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Abstract. Environmental data are the key to define and address water quality and quantity challenges at 

catchment scale. Here, we present the first large-sample water quality data set for 1386 German 

catchments covering a large range of hydroclimatic, topographic, geologic, land use and anthropogenic 15 

settings. QUADICA (water QUAlity, DIscharge and Catchment Attributes for large-sample studies in 

Germany) combines water quality with water quantity data, meteorological and nutrient forcing data, and 

catchment attributes. The data set comprises time series of riverine macronutrient concentrations (species 

of nitrogen, phosphorus and organic carbon) and diffuse nitrogen forcing data at catchment scale (nitrogen 

surplus, atmospheric deposition and fixation). Time series are generally aggregated to an annual basis; 20 

however, for 140 stations with long-term water quality and quantity data (more than 20 years), we 

additionally present monthly median discharge and nutrient concentrations, flow-normalized 

concentrations and corresponding mean fluxes as outputs from weighted regressions on time, discharge, 

and season (WRTDS). The catchment attributes include catchment nutrient inputs from point and diffuse 

sources and characteristics from topography, climate, land cover, lithology and soils. This comprehensive, 25 

freely available data collection can facilitate large-sample data-driven water quality assessments at 

catchment scale as well as mechanistic modeling studies. 
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1 Introduction 30 

Understanding hydrological and biogeochemical processes at various spatiotemporal scales is a major 

goal in catchment hydrology and is particularly relevant for robust predictions of water quantity and 

quality and adequate catchment management. Analyzing observations of spatial and temporal dynamics 

of water quantity and quality at the catchment scale can give insights into relevant processes using a 

“pattern to process” approach (Sivapalan, 2006). Especially large-sample studies covering a wide range 35 

of catchments can advance our knowledge on patterns across scales, catchment similarity, and dominant 

processes, beyond a single catchment or local behavior (Addor et al., 2020; Kingston et al., 2020). Such 

studies allow for generalizable theories and applications by “balancing depth with breadth” and facilitate 

classifications, regionalization and a better understanding of uncertainty in model predictions (Gupta et 

al., 2014). In this context, machine learning techniques have proven promising tools to recognize patterns 40 

and their relationships to predictors and are increasingly applied (Schmidt et al., 2020; Shen, 2018). Thus, 

environmental data are the key for process understanding and hypothesis testing (Li et al., 2021). 

Although data collection and availability is steadily increasing, partly due to automated and remote 

sensing techniques, harmonized and quality controlled large-sample water quality and quantity data are 

still not widely available, which slows down progress in our understanding of the complex coupled 45 

hydrological and biogeochemical systems across larger scales and samples (Li et al., 2021). 

In recent years, the application of large-sample studies has been advancing fast for (surface) water 

quantity studies investigating dominant processes and drivers of water flow characteristics. Gupta et al. 

(2014) provided an overview of such studies, with the first ones published in the 1990s. They were 

followed by a recent surge in studies documenting and analyzing large-sample hydrologic data sets such 50 

as Newman et al. (2015), Kuentz et al. (2017), Do et al. (2017), Gnann et al. (2020), Tarasova et al. 

(2020), Merz et al. (2020). These studies identified catchment typologies, archetypal behavior and 

underlying controls e.g. regarding discharge variability across Europe (Kuentz et al., 2017), catchments 

with similar runoff event types (Tarasova et al., 2020) or how catchment discharge attenuates and shifts 

climate seasonality (Gnann et al., 2020).  55 

In contrast, large-sample studies for water quality are less common. Nevertheless, some recent large-

sample water quality studies have shown to increase our understanding of catchment functioning in terms 
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of mobilization, transport, and environmental fate of solutes and particulates and the generality of these 

functions. For example, Monteith et al. (2007) linked widespread positive trends in DOC concentrations 

observed in Europe and North America to decreasing atmospheric sulphur and chloride depositions. 60 

Godsey et al. (2009) and Godsey et al. (2019) provided wide evidence that weathering derived solutes are 

mostly exported chemostatically with low concentration variance. Basu et al. (2010) derived the 

hypothesis of chemostatic nutrient export resulting from homogenized sources due to the legacy of high 

inputs. More recently, Zarnetske et al. (2018) and Ebeling et al. (2021c) both provided evidence of 

widespread transport-limited DOC export from small to large catchments. However, several questions of 65 

general patterns, catchment similarities and typologies and their underlying controls remain open, for 

example, concerning the extent and recovery of nutrient legacy for both nitrogen (N) and phosphorous 

(P) (Chen et al., 2018), the extent of macronutrient interactions in differing landscape and anthropogenic 

settings and throughout the river network (Wollheim et al., 2018), and the impact of climate change on 

water quality trajectories in various catchments (Kaushal et al., 2018). 70 

At the moment, large-sample studies are still hampered by limited availability (number of stations, 

number of samples, and covered regions) and accessibility of spatially and temporally harmonized large-

sample data collections (e.g., Addor et al., 2020), despite recent efforts to make consistent large-sample 

data sets of catchment hydrology for both water quantity and water quality in streams publicly available 

(e.g., Virro et al., 2021). Prominent examples for large-sample hydrological data sets including catchment 75 

attributes are the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data sets, 

available for the USA (Addor et al., 2017), Chile (Alvarez-Garreton et al., 2018), Brazil (Chagas et al., 

2020), Great Britain (Coxon et al., 2020), and Australia (Fowler et al., 2021). More recently, the multi-

national LArge-SaMple DAta for Hydrology and Environmental Sciences (LamaH, Klingler et al., 2021) 

have provided hydrometeorological time series at an hourly resolution together with catchment attributes. 80 

For stream water quality, currently available large-sample data sets focus on water quality time series 

only but lack additional data. Recently, two global databases of surface water quality were published, 

which combine data of several existing databases in homogenized and quality checked form: the Surface 

Water Chemistry database (SWatCh; Rotteveel and Sterling, 2021) with a focus on variables relevant for 

acidification and the Global River Water Quality Archive (GRQA; Virro et al., 2021) with a focus on 85 
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macronutrients. Both include the global databases Global Freshwater Quality Database (GEMStat; 

UNEP, 2018), GLObal RIver CHemistry database (GLORICH; Hartmann et al., 2014) and the European 

WaterBase (EEA, 2020), although spatiotemporal coverage of the data varies strongly. These are 

important recent advances towards open science in water quality research. However, to the authors’ 

knowledge, there is currently no combined, ready-to-use data set of metrics of water quality, quantity, 90 

catchment attributes and forcing data (such as meteorological and nutrient inputs), which would allow 

investigating water quality dynamics and their controls. Moreover, large-sample and cross-regional 

studies are especially challenging in countries like Germany, where data responsibility is scattered 

between federal states, and where data are often not freely available nor homogenized between water 

quantity and quality stations. Nevertheless, there have been a few Germany-wide water quality studies on 95 

groundwater (Knoll et al., 2020) and surface water (Ebeling et al., 2021c) recently. 

The key objective here is to provide a spatially and temporally consistent, comprehensive data set of joint 

water quality and quantity data, catchment attributes and nutrient inputs for German catchments, which 

is ready-to-use and freely available supporting an open science philosophy and FAIR data principles. In 

this “Water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany” 100 

(QUADICA) data set, we have complemented available data sets of catchment attributes with new data 

on water quality and water quantity. These data include delineated catchment boundaries, catchment 

responses in terms of macronutrient concentrations (species of N, P and organic carbon (OC)) and 

discharge (Q), forcing data in terms of meteorological and diffuse nitrogen inputs and average catchment 

attributes. We distinguish stations with a high data availability, which allows further estimation of daily 105 

concentrations and fluxes using a regression approach, and stations with lower availability, for which 

aggregated observed concentrations are reported. For water quality (Section 3.1) and water quantity 

(Section 3.2), we provide 

(1) time series of annual medians of observed macronutrient concentrations (dissolved and total forms of 

N, P and OC) and of observed discharge,  110 

(2) time series of monthly and annual medians of estimated daily macronutrient concentrations and flow-

normalized concentrations as well as mean nutrient fluxes and medians of observed discharge for stations 

with high data availability,  
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(3) monthly medians of observed concentrations and discharge over the whole time series.  

