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Abstract. High resolution gridded datasets of meteorological variables are needed in order to resolve fine-scale hydrological 

gradients in complex mountainous terrain. Across the United States, the highest available spatial resolution of gridded 

datasets of daily meteorological records is approximately 800 m. This work presents gridded datasets of daily precipitation 10 

and mean temperature for the East-Taylor subbasin (in western United States) covering a 12-year period (2008-2019) at a 

high spatial resolution (400 m). The datasets are generated using a downscaling framework that uses data-driven models to 

learn relationships between climate variables and topography. We observe that downscaled datasets of precipitation and 

mean temperature exhibit smoother spatial gradients (while preserving the spatial variability) when compared to their coarser 

counterparts. Additionally, we also observe that when downscaled datasets are upscaled to the original resolution (800 m), 15 

the mean residual error is almost zero, ensuring no bias when compared with the original data. Furthermore, the downscaled 

datasets are observed to be linearly related to elevation, which is consistent with the methodology underlying the original 

800 m product. Finally, we validate the spatial patterns exhibited by downscaled datasets via an example use case that 

models lidar-derived estimates of snowpack. The presented dataset constitutes a valuable resource to resolve fine-sale 

hydrological gradients in the mountainous terrain of the East-Taylor subbasin, which is an important study area in the 20 

context of water security for southwestern United States and Mexico. The dataset is publicly available at 

https://doi.org/10.15485/1822259 (Mital et al., 2021).  

1 Introduction 

Water resources are under increasing stresses due to Earth System change and increasing demand for clean water, food, and 

energy (Vörösmarty et al., 2010). The stresses on water availability and quality are felt through watersheds as they are the 25 

fundamental functional units of the Earth’s surface that integrate the effects of vegetation, fluvial systems, soils and 

subsurface on water resources (National Research Council, 1999). Sustainable management of water resources, therefore, 

requires quantitative modeling efforts at the river basin scale. Such efforts involve the use of land-surface and 

ecohydrological models which need access to climate forcing via gridded datasets of meteorological variables. Across the 
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United States, the highest available spatial resolution of gridded datasets of daily meteorological records is approximately 

800 m (Daly et al., 2008) to 1 km (Thornton et al., 2020). This resolution does not allow models to resolve fine-scale 

gradients of hydro-biogeochemical processes which introduces uncertainty associated with predicting response of water 

resources to various drivers such as wildfire, drought, floods, land-use change, extreme weather, sea-level rise, and climate 

change (e.g., Singh, 1997; Cotter et al., 2003; Beven et al., 2015). Consequently, there is a need to generate gridded datasets 35 

of meteorological variables at hyper resolutions. In this work, we define hyper resolutions as spatial resolutions that are of 

the order of a few hundred meters. 

It is possible to obtain hyper-resolution gridded observations of meteorological variables. For example, precipitation 

can be measured at a resolution of 100 m via X-band radar (e.g., Feldman et al., 2021). However, high measurement cost 

implies that such data have limited spatial and temporal extent. This leaves us with two possible approaches to generate 40 

hyper-resolution gridded datasets that have large spatial and temporal extents: (i) spatial interpolation of point 

measurements, or (ii) spatial downscaling of existing lower resolution datasets. Spatial interpolation of point measurements 

requires a high density of stations for high-resolution gridding to adequately capture the climatological variability (Bierkens, 

2015; Beven et al., 2015). For instance, a resolution of 1 km needs a station every 1 x 1 km (Haylock et al., 2008). Since 

such a high station density is not feasible, interpolation approaches typically incorporate physiographic and climatological 45 

information in their methodologies while generating gridded datasets at hyper spatial resolutions (e.g., Daly et al., 2008; 

Thornton et al., 2021; Lussana et al., 2019; Crespi et al., 2021; Škrk et al., 2021). A general lack of knowledge about weather 

patterns at fine spatial scales combined with computational expense makes it challenging to interpolate point measurements 

at hyper-resolutions (Daly, 2006; Beven et al., 2015). In this work, we resort to the latter approach and generate hyper-

resolution datasets by spatially downscaling existing high-resolution (800 m) datasets. 50 

There are two broad classes of techniques for downscaling: dynamical and statistical. Dynamical downscaling 

involves the use of regional climate models (RCMs) whose boundary conditions are specified using coarse-resolution 

outputs of a general circulation model (GCM) or reanalysis datasets. RCMs perform downscaling by accounting for the 

effects of complex topography, surface characteristics, land-sea contrasts and other dynamical processes (Giorgi, 2019; 

Tapiador et al., 2020). Although these models simulate physical processes, they are computationally intensive which limits 55 

the resolution of downscaled data to a few kilometers at best (Giorgi, 2019; Tapiador et al., 2020). This has motivated the 

development of statistical downscaling approaches, where a statistical or empirical relationship is modeled between high-

resolution predictors and low-resolution climate variables to generate high-resolution climate data. Statistical approaches are 

flexible and enable downscaling of coarse-resolution data (from GCMs and reanalysis datasets) to spatial scales of individual 

weather stations  (e.g., Coulibaly et al., 2005; Bürger et al., 2012; Sachindra et al., 2018; Vandal et al., 2018; Gutiérrez et al., 60 

2019; Nourani et al., 2019). The ability of statistical downscaling to generate data at such fine scales motivates us to leverage 

its potential for generating gridded datasets at hyper-resolutions. 

