

1 **Microwave radiometry experiment for snow in Altay**
2 **China: time series of *in situ* data for electromagnetic and**
3 **physical features of snow pack**

4
5 Liyun Dai¹, Tao Che^{1,2*}, Yang Zhang¹, Zhiguo Ren^{1,3}, Junlei Tan¹, Meerzhan
6 Akynbekkyzy¹, Lin Xiao¹, Shengnan Zhou¹, Yuna Yan³, Yan Liu⁴, Hongyi Li¹, Lifu
7 Wang⁵

8
9 ¹Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research
10 Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
11 Lanzhou, 730000, China.

12 ²Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing,
13 100101, China.

14 ³University of Chinese Academy of Sciences, Beijing, 1000101, China.

15 ⁴ Institute of Desert Meteorology, China Meteorological Administration, Urumqi, 830002, China

16 ⁵Altay National Reference Meteorological station, China Meteorological Administration, Altay,
17 836500, China.

18 *Correspondence to:* Tao Che (chetao@lzb.ac.cn)

19 **Abstract.** Snow depth is a key parameter in climatic and hydrological systems. Passive microwave
20 remote sensing, snow process model and data assimilation are the main methods to estimate snow depth
21 in large scale. The estimation accuracies strongly depend on input of snow parameters or characteristics.
22 Because the evolving processes of snow parameters vary spatiotemporally, and are difficult to accurately
23 simulate or observe, large uncertainties and inconsistence exist among existing snow depth products.
24 Therefore, a comprehensive experiment is needed to understand the evolution processes of snow
25 characteristics and their influence on microwave radiation of snowpack, to evaluate and improve the
26 snow depth and SWE retrieval and simulation methods. An Integrated Microwave Radiometry Campaign
27 for snow (IMCS) was conducted at the Altay National Reference Meteorological station (ANRMS) in
28 Xinjiang, China, during snow season of 2015/2016. The campaign hosted a dual polarized microwave
29 radiometer operating at L, K and Ka bands to provide minutely passive microwave observations of snow
30 cover at a fixed site, daily manual snow pit measurements, ten-minute automatic 4-component radiation
31 and layered snow temperatures, covering a full snow season of 2015/2016. The measurements of
32 meteorological and underlying soil parameters were requested from the ANRMS. This study provides a
33 summary of the obtained data, detailing measurement protocols for microwave radiometry, *in situ* snow
34 pit and station observation data. A brief analysis of the microwave signatures against snow parameters is
35 presented. A consolidated dataset of observations, comprising the ground passive microwave brightness
36 temperatures, *in situ* snow characteristics, 4-component radiation and weather parameters, was achieved
37 at the National Tibetan Plateau Data Center, China. The dataset is unique in providing continuous daily
38 snow pits data and coincident microwave brightness temperatures, radiation and meteorological data, at
39 a fixed site over a full season. The dataset is expected to serve the evaluation and development of
40 microwave radiative transfer models and snow process models. The consolidated data are available at

41 <http://data.tpdc.ac.cn/zh-hans/data/df1b5edb-daf7-421f-b326-cdb278547eb5/> (doi:
42 10.11888/Snow.tpdc.270886) (Dai, 2020).

43
44 **Key words:** Snow, Microwave radiometry, Snow pit, Experiment

45 **1 Introduction**

46 Seasonal snow cover plays a critical role in climate and hydrological systems (Cohen, 1994; Ding
47 et al., 2020; Barnett et al., 2005; Immerzeel et al., 2010) by its high albedo, thermal insulation, fresh
48 water reserves and its phase change processes. Snow cover can be accurately identified by optical remote
49 sensing. However, the snow surface albedo is controlled by snow characteristics (Aoki et al., 2003 and
50 2000), and variations in snow characteristics cause uncertainties in albedo estimation. Snow depth and
51 snow water equivalent (SWE) are currently estimated using passive microwave at global and regional
52 scales (Pullianen et al., 2020; Tedesco and Narvekar, 2010; Jiang et al., 2014; Che et al., 2008). Although
53 several global and regional snow depth and SWE products have been released, large uncertainties exist
54 in these products because of the spatio-temporal variations in snow characteristics (Xiao et al., 2020;
55 Mortimer et al., 2020; Che et al., 2016; Dai et al., 2012; Dai and Che, 2022). Therefore, the observation
56 of electromagnetic and physical parameters of snowpack are necessary to improve understanding of the
57 electromagnetic radiation process of snowpack to enhance the estimation accuracy of snow surface
58 albedo and snow depth.

59 To evaluate and improve snow depth and SWE retrieval methods from passive microwave remote
60 sensing observations and to combine remote sensing technologies with modeling and data assimilation
61 methods to produce the most accurate products, a few large or systematic experiments or campaigns have
62 been conducted on electromagnetic and physical characteristics measurement of snow cover. These
63 experiments are summarized in table 1. The Cold Land Processes Field Experiment (CLPX)
64 (<https://nsidc.org/data/clpx/index.html>) , one of the most well-known experiments, was carried out from
65 winter of 2002 to spring of 2003 in Colorado, USA (Cline et al., 2003). During the campaign, snow pits
66 were collected in February and March of 2002 and 2003 to coincide with airborne and ground remote
67 sensing observations. NASA SnowEx campaign (<https://nsidc.org/data/snowex>) was conducted in 2017
68 in Colorado to test and develop algorithms for measurement of SWE in forested and non-forested areas
69 by providing multi-sensor observations of seasonally snow-covered landscapes (Brucker et al., 2017).
70 The campaign is still ongoing and will be conducted in other areas with different snow conditions. In
71 northern Canada, mobile sled-mounted microwave radiometers were deployed in forest, open and lake
72 environments from November 2009 to April 2010 and snow characteristics within the footprints of
73 radiometers were measured to improve understanding the influence of snow characteristics on brightness
74 temperatures (Derksen et al., 2012; Roy et al., 2013). These microwave experiments were of mobile
75 observation. In these experiments, there were multiple observation sites for different land cover, but
76 relative short temporal range. The snow pit observations were used to evaluate snow microwave emission
77 model in different land cover (Tedesco and Kim, 2006; Royer et al., 2017), but they did not exhibit the
78 evolution of snow parameters.

79 In the Arctic region, the Nordic Snow Radar Experiment (NoSREx) campaign was conducted at a
80 fixed field in Sodankylä, Finland, during 2009 ~ 2013 (Lemmetynen et al., 2016). This experiment
81 provided a continuous time series of active and passive microwave observations of snow cover at a
82 representative location of the Arctic boreal forest area spanning an entire winter season and matched

83 snow pit observations were made weekly. In Asia, snow pit work at 3 or 4 day intervals was conducted
 84 simultaneously with radiation budget observations during winter of 1999/2000 and 2000/2001 to analyze
 85 the effects of snow physical parameters on albedo (Aoki et al., 2003). The NoSREx and Japan radiation
 86 experiments were fixed field observation, which provided longer time series of data than CLPX and
 87 SnowEx. These experiments were conducted in deep snow areas, and the weekly observation could
 88 reflect general evolution process of snow characteristics but might miss some key details that occur at
 89 sub-weekly scales. In the Tibetan plateau with shallow snow cover, multiple years of microwave
 90 radiometry observation at L band were conducted to study passive microwave remote sensing of frozen
 91 soil (Zheng et al., 2019, 2021a and 2021b). However, in the long term series of experiment, no snow pit
 92 was measured and the microwave radiometry observation was performed at L band which is insensitive
 93 to snowpack.