Additionally, we provide time series of driving forces (Section 3.3 and 3.4) and catchment attributes 115 

(Section 4): 

(4) time series of observed monthly meteorological forcing variables as catchment averages (Section 3.3),  

(5) time series of estimated annual net diffuse nitrogen inputs to the catchments (Section 3.4),  

(6) average catchment characteristics, i.e. topography, land cover, nutrient sources, lithology and soils, 

and hydroclimate (Section 4). 120 

We envision that the QUADICA data set will directly enable large-sample assessments of mean 

concentrations and fluxes, and concentration and flux variability in terms of long-term trends, seasonality 

and relationships to discharge as well as their relationships to catchment attributes. We believe that the 

data set will allow better understanding of catchment functioning and water management beyond regional 

scales and stimulate provisioning and analysis of further water quality data at national to continental 125 

scales. 

2 Catchment selection and delineation 

The station selection and catchment delineation have been presented in a previous study (Ebeling et al., 

2021c) and data repository (Ebeling, 2021) and are now included in the new QUADICA data set. All data 

sets use the same unique identifier (OBJECTID) for the stations and corresponding catchments. The 130 

station selection is based on riverine water quality data assembled from the German federal state 

environmental authorities, who are responsible for the routine monitoring of water quality in Germany 

(Musolff et al., 2020; Musolff, 2020) and take grab samples at approximately monthly intervals. For this 

data set, 1386 water quality stations were selected and catchment boundaries delineated (Fig. 1). These 

stations meet the following quality criteria concerning water quality and catchment delineation: 135 

 

1. Water quality data cover at least three years, include a minimum of 70 samples from 2000 to 

2015 after outlier removal, and cover all seasons, i.e. seasonal coverage of at least 10 % of the 

samples in each quarter considering all possible combinations of three consecutive months 
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(criteria one to three as described in Ebeling et al., 2021c). These criteria should ensure that a 140 

representative amount of data is available. Stations fulfilling these water quality data criteria 

for NO3-N or PO4-P were preselected (i.e., 1692 stations). Other variables (e.g. TP, TN, DOC) 

were not used in this initial step of station selection.  

 

2. In a second step, we delineated the catchment area from topography for these preselected 145 

stations and verified them as described here. The topographic catchment boundaries were 

delineated based on a 100 m flow accumulation grid derived from a digital elevation model 

(DEM; resampled from 25 m to 100 m using the average; EEA, 2013) using spatial analysis 

tools and D8 flow direction type. The river network from the Rivers and Catchments of Europe 

- Catchment Characterisation Model (De Jager and Vogt, 2007) was used to burn by 10 m into 150 

the DEM before deriving the flow accumulation. The stations were snapped or manually 

moved towards the representative flow accumulation stream to define the catchment outlets 

(pour points). The resulting topography-based catchment polygons were quality-controlled 

manually by a comparison to the real river network. In case of major deviations, a few manual 

adaptations of the burned river segments were done if they substantially improved the overlap 155 

without hindering neighboring catchment delineations. In case of insufficient spatial overlap 

that could not be improved, stations were discarded from the selection. This resulted in a final 

set of 1386 catchments. 

 

The varying density of stations across Germany (Fig. 1a) has two main reasons: firstly, the provision of 160 

raw data varied in number of stations, number of samples per compound and station, and time series 

length among the federal states; secondly, the topographic delineation of catchment boundaries was more 

successful where the topography is more pronounced, giving less delineable catchments in northern 

Germany. The delineated catchment boundaries are provided with the data set and enable the user to 

develop further geoinformation routines, e.g. to extract characteristics from other geographic data sets. 165 
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Figure 1: Map of (a) water quality stations, catchments and elevation (EEA, 2013) and (b) map of land cover (EEA, 2016b). Colors 
in (a) distinguish between stations with (green) and without discharge (Q) data (yellow) and long-term C-Q stations (dark purple) 
with high data availability (also WRTDS stations; for details see Section 3.1). WRTDS - Weighted Regression on Time, Discharge 
and Season. 170 

3 Time series 

For the 1386 delineated catchments, riverine concentration time series of nitrate (NO3-N), mineral 

nitrogen (Nmin), total nitrogen (TN), phosphate (PO4-P), total phosphorus (TP), dissolved organic carbon 

(DOC), and total organic carbon (TOC) are provided (Table 1). They are supplemented by time series of 

discharge (where available) and forcing variables (meteorological drivers and diffuse N input). Due to 175 

limited data availability, not all variables can be provided for all stations. 
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Table 1: Provided time series data, their basis (observed or estimated), aggregation type, temporal resolution and source of original 
data, which was used to calculate the aggregated data provided here. WRTDS -Weighted Regression on Time, Discharge and Season. 

Variable Section Data basis Temporal (Spatial) 
Aggregation 

Temporal 
resolution 

Source 

Concentration of 
NO3-N, Nmin, TN, 
PO4-P, TP, DOC, 
TOC 

3.1 
 

observed median annual Musolff et al. (2020); Musolff 
(2020) 

daily estimated 
using WRTDS 

median monthly Musolff et al. (2020); Musolff 
(2020) 

observed long-term median monthly  Musolff et al. (2020); Musolff 
(2020) 

Discharge 3.2 
 

observed median annual Musolff et al. (2020); Musolff 
(2020) 

observed median monthly Musolff et al. (2020); Musolff 
(2020) 

observed long-term median monthly  Musolff et al. (2020); Musolff 
(2020) 

Precipitation 3.3 observed 
gridded 

sum (average) monthly E-OBS, v18.0e; Cornes et al. 
(2018) 

Potential 
evapotranspiration 

3.3 estimated sum (average) monthly E-OBS, v18.0e; Cornes et al. 
(2018) 

Mean air 
temperature 

3.3 observed 
gridded 

average (average) monthly E-OBS, v18.0e; Cornes et al. 
(2018) 

Diffuse N input as 
total 

3.4 estimated (average) annual see Section 3.4 

Diffuse N input 
from agricultural 
areas 

3.4 estimated (average) annual see Section 3.4 

 

3.1 Water quality time series 180 

3.1.1 Annual median concentrations 

Annual medians of concentration data are presented for time series of the 1386 stations fulfilling the water 

quality criteria, analogously to the catchment selection criteria described in Section 2. The following steps 
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were applied for each station and solute separately: we removed values of zero and used an outlier test 

for each time series, removing values above mean concentration + 4*standard deviation in logarithmic 185 

space (confidence level > 99.99 % for log normally distributed data). To calculate summary statistics, we 

substituted concentration values below the detection limit (left-censored data) with half the detection 

limit.  

The resulting data density distributions over time and the number of years covered by each variable show 

the highest data availability for TOC, PO4-P and NO3-N in more recent years (Fig. 2). An overview of 190 

the time-series statistics for each variable is given in Table 2, while time series are shown in Appendix A 

Fig. A1. For NO3-N concentrations, the number of stations with available data is 1339 and the median 

number of samples per station is 157. The earliest time series starts in 1954, while the median start across 

stations is in 1994. The median time series length is 19 years and the maximum time series length is 61 

years. For PO4-P concentrations, the number of stations with available data is 1330 and the median 195 

number of samples per station is 152. The earliest time series starts in 1965, while the median start across 

stations is in 1993. The median time series length is 20 years and the maximum time series length is 48 

years. For TOC concentrations, the number of stations with available data is 1296 and the median number 

of samples per station is 139. The earliest time series starts in 1979, while the median start across stations 

is in 1999. The median time series length is 15 years and the maximum time series length is 36 years. For 200 

all water quality variables, the median of the first year of the time series is in the 1990s and the median 

number of samples per station and year is 12, indicating that grab samples were on average taken on a 

monthly basis. 
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Figure 2: Heat map of (a) the number of stations with available annual medians over time and per variable and (b) the number of 205 
years covered by each station. In (a) discharge Q refers to the median Q from grab sample dates. For visualization purposes values 
from 1954 are shown, omitting one sample reported for 1900. 