A number of recent studies have applied machine learning techniques to statistical downscaling. Machine learning 

techniques have the benefit of not needing to specify a functional relationship between low-resolution and high-resolution 
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data. Several studies have sought to exploit the temporal dependencies among predictor variables by using temporal neural 65 

networks (e.g., Coulibaly et al., 2005; Mouatadid et al., 2017; Misra et al., 2018). Other studies have performed statistical 

downscaling by exploiting the spatial dependencies between low-resolution and high-resolution data (Vandal et al., 2017; 

Liu et al., 2020; Baño-Medina et al., 2020). Studies have also been conducted with the objective of comparing the 

performance of different machine learning techniques for statistical downscaling (Sachindra et al., 2018; Vandal et al., 

2018). 70 

A key challenge associated with machine learning techniques is the need for paired low-resolution and high-

resolution data for training the downscaling model. This makes it difficult to downscale data to hyper-resolutions (i.e., few 

hundred meters) where a ground-truth is not available. Recently, Groenke et al. (2020) presented a machine learning 

framework based on unsupervised, generative downscaling. However, the viability of their method was evaluated at 

relatively coarse resolutions (~12.5 km). Existing approaches for downscaling climate variables to hyper-resolutions specify 75 

simple functional forms that depend on elevation and nearby point observations (Fiddes and Gruber, 2014; Sen Gupta and 

Tarboton, 2016; Rouf et al., 2020). The coefficients for these functional forms are determined using prior empirical studies 

(e.g., Liston and Elder, 2006; Kunkel, 1989). A downside of these functional forms is that the prescribed coefficients are 

defined to vary seasonally only – geographical variations need to be manually prescribed by the user. Additionally, such 

functional forms do not account for physiographic variations between a given grid point and nearby point observations. 80 

Specifically, observations whose locations have greater physiographic similarity with a given grid point need to be given 

greater weights (Daly et al., 2008; Thornton et al., 2021). As a result, there is a scarcity of publicly available gridded 

meteorological datasets at hyper-resolutions.  

In this work, we present hyper-resolution (400 m) gridded datasets of daily precipitation and mean temperature for 

the East-Taylor subbasin (in western United States) covering a 12-year period (2008-2019) at a high spatial resolution (400 85 

m). The datasets are generated by spatially downscaling daily gridded datasets developed by the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM; Daly et al., 2008), available at a resolution of 800 m. The downscaling 

methodology comprises of a data-driven framework that does not need paired coarse-resolution and fine-resolution training 

data. Instead, we learn relationships between topographic features and daily climate variables (specifically, precipitation and 

mean temperature). The methodology also uses nearest-neighbor maps of weather stations to help constrain the learnt 90 

relationships between topography and climate variables. Subsequently, using hyper-resolution information about the 

topography, the learnt relationships are used to model precipitation and mean temperature at hyper-resolution. This approach 

has the benefit of leveraging expert knowledge about physiographic factors and climatological processes that is embedded in 

the gridded datasets. However, it is limited in its ability to introduce new knowledge about physical processes at smaller 

scales (< 800 m). For instance, it is challenging to account for the effect of small-scale processes (100 m or less) on 95 

precipitation such as particle-flow interaction and snow riming (Mott et al., 2018). Therefore, we set the scope of the current 

study to downscaled datasets at a resolution of 400 m. We conduct an exploratory analysis of the downscaled datasets and 

quantify (i) how their spatial gradients and spatial patterns vary when compared with datasets at the original resolution, (ii) 
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the mean residual error with respect to datasets at the original resolution, and (iii) the effect of elevation on their spatial 

variation. Downscaled datasets provide a more precise definition of local gradients compared to their coarse-resolution 100 

counterparts. Such a definition is beneficial, especially for ecohydrological modeling in complex mountainous terrains where 

gradients can occur at fine spatial scales (Crespi et al., 2021). We observe the benefits of using downscaled datasets via an 

example use case that models lidar-derived estimates of snowpack. 

The rest of the paper is organized as follows. Section 2 describes the study area and the various data sources. 

Section 3 describes the downscaling methodology for downscaling gridded datasets, and is followed by a summary of 105 

statistical descriptors used to describe the downscaled datasets (Sect. 4). This is followed by the results (Sect. 5) and an 

example use case of downscaled datasets (Sect. 6). Finally, we discuss some caveats and conclusions. 

2 Study area and data 

2.1 Study area 

Our study area is the East-Taylor subbasin (hydrologic unit code 14020001; Fig. 1), which is a mountainous watershed in 110 

Colorado, western United States. East-Taylor subbasin encompasses several watersheds including East River, Taylor River 

and Coal Creek. These watersheds have been subjected to intensive research activity, some of which contain highly 

instrumented testbeds developed for understanding the impact of watershed changes on water availability and quality 

(Hubbard et al., 2018). East-Taylor subbasin is also part of the Upper Colorado River Basin (UCRB; hydrologic unit code 

14), which is a site of the United States Geological Survey (USGS) Next Generation Water Observation System (NGWOS; 115 

Gallaudet and Petty, 2018). In general, UCRB is an important study area as it drains into the Colorado River which is the 

principal source of water and jobs for 40 million people in the southwestern United States and Mexico (James et al., 2014). 

The Colorado River is under increasing stress due to drought and changing seasonality of snowmelt (Milly and Dunne, 2020) 

which can significantly impact the regional economies. Generating hyper-resolution datasets of gridded meteorological 

forcing in UCRB can help with quantitative modeling efforts geared towards water security for the region.  120 

We start with a relatively small study area within UCRB to make it easier to visualize and critically evaluate the 

datasets. The novelty of the downscaling methodology further motivates us to start with a smaller study area (i.e., East-

Taylor subbasin) before expending resources to generate datasets that cover a larger area (i.e., UCRB and beyond). Since the 

East-Taylor subbasin is an area of intensive research activity, the generated datasets can be rapidly incorporated in land-

surface and ecohydrological modeling. This will also help us to identify any missing features in the datasets which may drive 125 

further refinement of the underlying downscaling methodology (Sect. 3). 
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Figure 1. Location of East-Taylor subbasin in the western United States. Also shown are several watersheds within East-Taylor 
that are subjected to research on water availability and quality. 