94 **Table 1 Summary of existing experiments for microwave and optical radiation and physical features of**
 95 **snowpack**

Campaign	Location	Temporal range	Observation content
CLPX	Different sites in Colorado,	February and March of 2002 and 2003	Inconsecutive multiple sensor observation, including microwave radiometry over snow, and matched snow pit measurements were conducted at different sites with short temporal range.
SnowEx-year 1	Grand Mesa, and Senator Beck Basin, Colorado	February of 2017	Inconsecutive multiple sensor observation, including microwave radiometry over snow, and matched snow pit measurements were conducted at different sites with short temporal range.
CMRES ¹	Mobile observation at Forest, open and lake in the northern Canadian region	November of 2009-April of 2010	Mobile microwave radiometry and snow pit observation within footprint of radiometer. Short temporal range and inconsecutive observation
NoSREx	Fixed site in Sodankylä, Finland	Snow season during 2009-2013	Consecutive microwave radiometry and SAR observation over snow, and weekly snow pit measurement
JERBS ²	Fixed site in Japan	Snow season during 1999-2000	Consecutive optical radiation observation over snow and consecutive snow pit measurement at 3 or 4-day interval.
IMCS	Fixed site in China	November of 2015-March of 2016	Consecutive microwave radiometry and optical radiation observation, and consecutive daily snow pit measurements.

96 Note: ¹CMRES: Microwave radiometry experiment on snow cover conducted in northern Canada

97 ²JERBS: Experiment of radiation budget over snow cover in Japan

98
 99 To understand the evolution of snow characteristics and their influence on passive microwave
 100 brightness temperatures and radiation budget, an integrated experiment on snow was conducted during a

101 full snow season, in Altay, China. The experiment was designed to cover periods from snow-free
102 conditions to eventual snow melt-off during 2015/2016. The microwave radiometry measurements at L,
103 K and Ka bands for multiple angles were complemented by a dual-polarized microwave radiometer with
104 4-component radiation and daily in situ observations of snow, soil and atmospheric properties, using both
105 manual and automated methods. The data of electromagnetic and physical parameters were further
106 consolidated and organized to be easily read and utilized.

107 The dataset is unique in providing continuous daily snow pits data over a snow season at a fixed
108 site and matched microwave brightness temperatures, radiation and meteorological data. In the next
109 section, the experiment location, parameters, and parameter measurement protocols are described;
110 section 3 introduces the consolidated data which was released at the National Tibetan Plateau Data Center,
111 China; section 4 presents content of brightness temperature, 4-component radiation, snow pit data, soil
112 temperature and moisture, and meteorological data; section 5 discusses the possible applications and
113 uncertainties; and finally the conclusions are summarized in section 6.

114 **2 Description of experiment setup**

115 **2.1 Measurement location**

116 The Integrated Microwave Radiometry Campaign for snow (IMCS) was performed during the
117 2015/2016 snow season (from November 27, 2015 to March 25, 2016) at the Altay National Reference
118 Meteorological station (ANRMS) ($47^{\circ}44'26.58''$, $E 88^{\circ}4'21.55''$) which is approximately 6 km from
119 the foot of Altay mountain in the northwest China (Figure 1). Altay mountain with elevation up to 3000
120 m, running northwest and southeast, is at the junction of China, Russia, Mongolia and Kazakhstan, and
121 provides snow water resources for these four countries. The average annual maximum snow depth
122 measured in this station is approximately 40 cm, with a maximum over 70 cm. In the southwest of Altay
123 mountain, crop land and desert with flat terrain are the dominant land covers. Snow cover is critical fresh
124 water for the irrigation in this area. In this experiment, measurements included microwave radiometry,
125 4-component radiation, snow pit and soil parameters. The test site of this experiment was four
126 neighboring bare rectangle fields in the ANRMS with areas of $2500m^2$ (black rectangle filled in Figure
127 1), $2500m^2$ (pink rectangle field in Figure 1), $200m^2$ (red rectangle field in Figure 1) and $400 m^2$ (blue
128 rectangle field in Figure 1), respectively.

129 In the pink field, the ground-based microwave radiometer was set up in the middle of the field,
130 facing south to collect brightness temperatures of snow cover. The black field behind the microwave
131 radiometers (north of the radiometers) was for manual snow pit data collection. The microwave
132 radiometer observations and snow pit data collection were conducted by Northwest Institute of Eco-
133 Environment and Resources, Chinese Academy of Science (NIEER) from November 27, 2015 to March
134 25, 2016 (After March 25, 2016, snow melted out).

135 The blue field was for meteorological measurements including wind speed, wind direction, air
136 temperature, air wetness, air pressure, precipitation, soil temperature, soil moisture among others. These
137 parameters were automatically obtained from instruments, and the instruments setup and data collection
138 were operated by ANRMS. This station also has daily manual observation of snow depth and SWE. In
139 this experiment, we requested the wind, air pressure, air wetness, air pressure, soil temperature and
140 moisture data during this experiment from ANRMS. The red field was designed for automatic

141 measurement of layered snow temperatures, snow density, SWE, snow depth, and albedo. These
142 automatic measurement instruments were installed and maintained by NIEER, and started working from
143 2013. However, during the experiment, the instruments for snow density and SWE did not work, and we
144 only collected layered snow temperatures and 4-component radiation.

145 Because the four observation fields are located within the domain of the station and the distance
146 between them are less than 100m, the snow characteristics and soil and weather conditions are thought
147 to be the same. Overall, the experiment performed a systematic observation covering electromagnetic
148 and physical features of snow pack, providing data for studies on snow remote sensing and models.

149
150 **Figure 1: Location of the Altay National Reference Meteorological station (ANRMS) in Asia and the**
151 **distribution of three experiment fields in the ANRMS. The black rectangle represents the field used for snow**
152 **characteristics (approximately 40 m × 50 m) including snow layering, layer thickness, snow density, snow**
153 **grain size and shape of each layer, and microwave radiometers (approximately 60 m × 50 m) observations.**
154 **The blue rectangle is the field for meteorological and soil data collection operated by the ANRMS.**
155 **The red rectangle field is for automatically observation of the snow temperature, and 4-component radiation,**
156 **designed by Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science (NIEER).**

157 2.2 Measurement methods

158 The microwave signatures from snowpack vary with snow characteristics, soil and weather
159 conditions. In this experiment, the measurements include microwave radiometry observation to collect
160 brightness temperature, manual snow pit observation to collect snow physical parameters, automatic
161 observation to collect 4-component radiation and snow temperatures, and meteorological observation

162 which contains weather data and soil data.

163 2.2.1. Microwave radiometry

164 The brightness temperatures at 1.4, 18.6, 36.5 GHz for both polarization (Tb1h, Tb1v, Tb18h, Tb18v,
165 Tb36h, Tb36v) were automatically collected using a six-channel dual polarized microwave radiometer
166 RPG-6CH-DP (Radiometer Physics GmbH, Germany,
167 <https://www.radiometerphysics.de/products/microwave-remote-sensing-instruments/radiometers/>). The
168 technical specifications of the RPG-6CH-DP are described in Table 2. The RPG-6CH-DP contains a
169 built-in temperature sensor which can measure air temperature. The automated data collection frequency
170 was set to 1 minute.

171
172 **Table 2. Technical Specifications of the RPG-6CH -DP Microwave Radiometer.**

Parameter	Value
Manufacturer	Radiometer Physics GmbH
System noise temperatures	<900 K
Bandwidth	400MHz (20MHz for 1.4 GHz)
System stability	0.5 K
Dynamic range	0~400 K
Frequencies (GHz)	1.4, 18.7, 36.5
Polarizations	V, H
Internal calibration	Internal Dicke switch and software control for automatic sky tilt calibration
Receiver and antenna thermal stabilization	< 0.015 K
Antenna sidelobe level	< -30 dBc
Optical resolution (HPBW)	6.1° (11° for 1.4 GHz)
Incidence angle	0~90°
Azimuth angle	360°

173
174 Before the snow season, a platform with height of 5 m, length of 4 m and width of 2 m was
175 constructed in the experiment field (Figure 2). A 4-m orbit was fixed on the platform. The RPG-6CH-DP
176 was set up on the orbit and could be moved along the orbit. The microwave radiometers at K and Ka
177 bands began working from November 27, 2015, but the L band radiometer did not work until January 30,
178 2016. These radiometers were sky tipping calibrated, and the calibration accuracy is 1 K. In clear sky
179 conditions, the sky brightness temperatures were approximately 29.7 ± 0.3 K at 18.7 GHz for both
180 polarizations and 29.3 ± 0.9 K at 36.5 GHz for both polarizations. But the sky brightness temperature at
181 L band showed large fluctuation. They ranged from -1 to 8 K for horizontal polarization, and 1 to 16 K
182 for vertical polarization.