Table 2: Number of stations with available data for the water quality compounds and discharge during grab sampling dates, earliest 
and median start year of time series, maximum and median time series length and covered years (i.e. years with available data), 
median number of samples per stations and per station and year, and number of outliers removed. * omitting one sample from 1900. 210 

Variable Q NO3-N Nmin TN PO4-P TP DOC TOC 

Unit m³ s-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 

Number of stations 581 1339 1149 514 1330 1046 744 1296 

Earliest start 1965* 1954* 1954 1984 1965 1965* 1976 1979 

Median start year 1993 1994 1993 1999 1994 1993 1993 1999 

Median time series 

length per station  

(years covered) 

19 

(16) 

19 

(16) 

21 

(16) 

15 

(13) 

20 

(16) 

21 

(17) 

20 

(15) 

15 

(13) 

Maximum time series 

length per station  

(years covered) 

49* 

(49) 

61* 

(61) 

61 

(61) 

31 

(27) 

48 

(43) 

49* 

(49) 

39 

(39) 

36 

(33) 
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Total number of 

samples 

156,388 309,965 235,015 92,876 297,591 258,059 139,440 239,282 

Median number of 

samples per station 

170 157 153 149 152 165 164 139 

Median number of 

samples per station and 

year 

13 12 12 12 12 12 12 12 

Number of outliers - 59 52 45 68 326 257 795 

Maximum fraction of 

outliers per station [%] 

- 1.7 1.7 1.7 1.7 2.5 3.1 3.6 

 

3.1.2 Monthly median concentrations and mean fluxes for stations with high data 
availability 

For stations with high data availability, a Weighted Regression on Time, Discharge and Season (WRTDS; 

Hirsch et al., 2010) was applied using the R package EGRET (version 3.0.2; Hirsch and De Cicco, 2015). 215 

We refer to these stations as ‘WRTDS stations’ for short. WRTDS represents long-term trends, seasonal 

components and discharge-related variability of the water quality variables (Hirsch et al., 2010). The 

criteria, checked for each station and compound separately, were a time series of at least 20 years, at least 

150 samples of water quality, no data gaps larger than 20 % of the total time series length and a complete 

time series of daily discharge. The number of WRTDS stations varies between 44 for TN and 126 for 220 

PO4-P (Table 3), while the fraction of stations with high data availability varies between 4.9 % for TOC 

and 11.7 % for TP.  

For WRTDS stations, we provide monthly and annual median estimated water quality and observed 

quantity data in addition to the annual observed data (see above). More specifically, we provide monthly 

and annual median concentration and flow-normalized concentration and mean flux estimates from the 225 

WRTDS model output and median observed discharge (see Section 3.2) if data are available for at least 

80 % of the respective time frame. The median R2 between WRTDS-modelled and observed 

concentrations varies between 0.44 for DOC and TOC and 0.75 for TN (Table 3), while overall 69.3 % 
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of the catchment and compound combinations have a median R2 of at least 0.5. The median bias varies 

between -1.4 % for PO4-P (negative values indicate overestimation) and 0.2 % for NO3-N (positive values 230 

indicate underestimation). Overall, 51 % of the catchments have a bias below 1 % and 95 % below 5 % 

respectively. An overview of the availability of WRTDS stations and model performances is given in 

Table 3 and shown in Fig. A2, while their locations are shown in Fig. 1a and performances provided in 

the data repository. 

 235 
Table 3: Number of stations with high data availability (WRTDS stations) for each compound and median coefficient of 
determination of WRTDS models. 

Variable total NO3-N Nmin TN PO4-P TP DOC TOC 

Unit  mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 

Number of 

WRTDS stations  

140 125 97 44 126 122 61 64 

Median R2 0.61 0.63 0.71 0.75 0.69 0.53 0.44 0.44 

Median bias [%] -0.3 0.2 0.1 0.1 -1.4 -0.9 -0.6 -0.6 

 

3.1.3 Monthly median concentrations over the time series 

Next to annual and monthly time series, we provide long-term monthly medians over the complete time 240 

series of each station, enabling assessments of average seasonal variability. The provided data frame in 

QUADICA indicates the number of samples available for the corresponding month across the years, based 

on which representativeness can be assessed and quality criteria can be defined.  

3.2 Water quantity time series 

For about 43 % of the water quality stations (n=590), information on discharge is available (Fig. 1a) and 245 

provided harmonized with the water quality data (i.e. annual and monthly resolution). The discharge 

information is a collection of data provided by the federal states together with the concentration data 

either as daily discharge time series or for the times of grab sampling of water quality. Additionally, we 

integrated daily discharge data from 53 stations available from the Global Runoff Data Center (GRDC) 
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to increase the number of stations with available discharge time series. We matched GRDC gauging 250 

stations to the existing water quality stations using the “proximity/point distance” tool in ArcGIS with a 

search radius of 500 m. For each match, we checked the consistency of river names and visually the 

locations. The corresponding GRDC station numbers are indicated in the metadata of the water quality 

and quantity data set (Musolff, 2020). For the original daily discharge data, the reader may refer to the 

regularly published and accessible data at the GRDC portal (https://portal.grdc.bafg.de). 255 

3.2.1 Annual median discharge 

Annual median discharge is aggregated from available observed discharge data. For 324 water quality 

stations, a co-located Q station with a continuous daily Q record is available. However, the time series 

may include data gaps and for nine of the co-located discharge stations, the time series of discharge and 

concentration data do not overlap at all. For additional 266 stations, Q data was only available at the time 260 

that the grab samples were taken. This resulted in a set of 581 stations for which Q data are available on 

the sampling dates of concentration data. We extracted annual median discharge both from continuous 

daily data and from dates when the water quality sample was taken (median of 12 values per year, Table 2) 

for the water quality stations. The data density distribution of annual discharge over time is shown in 

Fig. 3a. Similar to the concentration data, the data availability is higher in more recent years, with the 265 

maximum of 449 stations in 2010. The number of years covered is, however, higher compared to water 

quality data for several stations (Fig. 3b). For stations with available daily discharge data, both annual 

median values of the daily data and the data from grab sample days were compared (Fig. 3c). This shows 

that annual median values from grab sample dates do not contain an overall bias, but scatter around the 

1:1 line, so that they can be considered as relatively robust estimates of annual median discharge. Time 270 

series are shown in Appendix A Fig. A3. The data set provides additionally provide the number of samples 

used to calculate the medians as a measure of robustness. 
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Figure 3: Heat maps of (a) the number of stations with available annual median discharge from daily and grab sample dates, (b) 
number of years covered per station, and (c) comparison of annual medians from continuous (daily) Q and Q at the dates grab 275 
samples were taken. Colors on the right are used for better visibility and distinguish the different catchments. 

3.2.2 Monthly median discharge 

Monthly median discharge is provided for WRTDS stations. To fill gaps in the daily discharge time series 

of 45 stations required for WRTDS models (see Section 3.1.2), we used simulated discharge from the 

mesoscale hydrological model mHM (Kumar et al., 2013; Samaniego et al., 2010; Zink et al., 2017) if the 280 

regression coefficient (R2) between observed and simulated discharge for the station was greater than 0.6. 

Subsequently, modelled discharge was bias-corrected with piecewise linear regressions and used for gap-

filling (Ehrhardt et al., 2021; Ebeling et al., 2021d). If modelled discharge was not available, small gaps 

(up to seven days) were interpolated with fixed-interval smoothing using the R package baytrends 

(Murphy et al., 2019).  285 

3.2.3 Monthly median discharge over the time series 

Analogously to the water quality metrics (see Section 3.1.3), we provide long-term monthly median 

discharge over the whole time series if available for the station representing average discharge seasonality. 