2.2 Data sources 

2.2.1 Gridded meteorological data 130 

We obtained gridded estimates of daily precipitation (which includes both rain and snow), maximum daily temperature, and 

minimum daily temperature from PRISM. The maximum and minimum values of temperature were averaged to obtain mean 

values of temperature. PRISM data at 800 m spatial resolution is a proprietary dataset purchased from the PRISM Climate 

Group at Oregon State University (https://prism.oregonstate.edu, created 3 August 2020). PRISM serves as the official 

spatial climate dataset of the United States Department of Agriculture (Daly et al., 2008). Its methodology (to account for 135 

orographic effects) and climatology has been leveraged to generate various gridded datasets (Livneh et al., 2013; 

Abatzoglou, 2013; Behnke et al., 2016; Xie et al., 2007; Xia et al., 2012). 

2.2.2 Weather station data 

We obtained daily weather station data from the Global Historical Climatology Network (GHCN; Menne et al., 2012). The 

GHCN-Daily dataset integrates daily climate observations from 80,000 stations worldwide and subjects them to a suite of 140 

quality assurance measures. 

2.2.3 Elevation data  

We obtained elevation maps from the National Elevation Dataset (NED; U.S. Geological Survey, 2019; 

https://apps.nationalmap.gov) at a spatial resolution of 10 m.  
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2.2.4 Lidar observations of snowpack 145 

We obtained Lidar maps of snow water equivalent (SWE) generated by the Airborne Snow Observatory (ASO) at a spatial 

resolution of 50 m (Painter, 2018). These maps constitute independent datasets that are used exclusively to demonstrate an 

example use case of the downscaled datasets, and are not used in the downscaling methodology itself. Across the East Taylor 

subbasin, the ASO data quantify SWE across Crested Butte (CB), Gunnison-East River (GE), and Gunnison-Taylor River 

(GT) basins (Fig. 2). There are eight maps across 2016 to 2019, out of which five correspond to the early-melt period 150 

(March/April) and three correspond to the late melt period (May/June).  

 

 
(a) 

 
(b) 

Figure 2: Lidar-derived SWE maps within East-Taylor subbasin obtained via ASO; (a) spatial extent of the maps in 
East-Taylor, (b) actual maps (upscaled to 400 m resolution). Each map is labeled by its basin, date of acquisition, and 
fraction of snow-covered area (fSCA) at its native 50 m resolution. These maps constitute independent datasets that 
are not used for downscaling precipitation and temperature, but for demonstrating an example use case (Sect. 6.1). 
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2.3 Data pre-processing 

The above data streams (Sect. 2.2) were subjected to various pre-processing steps as described below.  

2.3.1 Gridded meteorological data (PRISM) 155 

PRISM defines a day as the 24-hour period ending at noon UTC (Strachan and Daly, 2017). The time zone of our study area 

is UTC-07:00 (or UTC-06:00 during daylight savings) which means that, for a given day, the 24-hour period ends at 5:00am 

local time (or 6:00am during daylight savings). We shifted the dates of the precipitation data backward by one day, so that 

the 24-hour period starts (rather than ends) at 5:00am local time. A similar adjustment was made for dates of maximum daily 

temperature prior to computing values of mean daily temperature. The dates of minimum daily temperature were not 160 

changed since the minimum temperature is likely to occur early in the morning around or before 05:00am local time. 

2.3.2 Weather station data 

Weather station data were subjected to two steps of pre-processing. The first step addresses inconsistent reporting times. 

Some stations are automated and report observations that represent the 24-hour period ending at midnight. However, most 

stations typically report daily observations at morning local time. The dates of precipitation and maximum temperature for 165 

the latter group of stations were shifted backward by one day, along the lines described for PRISM data above. Thornton et 

al. (2021) discuss this issue in more detail. The second step addresses gap-filling of missing values, which can happen for 

various reasons, such as due to equipment malfunction, network interruptions, and natural hazards. We gap-filled missing 

values of precipitation and mean temperature using a data-driven sequential imputation approach (Mital et al., 2020; 

Dwivedi et al., 2022). This approach helps to gap-fill missing values using neighboring weather stations. Importantly, this 170 

approach overcomes two key limitations of other imputation approaches, in that they do not require (i) specification of a 

functional form to do a weighted interpolation using neighboring weather stations, and (ii) neighboring weather stations to 

have a complete time series. In particular, we used the approach detailed in Mital et al. (2020) which was developed 

specifically for meteorological variables. 

2.3.3 Elevation data 175 

Elevation maps were upscaled using bilinear interpolation (in increments of 2x), mosaiced and reprojected to align their 

grids with the PRISM data. This was done with the help of Python’s Rasterio module (Gillies and others, 2013). The gridded 

elevation data were also used to derive gridded estimates of slope and aspect using Python’s RichDEM module (Barnes, 

2016). 
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2.3.4 Lidar observations of snowpack  180 

The lidar maps were upscaled using bilinear interpolation (in maximum increments of 2x), and reprojected to align their 

grids with the PRISM data. The maps corresponding to Gunnison-East River (GE) required additional quality control 

measures (see Appendix A). 