183 Generally, the radiometers were fixed in the middle of the orbit to observe snow cover with incidence
184 angle of 50°. Multi-angle observations were conducted after every big snowfall, and every 5 days in the
185 stable period. In the melt period, observation frequency increased. There are total seventeen multi-angle
186 observation (December 3, 19, and 30; January 3, 8, 13, 18, 3, and 28; February 3; March 3, 10, 15, 22,
187 26, 28, and 31) when the radiometer was set to scan the ground at different incidence angles at two ends
188 of the orbit and the middle place of the orbit. Although the view fields of the antennas for 1.4 GHz, 18
189 GHz and 36 GHz did not completely overlap, the measured results showed that the brightness
190 temperatures observed by radiometers at the left, middle and right of the orbit varied less than 1 K.

191 Therefore, the snow and soil characteristics were considered homogeneous within the view fields of the
192 three antennas.

193
194 **Figure 2 Ground-based microwave radiometer observation.**

195
196 **2.2.2 Snow pit measurement**

197 The snow characteristics were obtained by manual snow pit measurements in the black field,
198 including snow layering, snow layer thickness, grain size, snow density, and snow temperatures. These
199 data were daily collected during 8:00-10:00 am local time, from November 27, 2015 to March 25, 2016,
200 except 7 days (please see Table 3). Although the snow temperatures were manually measured at snow
201 pits, the automatically collected snow temperatures in the red field were utilized in this study, because
202 the temperature measured at snow pits could not reflect the natural temperature profile when the snow
203 pits exposed to air.

204
205 **Table 3. Variables collected by manual daily snow pit measurement in black field in figure 1, and their**
206 **observation instruments, observation time and frequencies.**

Parameter	Instruments	Precision	Layering style	Observation time or frequency	Absent date
Layer thickness (cm)	Ruler	0.1cm	Natural layering	no	
Snow density (g/cm ³)	Snow tube (Chinese Meteorological Administration)	pressure:0. 1g/cm ² , snow depth: 0.1 cm	Whole snowpack	8:00-10:00 am	no
Snow density (g/cm ³)	Snow shovel (NIEER)	weight: 0.01g, volume: 1cm ³	Every 10 cm	January 2-3, 2016;	

Snow density (g/cm ³) and	Snow fork (Toikka Enginnering Ltd.)	0.0001g/cm ³	Every 5 cm	February 20, 2016
Liquid water content (%)	Snow fork	0.001%	Every 5 cm	
Snow grain size (mm)	Anyty V500IR/UV	0.001mm	Natural layering	December 24, 31, 2015; January 1- 3, 23, 2016, February 20, 2016
Snow grain shape	Shape card	N/A	Natural layering	

207

208 The first step of snow pit measurement is making a snow pit. In the black field, a new snow pit was
 209 dug each day. A spade was used to excavate snow pit. The length of the snow pit profile was
 210 approximately 2m to make sure all parameters were measured from unbroken snowpack. The width of
 211 the snow pit was approximately 1m. The snow pit section was made as flat as possible using a flat shovel
 212 or ruler. When the snow profile is exposed to air for a long time, the snow characteristics will be
 213 influenced by environment and will be different from the natural snow characteristics. In order to make
 214 sure every observation conducted on natural snow pit, the snow pit was backfilled with the shoveled
 215 snow after finishing all observations, and the new snow pit in the following day was made at least 1-m
 216 distance from the last snow pit. After finishing a snow pit, the natural snowpack stratification was then
 217 visually determined, and the thickness of each layer was measured using a ruler.

218 The third step was measuring grain size and shape type in each layer. The grain size and type within
 219 each natural layer were estimated visually from a microscope with an “Anyty V500IR/UV” camera
 220 (Figure 3a). A software “VIEWTER Plus” matched the microscope was used to measure grain size. The
 221 grain type was determined based on Fierz et al. (2009). In this experiment, we utilized the length of
 222 longest axes and the length of shortest axes to describe grain size (Figure 3b). When using the software
 223 to measure the grain size, a reference must be needed. In this experiment, a ruler with 0.5 mm marking
 224 was used as a reference (Figure 3c). We adjusted the focus of the camera to make sure the grains at the
 225 clearest status in camera to take photos, and the photo of ruler scale was taken at the same focus. If the
 226 thickness of one layer was less than 10 cm, measurements were performed at the top and bottom of the
 227 layer. If the thickness was greater than 10 cm, measurements were performed at the top, middle, and
 228 bottom of the layer. For each layer, at least 5 photos were taken, and at least 10 typical grains were chosen
 229 to measure the longest axes length and the shortest axes length in the photos of each layer. Each layer
 230 had at least 10 groups of longest and shortest axes length; the final grain size was the average of these
 231 values. Figure A1 presents an example of the original photos of grains in each layer, and Table A1 shows
 232 the matched record of longest and shortest axis length.

233

(a)

(b)

(c)

Figure 3: Picture of microscope “Anyty V500IR/UV” (a), the measured longest axes lengths and shortest axes length of particles (b), and the reference ruler scale (c).

Snow density was measured using three instruments: snow tube, snow shovel and Snow Fork (Figure 4). The snow tube instrument, designed by Chinese Meteorological administration, contains a metal tube with the base area of 100 cm^2 and the length of 60 cm, and a balance (figure 4a). It was utilized to measure the snow density of a whole snowpack by weighing the snow sample. The snow shovel is a 1500 cm^3 wedge-type sampler, and its length, width and height are 20 cm, 15 cm, and 10 cm, respectively (figure 4b). It was utilized to measure snow density every 10 cm (0-10 cm, 10-20 cm, 20-30 cm...). The Snow Fork is a microwave resonator that measures the complex dielectric constant of snow, and adopts a semi-empirical equation to estimate snow density and liquid water content based on the complex dielectric. The Snow Fork (figure 4c) was utilized to measure snow density and liquid water content at 5-cm intervals starting 5 cm above the snow/soil interface (5cm, 10cm, 15 cm, 20cm...). In order to decrease the observation error, every measurement was conducted three times. If there is an abnormal value, the fourth measurement would be performed to make sure the accuracy. Table A2 is an example record table for snow density. The average value of the three-time observation was the final value.

(a)

(b)

(c)

Figure 4: Three instruments for snow density: Snow tube (a), Snow shovel (b), and Snow Fork (c).

2.2.3 Automatic radiation and temperature measurement

In the red field, the 4-component radiation was automatically measured by Component Net Radiometer (NR01) manufactured by Hukseflux, and layered snow temperatures was measured by Campbell 109S temperature sensors, respectively. The temperature sensors were set up on a vertical pole which was vertically inserted in the soil (Figure 5). The heights of the sensors are 0 cm, 5 cm, 10 cm, 15 cm, 25 cm, 35 cm, 45 cm, and 55 cm above soil/snow interface. The snow temperatures at these heights

263 were collected every ten minute.

264 The NR01 net radiometer was set up to measure the energy balance between incoming short-wave
265 and long-wave far infrared radiation versus surface-reflected short-wave and outgoing long-wave
266 radiation. The range of short wave is 285~3000nm, and the range of long wave is 4.5~40um. The 4-
267 component radiation was automatically recorded every ten minutes. In addition, the sensor is equipped
268 with a Pt100 temperature sensor for parallel recording of the sensor temperature.