The number of samples used for the calculation of medians is indicated as a measure of accuracy. 
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3.3 Meteorological time series  290 

Meteorological time series are provided as spatial catchment averages on monthly resolution. We used 

the daily gridded product of climate variables (precipitation and maximum, minimum, and average air 

temperature) from the European Climate Assessment and Dataset project (E-OBS, v18.0e; Cornes et al., 

2018). The advantage of a European data set is the coverage of transnational catchments as e.g. the Elbe 

or Rhine. The data sets are available at a spatial resolution of 0.1 degree over the period 1950-2018. The 295 

interpolation approach used to create the gridded fields uses a stochastic technique based on Gaussian 

Random Field, and involves several ground-based observation networks distributed across Europe (see 

Cornes et al., 2018 for more details). The daily fields of potential evapotranspiration are derived based on 

the method from Hargreaves and Samani (1985) at the same spatial resolution (0.1 degree) using the daily 

(maximum, minimum and average) air temperature data sets.  We then calculated the spatial averages of 300 

daily climate variables (precipitation, air temperature, potential evapotranspiration) for all water quality 

stations, considering the corresponding (upstream) catchment area.  Monthly estimates of total 

precipitation and potential evapotranspiration, and average air temperatures were subsequently calculated 

for each study basin.   

3.4 Time series of net N input from diffuse sources 305 

For the period 1950-2015, we provide time series of catchment-scale N surplus, i.e. the net diffuse N 

input, which is the sum of N sources minus the sum of N sinks. At the catchment scale, the N surplus is 

the sum of N surplus on agricultural Nagri (kg y-1 ha-1) and non-agricultural areas Nnonagri (kg y-1 ha-1) 

normalized to the catchment area. For transboundary catchments with area outside of Germany, N surplus 

is normalized to the German part only. On non-agricultural areas, the N surplus is composed of 310 

atmospheric N deposition and biological N fixation. On agricultural areas, the N surplus includes 

additional N sources, i.e. mineral fertilizer and manure applications, and N sinks from crop harvesting.  

For agricultural land, the N surplus data stem from two data sets: one at state level provided for the period 

1950-1998 (Behrendt et al., 2003; which builds on Bach and Frede, 1998; and Behrendt et al., 2000), and 

one at county level provided for the period 1995-2015 (Häußermann et al., 2019). To create a consistent 315 

long-term data set (1950-2015), we harmonized the county and state level data sets based on the 
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overlapping years (1995-1998) and downscaled the state level data to county level for the period 1950-

1994. Specifically, we bias-corrected the state level data of Behrendt et al. (2003) using proportions as 

they commonly underestimated the values provided by Häußermann et al. (2019) for the period 1995-

1998. To downscale the bias-corrected state level N surplus (1950-1994) to county level, we used a linear 320 

regression between the county and state totals for the period 1995-2015 (data from Häußermann et al., 

2019). As data for city-states (Berlin, Bremen and Hamburg) are not provided in the state level dataset, 

we used the average value from 1995-1998 for the period 1950-1994 under the assumption that the error 

is acceptable considering the small agricultural areas. The N surplus data comprises values for five of the 

eleven agricultural land classes in Corine Land Cover (CLC; EEA, 2016b) (non-irrigated arable land, 325 

vineyards, fruit trees and berry plantations, pastures, complex cultivation patterns). The data includes N 

inputs from applications of fertilizers in mineral and organic forms, N input from seeds and planting 

material (county level data only), N deposition and biological N fixation, and N outputs from harvested 

crops. To upscale agricultural N surplus from county level to catchment level, we used the fraction of 

agricultural area provided by CLC and a scaling factor. Since CLC overestimates agricultural areas 330 

compared to the census data at county level (Bach et al., 2006), we scaled the agricultural areas from CLC 

in each county with the mean ratio between the agricultural area from census data (Häußermann et al., 

2019) and the CLC maps (years 2000, 2006 and 2012; median ratio of 1.24 across counties). 

For non-agricultural land (CLC classes forest, water bodies, wetlands, grassland) and the remaining 

agricultural land CLC classes not covered by the N surplus data described above (e.g., permanently 335 

irrigated land), we used the atmospheric N deposition data from the Meteorological Synthesizing Centre-

West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP; Simpson et al., 2012). 

The EMEP database uses a chemical transport model to generate a consistent gridded field of Europe-

wide wet and dry, and oxidized and reduced atmospheric N depositions (Simpson et al., 2012). The model 

assimilates varying levels of observational information on different atmospheric chemicals (e.g., 340 

Bartnicky and Benedictow, 2017; Bartnicky and Fagerli, 2006). The data was available for the period 

1980-1995 with five-year steps, which we linearly interpolated to obtain an annual time series, and with 

annual steps for the period 1995-2015. For the data before 1980, we assumed constant values from 1980 

due to missing information. Deposition on urban sealed surfaces was neglected, since we assume this 
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component is collected by the sewer system and is therefore not a diffuse N source, whereas deposition 345 

on urban grassland like public parks was considered. To account for the overestimated area of the five 

agricultural CLC classes of the agricultural N surplus data (see above), we added the corresponding 

missing fraction proportionally to the remaining land cover classes. We estimated terrestrial biological N 

fixation by plants for non-agricultural, vegetated areas using land-use specific rates provided by 

Cleveland et al. (1999) and Van Meter et al. (2017). 350 

The catchment scale N surplus time series were calculated by intersecting the two N surplus components 

(Nagri and Nnonagri) with the respective land use and catchment area. As the N surplus data was only 

available within Germany; data from transboundary catchments (e.g., main stretch of the Elbe or Rhine 

Rivers) need to be used cautiously, with higher uncertainty for catchments with a higher fraction of 

catchment area outside Germany (Section 4.3). Figure 4 shows the resulting N input time series of all 355 

catchments.  The majority of N input stems from agriculture with a median of 64 % of the total catchment 

N surplus stemming from Nagri across all catchments (averages between 1950 and 2015). The agricultural 

N surplus (Nagri) as well as its fraction per catchment was highest during the 1980s with the median across 

catchments amounting to 52 kg ha-1 y-1 and 76 % (average between 1980 and 1989), respectively. The 

highest mean agricultural N surplus and its fraction per year across all catchments were reached in 1988 360 

with 60.7 kg ha-1 y-1 and 74 %, while the values were already above 50 kg ha-1 y-1 and 70 % from 1976 

to 1989. For the total N surplus, mean annual values across catchments were above 70 kg ha-1 y-1 in the 

same period (1976-1989), while values above 50 kg ha-1 y-1 were already reached since 1969 and the 

maximum of 76.7 kg ha-1 y-1 occurred in 1980.  
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 365 

 

Figure 4: Time series of annual N surplus of all catchments for the different N surplus components: N surplus on non-agricultural 
areas (left), N surplus on agricultural areas (middle), and total N surplus from both non-agricultural and agricultural areas (right). 
Boxplots represent the distribution of annual N surplus as averages of the German catchment area across all catchments showing 
summary statistics (median, quartiles, and quartiles +/- 1.5 times the interquartile range) and individual points outside these ranges. 370 
The black lines represent mean annual values for each N surplus component across the catchments. 

4 Catchment attributes  

The provided catchment attributes characterize the catchments in terms of topography, land cover, 

nutrient sources, lithology and soils, and hydroclimate. The attributes were chosen with a focus on 

macronutrient sources and transport in line with the data set. Figure 5 shows the spatial distribution of a 375 

set of selected characteristics. All attributes, their variable names, original data sources and methods are 

listed in Appendix B Table B1 and the data repository (Ebeling et al., 2021a). This repository of catchment 

attributes is a composite of attributes from two existing repositories (Ebeling and Dupas, 2021; Ebeling, 

2021). 
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Figure 5: Maps of selected catchment characteristics. Each dot represents one station and the color represents the attribute of the 
corresponding catchment. Color bars are according to the quartiles of the data distribution of each attribute. Shown attributes: 
dem.mean – average elevation [m], twi.90p – 90th percentile of the topographic wetness index [-], P_mm – mean annual precipitation 
[mm y-1], AI – aridity index [-], T_mean – mean air temperature [°C], specQobs – specific annual discharge [mm y-1], f_sedim – 
fraction of sedimentary aquifer [-], f_sand – fraction of sandy soils [-], het_v – vertical concentration heterogeneity [-], pdens – 385 
population density [inhabitants km-2], Nsurp80_15 – mean N surplus from 1980-2015 [kg N ha-1 y-1], soilP.mean – phosphorus content 
in topsoil [mg kg-1]. For more details on the characteristics refer to the text in Section 4 and Table B1. 