3 Downscaling methodology 

3.1 Data-driven model: Random Forests 185 

We employ Random Forests (RF) to implement our spatial downscaling methodology. RF are a non-parametric machine 

learning method based on an ensemble of decision trees (Breiman, 2001). Decision trees seek to minimize the error in 

modeling the target variable by recursively partitioning the input feature (or predictor) space into smaller subspaces. For 

regression models, a typical error criterion is the mean-squared error. The RF model employs bootstrapping to generate a 

different set of data points for each decision tree. The final model output is obtained by mean aggregating the output of all 190 

decision trees in the ensemble. RF models also provide measures of the relative “feature importance” of each predictor 

variable. We implemented RF using Python’s scikit-learn module (Pedregosa et al., 2011). The hyperparameter values 

employed in our RF models are specified in Appendix B. 

3.2 Extracting relationships between topography, weather stations, and climate variables 

Our data-driven downscaling methodology consists of two steps: (i) learn the mapping between topographic features and the 195 

daily climate variable (at the native resolution of 800 m), and (ii) apply the learnt mapping to model the downscaled climate 

variable using topographic features (at a resolution of 400 m). Figure 3 shows the schematic of the methodology. The 

gridded climate variable 𝑉 can be expressed as the following function 𝑓: 

 

𝑉 = 𝑓(𝑥, 𝑦, 𝑧, 𝑤!"!#) (1) 
 200 

where 𝑥, 𝑦, and 𝑧 correspond to longitude, latitude, and elevation, respectively. These three spatial coordinates quantify the 

three-dimensional topography and enable the data-driven model to learn local relationships between 𝑉 and physiography – 

relationships that correspond to expert knowledge embedded in the PRISM dataset. Finally, 𝑤!"!# corresponds to the ten 

most correlated weather stations for each grid point. We use 𝑤!"!# as a shorthand notation for 𝑤!, 𝑤$, … , 𝑤!#, where 𝑤% 

corresponds to the 𝑖-th most correlated weather station for a grid point. 𝑤!"!# can be thought of as ten nearest neighbors for 205 

each grid point. The PRISM dataset is developed using a weighted linear regression of weather station data. By using  𝑤!"!#, 

we strive to give our machine learning model the same raw data that is used by the PRISM methodology. We picked ten 

stations since it seems to correspond to the upper limit of the minimum number of stations that PRISM uses to develop a 
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climate-elevation regression for a grid point (Daly et al., 1994). The use of 𝑤!"!#  helps to constrain or regularize the 

relationship learnt between the climate variable and topography, since it more explicitly forces the machine learning model 210 

to consider point measurement data. We determined 𝑤!"!# using the entire 12-year time series of the climate variable and 

weather stations. Figure 4 shows a map of 𝑤!. Note that since we are doing spatial downscaling, we learn the function 𝑓 

separately for each day. This also enabled us to get estimates of relative feature importance of each predictor variable, which 

are presented in Appendix C. 

 215 

 
Figure 3: Schematic of the spatial downscaling methodology 

 

 
Figure 4: First nearest neighbor map (𝒘𝟏) of precipitation in East Taylor subbasin. Open circles correspond to 
locations of weather stations. Each grid point is color-coded using the color of its “first nearest neighbor” weather 
station. Consequently, the map resembles a collection of polygons where each polygon comprises grid points that have 
the same first nearest neighbor. Note that the first nearest neighbor for a grid point is not necessarily the closest 
station, but the most correlated station. Some stations are outside the spatial extent of the map (not shown). 

 

Finally, we subjected the downscaled precipitation grids to a variable filter as described by Daly et al. (2008). The 

filter performs a distance-weighted average of all surrounding grid cells and ensures a smooth precipitation field in low-

gradient areas, without affecting the high-gradient areas. 220 
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4 Exploratory analysis of downscaled and original datasets 

We consider the following statistical measures (Sect. 4.1-4.4) to describe the downscaled datasets. Each measure helps focus 

on a salient feature of the datasets. 

4.1 Quantifying roughness 

Gridded estimates of precipitation and temperature should exhibit a spatial variation that is consistent with the resolution of 225 

the grid. Projecting coarse-resolution meteorological variables on a fine-resolution grid results in discontinuous spatial 

gradients which can impact the modeling of land surface processes (Maina et al., 2020). This implies that spatial gradients of 

the downscaled climate variables should exhibit a more gradual (or smoother) variation, when compared to their coarse-

resolution counterparts. We explore the relative smoothness of the downscaled and original datasets by quantifying their 

roughness.  230 

To quantify the roughness of a gridded climate variable, we start by computing its Laplacian. The Laplacian ℒ of a 

gridded variable is estimated by convolving the gridded variable with the following 3x3 filter: 

 

.

0 1 0
1 −4 1
0 1 03

 

 235 

The Laplacian can be used to visualize changes in gradients (or roughness) of the gridded variables. Its ability to capture the 

roughness of an image has long been utilized in computer vision for edge detection (Torre and Poggio, 1986). We estimate 

the roughness 𝒥 of a gridded variable by summing the element-wise squares of its Laplacian: 

𝒥 =5ℒ%,'
%,'

 

Where ℒ%,' corresponds to the (𝑖, 𝑗)-th element of ℒ. This approach to estimate roughness is motivated by the definition of 240 

roughness penalty used for fitting smooth splines to data (Gu, 2011). We expect the gridded variable at the downscaled 

resolution to have a lower roughness when compared to the original resolution. To compare the roughness at the two 

resolutions, we define a quantity called roughness ratio (𝑅𝑅) as follows: 

 

𝑅𝑅 = 𝒥(##/𝒥)## (2) 

 245 

where the subscript corresponds to the spatial resolution of the gridded variable. 𝑅𝑅 < 1 implies that 𝒥(## <	𝒥)## which 

means that the datasets are smoother at the downscaled resolution. 
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4.2 Quantifying spatial variability 

In addition to exhibiting smooth spatial gradients, it is also important to check that the downscaled datasets preserve the 

spatial variability prevalent in the original datasets. We quantify the spatial variability of the climate variables by computing 250 

empirical semi-variograms using a discrete form of Matheron’s estimator (Matheron, 1963): 

𝛾(ℎ) =
1

2𝑁(ℎ)
∗ 	5@𝑍(𝑥%) − 𝑍(𝑥%*+)B

$
,(+)

%/!