269
270 **Figure 5: Set up of temperature sensors and CNR01 in the red field.**
271

272 **2.2.4 Meteorological observation**

273 The meteorological data include air temperature, air pressure and humidity, wind speed, soil
274 temperature at -5cm, -10 cm, -15cm and -20 cm and soil moisture at -10 cm and -20 cm. These parameters
275 are routine observations conducted at ANRMS, and were obtained through request from ANRMS. The
276 instruments used for soil and weather parameters observations are produced by China Huayun
277 Meteorological Technology Group corporation. The measurement parameters and their measurement
278 instruments are listed in table 4.

279 **Table 4. Automatically observed variables and the observation instruments, observation time and**
280 **frequencies.**

Parameter	Instruments	Precision	Layering style	Observation time or frequency
Snow temperature(°C)	Temperature sensors (Campbell 109S)	0.001 °C	0 cm, 5 cm, 10 cm, 15 cm, 25 cm, 35 cm, 45 cm, and 55 cm	Ten-minute
4-component radiation (W/m ²)	Component Net Radiometer NR01 (Hukseflux)	0.001 W/m ²	6 feet above ground	Ten-minute

Soil temperature (°C)	Soil temperature sensor (China Huayun)	0.1 °C	-5cm, -10 cm, -15cm and -20 cm	Hourly
Soil moisture (%)	Soil moisture sensor (DZN3, China Huayun)	0.1%	-10 cm and -20 cm	Hourly
Air temperature (°C)	Thermometer screen (China Huayun)	0.1 °C	6 feet above ground	Hourly
Air pressure (hPa)	Thermometer screen (China Huayun)	0.1 hPa	6 feet above ground	Hourly
Air humidity (%)	Thermometer screen(China Huayun)	1%	6 feet above ground	Hourly
Wind speed (m/s)	Wind sensor(China Huayun)	0.1m/s	10 m above ground	Hourly

281

282 The air temperature, pressure and humidity were collected using temperature and wetness sensor in
283 thermometer screen, the wind speed and direction were measured using wind sensor set up at 10 m on a
284 tower. Soil moisture and temperature were automatically measured using moisture sensor and
285 temperature sensor. Figure 6 depicts the instruments for these observations.

286

(a)

(b)

(c)

(d)

287 **Figure 6: Instruments for observation of air temperature and wetness (a), wind speed (b), soil temperature
288 (c) and soil moisture (d).**

290

3 Description of consolidated IMCS dataset

291

292 The microwave brightness temperature, snow parameters, meteorological data were recorded in
293 different formats, and the observation frequencies and times were different. These data must be
294 reorganized and consolidated for ease of use. The values from the three-time measurements for snow
295 density in each layer were averaged to obtain the final snow density. The length of the longest and shortest
296 axes of particles in each photo were measured using the software. The average lengths of longest and
297 shortest axes from all photos in each layer were obtained as the final grain size. The daily snow pit data
298 were finally consolidated into a NetCDF file “snow pit data.nc”.

298

299 The time series of automated layered snow temperature and 4-component radiation data were firstly
300 processed with removal of abnormal values and gap fill, and then were consolidated into a NetCDF file
“ten-minute 4 component radiation and snow temperature.nc”. The ground-based brightness

301 temperatures and the formatted weather and soil data requested from ANRMS were provided ‘as is’.
302 Brightness temperature data were divided into time series of brightness temperature and multi-angle
303 brightness temperatures, and separately stored in two NetCDF files, and the weather and soil data were
304 consolidated into a NetCDF file “hourly meteorological and soil data.nc”. Table 3 describes the contents
305 of the provided dataset.

306 **1) Brightness temperatures data:**

307 1 Minutely brightness temperature at 1.4 GHz, 18 GHz and 36 GHz for both polarizations at incidence
308 angle of 50°. This data include date, time, incidence angle, azimuth angle, and brightness temperatures
309 at the three bands for both polarizations.

310 2 Seventeen groups of calibrated brightness temperature at 1.4 GHz, 18 GHz and 36 GHz for both
311 polarizations at different incidence angles (30, 35, 40, 45, 50, 55, 60°). This data include date, incidence
312 angles, azimuth angle, brightness temperatures at the three bands for both polarizations.

313 **2) Manual snow pit data:**

314 Daily snow pit data include date, snow depth, layered snow thickness, average longest axis, average
315 shortest axis, grain shapes of each layer; layered snow density using snow fork (snow density at different
316 heights, such as SF_5cm, SF_10cm, SF_15cm), snow density using snow tube, layered snow density
317 using snow shovel (such as SS_0-10cm, SS_10-20cm, SS_20-30cm, SS_30-40cm).

318 **3) Automated snow temperature and radiation data**

319 Ten-minute 4-component radiation and snow temperature data include date, time, short-wave incident
320 radiation, short-wave reflected radiation, long-wave infrared incident radiation, long-wave infrared
321 reflected radiation, sensor temperature, and snow temperatures at different heights (such as ST_0cm,
322 ST_5cm)

323 **4) Meteorological and soil data:**

324 Hourly weather data include date, hour, air temperature, pressure, humidity, wind speed, soil temperature
325 at 5 cm, 10 cm, 15 cm and 20 cm, and soil moisture at 10 cm and 20 cm.

326

327 **Table 3 Description of consolidated data**

Data	Content	File name	Variables
Brightness temperature	Brightness temperature	TBdata.nc	Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle
	Multi-angle brightness temperatures	TBdata-multiangle.nc	Year, month, day, hour, minute, second, Tb1h, Tb1v, Tb18h, Tb18v, Tb36h, Tb36v, incidence angle, azimuth angle
Manual snow pit data	Layer thickness, layered grain size and shape, snow density	Daily snow pit data.nc	Year, month, day, snow depth, th1, Lg1, Sg1, th2, Lg2, Sg2, th3, Lg3, Sg3, th4, Lg4, Sg4, th5, Lg5, Sg5, th6, Lg6, Sg6, Stube, SS_0-10, SS_10-20, SS_20-30, SS_30-40, SS_40-50, SF_5, SF_10, SF_15, SF_20, SF_25, SF_30, SF_35, SF_40, SF_45, SF_50, shape1, shape2, shape3, shape4, shape5, shape5
Automated snow temperature and radiation data	4-component radiation, snow temperature	Ten-minute 4 component radiation and snow temperature.nc	Year, month, day, hour, minute, SR_DOWN, SR_UP, LR_DOWN, LR_UP, T_Sensor, ST_0cm, ST_5cm, ST_15cm, ST_25cm, ST_35cm, ST_45cm, ST_55cm

Meteorological and soil data	meteorological data, soil moisture and temperature	Hourly meteorological and soil data.nc	Year, month, day, hour, Tair, Wair, Pair, Win, SM_10cm, SM_20cm, Tsoil_5cm, Tsoil_10cm, Tsoil_15 cm, Tsoil_20cm
------------------------------	--	--	---

328 Note: th: snow thickness, Lg: long axis, Sg: short axis, shape: grain shape;
 329 Stube: snow density observed using snow tube, SS: snow density observed using snow shovel, SF: snow density
 330 observed using snow fork; ST: snow temperature; SR_DOWN: downward short-wave radiation, SR_UP: upward
 331 short-wave radiation, LR_DOWN, downward long-wave radiation, LR_UP: upward long-wave radiation, T_sensor:
 332 sensor temperature; Tair: air temperature, Wair: air wetness, Pair: air pressure, Win: wind speed.

333 **4 Overview and preliminary analysis of collected data from IMCS**

334 **4.1 Snow characteristics**

335 **4.1.1 Layering grain size and grain shape**

336 During 2015/2016, snow cover began on 25 November of 2015, and ended on March 25 of 2016.
 337 During this snow season, there were seven snowfall events and each formed a distinct snow layer except
 338 for the third event whose layering became indistinguishable from the second layer (Figure 7 gray). The
 339 fourth event was the biggest, after which time snow depth started to decrease and snow density increased.
 340 Snow cover began melting on March 14 and snow depth declined to zero within 10 days.