4.1 Location and Topography  

Catchment size was calculated from the delineated catchment boundaries described in Section 2. 

Catchment size ranges from 0.9 to 123,012 km² with a median of 171.2 km², a 25th percentile of 53.6 and 390 

a 75th percentile of 634.4 km². Additionally, the fraction of the catchment area lying within German 

borders was calculated (f_AreaGer). Mean and median catchment elevation and topographic slope were 

extracted from the DEM with 100 m resolution (see also Section 2; EEA, 2013). The 100 m grid of 

topographic wetness index (TWI) was calculated from the DEM by relating the upstream area (from flow 

accumulation) to the local slope at each grid cell following Beven and Kirkby (1979). For each catchment, 395 

we extracted mean, median and 90th percentile TWI values. The 90th percentile has been shown to be a 

proxy for the abundance of riparian wetlands in a catchment (Musolff et al., 2018). Drainage density, 

defined as the length of surface waters per area, closely relates to topography. Drainage density was 

calculated and provided in two ways: as the catchment average of the gridded drainage density (cell size 

0.012 degree) provided in the Hydrologischer Atlas Deutschland (BMU, 2000) and as the river length 400 

from EU-hydro river network (EEA, 2016a) within the catchment divided by its area. For the latter, the 

level of detail was too coarse to yield plausible values for all catchments, which is why values are missing 

for 27 of the smaller catchments. However, the EU-hydro river network allowed us to derive further 

stream attributes such as the Strahler order. 

4.2 Land cover and population density 405 

The fractions of land cover classes were calculated from the level 1 classification of the CLC data set for 

2012 (artificial, agricultural, forested land, wetland and surface water cover) (EEA, 2016b). For a finer 

distinction within these overall classes, fractions of land cover classes were additionally calculated from 

level 2 data. Note that there can be an overestimation of agricultural areas from these CLC land cover 

classes when compared to census data as described by Bach et al. (2006) and considered for N surplus 410 
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time series (Section 3.4). Nevertheless, we expect that the relative distribution of agricultural fractions 

among the catchments is well captured. The mean catchment population density was calculated from the 

global data set Gridded Population of the World (CIESIN, 2017) for 2010. 

4.3 Nutrient sources  

The input from point sources is calculated as the sum of N and P load from wastewater treatment plants 415 

(WWTPs) with more than 2000 population equivalents (PE) from the database of the European 

Environment Agency (EEA, 2017) and data collected from 13 German federal states covering smaller 

WWTPs (PE < 2000) within Germany (Büttner, 2020). One PE is defined as the organic biodegradable 

load having a five–day biochemical oxygen demand (BOD5) of 60 g of oxygen per day (EC, 1991b). As 

a second data source, we calculated catchment averages of the European domestic waste emissions 420 

database (Vigiak et al., 2019; Vigiak et al., 2020) for N, P and BOD5 inputs from point sources. The 

average N, P und BOD5 input per person was estimated using the point source input divided by the 

number of inhabitants according to the population density. The advantage of these European data is the 

consistency for an extended, transnational data set, for example, as it is available for German and French 

catchments (Ebeling and Dupas, 2021). 425 

The net N input from diffuse sources was determined as temporal averages of diffuse N surplus time 

series (Section 3.4) for different periods, representing the main sampling period with historic inputs 

(1980-2015) and the current period (2000-2015). We also calculated averages for the periods before 

(1971-1990) and after (1990-2015) the EU Nitrogen Directive (EC, 1991a) and the difference between 

them as a characteristic of net input change. Note that the used N surplus data only cover Germany, but 430 

catchments can be transnational. The uncertainty with larger areas outside of Germany increases, for 

which f_AreaGer can be used as a measure. To estimate source apportionment between point and diffuse 

N sources, we calculated the fraction of catchment point source N loads (N_WW_frac) from total 

catchment N input as the sum of catchment point source N loads (N_T_YKM2) and N surplus (here using 

Nsurp80_15 for the period 1980-2015) on average based on the European wastewater database. 435 

N_WW_frac =  N_T_YKM2/(N_T_YKM2 +  Nsurp80_15) 
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We defined horizontal and vertical source heterogeneity in catchments to quantify the spatial distribution 

of diffuse nutrient sources with a focus on NO3-N (Ebeling et al., 2021c). The horizontal source 

heterogeneity describes the distribution of agricultural land use in a catchment in relation to the stream 

network. We used the horizontal flow distance of the 100 m DEM (EEA, 2013; Section 2) to the EU-440 

hydro river network (EEA, 2016a) and a highly resolved land use map of 2015 provided by Pflugmacher 

et al. (2018). We divided the grid into classes of flow distance to stream with 400 m steps. Subsequently, 

we fitted a linear regression to the share of agricultural source areas in each of the distance classes and 

the mean distance of the range of each distance class (i.e., 200 m for the class 0-400 m) weighted by the 

abundance of that specific class. The slope of the resulting linear model het_h characterizes if agricultural 445 

source areas tend to be located close to the stream network (het_h<0), equally distributed (het_h=0) or 

located far away from the stream network (het_h>0). For more details refer to Ebeling et al. (2021c). The 

vertical source heterogeneity het_v is the ratio of shallow and deep NO3-N concentration. Shallow NO3-

N concentrations are estimated on a 1 km grid by Knoll et al. (2020) using a ten years average of N surplus 

and average groundwater recharge. This can be seen as a potential leachate concentration as denitrification 450 

in the soil’s root zone and horizontal transport are not accounted for. The deep NO3-N concentrations are 

estimated on the same grid using a random forest model that is trained on observed concentrations in 

groundwater (Knoll et al., 2020). The ratio of both was averaged across the catchment to yield het_v 

reported here. A ratio of one describes a catchment that has a vertical homogeneity in NO3-N 

concentrations while a ratio above one describes stronger vertical concentration gradients. 455 

4.4 Lithology and Hydrogeology 

To characterize the lithological and the hydrogeological settings of the catchments we used the 

international hydrogeological map of Europe 1:1,500,00 (BGR & UNESCO, 2014). For the lithological 

settings, we derived the fraction of area covered by calcareous rocks, calcareous rocks and sediments, 

magmatic rocks, metamorphic rocks, siliciclastic rocks, siliciclastic rocks and sediments, and sediments 460 

(based on lithology data level four). Additionally, we determined the fractions of the more aggregated 

lithological classes (from lithology level five), i.e. consolidated, partly consolidated, and unconsolidated 

rocks. We furthermore quantified the areal fraction of aquifer type in the catchment differentiating porous 
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aquifers, fissured hard rock aquifers (including karst), and locally aquiferous or non-aquiferous rocks. 

Finally, we extracted the catchment median estimate of depth to bedrock from the global map from 465 

Shangguan et al. (2017). 

4.5 Soil properties 

We calculated the fraction of the catchment covered with hydromorphic soils (stagnosols, semi-terrestrial, 

semi-subhydric, subhydric and peat soils) from the German soil map (1:250,000; BGR, 2018). As this 

data source only covers Germany, data might not be reliable for transboundary catchments (see also 470 

Section 4.3). We also calculated the average fraction of sand, silt and clay averaged across the soil 

horizons of the top 1 m based on the Harmonized World Soil Database (HWSD; v1.2) available at a 30 

arc-second raster database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). We first estimated vertically 

weighted soil textural properties from the original HWSD data provided for two soil layers (upper 30 cm 

and 30-100 cm). Next, we calculated the areal averages of respective properties considering the boundary 475 

(polygon) of each study catchment.   