 
(3) 

 

where 𝛾(ℎ) refers to the semi-variogram which is a function of distance or lag ℎ, 𝑁(ℎ) is the number of pairwise points for a 

given value of ℎ, and 𝑍(𝑥%) is the value of a given field 𝑍 (here, precipitation or temperature) at location 𝑥%. If 𝛾 increases 

with ℎ, it implies that the observed field 𝑍 is more dissimilar (or uncorrelated) at larger distances. We compute and compare 255 

the semi-variograms at both the downscaled and the original resolutions.  

4.3 Quantifying residual error 

The process of downscaling should not introduce any bias in the hyper-resolution datasets. We can verify this by upscaling 

the downscaled datasets back to the original resolution (i.e., 800 m) and quantifying the mean residual error with respect to 

the original datasets (also at 800 m resolution). For a given time point, we quantify the mean residual error 𝑅 over the entire 260 

study area as follows: 

 

𝑅 =
1
𝑛5𝑉0D − 𝑉'

'

 (4) 

 

where 𝑉 refers to the value of the climate variable in the original dataset, 𝑉E  refers to the upscaled value of the climate 

variable obtained from the downscaled dataset, the subscript 𝑗 is the index of the grid point at the original resolution, and 𝑛 is 265 

the total number of grid points in the dataset at the original resolution. The upscaling was done via bilinear interpolation. 

Ideally, the mean residual error should be close to zero which implies that the downscaled datasets do not exhibit any bias 

when compared to the datasets at the original resolution. 

4.4 Quantifying influence of elevation  

PRISM assumes that for a localized region, elevation is the most important factor in the distribution of temperature and 270 

precipitation (Daly et al., 2008). Therefore, it is of interest to investigate how elevation influences the downscaled datasets. 

We do this using partial dependence plots (PDP; Friedman, 2001), which show the marginal effect that a feature (here, 

elevation 𝑧) has on the outcome of a model. For regression, the partial dependence function is defined as (Molnar, 2019): 

 

Deleted: If the downscaled datasets are aggregated to the original 275 
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𝑓̅(𝑧) = 𝐸1!H𝑓(̅𝑧, 𝑋2)J (5) 

 280 

where 𝑧 is the feature for which we obtain a PDP and 𝑋2 are the other features used in the machine learning model 𝑓.̅ Here, 

𝑓̅  approximates the model 𝑓 , as defined in Eq. (1), which is used to generate the downscaled datasets. The partial 

dependence function can be approximated using a Monte Carlo simulation whereby we consider all the instances of our data 

(which are used to learn 𝑓)̅, and replace the true value of 𝑧 with a realization of 𝑧 instead. We can then obtain the average 

model prediction for each realization of 𝑧. We estimated the partial dependence functions for models used to generate 285 

downscale estimates of both precipitation and mean temperature. 

5 Results 

While estimating roughness, mean residual error, and partial dependence (outlined in Eq. (2), (4) and (5), respectively), we 

seek to visualize their spread rather than obtaining a single value. Therefore, we randomly sampled 100 time points (or days) 

and computed the above error metrics for each of those time points. This yields a sample size that is tractable and amenable 290 

to analysis and visualization while being large enough to yield a representative distribution. For precipitation, we considered 

only the wet days (when mean precipitation across East Taylor was greater than 1 mm, which corresponds to the resolution 

of the weather station data). Dry days imply absence of precipitation which preclude meaningful analysis. No such 

constraints on selection of days are needed for analyzing mean temperature. 

 295 

5.1 Downscaled datasets exhibit smoother spatial gradients than their coarser counterparts 

Figures 5 and 6 show examples of downscaled precipitation and mean temperature fields, along with their original 

counterparts. To visualize the differences, we have zoomed into the north-west extent of the basin as indicated in subfigures 

(b). The north-west extent of the basin encompasses the East River watershed which is an area of sustained research activity 

(Hubbard et al., 2018). We note the prevalence of smoother spatial gradients of at downscaled resolution (400 m) when 300 

compared with the original resolution (800 m).  
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(a) 

 
(b) 

Figure 5: Example of downscaled precipitation grid: (a) comparison of downscaled precipitation with original 
precipitation (date: 5 Dec 2019), (b) gridded precipitation for the entire East-Taylor subbasin for the date in (a). The 
translucent box on the top left of (b) corresponds to the spatial extent shown in (a). The term ‘Precip’ in the colorbar is 
an abbreviation for precipitation. 

 

 
(a) 

 
(b) 

Figure 6: Example of downscaled mean temperature grid: (a) comparison of downscaled temperature with original 
temperature (date: 5 Dec 2019), (b) gridded mean temperature for the entire East-Taylor subbasin for the date in (a). 
The translucent box on the top left of (b) corresponds to the spatial extent shown in (a). The term ‘Tavg’ in the 
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colorbar is an abbreviation for mean temperature. 

We now quantify the smoothness (or roughness) of precipitation and temperature fields (as described in Sect. 4.1). Figure 7 

shows an example of the Laplacian of precipitation at both the downscaled and original resolution, corresponding to the date 305 

shown in Fig. 5. For consistency, the precipitation at the original resolution has been projected to the downscaled grid. We 

note that the Laplacian for the downscaled precipitation varies smoothly. The Laplacian for precipitation at the original 

resolution is characterized by a checker-board pattern, which visualizes the need for generating hyper-resolution datasets 

while implementing hydrological models at hyper-resolutions. 