341 Grain sizes within all layers increased during the snow season, except in the bottom layer where
 342 grain size experienced a decrease from December 28 to January 20 (Figure 8). In the vertical profile,
 343 grain size increased from top to bottom with the snow age. The grain size of the fresh snow was
 344 approximately 0.3 mm during the experiment. The biggest long and short axis were up to 6 cm and 4 cm,
 345 respectively, and occurred in Layer 1 in during the melt period. The length of short axes is approximately
 346 0.7 of the length of long axes. The grain shape generally developed from rounded grains to facet crystals,
 347 and then to depth hoar. After March 13, 2016, the minimum air temperature increased to above 0°C,
 348 snowpack melt accelerated, and the grain shape developed to melted forms (Figure 7).

349

350 **Figure 7: Daily variation in snow layers and grain shape in each layer from November 27, 2015 to March 25,**

354 **Figure 8: Daily variation in grain size within each layer from November 27, 2015 to March 25, 2016. The**
 355 **thickness of each layer is presented in figure 9.**

356

357 **4.1.2 Snow density**

358 Snow densities measured by three different instruments shows that the density of fresh snow ranged
 359 between 0.05~1.0 g/cm³ (Figure 9). The snow densities increased with snow age, and remained stable
 360 after reaching ~0.2-0.25g/cm³. From March 14 on, snow densities abruptly increased, and the maximum
 361 value reached was over 0.45g/cm³. In the vertical profile, snow density increased from top to bottom in
 362 the accumulation phase, but after January 3, 2016, snow densities in the middle layers were larger than
 363 those in the bottom and upper layers due to the well-developed depth hoar of bottom layer. In the melting
 364 phase, snow densities in all layers showed little difference. Snow fork provided most detail snow density
 365 profile, but it systematically underestimated snow density compared with snow tube and snow shovel by
 366 24% (Dai et al., 2022).

367

368

369

Figure 9: Daily variation in snow densities measured using three different measurement methods from November 27, 2015 to March 25, 2016. (a) overall snow density measured using snow tube, (b) snow density at 10-cm interval using snow shovel, and (c) snow density at 5-cm interval using snow fork.

370

371

372

373

374 **4.1.3 Snow temperature**

375 Snow temperature at 0 cm (snow/soil interface temperature) showed little diurnal variation,
376 remaining at approximately -2.0 to 0.7°C. Snow temperature in the top layer had the largest diurnal
377 variation. The diurnal range decreased from top to bottom layers and as the snow depth increased there
378 were more layers with small diurnal variations (Figure 10). After March 17, 2016, the snow temperature
379 of all layers were over 0°C which means snow cover did not refreeze anymore.

380

381 **Figure 10: Minutely variation in layered snow temperatures at 0 cm (snow/soil interface), 5 cm, 15 cm, 25**
382 **cm, 35 cm, 45 cm and 55 cm above ground during experiment time.**

383 **4.2 Soil temperature and moisture**

384 The soil temperature at 5 and 10 cm remained stable and below 0 °C during the snow season but
385 presented large fluctuation before (after) snow on (off) (Figure 11). The temperature difference between
386 5 cm and 10 cm was much larger before snow cover onset than during snow cover period. The soil
387 moisture at 10 cm were above 10% before snow cover onset and after snow off, and there were two soil
388 moisture peaks, one from December 12-14 and another from January 1 - 20, within the snow cover period.

389

390 **Figure 11: Hourly soil temperature at 5 cm, 10 cm, 15 cm and 20 cm below the snow/soil interface (a), and soil**

391 moisture at 10 cm and 20 cm below the snow/soil interface (b).

392 **4.3 Brightness temperature**

393 The microwave brightness temperatures varied with snow and soil characteristics, and weather
 394 conditions. Figure 12 shows the daily brightness temperatures, brightness temperature difference
 395 between 18 and 36 GHz, and snow depth at 1:00 am local time. Figure 13 shows the hourly variation in
 396 brightness temperatures at 1.4, 18 and 36 GHz and air temperature after February 1. Data show that
 397 Tb36h and Tb36v decreased during the full snow season, Tb18h shows an obvious decline after February
 398 18, and Tb18v after March 3 (Figure 12). After January 4, snow depth stopped increasing, but the
 399 brightness temperature continued to decrease and brightness temperature difference increased. Based on
 400 Figure 8, snow density became stable on January 15. Therefore, after January 4, the decreasing brightness
 401 temperatures was mainly caused by growing grain size.

402 After February 25, brightness temperature exhibited a distinct cycle of daytime increase and
 403 nighttime decrease (Figure 13), resulting from large liquid water content caused by high daytime air
 404 temperature (above 0°C) and the melted snowpack refreezing at nighttime. After March 14, there was
 405 another big rise in air temperature and even the nighttime air temperatures were above 0°C. During this
 406 period of accelerated snowmelt, the liquid water within the snowpack did not refreeze completely at night
 407 and both the brightness temperature and brightness temperature difference exhibited irregular behavior.

408 The variation of L band was mainly influenced by soil moisture and soil temperature. We have soil
 409 temperatures at 0 cm, 5 cm and 10 cm and soil moisture at 10 cm. However, the L band reflects the soil
 410 moisture within 5 cm which was absent in this experiment. Actually, we did not find the variation of
 411 brightness temperature at L band had relationship with soil moisture at 10 cm and soil temperature.

412

413 **Figure 12: Daily variations in brightness temperatures at 1.4 GHz, 18 GHz and 36 GHz, for horizontal**
 414 **(Tb1h, Tb18h, Tb36h) and vertical polarizations (Tb1v, Tb18v, Tb36v), and the differences between Tb18**
 415 **and Tb36h (Tb18h - Tb36h, and between Tb18v and Tb36v (Tb18v - Tb36v), at 1:00 am (local time), from**
 416 **November 27, 2015 to March 26, 2016. (a)for horizontal polarization, and (b) for vertical polarization.**

417

418

419

420 **Figure 13** Hourly variation in Tb1h, Tb18h, Tb36h, Tb1v, Tb18v, and Tb36v (a), air temperature, soil
 421 moisture at 10 cm and soil temperature at 5 cm, and daily variation in snow depth (b), from February 1 to
 422 March 28, 2016.

423

424 The brightness temperatures at 18.6 and 36.5 GHz from AMSR-2 and at 1.4 GHz from SMAP were
 425 compared with the ground-based observation at the overpass time (Figure 14). Although there were large
 426 differences between satellite and ground-based observations, the general temporal patterns are the same,
 427 even the abrupt change between March 3 and March 4 is captured by both satellite and ground-based
 428 sensors. The correlation coefficients at both polarizations were approximately 0.96, 0.7 and 0.88 for 36
 429 GHz, 18.6 GHz and 1.4 GHz, respectively. Satellite observed brightness temperature presented less
 430 decrease trend than ground-based observation, and the difference at 36.5 GHz is larger than at 18.6 and
 431 1.4 GHz. Brightness temperatures at 1.4 GHz from both SMAP and ground microwave radiometer kept
 432 stable before March 16, after when, brightness temperature rapidly decreased because of the increase of
 433 liquid water content. The difference between ground-based and satellite observation might be attributed
 434 to the different viewing area.

435
436 **Figure 14: Comparison of brightness temperature between ground-based and satellite-based observation**
437 (s: satellite; o: observation), (a) for 36 GHz, (b) for 18 GHz, (c) for 1.4 GHz

438 **4.4 4-component Radiation**

439 The land surface albedo is strongly related to the land cover. In this experiment, the downward
440 short-wave radiation presented general increase after January, and the trend became distinctive after
441 February (Figure 15). The upward short-wave radiation abruptly increased when the ground was covered
442 by snow (after November 21), and sharply declined on the snow off day (March 25). From the first

443 snowfall by the end of January, the ratios between upward and downward short-wave radiation were
 444 approximately 95%. The ratio decreased with snow age, and in the end of snow season the ratios
 445 decreased to below 50% because of increasing melted water.