We estimated the porosity of soil profiles (thetaS) based on the pedo-transfer function of Zacharias and 

Wessolek (2007) and the root-zone plant available water content (WaterRoots) which reflects the 

difference in water content between the field capacity and permanent wilting point. The field capacity is 

calculated based on a flux-based estimation approach proposed by Twarakavi et al. (2009) corresponding 480 

to a minimum drainage flux of 1 mm d-1. The estimate of the permanent wilting point is derived using the 

Van Genuchten (1980) model of the matric potential at -1500 kPa and the corresponding model 

parameters calculated from pedotransfer functions of Zacharias and Wessolek (2007). Similar to soil 

textural properties, for each of these soil hydraulic parameters (porosity, field capacity, and permanent 

wilting point), we calculated areal averages of the vertically weighted estimates for the upper 1 m soil 485 

profile for each study catchment. More details on this method using pedo-transfer functions and 

subsequent aggregations can be found in  Livneh et al. (2015). Furthermore, we estimated average 

catchment soil chemistry of the topsoil (first 20 cm) for year 2009 from the European soil chemistry map, 

which is based on the LUCAS database (Ballabio et al., 2019). For this, we calculated mean C/N ratio, 

nitrogen content and phosphorus content from the maps for each catchment. 490 
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4.6 Hydroclimatic characteristics 

Long-term average hydroclimatic characteristics were derived from the meteorological (Section 3.3) and 

discharge time series. All climatic characteristics were calculated for a period of 30 years from 1986 to 

2015 based on the E-OBS data set from the European Climate Assessment & Dataset (ECA&D) project 

(v18.0e; Cornes et al., 2018). First, we provide mean annual precipitation, mean annual potential 495 

evapotranspiration, mean annual air temperature and the aridity index as the ratio between potential 

evapotranspiration and precipitation. The variability of precipitation is further characterized by the mean 

precipitation frequency and depth (Botter et al., 2013) and by two seasonality indices, i.e. the ratio 

between summer (June-August) and winter (December-February) precipitation (P_SIsw) and the average 

difference between average daily precipitation within each month and within a year (P_SI).  500 

The hydrologic properties were characterized from stations with observed daily discharge data 

(Section 3.2) for different time periods according to the available data and study purposes of the original 

data sets. For current properties, daily discharge data from November 1999 (hydrological year 2000) were 

used for calculations (309 stations). Additionally, the hydrologic characteristics calculated from daily 

discharge data starting in 1986 are provided (319 stations), which are possibly more relevant for studies 505 

with a long-term perspective. If there was data only before 1986, we used the available time period (four 

stations). The actual starting and ending dates of the time series finally used for calculations are provided 

to inform on the exact time periods (StartQobs and EndQobs; Q_StartDate and Q_EndDate respectively, 

refer to Table B1). Provided average characteristics include mean, median, median summer (May-

October), median winter (November-April), and specific discharge. For the variability of discharge, we 510 

provide the coefficient of variation, the base flow index (according to WMO, 2008) and the flashiness 

index based on flow percentiles (ratio of 5th to 95th percentile) as well as discharge seasonality in terms 

of the ratio between summer and winter median discharge and the runoff coefficient (discharging fraction 

of precipitation). 
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5 Limitations   515 

The presented data set has several limitations. More than half of the stations do not a have co-located 

gauging station and the ones that do are not homogeneously distributed across Germany. Existing 

concentration time series would benefit from available discharge data, as this allows the characterization 

of concentration-discharge relationships as well as the estimation of daily concentration, flow-normalized 

concentration and flux data for stations with high data availability using the WRTDS method. Generally, 520 

modelled discharge from hydrological models such as mHM (Section 3.2.2) or estimated discharge using 

other (mechanistic or statistical modeling) techniques could serve to extend the data set of joint water 

quality and water quantity and overcome missing station matches or data gaps. Other limitations are 

linked to data policies by federal state authorities, which sometimes do not permit publication of raw 

quality and quantity data. However, we aimed to make a virtue of necessity by providing aggregated data 525 

and further ready-to-use metrics of water quality and quantity (e.g., annual median concentrations and 

monthly median concentrations over the whole time series). Attributes derived from exclusively national 

data sets, such as N surplus, underlie higher uncertainties in transboundary catchments, as data outside 

Germany are either not available or not consistent. Additionally, there is uncertainty in the attributes, 

stemming from the inherent uncertainties in the data sets and the catchment boundaries. However, the 530 

provided description and references of the methods and the underlying data sources should enable users 

to evaluate the reliability of each descriptor in the data set and exclude stations from the analyses if 

necessary. This also leaves room for further improvements and extensions when new data and knowledge 

become available. Besides a higher number of water quality stations, longer time series and more co-

located discharge data, it would be especially interesting to add time series of nutrient inputs from point 535 

sources and from diffuse P sources, as well as information on tile drainage locations to the catchment 

attributes. For a better linkage of chemical water quality with ecological research questions, biological 

water quality variables such as chlorophyll-a concentrations would be highly valuable as well. 
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6 Data availability 

The QUADICA data set presented here is freely available in two online repositories. The water quality 540 

and water quantity data described in this manuscript, as well as the time series of meteorological and 

diffuse nitrogen input can be accessed under 

https://doi.org/10.4211/hs.26e8238f0be14fa1a49641cd8a455e29 (Ebeling et al., 2021b). The catchment 

characteristics and boundaries are published under 

https://doi.org/10.4211/hs.82f8094dd61e449a826afdef820a2c19 (Ebeling et al., 2021a). Due to license 545 

agreements, the raw concentration and raw discharge data provided by the German federal states are not 

made public but are deposited in an institutional repository (Musolff et al., 2020), however, metadata of 

the data and stations are provided under https://doi.org/10.4211/hs.a42addcbd59a466a9aa56472dfef8721 

(Musolff, 2020). 

7 Conclusions 550 

In this study, we provide a comprehensive homogenized data set for 1386 German catchments including 

time series of water quality, co-located discharge, hydroclimatic data and diffuse nitrogen inputs, as well 

as catchment boundaries and more than 100 catchment attributes. The presented QUADICA (water 

QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany) data set offers the 

opportunity to identify spatial and temporal patterns in water quality jointly with water quantity. This 555 

allows to formulate and test hypotheses on underlying processes by linking observed responses to the 

driving forces and catchment attributes. QUADICA also opens up opportunities to calibrate and validate 

water and solute transport models at the scale of single and multiple catchments as well as at national 

scale. Consequently, the data set has the potential to advance our understanding about water quality 

processes across scales. More specifically, the data can be used to examine various spatio-temporal water 560 

quality patterns such as average concentrations, trends, and average seasonality. For stations with high 

data availability, analyses can be extended to trajectories of seasonality, flow-normalized concentrations 

and mass fluxes. The patterns can be investigated for the three different macronutrients nitrogen, 

phosphorus and organic carbon, their species as well as for nutrient ratios. In addition, interactions 
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between the nutrients and their spatio-temporal patterns can be assessed. In the context of comparative 565 

large-sample hydrology (e.g., Gupta et al., 2014), the spatio-temporal water quality patterns can be linked 

to catchment attributes to identify underlying processes. This can, for example, support quantifying the 

impact of human disturbances on nutrient cycles and their interactions with natural controls. Some studies 

investigated spatio-temporal patterns and underlying controls in large-sample approaches using parts of 

the provided data set recently. For example, Ebeling et al. (2021c) assessed average nutrient 570 

concentrations and export dynamics, Ebeling et al. (2021d) evaluated long-term trajectories of nitrate 

seasonality, Ehrhardt et al. (2021) quantified nitrogen legacies using nitrogen input and export time series, 

and Yang et al. (2021) modeled the impact of phosphorus inputs on stream network algae growth. These 

assessments and derived hypotheses can be further explored and extended with the provided data to 

increase our knowledge on catchment functioning.  575 

Furthermore, the provided data can be merged with other water quality and quantity data sets e.g. to 

enable assessments across transnational, large scales and with higher variability in catchment attributes. 