 310 

 
Figure 7: Example of Laplacian of precipitation grid at the downscaled and original resolution for the date corresponding to 
Fig. 5. The colorbar shows the Laplacian values (units of mm/m2). 

 

Figure 8 shows the distributions of 𝑅𝑅 for both precipitation and mean temperature. In both cases, the values of 𝑅𝑅 are well 

below 1, signifying that the spatial gradients of datasets are smoother at the downscaled resolution. 

 
(a) 

 
(b) 

Figure 8: Roughness ratio (𝑹𝑹) estimates for (a) precipitation and (b) mean temperature. 𝑹𝑹 is the ratio of downscaled roughness 
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to original roughness shown in Eq. (2), where 𝑹𝑹 < 𝟏 implies that the datasets are smoother at the downscaled resolution. 

5.2 Downscaled datasets preserve the spatial structure of the original datasets 

Figure 9 shows examples of semi-variograms of precipitation and temperature fields. These examples correspond to the date 

in Figures 5 and 6 (i.e., 5 Dec 2019). The variability at the downscaled resolution is similar to that at the original resolution. 

This shows that the downscaled datasets preserve the spatial structure of the climate field present in the original datasets.  

 320 

 

(a) 

 

(b)  

Figure 9: Semi-variograms for (a) precipitation and (b) mean temperature (date: 5 Dec 2019). The plots show that the downscaled 
datasets preserve the spatial structure of the climate field present in the original datasets. 

 

5.3 Residual error and spatial consistency of downscaled datasets 

Figure 10 shows the distributions of mean residue (Sect. 4.3), where each instance corresponds to the mean residual error for 

a randomly selected time point. We clarify that “mean” in this context refers to the spatial mean over the entire study area. 

We observe that the estimated values of mean residue (as indicated by the peak value of the histogram) for both precipitation 325 

and mean temperature are close to zero. The small amount of residual error can be attributed to the fact that the downscaled 

dataset is generated using a machine learning model 𝑓,̅ which is an approximation of the true function 𝑓. Mean residual 

values of zero imply that the downscaled estimates are spatially consistent with the dataset at the original resolution. 
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(a) Precipitation 

 
(b) Mean temperature 

Figure 10: Spatial consistency check results for (a) precipitation, and (b) mean temperature. The estimated value of 
mean residue for precipitation is 0.002 mm, with a standard error of 0.004 mm. The estimated value of mean residue 
for mean temperature is -0.01 oC, with a standard error of 0.004 oC. 

 

5.4 Effect of elevation on datasets 

Figure 11 shows PDPs that marginalize the effect of elevation on each climate variable. For both climate variables, we show 

PDPs for 10 randomly selected days. Although PDPs were obtained for 100 days (as documented in the beginning of Sect. 

5), we show results only for 10 days to prevent overcrowding of the plots. Furthermore, to enable visualization of multiple 335 

partial dependence functions on the same plot, we shifted each function by its mean value. The machine learning model used 

to generate downscaled datasets captures an increase (decrease) in precipitation (mean temperature) with increase in 

elevation, which is consistent with the local climatology and the PRISM datasets (Daly et al., 2008). 

 

 340 

 
(a) Precipitation 

 
(b) Mean temperature 
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Figure 11: Climate-elevation relationship visualized using PDP for (a) precipitation, and (b) mean temperature 

6 Example use case and validation 

The downscaled datasets cannot be validated directly since the ground truth climate field is not known. Instead, we present a 

use case to demonstrate that the downscaled datasets can be effective for ecohydrological modeling in complex mountainous 

terrains where climate gradients can change at fine spatial scales.  

6.1 Modeling snowpack estimates 345 

We developed a novel data-driven approach that models high-resolution SWE data obtained via lidar (as described in Sect. 

2.2.4). Our feature space comprised of several meteorological variables at downscaled (~400m) and original (~800m) 

resolutions. As part of the use case, we also evaluated if using downscaled meteorological variables can improve the 

modeling of SWE, when compared to using meteorological variables at original resolutions. Any improvement in snowpack 

(SWE) modeling can be considered as a validation of the spatial patterns represented by the downscaled datasets. We 350 

provide a brief description of the four meteorological variables derived for this purpose, following Mital et al. (2022): 

i. Accumulated snowfall: Snowfall is the primary mechanism behind snow accumulation. As snow accumulation 

takes place over the entire snow season, we consider accumulated snowfall from the start of the snow season 

(defined as October 1) till the date of observation of the snowpack. Precipitation on a given day is considered to be 

snow if the mean air temperature is less than or equal to 0oC. 355 

ii. Positive degree-day sum (PDD sum): PDD sum is used to approximate the process of snowmelt and is defined as 

the sum of mean daily temperatures above 0oC in a given time period. We consider PDD sum from the start of the 

snow melt season (defined as March 15).  

iii. Accumulated precipitation: Since snowfall is extracted from precipitation using an approximate methodology, we 

also consider accumulated precipitation over the entire snow season. 360 

iv. Mean seasonal air temperature (𝑇3456): 𝑇3456 is computed by averaging the mean daily temperatures from the start 

of the snow season (October 1) till the date of observation of the snowpack. This helps consider the spatial 

heterogeneity of temperature across a basin.  

Note that the above variables are temporal aggregations, and as such the spatial structure of downscaled precipitation and 

temperature is preserved. In addition, we also considered the following five topographic variables: (v) elevation (vi) slope, 365 

(vii) aspect, (viii) latitude, and (ix) longitude.  