446
 447 **Figure 15: Minutely variation in 4-component radiation and daily variation in snow depth at Altay station**
 448 **from November 3, 2015 to April 15, 2016.**

449 **5 Discussion**

450 **5.1 Applications**

451 Although the dataset is just for one season observation, the daily snow pit observation with
 452 coincident microwave and optical radiation data in a full snow season provide the most detailed variation
 453 of snow parameters which allow researchers to find more details in snow characteristics and their
 454 relationship with remote sensing signatures. The dataset also fills the snow observation gap in mid-low
 455 snow depth area with relative short snow cover duration.

456 The snow pit data and microwave brightness temperatures have proven useful for evaluating and
 457 updating a microwave emission transfer model of snowpack (Dai et al., 2022). This dataset reflected the
 458 general fact that brightness temperature at higher frequencies presented stronger volume scattering of
 459 snow grains, and were more sensitive to snow characteristics. This experiment revealed that the dominant
 460 control for the variation of brightness temperature was the variation of grain size but not the snow depth.
 461 The largest snow depth or SWE did not correspond to the largest brightness temperature difference
 462 between 18 and 36 GHz in the condition of dry snowpack. Due to the growth of grain size, the maximum
 463 difference occurred before melting for stable snow cover. Therefore, the daily snow depth variations
 464 curve derived from passive microwave remote sensing datasets tend to exhibit a temporal offset from
 465 those of in situ observation.

466 During the snow season, brightness temperatures for both polarizations presented similar variations,
 467 but they behaved different in some time periods. The horizontal polarization was more sensitive to
 468 environment and was less stable than vertical polarization. Besides, the polarization difference at 18 GHz
 469 and 36 GHz showed increase and decrease trends, respectively during the experimental period. The
 470 results for 18 GHz were opposite to the simulation results (Dai et al., 2022). The different polarization
 471 behavior at 18 and 36 GHz might be related to the environmental conditions, snow characteristics and
 472 soil conditions. However, the subsurface soil moisture was not observed, the dynamic ground emissivity
 473 could not be estimated. L band has strong penetrability, and the brightness temperature variations were

474 predominantly related to subsurface soil conditions, except when the liquid water content within
475 snowpack was high. Therefore, in the condition of soil moisture data absence, L band brightness
476 temperatures were expected to reflect soil moisture variation which influence the soil transmissivity
477 (Babaeian et al., 2019; Naderpour et al., 2017; Hirahara et al., 2020).

478 Snow surface albedo significantly influences the incoming solar radiation, playing an important role
479 in the climate system. The factors altering snow surface albedo contains the snow characteristics (grain
480 size, SWE, liquid water content, impurities, surface temperature etc), external atmospheric condition and
481 solar zenith angle (Aoki et al., 2003). Snow albedo was estimated based on snow surface temperatures
482 in some models (Roesch et al., 1999), while others considered snow surface albedo to depend mainly on
483 snow aging (Mabuchi et al., 1997). In this experiment, we obtained the 4-component radiation, snow pit
484 and meteorological data. These data provide nearly all observations of possible influence factors, and
485 could be utilized to discuss and analyze shortwave radiation process of snowpack, and validate or
486 improve multiple-snow-layer albedo models.

487 Snow grain sizes and snow densities within different layers presented different growth rates during
488 different time periods. Generally, the growth rates are related to the air temperature, pressure and snow
489 depth (Chen et al., 2020; Essery, 2015; Vionnet et al., 2012; Lehning et al., 2002); therefore, this dataset
490 can be used to analyze the evolution process of snow characteristics, as well as validation data for snow
491 models.

492 5.2 Uncertainties

493 During the experiment, some uncertainties were produced due to irresistible factors. It is reported
494 that the sampling depth of the L-band microwave emission under frozen and thawed soil conditions is
495 determined at 2.5 cm (Zheng et al., 2019). We did not collect subsurface soil moisture, and the L band
496 radiometer observation began on January 30, 2016. Therefore, it is difficult to obtain the ground
497 emissivity in the full snow season based on the data. The soil moisture data at 10 and 20 cm under
498 soil/snow interface cannot be directly used to validate and develop soil moisture retrieval from L band
499 brightness temperature. We hope detailed soil moisture profile will be observed to estimate the subsurface
500 soil moisture to fill the gap.

501 The grain size data were collected through taking photos. When measuring the length of grains, the
502 grain selection has subjectivity, and the released data are average values. Although the general variation
503 trend can be reflected by the time series of average grain size, some details might be missed. Therefore,
504 the original grain photos could be provided through requesting for authors. In snow melt period, large
505 liquid water content would influence the measurement results of snow fork. So, it is suggested to use
506 small-size snow shovel or cutter to observe layered snow density in future experiments.

507 One season observation is quite valuable for developing and validate remote sensing method or
508 snow model, although the representativeness of this observation remains unknown. We need more years
509 of observation to endorse or confirm the evolution of snow characteristics.

510 6 Conclusions

511 In a summary, the IMCS campaign provides a time series of snow pits observation, meteorological
512 parameters, optical radiation and passive microwave brightness temperatures in the snow season of
513 2015/2016. The dataset is unique in providing microwave brightness temperatures and coincident daily
514 snow pits data over a full snow season at a fix site.

515 The daily snow pit data which provide a detail description of snow grain size, grain shape, snow

516 density and snow temperature profiles. Generally, grain size grew with snow age, and increased from top
517 to bottom. Snow grains are rounded shape with small grain size in the top layer, and depth hoar with
518 large grain size in the bottom layer. Snow density experienced increase-stable-increase variation, and the
519 densities of the middle layers were greater than the bottom layer due to the well-developed depth hoar in
520 the stable period. The data can be used to analyzes the evolution process of snow characteristics
521 combining with weather data, validate and improve the snow process models, such as SNOWPACK
522 (Lehning et al., 2002), SNTHERM (Chen et al., 2020). The improvement of these models can further
523 enhance the prediction accuracy of land surface process and hydrology models, and the simulation
524 accuracy of snow microwave emission models.

525 Microwave radiometer data and snow pit data have been utilized to analyze the volume scattering
526 features of snow pack at different frequencies (Dai et al., 2022). Results showed that grain size is the
527 most important factor to influence snow volume scattering. The data can also be used to further analyze
528 polarization characteristics of snow pack combining with soil and weather data, and be used to validate
529 different microwave emission models of snowpack.

530 The microwave and optical radiations were simultaneously observed. Existing studies reported that
531 the optical equivalent diameter must be used in microwave emission model with caution (Lowe and
532 Picard, 2015; Roy et al., 2013). These data provide a good opportunity to analyze the difference between
533 the influence of grain size on microwave and optical radiation, establishing the bridge between effective
534 optical grain size and microwave grain size.

535 7 Data availability

536 The IMCS consolidated datasets are available after registration on the National Tibetan Plateau Data
537 Center and available online at <http://data.tpdc.ac.cn/zh-hans/data/df1b5edb-daf7-421f-b326-cdb278547eb5/> (doi: 10.11888/Snow.tpdc.270886). Microwave radiometry raw Data are available for
538 scientific use on request from Northwest Institute of Eco-Environment and Resources, Chinese Academy
539 of Sciences.

541
542
543 **Author contributions:** LD and TC designed the experiment. LD, YZ, JT, MA, LX, SZ, YY YH and LX
544 collected the passive microwave and snow pit data. HL provided the 4-component radiation and snow
545 temperature data. LW provided meteorological data. LD write the manuscript, and TC made revision. All
546 authors contributed to the data consolidation.

547
548 **Competing interests:** The authors declare that they have no conflict of interest.

549
550 **Acknowledgment:** The authors would like to thank the Altay meteorological station for providing
551 logistics service and meteorological data.

552
553 **Financial support:** This research was funded by the National Science Fund for Distinguished Young
554 Scholars (grant nos: 42125604), National Natural Science Foundation of China (grant nos: 42171143),
555 and CAS ‘Light of West China’ Program.