Here, we hope to stimulate other researchers or environmental authorities to provide similar data sets of 

joint water quality and quantity data to make the wealth of spatiotemporal water quality data available, 

including long-term data that have been collected in research projects and during regular monitoring 580 

activities such as the EU Water Framework Directive (EC, 2000). Therefore, we call for joint efforts to 

further increase opportunities for catchment scale water quality assessments and modeling activities on 

regional, transnational and even continental scales. 
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Appendix A 585 

 
Fig. A1: Time series of annual median concentrations and discharge observed at the 1386 water quality stations during grab 
sampling as in Table 1, Fig. 1 and described in Section 3.1. Note: For visualization purposes, values > 40 mg l-1 are not shown for N 
species (i.e. five NO3-N, seven Nmin and zero TN values) and one sample in 1900 has been omitted.  
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 590 
Fig. A2: Distribution of performances of WRTDS-models by compound, coefficient of determination R2 (a) and bias (b). Boxes 
highlight the median and quartiles of each distribution; points display performance values of single catchments. Note that one bias 
value > 0.4 is not shown for TOC for better visibility. 

 
Fig. A3: Time series of annual median discharge Q from (a) 324 stations with continuous observations and (b) 581 stations with 595 
observations during grab sampling. Note that stations with continuous discharge data from (a) are included in (b) using only the 
days of grab sampling for calculation. For visualization purposes only values from 1954 are shown. 
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Appendix B 600 

Table B1: Catchment attributes, associated methods and original data sources used for calculating the attributes (Ebeling et al., 
2021a). This collection of catchment attributes is merged and adapted from existing repositories (Ebeling, 2021; Ebeling and Dupas, 
2021) and the related publications (Ebeling et al., 2021d; Ebeling et al., 2021c; Ehrhardt et al., 2021). For more details see Section 4. 

Category Variable Unit Description and method Data source 

General OBJECTID - Unique identifier   

  Station - Station name   

  Area_km2 km² Catchment area   

  f_AreaGer - Fraction of catchment area within Germany   

Topography dem.mean mamsl Mean elevation of catchment, from DEM 
rescaled from 25 to 100 m resolution using 
average 

EEA (2013) 

  dem.median mamsl Median elevation of catchment, from DEM 
rescaled from 25 to 100 m resolution using 
average 

EEA (2013) 

  slo.mean ° Mean topographic slope of catchment, from 
DEM 

EEA (2013) 

  slo.median ° Median topographic slope of catchment, from 
DEM 

EEA (2013) 

  twi.mean - Mean topographic wetness index (TWI, Beven 
& Kirkby, 1979) 

EEA (2013) 

  twi.med - Median topographic wetness index (TWI, Beven 
& Kirkby, 1979) 

EEA (2013) 

  twi.90p - 90th percentile of the TWI as a proxy for riparian 
wetlands (following Musolff et al., 2018) 

EEA (2013) 

  ddhad km-1 Average drainage density of the catchment. 
Gridded drainage density is provided as the 
length of surface waters (rivers and lakes) per 
area from a 75km² circular area around each cell 
centerd. 

BMU (2000) 
  

  DrainDens km-1 Average drainage density of the catchment, 
calculated from EU-Hydro River Network and 
intersection with Catchment polygons (contains 
several implausible values (often too small 
values due to coarser resolution of river 
network)) 

EEA (2016b) 

Land cover f_artif - Fraction of artificial land cover EEA (2016a) 
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  f_agric - Fraction of agricultural land cover EEA (2016a) 

  f_forest - Fraction of forested land cover EEA (2016a) 

  f_wetl - Fraction of wetland cover EEA (2016a) 

  f_water - Fraction of surface water cover EEA (2016a) 

  f_urban - Fraction of Class 11 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_industry - Fraction of Class 12 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_mine - Fraction of Class 13 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_urban_veg - Fraction of Class 14 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_arable - Fraction of Class 21 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_agri_perm - Fraction of Class 22 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_pastures - Fraction of Class 23 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_agri_hetero - Fraction of Class 24 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_fores - Fraction of Class 31 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_scrub - Fraction of Class 32 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  f_open - Fraction of Class 33 Level 2 CORINE Land 
Cover 

EEA (2016a) 

  pdens inhabitants 
km-² 

Mean population density CIESIN (2017) 

Nutrient 
sources 

Nsurp00_15 kg N ha-1 y-1 Mean nitrogen (N) surplus per catchment during 
sampling period (2000-2015) including the N 
surplus on agricultural land and atmospheric N 
deposition and biological N fixation on non-
agricultural areas. Details on the N surplus data 
is given in Section 3.4. 

Bach et al. (2006); Bach and Frede 
(1998); Bartnicky and 
Benedictow (2017); Bartnicky 
and Fagerli (2006); Behrendt et al. 
(1999); Cleveland et al. (1999); 
Häußermann et al. (2019); Van 
Meter et al. (2017) 

  Nsurp91_15 kg N ha-1 y-1 Mean N surplus per catchment from 1991 to 
2015 (after Nitrogen Directive was introduced) 

See Nsurp00_15 
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  Nsurp80_15 kg N ha-1 y-1 Mean N surplus per catchment from 1980 to 
2015 (main sampling period) 

See Nsurp00_15 

  Nsurp71_90 kg N ha-1 y-1 Mean N surplus per catchment from 1971 to 
1990 (historic (legacy) inputs) 

See Nsurp00_15 

  dNsurp71_91 kg N ha-1 y-1 Change in mean N surplus between the periods 
1971-1990 and 1991-2015, i.e. 
dNsurp71_91=Nsurp71_90 - Nsurp91_15 

See Nsurp00_15 

  N_WW kg N ha-1 y-1 Sum of N input from point sources including 
waste water treatment plants (WWTP) > 2000 
person equivalents from the database of the 
European Environment Agency covering areas 
beyond Germany and data collected from 13 
Federal German States covering smaller WWTP 
within Germany 

EEA (2017); Yang et al. (2019) 

  P_WW kg P ha-1 y-1 Sum of P input from WWTP analogous to 
N_WW 

EEA (2017); Yang et al. (2019) 

  N_T_YKM2 t N km-2 y-1 Mean N input from point sources summing all N 
emission values provided in the EU domestic 
waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 
(2020) 

  P_T_YKM2 t P km-2 y-1 Mean P input from point sources summing all P 
emission values provided in the EU domestic 
waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 
(2020) 

  BOD_T_YKM
2 

t O km-2 y-1 Mean five-days biochemical oxygen demand 
(BOD) input from point sources summing all 
BOD emission values provided in the EU 
domestic waste emissions data base 

Vigiak et al. (2019); Vigiak et al. 
(2020) 

  N_T_YEW t N inh-1 y-1 Calculated N input per person (from EU 
domestic waste emissions data base) 
N_T_YEW =N_T_YKM2 / nEW * Area_km2 

Vigiak et al. (2019); Vigiak et al. 
(2020) 

  P_T_YEW t P inh-1 y-1 Calculated P input per person (from EU 
domestic waste emissions data base) 
P_T_YEW =P_T_YKM2 / nEW * Area_km2 

Vigiak et al. (2019); Vigiak et al. 
(2020) 

  nEW - Calculated number of inhabitants, 
nEW=pdens * Area_km2 

CIESIN (2017) 

  n_UWWTP - Number of point sources from European data 
base (UWWTP data base) 

EEA (2017) 

  N_WW_frac - Fraction of point source loads from total N input 
loads 
N_WW_frac = N_T_YKM2 / (N_T_YKM2 + 
Nsurp80_15) 

  

  f_sarea - Fraction of source area in the catchment. Source 
areas were defined as seasonal, perennial 
cropland and grassland land cover classes using 

Source areas based on 
Pflugmacher et al. (2018) 

https://doi.org/10.5194/essd-2022-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



33 
 

a highly resolved land use map (Pflugmacher et 
al., 2018) 

  het_h m-1 Slope of relative frequency of source areas in 
classes of flow distances to stream as a proxy for 
horizontal source heterogeneity. For details refer 
to Ebeling, Kumar, et al. (2021) 