Figure 12 shows the schematic of the modeling approach, adapted from our previous work (Mital et al., 2022). We 

developed two RF models. RF model 1 used meteorological variables (i-iv) at the original (~800 m) resolution, while RF 

model 2 used meteorological variables at the downscaled (~400 m) resolution. Both models use topographic variables (v-ix) 

at the downscaled resolution. The target variable in both cases was SWE, also at the downscaled resolution. This enabled us 370 
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to isolate the effect of using downscaled estimates of meteorological variables. The hyperparameter values for the RF models 

are specified in Appendix B. 

 

 
Figure 12: Feature space for the two RF models considered in our validation exercise. Meteorological variables refer to 
(i) accumulated snowfall, (ii) PDD sum, (iii) accumulated precipitation, and (iv) 𝑻𝒎𝒆𝒂𝒏. Topographic variables refer to 
(v) elevation (vi) slope, (vii) aspect, (viii) latitude, and (ix) longitude. 

 375 

The RF models of spatially distributed SWE were evaluated using a leave-one-out approach. As described in Sect. 2.2.4, 

there are a total of eight distinct maps available within the study area. We trained each RF model using seven maps, and 

evaluated their respective abilities to model the held-out map. This exercise was conducted eight times, where each time a 

different map was considered as a held-out map.  We evaluated the model performance by computing the Nash-Sutcliffe 

Efficiency (NSE; Nash and Sutcliffe, 1970) on the held-out map. 𝑁𝑆𝐸 is defined as: 380 

 

𝑁𝑆𝐸 = 	1 −	
𝑀𝑆𝐸
𝜎7$

 (6) 

 

where 𝑀𝑆𝐸 is the mean-squared error of the model and 𝜎7 is the standard deviation of the observations in the held-out map. 

𝑁𝑆𝐸 is dimensionless, ranging from −∞ to 1. Higher values are desirable and are consistent with lower values of 𝑀𝑆𝐸. 

Table 1 shows the results of the modeling exercise, wherein we modeled SWE at 400 m resolution using both the 385 

original (RF model 1) and downscaled (RF model 2) meteorological variables. We observed that downscaled variables yield 

improvements (as indicated by higher 𝑁𝑆𝐸 values) in six out of eight instances. The negative 𝑁𝑆𝐸 values for GE: 24 May 

2018 are due to that particular snapshot having the lowest fractional snow cover area compared to other snapshots (Fig. 2). 

This implies that the relationships between the predictors and SWE are different when compared to other snapshots (Mital et 

al., 2022). Overall, the results in Table 1 suggest that even if the downscaled dataset may not capture all the spatial 390 

variability at hyper-resolutions, it still constitutes a superior product compared to the original dataset especially when it 
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comes to modeling hydrological variables at hyper-resolutions. Figure 13 shows scatterplots between the observed and 

predicted (modeled) SWE using RF model 2. 395 

 

Table 1: Validation results of modeling SWE at 400 m. The resolution in parenthesis refers to the resolution of 
meteorological variables. Both models used topographic variables at a resolution of 400 m. For each snapshot, higher 
𝑵𝑺𝑬 values are marked in bold. 

Basin Date 𝑁𝑆𝐸 for RF model 1  

(800 m) 

𝑁𝑆𝐸 for RF model 2  

(400 m) 

Gunnison – East River 

(GE) 

31 Mar 2018 0.61 0.63 

24 May 2018 -0.74 -0.63 

07 Apr 2019 0.30 0.33 

10 Jun 2019 0.74 0.74 

Crested Butte (CB) 04 Apr 2016 0.70 0.74 

Gunnison – Taylor River 

(GT) 

30 Mar 2019 0.35 0.44 

08 Apr 2019 0.62 0.58 

09 Jun 2019 0.68 0.69 

 

Figure 13: Example use case of downscaled datasets showing scatterplots to predict SWE using RF model 2. The individual 
points are color-coded by elevation. 
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6.2 Additional use cases: impact of meteorological forcing resolution on hydrological responses 

Additional use cases of downscaled datasets involve studies that investigate the impact of spatial and temporal resolution of 

gridded meteorological forcing on watershed hydrological responses (Shuai et al., 2022; Maina et al., 2020). For instance, 

Shuai et al. (2022) explored the effects of spatial and temporal resolution of gridded meteorological forcing on watershed 400 

hydrological responses. The study used integrated hydrological modeling and was conducted in the Coal Creek watershed, 

which is a mountainous sub-watershed located at the western edge of the East-Taylor subbasin. The downscaled daily 

datasets were used as high-resolution forcing variables, and the simulated streamflow was found to be consistent when 

compared with the results of coarser resolution forcings. The study also considered a number of additional hydrological 

variables (i.e., SWE, snowmelt, ponded depth, groundwater level, soil moisture and evapotranspiration). For more details, 405 

we refer the reader to Shuai et al. (2022).  

7 Caveats and future development 

The use cases presented and reviewed in this study evaluated the impact of using downscaled meteorological variables for 

modeling the hydrological response in mountainous regions. As the presented use-case modeled snowpack using a data-

driven framework, it is possible that not all the factors driving spatial variability of snowpack were considered. Additional 410 

evaluation of downscaled datasets may require access to spatially distributed ground-truth data at hyper resolutions (e.g., via 

X-band radar), as well as comparisons with hyper-resolutions outputs (if available) of land-surface and numerical weather 

prediction models. Future work will extend the study area to a larger extent (i.e., UCRB and beyond). 

It is important to note that a lack of hyper-resolution observations makes it challenging to estimate the true errors 

associated with gridded datasets (Daly, 2006). Nevertheless, it is important to pursue development of hyper-resolution 415 

datasets (such as the ones presented in this study) so that they can be visualized and critically evaluated (Beven et al., 2015). 