559

560

561

562

563 **Figure A1: Photos of grains and reference ruler in each layer on February 15, 2016, and in each photo the**
 564 **longest and shortest axis lengths of the chosen grains are labeled.**

565

566

567

568

Table A1. Recorded longest and shortest axis length in Figure A.

Strati graph y	Thickn ess (cm)	Shape	Grain size (longest axis * shortest axis)(mm)									
the fifth	3cm	#22	0.595 *0.43 6	0.472 *0.47 1	0.450 *0.43 6	0.615 *0.47 4	0.374 *0.31 4	0.647 *0.30 7	0.656 *0.52 9	0.544 *0.51 9	0.717 *0.44 7	
			0.750 *0.44 5	1.056 *0.95 5	0.623 *0.37 8	0.451 *0.40 5	1.397 *0.63 5	1.235 *0.32 7	0.600 *0.42 1	0.633 *0.55 6	0.729 *0.42 3	
			2.605 *2.01 1	1.850 *1.32 8	1.626 *1.55 4	1.767 *1.68 5	1.718 *1.53 5	2.255 *1.29 6	1.674 *1.60 1	1.542 *1.26 9	3.505 *1.44 0	
			3.055 *1.77 4	1.448 *1.37 4	2.461 *1.91 5	2.757 *2.11 9	2.179 *2.05 8	2.393 *1.78				
			2.569 *1.60 7	2.073 *2.13 0	2.591 *1.41 4	1.869 *1.80 2	2.067 *1.26 6	1.209 *1.10 6	1.719 *1.18 8	1.648 *0.97 5	1.911 *1.58 2	
the third	25cm	#27, #31, #37	1.921 *1.71 0	1.518 *1.06 7	1.291 *1.14 7	1.690 *1.55 1	1.756 *1.39 8	1.812 *1.26 3	1.733 *1.67 2	1.880 *1.51 8	2.411 *1.22 0	
			2.118 *1.72 7	1.614 *1.45 7	1.795 *1.70 5	2.215 *2.31 1	1.864 *1.69 2	1.967 *1.65 1	2.008 *1.39 5	1.362 *1.14 1	1.484 *1.29 1	
			4.251 *2.26 6	3.012 *2.65 5	2.805 *1.99 5	1.799 *1.41 5	1.402 *1.19 5	3.040 *2.07 3	2.850 *2.09 5			
			3.900 *2.53 2	2.420 *2.33 3	2.515 *2.20 6	2.044 *2.03 2	2.506 *2.36 3	2.894 *2.16 1	2.413 *1.95 0	2.494 *1.81 6	4.929 *3.25 7	
			4.933 *3.37 8	3.207 *2.77 4	3.562 *1.70 1	2.818 *1.66 8	3.581 *2.51 8	6.179 *3.56 2				

577

Table A2: One example of record table for snow density observation.

578

observation date: 20160111		observation time: 9:03-9:40		weather: clear		snow depth: 48cm	
		Snow Folk table				Snow tube table	
observation height (cm)	liquid water content(%)	snow density (g/cm3)		snow depth(cm)	46.5	47	47.5
5	0	0.1923		snow pressure(g/cm2)	9.1	9	9.5
	0.118	0.1882		snow density(g/cm3)	0.1957	0.1915	0.2000
	0	0.1882					
	0.461	0.164					
10	0.46	0.1631					
	0.461	0.1361					
	0.123	0.2532					
15	0	0.2506					
	0	0.2417					
	0.24	0.2159					
20	0.119	0.2155					
	0.119	0.2146					
	0.117	0.1977					
25	0	0.1994					
	0	0.1984					
	0	0.1919					
30	0	0.1966					
	0	0.1928					
	0	0.1534					
35	0	0.1517					
	0	0.1472					
	0.325	0.1097					
40	0	0.1054					
	0.107	0.1088					
	0	0.0922					
45	0	0.0991					
	0	0.0928					
50							

snow shovel table			
observation layer (cm)	weight of shovel+snow(g)	weight of shovel(g)	snow density(g/cm3)
0-10	865.04	572.16	0.1953
	858.72	572.16	0.1910
	866.69	572.16	0.1964
	878.58	572.16	0.2043
10-20	887.04	572.16	0.2099
	872.79	572.16	0.2004
	905.34	572.16	0.2221
20-30	903.41	572.16	0.2208
	907.88	572.16	0.2238
	832.75	572.16	0.1737
30-40	838.14	572.16	0.1773
	837.27	572.16	0.1767
40-50			
50-60			

579

580

581

582

References:

583 Babaeian, E., Sadeghi, M., Jones, S.B., Montzka, C., Vereecken, H., and Tuller, M.: Ground, Proximal,
 584 and Satellite Remote Sensing of Soil Moisture. *Reviews of Geophysics*, 57(2), 530-616, doi:
 585 10.1029/2018RG000618, 2019.

586 Barnett, T.P., Adam, J.C., and Lettenmaier, D.P.: Potential impacts of a warming climate on water
 587 availability in snow-dominated regions. *Nature*, 438, 303-309, doi: 10.1038/nature04141, 2005.

588 Brucker, L., Hiemstra, C., Marshall, H.-P., Elder, K., De Roo, R., Mousavi, M., Bliven, F., Peterson,
 589 W., Deems, J., Gadomski, P., Gelvin, A., Spaete, L., Barnhart, T., Brandt, T., Burkhart, J., Crawford,
 590 C., Datta, T., Erikstrod, H., Glenn, N., Hale, K., Holben, B., Houser, P., Jennings, K., Kelly, R., Kraft,
 591 J., Langlois, A., McGrath, D., Merriman, C., Molotch, N., Nolin, A., Polashenski, C., Raleigh, M.,
 592 Rittger, K., Rodriguez, C., Roy, A., Skiles, M., Small, E., Tedesco, M., Tennant, C., Thompson, A.,
 593 Tian, L., Uhlmann, Z., Webb, R., Wingo, M., and Ieee: A FIRST OVERVIEW OF SNOWEX
 594 GROUND-BASED REMOTE SENSING ACTIVITIES DURING THE WINTER 2016-2017. *2017*
 595 *Ieee International Geoscience and Remote Sensing Symposium* (pp. 1391-1394), 2017

596 Che, T., Dai, L.Y., Zheng, X.M., Li, X.F., and Zhao, K.: Estimation of snow depth from passive
 597 microwave brightness temperature data in forest regions of northeast China. *Remote Sensing of*
 598 *Environment*, 183, 334-349, doi: 10.1016/j.rse.2016.06.005, 2016.

599 Che, T., Li, X., Jin, R., Armstrong, and R., Zhang ,T.J. : Snow depth derived from passive microwave
 600 remote-sensing data in China. *Annals of Glaciology*, 49, 145. doi: 10.3189/172756408787814690,
 601 2008.

602 Chen, T., Pan, J.M., Chang, S.L., Xiong, C., Shi, J.C., Liu, M.Y., Che, T., Wang, L.F., and Liu, H.R. :
 603 Validation of the SNTHERM Model Applied for Snow Depth, Grain Size, and Brightness Temperature
 604 Simulation at Meteorological Stations in China. *Remote Sensing*, 12, 507, doi: Artn
 605 50710.3390/Rs12030507, 2020.

606 Cline, D., Elder, K., Davis, B., Hardy, J., Liston, G., Imel, D., Yueh, S., Gasiewski, A., Koh, G.,
607 Armstrong, R., and Parsons, M.: An overview of the NASA Cold Land Processes Field Experiment
608 (CLPX-2002). *Microwave Remote Sensing of the Atmosphere and Environment* Iii, 4894, 361-372.
609 doi: Doi 10.1111/12.467766, 2003.