Source areas based on 
Pflugmacher et al. (2018) 

  R2_het_h - Coefficient of determination of horizontal source 
heterogeneity het_h 

  

  sdist_mean m Mean lateral flow distance of source areas to 
stream. For details refer to Ebeling, Kumar, et al. 
(2021) 

Source areas based on 
Pflugmacher et al. (2018) 

  het_v - Mean ratio between potential seepage and 
groundwater NO3-N concentrations as proxy for 
vertical concentration heterogeneity. For details 
refer to Ebeling, Kumar, et al. (2021) 

Knoll et al. (2020) 

Lithology 
and soils 

f_calc - Fraction of calcareous rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_calc_sed - Fraction of calcareous rocks and sediments  
(Lithology level 4, coarse and fine sediments 
aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_magma - Fraction of magmatic rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_metam - Fraction of metamorphic rocks (Lithology level 
4) 

BGR & UNESCO (eds.) (2014) 

  f_sedim - Fraction of sedimentary aquifer (Lithology level 
4, coarse and fine sediments aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_silic - Fraction of siliciclastic rocks (Lithology level 4) BGR & UNESCO (eds.) (2014) 

  f_sili_sed - Fraction of siliciclastic rocks and sediments 
(Lithology level 4, coarse and fine sediments 
aggregated) 

BGR & UNESCO (eds.) (2014) 

  f_consol - Fraction of consolidated rocks (Lithology Level 
5) 

BGR & UNESCO (eds.) (2014) 

  f_part_consol - Fraction of partly consolidated rocks (Lithology 
Level 5) 

BGR & UNESCO (eds.) (2014) 

  f_unconsol - Fraction of unconsolidated rocks (Lithology 
Level 5) 

BGR & UNESCO (eds.) (2014) 

  f_porous - Fraction of porous aquifer (code 1 and 2 of 
aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_porous1 - Fraction of porous aquifer (code 1 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 
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  f_porous2 - Fraction of porous aquifer (code 2 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 

  f_fissured - Fraction of fissured aquifer (code 3 and 4 of 
aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_fiss1 - Fraction of fissured aquifer (code 3 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 

  f_fiss2 - Fraction of fissured aquifer (code 4 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 

  f_hard - Fraction of locally aquiferous and non-
aquiferous aquifer (code 5 and 6 of aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_hard1 - Fraction of locally aquiferous rocks (code 5 of 
aquifer type) 

BGR & UNESCO (eds.) (2014) 

  f_hard2 - Fraction of non-aquiferous rocks (code 6 of 
aquifer type) 

BGR & UNESCO (eds.) (2014) 

 f_inwater  Fraction of inland water (code 200 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 

 f_ice  Fraction of snow or ice field (code 300 of aquifer 
type) 

BGR & UNESCO (eds.) (2014) 

  dtb.median cm Median depth to bedrock in the catchment Shangguan et al. (2017) 

  f_gwsoils - Fraction of water-impacted soils in the 
catchment (from soil map 1:250,000), including 
stagnosols, semi-terrestrial, semi-subhydric, 
subhydric and moor soils 

BGR (2018) 

  f_sand 
f_silt 
f_clay 

- Mean fraction of sand in soil horizons of the top 
100 cm 
Mean fraction of silt in soil horizons of the top 
100 cm 
Mean fraction of clay in soil horizons of the top 
100 cm 

FAO/IIASA/ISRIC/ISSCAS/JRC 
(2012) 

 f_clay_agri  Mean fraction of clay in soil horizons of the top 
100 cm on agricultural land use (Class 2 Level 1 
CORINE; see f_clay and f_agric) 

FAO/IIASA/ISRIC/ISSCAS/JRC 
(2012), EEA (2016a) 

  WaterRoots mm Mean available water content in the root zone 
from pedo-transfer functions 

Livneh et al. (2015); Samaniego et 
al. (2010); Zink et al. (2017) 

  thetaS - Mean porosity in catchment from pedo-transfer 
functions 

Livneh et al. (2015); Samaniego et 
al. (2010); Zink et al. (2017) 

  soilN.mean g kg-1 Mean top soil N in catchment Ballabio et al. (2019) 

  soilP.mean mg kg-1 Mean top soil P in catchment Ballabio et al. (2019) 

  soilCN.mean - Mean top soil C/N ratio in catchment Ballabio et al. (2019) 
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Hydrology StartQobs YYYY-
MM-DD 

Starting date of Q time series used for calculating 
hydrological indices (1999-11-01 or start of time 
series) 

 

 EndQobs YYYY-
MM-DD 

End date of Q time series used for calculating 
hydrological indices 

 

 meanQobs m³ s-1 Mean discharge (period from StartQobs to 
EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  medQobs m³ s-1 Median discharge (period from StartQobs to 
EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  specQobs mm y-1 Mean annual specific discharge (period from 
StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  CVQobs - Coefficient of variation of time series of daily Q 
(period from StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  medSuQobs m³ s-1 Median summer discharge (months May-
October) (period from StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  medWiQobs m³ s-1 Median winter discharge (months November-
April) (period from StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  seasRQobs - Seasonality index of Q, as ratio between median 
summer and median winter Q (period from 
StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  BFIQobs - Base flow index calculated according to WMO 
[2008] with lfstat package (version 0.9.4) in R 
(period from StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  flashQobs - Flashiness index of Q as the ratio between 5 % 
percentile and 95 % percentile of Q time series 
(period from StartQobs to EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

 RCQobs - Runoff coefficient (fraction of mean annual 
precipitation discharging as specific discharge, 
specQobs/P_mm) (period from StartQobs to 
EndQobs) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_StartDate YYYY-
MM-DD 

Starting date of Q time series used for calculating 
hydrological indices (from 1986, if possible and 
at least 3 years of data, in few cases only earlier 
data was available) 

  

  Q_EndDate YYYY-
MM-DD 

End date of Q time series used for calculating 
hydrological indices (as available) 

  

  Q_mean m³ s-1 Mean discharge (data for the period 
Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_median m³ s-1 Median discharge (data for the period 
Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 
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  Q_spec mm y-1 Mean annual specific discharge (data for the 
period Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_CVQ - Coefficient of variation of time series of daily Q 
(data for the period Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_medSum m³ s-1 Median summer discharge (months May-
October) (data for the period Q_StartDate-
Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_medWin m³ s-1 Median winter discharge (months November-
April) (data for the period Q_StartDate-
Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  Q_Sum2Win - Seasonality index of Q, as ratio between median 
summer and median winter Q (data for the period 
Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  BFI - Base flow index calculated according to WMO 
[2008] with lfstat package (version 0.9.4) in R 
(data for the period Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

  flashi - Flashiness index of Q as the ratio between 5 % 
percentile and 95 % percentile of Q time series 
(data for the period Q_StartDate-Q_EndDate) 

Musolff (2020); Musolff et al. 
(2020) 

Climate P_mm mm y-1 Mean annual precipitation (period 1986-2015) Cornes et al. (2018) 

  P_SIsw - Seasonality of precipitation as the ratio between 
mean summer (Jun-Aug) and winter (Dec-Feb) 
precipitation (period 1986-2015) 

Cornes et al. (2018) 

  P_SI - Seasonality index of precipitation as the mean 
difference between monthly averages of daily 
precipitation and year average of daily 
precipitation (period 1986-2015) 

Cornes et al. (2018) 

  P_lambda d-1 Mean precipitation frequency λ as used by Botter 
et al. (2013) with rain days for precipitation 
above 1 mm (period 1986-2015) 

Cornes et al. (2018) 

  P_alpha mm d-1 Mean precipitation depth as used by Botter et al. 
(2013) with rain days for precipitation above 
1 mm (period 1986-2015) 

  

  PET_mm mm y-1 Mean annual potential evapotranspiration 
(period 1986-2015) 

Cornes et al. (2018) 

  AI - Aridity index as AI=PET_mm/P_mm (period 
1986-2015) 

Cornes et al. (2018) 

  T_mean °C Mean annual air temperature (period 1986-2015) Cornes et al. (2018) 

 

 605 
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