAO, 2019a). The dominant field size distribution is also 

uncertain at the grid cell level which was estimated by spatial interpolating of training samples. The uncertainty will decrease 

when the focus is on the regional level (Lesiv et al., 2019). Validations also show well consistencies with country level 

observations. Therefore, future uses of our downscaled map are more confident at the country level than grid cell level. Using 425 

GAEZ based map and SPAM based map at the same time helps to reduce uncertainties at the grid cell level. 

4.2 Limitations 

With the ambition to map global simultaneously farm- size- and crop-specific harvested area, we were only able to cover 56 

countries due to data availability, though it is alreadythis reflected half of the global cropland. Farm- size specific data is scarce 

and sometimes not publicly available in some countries. The datasets we used, like Ricciardi et al. (2018b) and Lesiv et al. 430 

(2019), are the currently best-available datasets on farm or field sizes (Kim et al., 2021). Data availability is the main obstacle 

to getcreating a global map. The development of deep learning and remote sensing may help to map the global farm- size- and 

crop-specific harvested are in another way, like the farm- size specific oil palm in Descals et al. (2020). LackingThe lack of 

farm size training samples and enormous computational requirements are the main challenges for deep learning and remote 

sensing. 435 

Our estimationestimations are based on planted crop and harvested area, which is static for the year 2010. Farmers’ choice 

onof crop will change along with climate, market demands, and so on. Current downscaled maps could only provide a baseline 

for the distributions of small and large farms. It remains challenging to describe the dynamics of harvested area under changing 

environment. 

The future updates of our downscaled maps rely on the updates of our used datasets. Fortunately, GAEZ v4, SPAM2010, and 440 

the cropland extent map have regular update plans according to their document. The dominant field size distribution was also 

updated since the first publishingpublication and may have more updates in the future. Ricciardi’s dataset may not have updated 

plans but it could be updated using the data from World Programme for the Census of Agriculture (Fao, 2020) and EUROSTAT 

(Eurostat, 2021).FAO, 2020b) and EUROSTAT (EUROSTAT, 2021). Any updates and extensions of Ricciardi’s dataset from 

other data sources in the future are compliable with current model and code. 445 
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4.3 Suggestions on developing farm size- and crop-specific production dataset 

Crop production of small farm is one of the main concerns of SDG 2 (Zero hunger). Developing farm size specific maps on 

production may be one of the applications of our dataset that directly benefits from the additional dimensionality achieved. 

However, compared to harvested areas, an empirical farm-size specific dataset on production or yield is even more scarce. The 

data on production or yield of farm sizes is available for a limited number of countries, but those countries are not always the 450 

most vulnerable in terms of food insecurity. Thus, such datasets would require estimating the production or yield based on 

additional models. 

Current studies show the relationship between farm size and crop production or yield is complex (cf. Muyanga and Jayne 

(2019) and Iizumi et al. (2021)). Many factors contribute to this relationship, including but not limited to crop types, fertilizer 

input, climate, and soil conditions. The farm size itself does not directly affect yield, but farm size often correlates with factors 455 

that affect yield. So, estimating crop yield for different farm sizes requires first unpacking the factors that directly impact yield 

and correlate with farm sizes. For environmental factors like soil conditions and climate, this could be achieved by overlapping 

our dataset with the soil and climate database. Agricultural management and input factors, like fertilizer input, could be inferred 

from the agricultural production system data. Specifying agricultural management and input factors according to farming 

systems could help to first evaluate crop yield for different farming systems, and then allocate the yield back to farm sizes 460 

according to their proportion in each farming system. Such an approach would rely on the assumption that agricultural 

management practices of different farming systems do not depend on farm size. Reliable estimations of yield for different 

farming systems could be either derived from SPAM2010 and GAEZ v4 or based on crop modeling. 

5 Code and data availability 

The code, source data, and the simultaneously farm- size- and crop-specific harvested area, including the GAEZ based 465 

downscaled map and SPAM based downscaled map, are open-access, free, and available at 

https://doi.org/10.5281/zenodo.5747616 (Su et al., 2022). The downscaled maps are available in *.csv files for each crop and 

farming system. Each *.csv file provides the grid cell index, administrative unit index, crop name, farm size, harvested area, 

and x and y coordinates in the projection of WGS84.  

6 Conclusions 470 

This study presents a 5-arcmin gridded simultaneously farm- size- and crop-specific dataset of harvested area for 56 countries. 

We downscaled the best-available datasets, Ricciardi et al. (2018b) which collected direct reports of farm size and crop area, 

by using the latest datasets on crop-specific land use, cropland extent, and field size distribution. We explicitly addressed the 

uncertainty in crop maps by using two crop maps separately during downscaling. The downscaled maps are well-consistent 

with observations on farm- size specific oil palm cultivation from satellite images and farm- size specific irrigation from 475 

https://doi.org/10.5281/zenodo.5747616
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household surveys. Our downscaled maps show the planted crops and irrigation differ among farm sizes which support 

previous findings. We observed uncertainties in the maps produced at the grid cell level but found country- level conclusions 

to be robust to grid cell level uncertainties, including the uncertainties from crop maps.  

 

Intended future updates will increase the spatial coverage. Our simultaneously farm- size- and crop-specific dataset will 480 

facilitate studies to explicitly incorporate farm size into global agriculture, water resources, and climate change studies. 

Appendices 

 

Figure A1. The global distribution of oil palms according to Descals et al. (2020) and the five countries to validate our downscaled 

maps. 485 
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Figure A2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 

SPAM based downscaled map. 



 

26 

 

 

Figure A3. The percentage of the irrigated area by farm size under each water scarcity level (a) and levels of water scarcity within 490 
each farm size (b) according to SPAM based downscaled map. 
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