610 Cohen, J: Snow cover and climate. *Weather*, 49, 150-156, 1994.

611 Dai, L. (2020): Microwave radiometry experiment data in Altay (2015/2016). National Tibetan Plateau
612 Data Center [dataset]. doi: 10.11888/Snow.tpdc.270886, 2020.

613 Dai, L.Y., Che, T., Wang, J., and Zhang, P. :Snow depth and snow water equivalent estimation from
614 AMSR-E data based on a priori snow characteristics in Xinjiang, China. *Remote Sensing of
615 Environment*, 127, 14-29,. doi: 10.1016/j.rse.2011.08.029, 2012.

616 Dai, L.Y., Che, T.: Estimating snow depth or snow water equivalent from space. *Sciences in Cold and
617 Arid Regions*, 14(2): 1-12. doi: 10.3724/SP.J.1226.2022.21046, 2022.

618 Dai, L.Y., Che, T., Xiao, L., Akynbekkyzy, M., Zhao, K., and Leppanen, L.: Improving the Snow
619 Volume Scattering Algorithm in a Microwave Forward Model by Using Ground-Based Remote
620 Sensing Snow Observations. *Ieee Transactions on Geoscience and Remote Sensing*, 60: 4300617.
621 doi:10.1109/TGRS.2021.3064309, 2022.

622 Derksen, C., Toose, P., Lemmetyinen, J., Pulliainen, J., Langlois, A., Rutter, N., and Fuller, M.C.:
623 Evaluation of passive microwave brightness temperature simulations and snow water equivalent
624 retrievals through a winter season. *Remote Sensing of Environment*, 117, 236-248, doi:
625 10.1016/j.rse.2011.09.021, 2012.

626 Ding, Y.J., Yang, J.P., Wang, S.X., and Chang, Y.P.: A review of the interaction between the
627 cryosphere and atmosphere. *Sciences in Cold and Arid Regions*, 12 (6): 329-342, doi:
628 10.3724/SP.J.1226.2020.00329, 2020.

629 Essery, R.: A factorial snowpack model (FSM 1.0). *Geosci. Model Dev.* 2015, 8, 3867–3876.

630 Hirahara, Y., de Rosnay, P., and Arduini, G.: Evaluation of a Microwave Emissivity Module for Snow
631 Covered Area with CMEM in the ECMWF Integrated Forecasting System. *Remote Sensing*, 12(18),
632 doi: Artn 294610.3390/Rs12182946, 2020.

633 Immerzeel, W.W., van Beek, L.P.H., and Bierkens, M.F.P.: Climate Change Will Affect the Asian
634 Water Towers. *Science*, 328(5984), 1382-1385. doi: 10.1126/science.1183188, 2010.

635 Jiang, L.M., Wang, P., Zhang, L.X., Yang, H., and Yang, J.T.: Improvement of snow depth retrieval for
636 FY3B-MWRI in China. *Science China-Earth Sciences*, 57, 1278-1292, doi: 10.1007/s11430-013-4798-
637 8, 2014.

638 Jordan, R.E.: A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for
639 SNTHERM.89; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA,
640 1991.

641 Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for
642 the Swiss avalanche warning Part II: Snow microstructure. *Cold Regions Science and Technology*, 35,
643 147-167, Doi 10.1016/S0165-232x(02)00073-3, 2002.

644 Lemmetyinen, J., Kontu, A., Pulliainen, J., Vehvilainen, J., Rautiainen, K., Wiesmann, A., Matzler, C.,
645 Werner, C., Rott, H., Nagler, T., Schneebeli, M., Proksch, M., Schuttemeyer, D., Kern, M., and
646 Davidson, M.W.J. : Nordic Snow Radar Experiment. *Geoscientific Instrumentation Methods and Data
647 Systems*, 5, 403-415, doi: 10.5194/gi-5-403-2016, 2016.

648 Löwe H. and Picard, G. "Microwave scattering coefficient of snow in MEMLS and DMRT-ML
649 revisited: The relevance of sticky hard spheres and tomography-based estimates of stickiness,"
650 *Cryosphere*, vol. 9, no. 6, pp. 2101–2117, Nov. 2015.

651 Mortimer, C., Mudryk, L., Derksen, C., Luoju, K., Brown, R., Kelly, R., and Tedesco, M. : Evaluation
652 of long-term Northern Hemisphere snow water equivalent products. *Cryosphere*, 14(5), 1579-1594,
653 doi: 10.5194/tc-14-1579-2020, 2020.

654 Naderpour, R., Schwank, M., Matzler, C., Lemmettyinen, J., and Steffen, K.: Snow Density and Ground
655 Permittivity Retrieved From L-Band Radiometry: A Retrieval Sensitivity Analysis. *Ieee Journal of
656 Selected Topics in Applied Earth Observations and Remote Sensing*, 10(7), 3148-3161, doi:
657 10.1109/Jstars.2017.2669336, 2017.

658 Pulliainen, J., Luoju, K., Derksen, C., Mudryk, L., Lemmettyinen, J., Salminen, M., Ikonen, J., Takala,
659 M., Cohen, J., Smolander, T., and Norberg, J.: Patterns and trends of Northern Hemisphere snow mass
660 from 1980 to 2018. *Nature*, 581(7808), 294-298. doi: 10.1038/s41586-020-2258-0, 2020.

661 Roy, A., Picard, G., Royer, A., Montpetit, B., Dupont, F., Langlois, A., Derksen, C., and Champollion,
662 N.: Brightness Temperature Simulations of the Canadian Seasonal Snowpack Driven by Measurements
663 of the Snow Specific Surface Area. *Ieee Transactions on Geoscience and Remote Sensing*, 51, 4692-
664 4704, doi: 10.1109/Tgrs.2012.2235842, 2013.

665 Roy, A., Picard, G., Royer, A., Montpetit, B., Dupont, F., Langlois, A., Derksen, C., and Champollion,
666 N.: Brightness Temperature Simulations of the Canadian Seasonal Snowpack Driven by Measurements
667 of the Snow Specific Surface Area, *IEEE T. Geosci. Remote*, 51, 4692–4704,
668 doi:10.1109/TGRS.2012.2235842, 2013

669 Tedesco, M., Narvekar, P.S.: Assessment of the NASA AMSR-E SWE Product. *Ieee Journal of Selected
670 Topics in Applied Earth Observations and Remote Sensing*, 3, 141-159, doi:
671 10.1109/Jstars.2010.2040462, 2010.

672 Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.M.:
673 The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. *Geoscientific Model
674 Development*, 5, 773-791, doi: 10.5194/gmd-5-773-2012, 2012.

675 Xiao, L., Che, T., and Dai, L.Y.: Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets
676 over the Northern Hemisphere during 1980-2016. *Remote Sensing*, 12(19), doi: Artn
677 325310.3390/Rs12193253, 2020.

678 Yang, Z.L., Dickinson, R.E., Robock, A., and Vinnikov, K.Y. : Validation of the snow submodel of the
679 biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data.
680 *Journal of Climate*, 10, 353-373, doi: 10.1175/1520-0442(1997)010<0353:Votsso>2.0.Co;2, 1997.

681 Zheng, D., Li, X., Zhao, T., Wen, J., van der Velde, R., Schwank, M., Wang, X., Wang, Z., and Su, Z. :
682 Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil.
683 *IEEE Transactions on Geoscience and Remote Sensing*, 59(5), 4080-4093, DOI:
684 10.1109/TGRS.2020.3024971, 2021.

685 Zhang, P., Zheng, D., van der Velde, R., Wen, J., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.:
686 Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture
687 dataset. *Earth Syst. Sci. Data*, 13, 3075–3102, <https://doi.org/10.5194/essd-13-3075-2021>, 2021.

688 Zheng, D., Li, X., Wang, X., Wang, Z., Wen, J., van der Velde, R., Schwank, M., and Su, Z.: Sampling
689 depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan
690 Plateau. *Remote Sensing of Environment*, 226, 16-25, doi.org/10.1016/j.rse.2019.03.029, 2019.