This enables identification of any missing features and drives further refinement of methodologies for generating hyper-

resolution datasets. Additional research is needed to reliably downscale gridded datasets to finer resolutions (i.e., beyond 400 

m), and it may require us to consider additional information (e.g., canopy, multispectral satellite data, radar data). 

8 Data availability 420 

The presented dataset is freely available on the United States Department of Energy’s Environmental System Science Data 

Infrastructure for a Virtual Ecosystem (ESS-DIVE) repository. It can be accessed at https://doi.org/10.15485/1822259 and 

cited as Mital et al. (2021). We recommend accessing the dataset using Chrome or Firefox browsers. The dataset consists of 

two zip files: one for daily precipitation and one for daily mean temperature. The data are arranged by year and are in the 

NetCDF format, which is a standard raster format that can be read using Geographic Information System software and 425 

popular scripting languages (e.g, R, Python, MATLAB). The datasets have been projected to the coordinate system denoted 
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by NAD83 / UTM zone 13N – EPSG:26913. A Jupyter notebook has been provided as a supplement which illustrates the 430 

spatial downscaling methodology. 

9 Conclusions 

We have presented a description of a hyper-resolution (400 m) gridded dataset of daily precipitation and mean temperature. 

The datasets cover a 12-year period of 2008-2019. The spatial extent of the datasets is the East-Taylor subbasin, which is a 

mountainous watershed and is an important study area in the context of water security for southwestern United States and 435 

Mexico (Sect. 2.1). The datasets were generated by downscaling daily gridded datasets developed by the PRISM group (800 

m resolution). Rather than seeking to train on paired coarse-resolution and fine-resolution data (which are not available), our 

methodology sought to learn relationships between topographic features and daily climate variables. These relationships 

were constrained or regularized by the use of nearest neighbor maps that forced the machine learning model to more 

explicitly consider point observations. The relationships were then implemented to generate downscaled datasets. 440 

Downscaling enabled us to leverage knowledge about physiographic factors and climatological processes that are embedded 

in the existing datasets. 

The precipitation and temperature fields at the downscaled resolution provide a more precise definition of local 

gradients (and preserve the spatial variability) when compared with the original dataset. This can aid in the implementation 

of hydrological and land surface models in complex mountainous terrains with fine-scale spatial gradients. The downscaled 445 

fields also do not exhibit any bias when compared with the original dataset as demonstrated by a mean residual error that is 

approximately zero. We observe the prevalence of linear relationships between climate variables and elevation, which is 

consistent with the PRISM datasets. Finally, we demonstrated a use case for downscaled datasets by implementing a data-

driven framework to model snowpack. The presented dataset constitutes a valuable resource to implement ecohydrological 

and land surface models in the mountainous terrain of the East-Taylor subbasin. 450 

Appendix A: Additional quality control for lidar observations 

The lidar maps corresponding to Gunnison-East River (GE) required additional quality control measures. First, a number of 

pixels in the GE maps appeared to be numerical artifacts. To remove these artifacts, we assumed that the map labeled GE: 31 

Mar 2018 recorded a continuous snow cover (given that the date is close to peak SWE; Clow, 2010) Therefore, any pixels 

with SWE ≤ 0 were masked. The unmasked pixels gave us an initial spatial extent for GE maps. However, this initial spatial 455 

extent exceeded the spatial extent for the map labeled GE: 10 Jun 2019. Therefore, we considered an intersection of the two 

spatial extents, which yielded a consistent spatial extent across all four GE maps. This spatial extent is shown in Fig. 2(b). 

Subsequently, we cropped part of the GE maps that fell outside the East-Taylor subbasin, yielding a final spatial extent as 

shown in Fig. 2(a). 
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Appendix B: Hyperparameters for RF models 460 

We used RF to learn the function 𝑓 for spatial downscaling, as well for modeling snowpack in our example use case.  

Concerning the choice of hyperparameters for both sets of RF models, we sought to use values that were specified as default 

choices by the developers of RF (as documented at https://CRAN.R-project.org/package=randomForest). Therefore, we 

specified 500 trees, considered 𝑝/3 features when looking for the best split (where 𝑝 is the number of predictor variables) 

and specified a node size (i.e., minimum number of samples in a leaf node) of 5. For spatial downscaling, we specified a 465 

node size of 1 (instead of 5) to encourage growth of deep trees. The use of nearest neighbors (i.e, 𝑤!"!#) as predictors helped 

alleviate any overfitting that may happen with deep trees. Note that the number of predictor variables (i.e, 𝑝) is 13 for spatial 

downscaling, and 9 for the use case. 

Appendix C: Feature importance of RF models 

Figure C1 shows estimates of feature importance of RF models trained to downscale precipitation and mean temperature. For 470 

precipitation, we observe that all three topographic variables (i.e., elevation, longitude, latitude) along with the first two 

nearest neighbors (i.e., 𝑤! and 𝑤$) are important for model predictions. For mean temperature, elevation has an outsized 

influence, with nearest neighbors having very little impact on the model predictions. Daily precipitation exhibits high spatial 

variability which is not necessarily a function of changes in local topography (e.g., rain shadow effect, seeder-feeder 

mechanisms) making it important to explicitly consider information from nearby weather stations. The variability of mean 475 

daily temperature is more closely related to changes in elevation on account of the adiabatic lapse rate. As a result, there is a 

lower dependence on other factors. 

 

 
(a) Precipitation 
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(b) Mean temperature 

Figure C1: Feature importance box plots for (a) precipitation, and (b) mean temperature 
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